US3663214A - Abrasion resistant cast iron - Google Patents

Abrasion resistant cast iron Download PDF

Info

Publication number
US3663214A
US3663214A US11491A US3663214DA US3663214A US 3663214 A US3663214 A US 3663214A US 11491 A US11491 A US 11491A US 3663214D A US3663214D A US 3663214DA US 3663214 A US3663214 A US 3663214A
Authority
US
United States
Prior art keywords
chromium
manganese
carbides
percent
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11491A
Inventor
William H Moore
Harry H Kessler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEEHANITE WORLDWIDE Corp
Original Assignee
William H Moore
Kessler Harry Harvey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by William H Moore, Kessler Harry Harvey filed Critical William H Moore
Application granted granted Critical
Publication of US3663214A publication Critical patent/US3663214A/en
Assigned to MEEHANITE WORLDWIDE CORPORATION reassignment MEEHANITE WORLDWIDE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MEEHANITE METAL CORPORATION, A MO. CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • Kessler 7 Dromara Rd., Ladue, Mo. 64758 Feb. 16, 1970 US. Cl. ..75/126 A, 75/126 B, 148/35 Int. Cl Field ofSearch ..148/35;75/126 A, 126 B, 128 D,
  • FIG INVENTORS A NEYS FIG ABRASION RESISTANT CAST IRON
  • Our invention relates to a white cast iron and, more particularly, to a chromium-bearing white cast iron, having a combination of toughness and hardness, making it suitable to resist abrasion and wear when used for grinding or crushing ores, cements, rocks, and the like.
  • white cast irons are available for this purpose; most of them relying on the presence of hard iron carbides in their metallurgical structure, to provide a degree of wear resistance.
  • Other white cast irons are alloyed with chromium, manganese, nickel, copper, vanadium, molybdenum, and the like, to provide harder carbides and, also, to improve the overall hardness of the matrix structure.
  • Chromium provides particularly hard carbides and, when present in sufficient amount and under the right conditions, radically alters the structure of the carbides, so that they occur as cubic or needle-like particles quite different from massive carbides normally present in chromium-free cast irons.
  • An object of this invention is to provide a wear resistant chromium-bearing cast iron containing orthorhombic or trigonal (chunky) carbides in an austenitic matrix.
  • a further object is to provide a white wear-resistant cast iron with an austenitic matrix, but not containing essential amounts of strategic and costly alloys, such as nickel and molybdenum.
  • a further object of this invention is to provide a wear-resistant white cast iron, wherein the improved wear characteristics of chromium are combined effectively with the wear characteristics of manganese, resulting in a white cast iron having a high degree of toughness for wear applications where some pounding impact is involved.
  • F 1G. 1 is a photomicrograph showing the structure of a prior art chromium and manganese-bearing cast iron in which the balance of these elements is such that the structure is similar to that of a white cast iron (magnification 400);
  • FIG. 2 is a photomicrograph showing the structure at 100 magnification of the alloy of this invention, wherein the chromium and manganese are correctly balanced and where the carbides exist as chunks having the trigonal and orthorhombic configuration;
  • FIG. 3 is an enlarged photomicrograph at 500 magnification of the alloy of this invention showing the typical austenitic matrix distinguished also by small quantities of low temperature pearlite, as indicated.
  • chromium in sufficient amount, has a peculiar effect on the carbides that occur in a white cast iron.
  • a sufficient amount of chromium usually at least 8 percent by weight, produces first, a needle-like carbide known as an orthorhombic carbide supposedly having the composition (FeCr) C.
  • Chromium is a ferrite former, tending to prevent the retension of austenite, whereas manganese tends to promote the formation of austenite.
  • electro-probe analysis shows that, in the carbide phase the manganese to chromium ratio is about three to one with manganese at 36 percent and chromium at 12 percent; whereas in the matrix the manganese to chromium ratio is one to two, with manganese at 5 percent and chromium at about 10 percent,
  • nickel may be used in conjunction with chromium, to provide cast irons having an austenitic matrix and white cast irons containing orthorhombic and trigonal carbides.
  • Nickel is a strategic alloy, not always readily available in unlimited quantity to the producers of wear resistant castings and nickel, also, is a relatively expensive alloy, being at least five times as expensive and often eighty times as manganese.
  • the use of nickel, as a tramp element or in small quantities, by deliberate intent, is not precluded from our alloy composition, providing the manganese and the chromium present are sufficient to provide the preferred structure, if the nickel were entirely absent.
  • alloys like molybdenum are often used in high chromium cast irons or in manganese cast irons, to provide an increased tendency to form a martensitic or bainitic matrix structure.
  • Molybdenum also is a highly strategic and expensive alloy and would, therefore, not normally be present in any appreciable amount in the alloy composition of our invention. It may be used for special effects, where desired, providing that the manganese and chromium contents present are, by themselves, present in sufficient amount to produce the preferred structure of orthorhombic and trigonal carbides in an austenitic matrix.
  • Alloys such as tungsten (acting similarly to molybdenum) and vanadium (acting similarly to chromium) may also be present, but they too are relatively expensive and we have also found that vanadium, present in large amounts (i.e. above about 2 percent) tend to produce carbides which are not as desirable as the preferred orthorhombic and trigonal types.
  • Copper may also be used as an alloying element, but it too is expensive and only appears to exert a relatively slight effect on our alloy composition. In general, we prefer to limit all of these special alloying elements commonly found in white cast irons to a total value of about 2 percent each and certainly to a combined value of no more than percent.
  • Total carbon which is present in all cast irons, is an important element in the composition of our alloy.
  • silicon may be entirely absent from an alloy, we prefer to have it present in an amount ranging from 0.5 to 2.5 percent. At silicon levels of between 1.0 and 2.0 percent we find that the production of the preferred carbides is somewhat easier and that silicon appears to work together with carbon, so that the amount of silicon used is usually lower at higher carbon contents. in any case, the presence or absence of silicon is not critical to the production of the cast iron of our invention.
  • the mechanical properties of our alloy are particularly suited to wear and abrasion resistance.
  • the overall Brinell hardness may be as low as 300, because of the relatively soft austenitic matrix, but on the other hand, particularly when thermal treatments are used, may be as high as 700 Brinell.
  • the as-cast hardness normally ranges between 320 and 550 Brinell and we prefer to have an as-cast hardness of about 400 Brinell, where a higher impact resistance is important.
  • the tensile strength of our alloy is usually more than 50,000 p.s.i., but may be as high as 100,000 p.s.i. As tensile strength is not particularly important in white cast'irons, we do not regard it as an index of quality.
  • the impact strength of our alloy is higher than that associated with white cast irons and is very similar to that normally associated with other austenitic, ferritic or martensitic white irons containing chunky carbides; thus, on a 2 inch diameter bar we would normally expect an impact strength of 100 to 150 foot pounds in the product of our invention. This is approximately twice the value normally obtained in white irons not having the preferred carbide structure.
  • This high impact strength or toughness provides good wear resistance under conditions where some pounding is present and where ordinary white irons would tend to abrade very rapidly by attrition or flaking of the metal surface.
  • our wear resisting alloy is surprisingly resistant to the effects of heat or certain corrosive media. This enhances the value of this alloy, where the combined effects of heat and wear or the combined effects of corrosion and wear must be contended with in industrial applications.
  • This heat was cast into a 2 inch diameter test bar and into a casting used for grinding rock.
  • the structure of the casting was examined and was found to consist of carbides in a matrix of about 70 percent austenite and 30 percent low temperature pearlite (non-resolvable pearlite).
  • the carbides were approximately 60 percent of the trigonal (chunky) type and about 40 percent of the orthorhombic (needle) type.
  • the test bar was tested for impact at 12 inch centers under a drop test machine. It broke at foot pounds. The hardness of the casting was found to be 430 Brinell on an overall basis.
  • Microhardness measurements on the carbides in the structure indicated hardness ranging from 800 to 1050 Brinell.
  • the casting was placed in service and performed for 152 hours, compared to ordinary white irons usually lasting about 60 hours and to alloyed white irons containing strategic alloys usually lasting about hours.
  • a wear-resistant white iron having a substantially austenitic structure containing predominantly trigonal and orthorhombic chromium-manganese carbides consisting essentially of from 7.0 to 15.0 percent manganese, 8.0 to 15.0 percent chromium, 3.0 to 4.0 percent total carbon, 0 to 2.5 percent silicon, and with the total of manganese and chromium being at least 15.0 percent.

Abstract

A wear and abrasion resistant white iron having a composition as follows: Total Carbon 3.0% to 4.0% Silicon 0.0% to 2.5% Manganese 7.0% to 15.0% Chromium 8.0% to 15.0% Other alloying constituents 0.0% to 5.0% AND HAVING A MICROSTRUCTURE OF PREDOMINANTLY CHUNKY OR NEEDLE CARBIDES IN A MATRIX PREDOMINANTLY AUSTENITIC.

Description

United States Patent Moore et al.
[ 1 May 16, 1972 Filed:
Appl. No.: 11,491
ABRASION RESISTANT CAST IRON Inventors: William H. Moore, Meadow Lane,
Purchase, NY. 10577; Harry 1'1. Kessler, 7 Dromara Rd., Ladue, Mo. 64758 Feb. 16, 1970 US. Cl. ..75/126 A, 75/126 B, 148/35 Int. Cl Field ofSearch ..148/35;75/126 A, 126 B, 128 D,
............ ..C22c 39/16, C220 39/32 75/128 A, 125, 123 CB, 123 N References Cited UNITED STATES PATENTS Jacobs ..75/126 A Becket ..75/126 B Stoody ..75/126 B Coles ..75/126 A 1,860,852 5/1932 Coles... ..75/126 A 2,075,990 4/1937 Kelly ....75/126 B 2,803,538 8/1957 Zampieri.. ....75/126 A 2,472,027 5/1949 Robiette ..148/35 X Primary Examiner-L. Dewayne Rutledge Assistant Examiner-J. E. Legru AttorneyWoodling, Krost, Granger and Rust [57] ABSTRACT- A wear and abrasion resistant white iron having a composition as follows:
and having a microstructure of predominantly chunky or needle carbides in a matrix predominantly austenitic.
2 Claims, 3 Drawing Figures PATENTEDMAY 16 m2 FIG INVENTORS A NEYS FIG ABRASION RESISTANT CAST IRON Our invention relates to a white cast iron and, more particularly, to a chromium-bearing white cast iron, having a combination of toughness and hardness, making it suitable to resist abrasion and wear when used for grinding or crushing ores, cements, rocks, and the like.
Many white cast irons are available for this purpose; most of them relying on the presence of hard iron carbides in their metallurgical structure, to provide a degree of wear resistance. Other white cast irons are alloyed with chromium, manganese, nickel, copper, vanadium, molybdenum, and the like, to provide harder carbides and, also, to improve the overall hardness of the matrix structure.
Some superior white cast irons, containing from 8 to 30 percent chromium are also in common use. Chromium provides particularly hard carbides and, when present in sufficient amount and under the right conditions, radically alters the structure of the carbides, so that they occur as cubic or needle-like particles quite different from massive carbides normally present in chromium-free cast irons.
lrons of this type have a ferritic matrix structure, unless alloys, such as nickel, are used to provide austenitic, bainitic or martensitic matrices. An object of this invention is to provide a wear resistant chromium-bearing cast iron containing orthorhombic or trigonal (chunky) carbides in an austenitic matrix.
A further object is to provide a white wear-resistant cast iron with an austenitic matrix, but not containing essential amounts of strategic and costly alloys, such as nickel and molybdenum.
A further object of this invention is to provide a wear-resistant white cast iron, wherein the improved wear characteristics of chromium are combined effectively with the wear characteristics of manganese, resulting in a white cast iron having a high degree of toughness for wear applications where some pounding impact is involved.
Still further objects may be apparent from the specification and the drawings in which;
F 1G. 1 is a photomicrograph showing the structure of a prior art chromium and manganese-bearing cast iron in which the balance of these elements is such that the structure is similar to that of a white cast iron (magnification 400);
FIG. 2 is a photomicrograph showing the structure at 100 magnification of the alloy of this invention, wherein the chromium and manganese are correctly balanced and where the carbides exist as chunks having the trigonal and orthorhombic configuration;
FIG. 3 is an enlarged photomicrograph at 500 magnification of the alloy of this invention showing the typical austenitic matrix distinguished also by small quantities of low temperature pearlite, as indicated.
It has been established by those skilled in the art, that chromium, in sufficient amount, has a peculiar effect on the carbides that occur in a white cast iron. A sufficient amount of chromium, usually at least 8 percent by weight, produces first, a needle-like carbide known as an orthorhombic carbide supposedly having the composition (FeCr) C. Increasing amounts of chromium, beyond this amount or a higher carbon equivalent value in the white cast iron, produce a chunky carbide known as a trigonal" carbide, supposedly having the composition (FeCr) C The occurrence of substantial amounts of orthorhombic and, more particularly, trigonal carbides in the structure of the white cast iron, produces an increased impact resistance which largely contributes to the improved wear-resistant qualities exhibited by these cast irons.
It has been established, also, that increasing the carbon content and the silicon content of chromium-bearing cast iron, favors the increased production of orthorhombic and trigonal carbides. These carbides owe their presence to a hypereutectic composition, which enables them to be precipitated, first, from the melt during the process of solidification. While higher carbon and silicon contents do provide a more hypereutectic composition, it is still necessary to have at least about 8 percent chromium, before these preferred carbide types will be predominant in the structure.
It is also well known by those skilled in the art that manganese, as an alloying element, when used in sufficient amount, will produce an austenitic matrix structure. Austenite is particularly desirable as it can readily be decomposed by heat treatment by cold treatment or by mechanical working into martensite, which has a high intrinsic hardness, conferring considerably more wear resistance to any ferrous material. However, manganese, as an alloying element, alone, is incapable of producing carbides having the preferred onhorhombic or trigonal structure. Further than this, where manganese is present in the composition of the carbides of a white iron, it is not free to perform its function of producing an austenitic matrix. For this reason, relatively large amounts of manganese (at least about 7 percent), are necessary in a white iron containing carbides, to produce a predominantly austenitic structure.
We have discovered that manganese and chromium can be used together in a white cast iron in such a way that both orthorhombic and trigonal carbides can be produced simultaneously with an austenitic matrix, thereby providing a cast iron of unusual wear resisting characteristics. This is quite an unusual effect, when it is considered that manganese and chromium are quite opposite in nature and would tend to counteract each other, when used together.
Chromium is a ferrite former, tending to prevent the retension of austenite, whereas manganese tends to promote the formation of austenite.
We do not know why manganese is able to prevent the formation of ferrite, which is commonly present in high chromium cast irons, particularly because a large percentage of the manganese is tied up in the formation of carbides.
As a matter of fact, electro-probe analysis shows that, in the carbide phase the manganese to chromium ratio is about three to one with manganese at 36 percent and chromium at 12 percent; whereas in the matrix the manganese to chromium ratio is one to two, with manganese at 5 percent and chromium at about 10 percent,
We presume that there must be sufficient manganese present in the matrix to promote austenite and that, when manganese and chromium are used together, in sufficient amount, the austenite to ferrite change is rendered so sluggish that austenite is retained.
We have found that, up to 40 percent low temperature pearlite may also occur in the matrix, but that it is still predominantly austenitic. We have found that a manganese content of at least 7 percent and a chromium content of at least 8 percent and a combined manganese and chromium content of at least 15 percent, is necessary to produce the preferred structure of the alloy of our invention. The combination we actually prefer to use, under most conditions, is equal parts of manganese and chromium at about 10 to 12 percent of each element. We find that this particular combination is less sensitive to sectional variations in castings.
There is no upper limit to the amounts of manganese and chromium we can use, but in the interests of economy and to maintain good casting and foundry characteristics, we prefer to limit the combined manganese and chromium content to about 30 percent, with manganese up to 15 percent and chromium up to 15%.
It is well known that other alloys, particularly nickel, may be used in conjunction with chromium, to provide cast irons having an austenitic matrix and white cast irons containing orthorhombic and trigonal carbides. Nickel, however, is a strategic alloy, not always readily available in unlimited quantity to the producers of wear resistant castings and nickel, also, is a relatively expensive alloy, being at least five times as expensive and often eighty times as manganese. The application of manganese, as an essential alloying ingredient in the alloy of our invention, therefore, has solved an industrial problem of some magnitude. The use of nickel, as a tramp element or in small quantities, by deliberate intent, is not precluded from our alloy composition, providing the manganese and the chromium present are sufficient to provide the preferred structure, if the nickel were entirely absent.
By the. same token, alloys like molybdenum, are often used in high chromium cast irons or in manganese cast irons, to provide an increased tendency to form a martensitic or bainitic matrix structure. Molybdenum also is a highly strategic and expensive alloy and would, therefore, not normally be present in any appreciable amount in the alloy composition of our invention. It may be used for special effects, where desired, providing that the manganese and chromium contents present are, by themselves, present in sufficient amount to produce the preferred structure of orthorhombic and trigonal carbides in an austenitic matrix.
Alloys, such as tungsten (acting similarly to molybdenum) and vanadium (acting similarly to chromium) may also be present, but they too are relatively expensive and we have also found that vanadium, present in large amounts (i.e. above about 2 percent) tend to produce carbides which are not as desirable as the preferred orthorhombic and trigonal types.
Copper may also be used as an alloying element, but it too is expensive and only appears to exert a relatively slight effect on our alloy composition. In general, we prefer to limit all of these special alloying elements commonly found in white cast irons to a total value of about 2 percent each and certainly to a combined value of no more than percent.
Total carbon, which is present in all cast irons, is an important element in the composition of our alloy. We generally prefer a total carbon content of about 3.30 percent or more, in order to favor the production of the preferred carbides. In any case, we find that with carbon contents of less than 3 percent, it is quite difficult to obtain a reasonable proportion of trigonal carbides in the structure. Carbon contents above 4 percent tend to produce massive carbide segregation and the formation of very large carbides, which detract from the homogeneity of an alloy.
While silicon may be entirely absent from an alloy, we prefer to have it present in an amount ranging from 0.5 to 2.5 percent. At silicon levels of between 1.0 and 2.0 percent we find that the production of the preferred carbides is somewhat easier and that silicon appears to work together with carbon, so that the amount of silicon used is usually lower at higher carbon contents. in any case, the presence or absence of silicon is not critical to the production of the cast iron of our invention.
The mechanical properties of our alloy are particularly suited to wear and abrasion resistance. The overall Brinell hardness may be as low as 300, because of the relatively soft austenitic matrix, but on the other hand, particularly when thermal treatments are used, may be as high as 700 Brinell. We find that the as-cast hardness normally ranges between 320 and 550 Brinell and we prefer to have an as-cast hardness of about 400 Brinell, where a higher impact resistance is important.
The tensile strength of our alloy is usually more than 50,000 p.s.i., but may be as high as 100,000 p.s.i. As tensile strength is not particularly important in white cast'irons, we do not regard it as an index of quality.
The impact strength of our alloy is higher than that associated with white cast irons and is very similar to that normally associated with other austenitic, ferritic or martensitic white irons containing chunky carbides; thus, on a 2 inch diameter bar we would normally expect an impact strength of 100 to 150 foot pounds in the product of our invention. This is approximately twice the value normally obtained in white irons not having the preferred carbide structure. This high impact strength or toughness provides good wear resistance under conditions where some pounding is present and where ordinary white irons would tend to abrade very rapidly by attrition or flaking of the metal surface.
Because of the relatively stable nature of the structure of our alloy and presumably because of the oxidation resistance of chromium, we have found that our wear resisting alloy is surprisingly resistant to the effects of heat or certain corrosive media. This enhances the value of this alloy, where the combined effects of heat and wear or the combined effects of corrosion and wear must be contended with in industrial applications.
While heat and corrosion resistance are found to be relatively good, the prime purpose of our alloy is to provide improved wear and abrasion resistance in castings such as mill liners, grinding balls, drop balls, grizzly discs, rolls, dipper teeth, pulverizing hammers and etc.
Many examples of the product of our invention may be given, but one example clearly indicates the unusual nature and the structural combination which is normal to this alloy. A
heat was melted to the following composition:
Total Carbon 3.63% Silicon l.65% Manganese 10.50% Chromium 9.62% Sulphur 0.08% Phosphorus 0.09%
This heat was cast into a 2 inch diameter test bar and into a casting used for grinding rock. The structure of the casting was examined and was found to consist of carbides in a matrix of about 70 percent austenite and 30 percent low temperature pearlite (non-resolvable pearlite). The carbides were approximately 60 percent of the trigonal (chunky) type and about 40 percent of the orthorhombic (needle) type.
The test bar was tested for impact at 12 inch centers under a drop test machine. It broke at foot pounds. The hardness of the casting was found to be 430 Brinell on an overall basis.
Microhardness measurements on the carbides in the structure indicated hardness ranging from 800 to 1050 Brinell.
The casting was placed in service and performed for 152 hours, compared to ordinary white irons usually lasting about 60 hours and to alloyed white irons containing strategic alloys usually lasting about hours.
Although this invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details may be resorted to, without departing from the spirit and the scope of the invention hereinafter claimed.
What is claimed is: I
1. A wear-resistant white iron having a substantially austenitic structure containing predominantly trigonal and orthorhombic chromium-manganese carbides consisting essentially of from 7.0 to 15.0 percent manganese, 8.0 to 15.0 percent chromium, 3.0 to 4.0 percent total carbon, 0 to 2.5 percent silicon, and with the total of manganese and chromium being at least 15.0 percent.
2. White iron in the composition range of:
Total Carbon 3.0 to 4.0% Silicon 0 to 2.5% Manganese 7 to 15% Chromium 8 to 15% Other alloying constituents 0 to 5% UNITED STATES PATENT @FFICE QEETEFECATE @F REQEQEN Patent No. 3 663 214 Dated May 16 a 1972 Inventor(s) William H. Moore, et. a1,
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In. the grant (only), cancel the sheet of drawing entitle 3 663,219", and substitute the attached drawing.
Signed and sealed this 19th day of December 1972.
(SEAL) Attest:
EDWARD MFLETCHER,JR. ROBERT GOTTSCHALK Attestinq Officer Commissioner of Patents USCOMM-DC 60376-P69 1: u.s. GOVERNMENT PRINTING OFFICE: I969 0-366-334.
FORM PO-IOSO (10-69)

Claims (1)

  1. 2. White iron in the composition range of: Total Carbon 3.0 to 4.0% Silicon 0 to 2.5% Manganese 7 to 15%Chromium 8 to 15% Other alloying constituents 0 to 5% and characterized by a microstructure of predominantly trigonal and orthorhombic chromium-manganese carbides in a matrix predominantly austenitic.
US11491A 1970-02-16 1970-02-16 Abrasion resistant cast iron Expired - Lifetime US3663214A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1149170A 1970-02-16 1970-02-16

Publications (1)

Publication Number Publication Date
US3663214A true US3663214A (en) 1972-05-16

Family

ID=21750617

Family Applications (1)

Application Number Title Priority Date Filing Date
US11491A Expired - Lifetime US3663214A (en) 1970-02-16 1970-02-16 Abrasion resistant cast iron

Country Status (1)

Country Link
US (1) US3663214A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221612A (en) * 1977-10-14 1980-09-09 Acieries Thome Cromback Grinding members
US4318738A (en) * 1978-02-03 1982-03-09 Shin-Gijutsu Kaihatsu Jigyodan Amorphous carbon alloys and articles manufactured from said alloys
US4467510A (en) * 1982-01-08 1984-08-28 Nippon Air Brake Co., Ltd. Method of conditioning a rotary valve seat
US4534793A (en) * 1979-09-19 1985-08-13 Research Corporation Cast iron welding materials and method
US4547221A (en) * 1984-10-26 1985-10-15 Norman Telfer E Abrasion-resistant refrigeration-hardenable ferrous alloy
US4615734A (en) * 1984-03-12 1986-10-07 General Electric Company Solid particle erosion resistant coating utilizing titanium carbide, process for applying and article coated therewith
US4726854A (en) * 1979-09-19 1988-02-23 Research Corporation Cast iron welding electrodes
US20070035231A1 (en) * 2005-08-10 2007-02-15 Byong-Gwon Song Field emission backlight unit
US20100080727A1 (en) * 2003-10-27 2010-04-01 Graham Leonard Fraser Powell Wear resistant alloy
CN102703795A (en) * 2012-05-29 2012-10-03 徐州天太机械制造有限公司 Formula of wear-resistant cast iron for impeller casing of sand suction pump
US20130039796A1 (en) * 2010-02-15 2013-02-14 Gilles L'Esperance Master alloy for producing sinter hardened steel parts and process for the production of sinter hardened parts
US9403241B2 (en) 2005-04-22 2016-08-02 Stoody Company Welding compositions for improved mechanical properties in the welding of cast iron
CN108315634A (en) * 2018-02-08 2018-07-24 四会市楠铧机械有限公司 A method of white cast-iron is produced with manganese, chromium, silicon and the pig iron
WO2018231779A1 (en) * 2017-06-13 2018-12-20 Scoperta, Inc. High hard phase fraction non-magnetic alloys
US20210180162A1 (en) * 2017-06-13 2021-06-17 Oerlikon Metco (Us) Inc. High hard phase fraction non-magnetic alloys
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1333151A (en) * 1919-09-26 1920-03-09 Electro Metallurg Co Alloy
US1647096A (en) * 1923-01-11 1927-10-25 Du Pont Erosive resistant ferrous alloy
US1671384A (en) * 1925-11-12 1928-05-29 Winston F Stoody Alloy
US1815187A (en) * 1930-04-24 1931-07-21 Guardian Metals Company Safe and vault member and construction
US1860852A (en) * 1930-03-22 1932-05-31 Guardian Metals Company Ferrous alloys
US2075990A (en) * 1934-10-24 1937-04-06 Kelly Thomas Daniel Cast iron
US2472027A (en) * 1943-10-20 1949-05-31 Int Nickel Co Austenitic cast iron
US2803538A (en) * 1954-11-04 1957-08-20 Coast Metals Inc Self-hardening alloys

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1333151A (en) * 1919-09-26 1920-03-09 Electro Metallurg Co Alloy
US1647096A (en) * 1923-01-11 1927-10-25 Du Pont Erosive resistant ferrous alloy
US1671384A (en) * 1925-11-12 1928-05-29 Winston F Stoody Alloy
US1860852A (en) * 1930-03-22 1932-05-31 Guardian Metals Company Ferrous alloys
US1815187A (en) * 1930-04-24 1931-07-21 Guardian Metals Company Safe and vault member and construction
US2075990A (en) * 1934-10-24 1937-04-06 Kelly Thomas Daniel Cast iron
US2472027A (en) * 1943-10-20 1949-05-31 Int Nickel Co Austenitic cast iron
US2803538A (en) * 1954-11-04 1957-08-20 Coast Metals Inc Self-hardening alloys

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221612A (en) * 1977-10-14 1980-09-09 Acieries Thome Cromback Grinding members
US4318738A (en) * 1978-02-03 1982-03-09 Shin-Gijutsu Kaihatsu Jigyodan Amorphous carbon alloys and articles manufactured from said alloys
US4534793A (en) * 1979-09-19 1985-08-13 Research Corporation Cast iron welding materials and method
US4726854A (en) * 1979-09-19 1988-02-23 Research Corporation Cast iron welding electrodes
US4467510A (en) * 1982-01-08 1984-08-28 Nippon Air Brake Co., Ltd. Method of conditioning a rotary valve seat
US4615734A (en) * 1984-03-12 1986-10-07 General Electric Company Solid particle erosion resistant coating utilizing titanium carbide, process for applying and article coated therewith
US4547221A (en) * 1984-10-26 1985-10-15 Norman Telfer E Abrasion-resistant refrigeration-hardenable ferrous alloy
US8187529B2 (en) * 2003-10-27 2012-05-29 Global Tough Alloys Pty Ltd. Wear resistant alloy and method of producing thereof
US20100080727A1 (en) * 2003-10-27 2010-04-01 Graham Leonard Fraser Powell Wear resistant alloy
US9403241B2 (en) 2005-04-22 2016-08-02 Stoody Company Welding compositions for improved mechanical properties in the welding of cast iron
US9409259B2 (en) 2005-04-22 2016-08-09 Stoody Company Welding compositions for improved mechanical properties in the welding of cast iron
US7701127B2 (en) * 2005-08-10 2010-04-20 Samsung Sdi Co., Ltd. Field emission backlight unit
US20070035231A1 (en) * 2005-08-10 2007-02-15 Byong-Gwon Song Field emission backlight unit
US20130039796A1 (en) * 2010-02-15 2013-02-14 Gilles L'Esperance Master alloy for producing sinter hardened steel parts and process for the production of sinter hardened parts
US10618110B2 (en) * 2010-02-15 2020-04-14 Tenneco Inc. Master alloy for producing sinter hardened steel parts and process for the production of sinter hardened parts
CN102703795A (en) * 2012-05-29 2012-10-03 徐州天太机械制造有限公司 Formula of wear-resistant cast iron for impeller casing of sand suction pump
WO2018231779A1 (en) * 2017-06-13 2018-12-20 Scoperta, Inc. High hard phase fraction non-magnetic alloys
US20210180162A1 (en) * 2017-06-13 2021-06-17 Oerlikon Metco (Us) Inc. High hard phase fraction non-magnetic alloys
CN108315634A (en) * 2018-02-08 2018-07-24 四会市楠铧机械有限公司 A method of white cast-iron is produced with manganese, chromium, silicon and the pig iron
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Similar Documents

Publication Publication Date Title
US3663214A (en) Abrasion resistant cast iron
Smith et al. RETRACTED: Development of high-manganese steels for heavy duty cast-to-shape applications
WO1984004760A1 (en) Tough, wear- and abrasion-resistant, high chromium hypereutectic white iron
GB2153846A (en) Cast iron alloy for grinding media
Ayadi et al. Effect of chemical composition and heat treatments on the microstructure and wear behavior of manganese steel
US3549430A (en) Bainitic ductile iron having high strength and toughness
US3834950A (en) Ferrous alloys
EP0149340B1 (en) Galling and wear resistant steel alloy
US2662011A (en) Abrasion and corrosion resistant white cast iron
US2516524A (en) White cast iron
US4130418A (en) Austenitic wear-resistant steel
US2215740A (en) Alloy cast iron
US3410682A (en) Abrasion resistant chromiummolybdenum cast irons
CA2251106C (en) Comminuting media comprising martensitic/austenitic steel containing retained work-transformable austenite
US3811872A (en) Corrosion resistant high strength alloy
Kalandyk et al. Cast high-manganese steel–the effect of microstructure on abrasive wear behaviour in Miller test
KR960006038B1 (en) Chrom-carbide type alloy
US4547221A (en) Abrasion-resistant refrigeration-hardenable ferrous alloy
CZ296510B6 (en) Grinding media, made of alloyed steel of high carbon content and process of their manufacture
JPH0414182B2 (en)
US3042512A (en) Wear resistant cast iron
US3623922A (en) Alloy white cast iron
JPH01104407A (en) Wear resistant member
EP0692548B1 (en) Wear-resisting high-manganese cast steel
US2129347A (en) Manganese alloy

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEEHANITE WORLDWIDE CORPORATION, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEEHANITE METAL CORPORATION, A MO. CORP.;REEL/FRAME:004651/0769

Effective date: 19861212

Owner name: MEEHANITE WORLDWIDE CORPORATION, 112 CAROLINA COVE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MEEHANITE METAL CORPORATION, A MO. CORP.;REEL/FRAME:004651/0769

Effective date: 19861212