US3664416A - Wireline well tool anchoring system - Google Patents

Wireline well tool anchoring system Download PDF

Info

Publication number
US3664416A
US3664416A US42179A US3664416DA US3664416A US 3664416 A US3664416 A US 3664416A US 42179 A US42179 A US 42179A US 3664416D A US3664416D A US 3664416DA US 3664416 A US3664416 A US 3664416A
Authority
US
United States
Prior art keywords
piston
anchoring
hydraulic
weight
ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US42179A
Inventor
Yvea Nicolas
Jean-Loup Bonnet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Application granted granted Critical
Publication of US3664416A publication Critical patent/US3664416A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • G01V11/005Devices for positioning logging sondes with respect to the borehole wall
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/01Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for anchoring the tools or the like

Definitions

  • An illustrative embodiment of the present invention includes apparatus for use in anchoring a probe in a well bore.
  • the apparatus includes a body member which is attached to the upper part of the probe.
  • a ballast weight is telescopically mounted on the body member and is attached to the wireline cable for operating the device. Movement of the ballast weight is amplified by a force multiplying hydraulic system and utilized to spread anchoring means outwardly against the wall of the well bore.
  • a surface-actuated solenoid control valve may be utilized to control the anchoring system.
  • This invention relates to well tools and more particularly to an anchoring system permitting a wireline measuring probe to be temporarily secured at a desirable depth in a well bore.
  • stuckpoint indicator device One type of apparatus used in making measurements in a well bore which requires frequent and rapid movement from one location to another in the borehole is a so-called stuckpoint indicator device.
  • Such devices are used to locate the point in the borehole at which casing or tubing is stuck, usually due to a pressure differential.
  • the stuckpoint indicator is placed at different depths in the well bore and anchored to the interior surface of the tubing or casing.
  • the casing or tubing is then twisted or stretched by powerful engines at the surface of the earth and the elastic deformation of the pipe at the depth at which the stuckpoint indicator is placed is measured. If the indicator is above the stuck or free point of the pipe, such elastic deformation will be noted.
  • the stuckpoint indicator is located below the point at which the pipe or tubing is stuck in the well bore no elastic deformation will be noted. Accordingly, it is necessary to move the stuckpoint indicator tool to various locations in the well bore and to anchor it at each location in order to make the measurements of the elastic deformation of the tubing.
  • Such measurements are usually made by means of a strain gauge sensing element which detects the relative motion between the upper end of the measuring instrument and the lower end of the measuring instrument which is caused by the elastic deformation of the tubing string when placed under either longitudinal tension force or rotational torsion force from the surface. Therefore, a convenient and rapidly engageable and disengageable anchoring system is very desirable for use with a stuckpoint indicator tool. Moreover, this anchoring system must be of small enough diameter to pass through drill pipe or tubing strings and the disengagement and movement of the stuckpoint indicator apparatus must be convenient and rapid.
  • an object of the present invention is to provide a relatively simple and economical system for anchoring a probe operated by a wireline in a well bore, the system not requiring the input of the energy from an external source.
  • Another object of .the present invention is to provide -a retractable well tool anchoring system which uses the weight of ballast as the energy source for operating a hydraulically powered anchoring means.
  • a still further object of the present invention is to provide an anchoring system for use with a stuckpoint indicator which is rapidly engageable and disengageable for this purpose.
  • a system for anchoring a stuckpoint indicator or other well probe operated by wireline in a well bore is provided.
  • a set of anchoring arms are equipped with wall-engaging padtype anchoring means designed to move radially outward and away from the body member of the probe.
  • This motion is initiated by a telescopically mounted slide member which is movably mounted on the body member and operated by a mechanism activated by the force of a falling ballast weight.
  • the movement of the ballast weight is applied to the telescopically mounted movable slide member by a force multiplying hydraulic transmission mechanism.
  • an electrically operated solenoid-type blocking valve is utilized to control the motion of the ballast weight by controlling the flow of the hydraulic fluid.
  • FIG. 1 is a view of a measuring probe equipped with an anchoring device according to the invention
  • FIG. 2 is an enlarged section showing the anchoring device of FIG. 1 in the position for lowering the'apparatus into the well bore;
  • FIG. 3 is a section showing the anchoring device of FIG. I in the secured oranchored position.
  • FIG. 1 apparatus for use in a well borehole consisting of a measuring instrument or probe 10, an anchoring device 11, and a ballast weight 12 is shown suspended at the end of a cable 13.
  • the cable 13 passes over two pulleys 14 and 15 and is wound or taken up on the usual type winch arrangement (not shown) of a surface unit 16.
  • the cable 13 contains one or more insulated conductors and is used both for applying electrical current or power to the downhole apparatus and for the transmission of data from the downhole probe to the surface equipment.
  • the downhole equipment is suspended in the well bore 17 which has surface casing 18 held in place by cement layer 20.
  • a string of drill pipe 21 is supported in a derrick (not shown) by the arms 22 ofan elevator.
  • the drill string 21 is shown wedged or stuck in the well bore at a point 23 whose depth is to be determined.
  • the probe 10 in this example is shown as a stuckpoint or freepoint indicator, however, it will be appreciated that the anchoring means 11 and the ballast weight 12 may be used with any other type of apparatus capable of carrying out measurements directly in the casing 18 or in open well bores 17.
  • the downhole apparatus is typically lowered to a given depth by means of the cable 13 and secured at this depth for the actual measurements by means of the anchoring system 11.
  • This system may consist in general of a hydraulic section 25, an anchoring section 26, and a centering mechanism 27.
  • This apparatus comprises a body member 30 whose lower end is attached to the probe and whose upper end is shaped into a cylinder 31, in which a mandrel 32 can slide telescopically.
  • the mandrel 32 comprises a head portion 33 which is limited in its downward travel in relation to the cylinder 31.
  • a tapped hole 34 cut in the head 33 permits this head to be screwed on to the threaded lower end of the ballast weight 12.
  • a conducting rod 35 mounted on insulating rings 36 crosses the mandrel 32 axially and fits into an insulated sleeve 37. The rod 35 is connected to a conductor of the cable 13.
  • An O-ring 40 provides sealing between the ballast weight 12 and the head 33.
  • the lower part of the mandrel 32 terminates in a control piston 41 which is fitted with an O-ring 42.
  • This piston as it moves downwardly compresses a hydraulic fluid 43 which fills the cylinder 31.
  • the cylinder 31 has an annular stop 44 at its upper end which limits the upward stroke of the piston 41.
  • a second annular piston 45 of larger diameter than the first piston 41, is slidably mounted on the lower part of the cylinder 31.
  • the annular piston 45 has a side wall which fits on the cylinder 31 and a base with a smaller bore diameter which fits on the middle part of the body member 30.
  • the annular piston 45 thus defines a chamber 46 which is in fluid communication with the interior of the cylinder 31 via a fluid passageway 47.
  • a solenoid valve 50 is located in the passage 47. Under the action of a spring 51 the solenoid valve 50 can close the passage 47 when placed in the rest position.
  • the valve 50 may be opened by supplying an electrical current to the control winding of solenoid coil 52 which is connected to the end of the conducting rod 35 by an insulating helical spring 53.
  • the working surface of the piston 45 it will be noted, can be made equal to several times the surface area of the control piston 41.
  • Thrust shoes 54 are mounted on arms 55 and 56 which are hinged respectively on the annular piston 45 and on a peripheral projection 57 of the body member 30.
  • a centering mechanism 27 consisting of plural curved leaf springs 60 fixed by their ends to two rings 61 and 62 which may turn and slide into annular grooves 63 and 64 of the body member 30.
  • An annular coil spring 65 may be mounted about the body member 30 between the two rings 61 and 62.
  • the lower part of the body member 30 is provided with threads 66 which can be screwed into the upper end of the measuring probe 10.
  • a connector 67 is connected via an insulated wire 70 to the control winding of solenoid 52. This insures the electrical continuity between the cable 13 and the measuring probe 10.
  • the apparatus In operation, the apparatus is lowered into the well bore, the different elements of the anchoring device assuming the position shown in FIGS. 1 and 2.
  • the solenoid valve 50 closes the passageway 47 and the annular piston 45 remains in its upper position holding the thrust shoes 54 in their inward position against the body member 30.
  • electrical current is supplied to the solenoid control coil 52 via the cable 13 thereby opening the solenoid valve 50. Cable tension is then slacked and, because of the friction between the drill pipe and the springs of the centering mechanism 27, a force opposing the lowering of the body member 30 is developed.
  • the piston 41 thus moves downwardly into the cylinder 31 under the action of the ballast weight 12.
  • the control piston 41 applies pressure to the hydraulic fluid 43 and this pressure is transmitted to the annular piston 45.
  • the piston 45 thus slides downwardly in relation to the body member 30 and spreads the thrust shoes 54 outwardly and against the inner wall of the drill pipes 21, anchoring the tool in place.
  • the apparatus is then in the position shown in FIG. 3.
  • the control piston 41 thus moves up in the cylinder 31 and moves the annular piston 45 which closes the shoes 54 to their inward position against the body member 30.
  • lfthe solenoid-operated valve 50 is then placed in the closed position, the thrust shoes 54 will remain in closed position alongside the body member 30.
  • Equation 1 Designating the weight of the ballast weight as F the crosssectional area of the control piston s, and the cross-sectional area of the annular piston 45 as S, the downward force f applied on the piston 45 is given by Equation 1 as:
  • the arms 55 and 56 are chosen such that for drill pipes of the smallest diameter, these arms form an angle of at least 30 with the longitudinal axis of the body member 30. Then the lateral thrust force provided by the shoes 54 against the wall of the interior surface of the drill pipe will be:
  • a large coeflicient of friction may be given to the surface of the shoes 54, for example, by providing teeth or wickers on these surfaces. It will be noted that there is no danger of wear of the surfaces since the shoes are not in contact with the walls of the drill pipe during the movement of the apparatus. Assuming that the coefficient of friction is equal to 0.5, which is very easily accomplished, the total weight of the apparatus including the ballast must be no greater than 0.5 times f in order that the apparatus be securely anchored. The ballast weight may be chosen so that this total weight is equal to twice the weight of the ballast. In this case we wpuld have:
  • the ratio of the cross-sectional areas of pistons 45 and 41 need only be equal to 8.
  • the size of the probe is no longer limited by the thrust force which can be exerted by the centering mechanism or springs 27. it is thus possible to use a stuckpoint indicator having a longer measuring base, thereby providing better sensitivity.
  • the thrust shoes 54 were shown on mounted hinged arms.
  • the shoes 54 may be eliminated if desired, thus using the arms 55 to bear directly on the wall of the well bore or casing.
  • the arms can then open with a sufliciently large angle to buttress against the drill pipe permitting a larger weight to be supported.
  • the arm system may be replaced by a flexible compressible sleeve member whose external surface can be provided, for example, with a tungsten carbide coating to provide a large coefficient of friction.
  • This sleeve can then be compressed by the piston 45 so as to expand radially and be brought to bear against the inner surface of the drill pipe or tubing.
  • a further force multiplying system preferably of hydraulic design, could also be incorporated into this anchoring system.
  • An anchoring system for use with a wireline well tool comprising: a body sized for passage in a well bore and adapted for coupling to a well tool; weight means vertically slidably mounted on said body; wall-engaging anchoring means pivotally coupled to said body and adapted to move outwardly in relation to said body member; force-multiplying hydraulic means coupled between said weight means and said anchoring means and adapted for transmitting forces developed by movement of said weight means to said anchoring means, whereby a vertical movement of said weight means in relation to said body causes an outward movement of said anchoring means in relation to said body; and selectively operable valve means for deactivating said hydraulic means.
  • said hydraulic means include: a first chamber closed by a control piston of relatively small cross-sectional area and coupled to said weight means and joined by a fluid passage to a second chamber closed by a slave piston of relatively larger cross-sectional area and coupled to said anchoring means; and wherein said selectively operable valve means include a solenoid-operated valve disposed in said fluid passage between said chambers and adapted for selectively opening and closing said fluid passage.
  • the apparatus of claim 2 further including: spring means operable to hold said solenoid-operated valve normally closed, the force constant of said spring being chosen so that said solenoid-operated valve will open when the pressure of a hydraulic fluid in said second chamber exceeds that of a hydraulic fluid in said first chamber.
  • a well tool adapted for suspension in a well bore from a suspension cable and comprising: a body; ballast means adapted for connection to a suspension cable and slidably mounted on said body for upward and downward movements thereon in response to corresponding movements of a suspension cable coupled to said ballast means; anchoring means operatively arranged on said body and including at least one wall-engaging member movably coupled to said body and adapted for lateral movements back and forth in relation to said body; and hydraulic means cooperatively interconnecting said wall-engaging member and said ballast means and adapted for selectively moving said wall-engaging member into and out of anchoring engagement with a well bore wall in response to said upward and downward movements of said ballast means relative to said body.
  • said hydraulic means include: first and second piston means respectively arranged in first and second piston chambers and coupled to said ballast means and to said wall-engaging member, and fluid passage means interconnecting said first and second piston chambers; and further including selectively operable valve means adapted for controlling fluid communication through said fluid passage means in response to signals from the surface to selectively activate and deactivate said hydraulic means.
  • said hydraulic means include: a first piston chamber slidably receiving a first piston member and operatively arranged between said ballast means and said body for developing increased hydraulic pressures upon downward movement of said ballast means in relation to said body, a second piston chamber slidably receiving a second piston member and operatively arranged between said body and said wall-engaging member for extending said wallengaging member outwardly in response to increased hydraulic pressures in said second piston chamber, and a fluid conduit interconnecting said piston chambers.
  • the well tool of claim 7 further including: a solenoid-actuated valve cooperatively arranged in said fluid conduit and adapted for controlling fluid communication therethrough in response to electrical signals transmitted from the surface by way of a suspension cable connected to said ballast means.

Abstract

An illustrative embodiment of the present invention includes apparatus for use in anchoring a probe in a well bore. The apparatus includes a body member which is attached to the upper part of the probe. A ballast weight is telescopically mounted on the body member and is attached to the wireline cable for operating the device. Movement of the ballast weight is amplified by a force multiplying hydraulic system and utilized to spread anchoring means outwardly against the wall of the well bore. A surface-actuated solenoid control valve may be utilized to control the anchoring system.

Description

United States Patent Nicolas et al.
[54] WIRELINE WELL TOOL ANCHORING SYSTEM [72] inventors: Yves Nicolas, Versailles; Jean-Loup Bonnet, Essonne, both of France [73] Assignee: Schumberger Technology Corporation,
New York, NY.
22 Filed: June 1,1970
21 Appl.No.: 42,179
[30] Foreign Application Priority Data June 3, 1969 France ..69l8l33 [52] US. Cl ..l66/65, 166/212 [5 1] Int. Cl... [58] FieldofSearch ..l66/l20,l2i,l22,2l2,207,
[56] References Cited UNITED STATES PATENTS 3,358,760 12/1967 Blagg 166/207 1 May 23,1972
2,942,666 1/l960 True et al. l66/l20 3,352,363 11/1967 Bennett l66/2l4 Primary Examiner-James A. beppink Attorney-Ernest R. Archambeau, Jr., John P. Sinnott, Donald H. Fidler, David L. Moseley, Edward M. Roney and William R. Sherman ABSTRACT An illustrative embodiment of the present invention includes apparatus for use in anchoring a probe in a well bore. The apparatus includes a body member which is attached to the upper part of the probe. A ballast weight is telescopically mounted on the body member and is attached to the wireline cable for operating the device. Movement of the ballast weight is amplified by a force multiplying hydraulic system and utilized to spread anchoring means outwardly against the wall of the well bore. A surface-actuated solenoid control valve may be utilized to control the anchoring system.
8 Clains, 3 Drawing Figures i ig/33 FIG. 3
Yves Nico/as Jean Loup Bonnet INVENTORS BYU' Q ATTORNEY WIRELINE WELL TOOL ANCHORING SYSTEM BACKGROUND OF THE INVENTION This invention relates to well tools and more particularly to an anchoring system permitting a wireline measuring probe to be temporarily secured at a desirable depth in a well bore.
In modern oil exploration it has become common practice to make measurements in a well bore by means of various measuring instruments or probes which may be suspended by wireline into the well. Certain types of these measurements require the probe be rigidly attached at some point interior to the well at a depth which may be predetermined. In addition, such measurements may requirethe tool be repositioned to other points in the well bore where it again can be anchored in a rigid manner with respect to the well while the measurement is made. For example, well fluid sampling apparatus, fluid flow meters or fluid analyzers used in production logging may require this type of anchoring and/or movement through the well bore. Moreover, in the case of offshore wells drilled from floating barges or ships the movement of the waves is sometimes transmitted through the cable to the underground probe. Accordingly, this cable movement requires that the underground apparatus be anchored against the wall of the well bore while a measurement is being made rather than simply attempting to stop the movement of the cable at the surface.
There are a large number of prior art well tool anchoring systems. In particular, expandable slip type anchoring systems used in anchoring well plugs or packers in position in a cased borehole are particularly numerous. The energy required for setting such anchoring devices may be applied by the weight of a drill string in the case of tubing or in the case of a wireline device this energy may be stored in the apparatus itself. Such stored setting energy can come from a compressed spring, a set of weights or from the expanding gases produced by an explosive charge. In this latter case, the apparatus may usually only be anchored at one point in the well bore per trip because once the apparatus is anchored and disengaged it must be brought to the surface to recondition the energy storage system.
In other prior art well tool anchoring systems the setting energy is furnished by a hydraulic pump which may be supplied with electric current from the surface via the wireline or cable which is used to suspend the tool in the well bore. However, such systems have the disadvantage of requiring complicated hydraulic equipment and electrical pump motors which increase the cost of the probe and complicate its operation by the addition of large numbers of moving parts.
One type of apparatus used in making measurements in a well bore which requires frequent and rapid movement from one location to another in the borehole is a so-called stuckpoint indicator device. Such devices are used to locate the point in the borehole at which casing or tubing is stuck, usually due to a pressure differential. For this operation the stuckpoint indicator is placed at different depths in the well bore and anchored to the interior surface of the tubing or casing. The casing or tubing is then twisted or stretched by powerful engines at the surface of the earth and the elastic deformation of the pipe at the depth at which the stuckpoint indicator is placed is measured. If the indicator is above the stuck or free point of the pipe, such elastic deformation will be noted. If on the other hand, the stuckpoint indicator is located below the point at which the pipe or tubing is stuck in the well bore no elastic deformation will be noted. Accordingly, it is necessary to move the stuckpoint indicator tool to various locations in the well bore and to anchor it at each location in order to make the measurements of the elastic deformation of the tubing.
Such measurements are usually made by means of a strain gauge sensing element which detects the relative motion between the upper end of the measuring instrument and the lower end of the measuring instrument which is caused by the elastic deformation of the tubing string when placed under either longitudinal tension force or rotational torsion force from the surface. Therefore, a convenient and rapidly engageable and disengageable anchoring system is very desirable for use with a stuckpoint indicator tool. Moreover, this anchoring system must be of small enough diameter to pass through drill pipe or tubing strings and the disengagement and movement of the stuckpoint indicator apparatus must be convenient and rapid.
Accordingly, an object of the present invention is to provide a relatively simple and economical system for anchoring a probe operated by a wireline in a well bore, the system not requiring the input of the energy from an external source.
Another object of .the present invention is to provide -a retractable well tool anchoring system which uses the weight of ballast as the energy source for operating a hydraulically powered anchoring means.
A still further object of the present invention is to provide an anchoring system for use with a stuckpoint indicator which is rapidly engageable and disengageable for this purpose.
Briefly, in accordance with the objects of the present invention a system for anchoring a stuckpoint indicator or other well probe operated by wireline in a well bore is provided. A set of anchoring arms are equipped with wall-engaging padtype anchoring means designed to move radially outward and away from the body member of the probe. This motion is initiated by a telescopically mounted slide member which is movably mounted on the body member and operated by a mechanism activated by the force of a falling ballast weight. The movement of the ballast weight is applied to the telescopically mounted movable slide member by a force multiplying hydraulic transmission mechanism. Moreover, an electrically operated solenoid-type blocking valve is utilized to control the motion of the ballast weight by controlling the flow of the hydraulic fluid.
For a better understanding of the invention together with further objects and advantages thereof, reference may be made to the following detailed description and to the drawings in which:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view of a measuring probe equipped with an anchoring device according to the invention;
FIG. 2 is an enlarged section showing the anchoring device of FIG. 1 in the position for lowering the'apparatus into the well bore; and
FIG. 3 is a section showing the anchoring device of FIG. I in the secured oranchored position.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIG. 1, apparatus for use in a well borehole consisting of a measuring instrument or probe 10, an anchoring device 11, and a ballast weight 12 is shown suspended at the end of a cable 13. The cable 13 passes over two pulleys 14 and 15 and is wound or taken up on the usual type winch arrangement (not shown) of a surface unit 16. It will be understood that the cable 13 contains one or more insulated conductors and is used both for applying electrical current or power to the downhole apparatus and for the transmission of data from the downhole probe to the surface equipment. The downhole equipment is suspended in the well bore 17 which has surface casing 18 held in place by cement layer 20. A string of drill pipe 21 is supported in a derrick (not shown) by the arms 22 ofan elevator. The drill string 21 is shown wedged or stuck in the well bore at a point 23 whose depth is to be determined. The probe 10 in this example is shown as a stuckpoint or freepoint indicator, however, it will be appreciated that the anchoring means 11 and the ballast weight 12 may be used with any other type of apparatus capable of carrying out measurements directly in the casing 18 or in open well bores 17. In any case, the downhole apparatus is typically lowered to a given depth by means of the cable 13 and secured at this depth for the actual measurements by means of the anchoring system 11.
Referring now to FIGS. 2 and 3, the anchoring system 11 is shown in more detail. This system may consist in general of a hydraulic section 25, an anchoring section 26, and a centering mechanism 27. This apparatus comprises a body member 30 whose lower end is attached to the probe and whose upper end is shaped into a cylinder 31, in which a mandrel 32 can slide telescopically. The mandrel 32 comprises a head portion 33 which is limited in its downward travel in relation to the cylinder 31. A tapped hole 34 cut in the head 33 permits this head to be screwed on to the threaded lower end of the ballast weight 12. A conducting rod 35 mounted on insulating rings 36 crosses the mandrel 32 axially and fits into an insulated sleeve 37. The rod 35 is connected to a conductor of the cable 13. An O-ring 40 provides sealing between the ballast weight 12 and the head 33.
The lower part of the mandrel 32 terminates in a control piston 41 which is fitted with an O-ring 42. This piston as it moves downwardly compresses a hydraulic fluid 43 which fills the cylinder 31. The cylinder 31 has an annular stop 44 at its upper end which limits the upward stroke of the piston 41.
A second annular piston 45, of larger diameter than the first piston 41, is slidably mounted on the lower part of the cylinder 31. The annular piston 45 has a side wall which fits on the cylinder 31 and a base with a smaller bore diameter which fits on the middle part of the body member 30. The annular piston 45 thus defines a chamber 46 which is in fluid communication with the interior of the cylinder 31 via a fluid passageway 47. A solenoid valve 50 is located in the passage 47. Under the action of a spring 51 the solenoid valve 50 can close the passage 47 when placed in the rest position. The valve 50 may be opened by supplying an electrical current to the control winding of solenoid coil 52 which is connected to the end of the conducting rod 35 by an insulating helical spring 53. The working surface of the piston 45, it will be noted, can be made equal to several times the surface area of the control piston 41.
Thrust shoes 54 are mounted on arms 55 and 56 which are hinged respectively on the annular piston 45 and on a peripheral projection 57 of the body member 30. Immediately under the projection 57 is mounted a centering mechanism 27 consisting of plural curved leaf springs 60 fixed by their ends to two rings 61 and 62 which may turn and slide into annular grooves 63 and 64 of the body member 30. An annular coil spring 65 may be mounted about the body member 30 between the two rings 61 and 62. The lower part of the body member 30 is provided with threads 66 which can be screwed into the upper end of the measuring probe 10. A connector 67 is connected via an insulated wire 70 to the control winding of solenoid 52. This insures the electrical continuity between the cable 13 and the measuring probe 10.
In operation, the apparatus is lowered into the well bore, the different elements of the anchoring device assuming the position shown in FIGS. 1 and 2. The solenoid valve 50 closes the passageway 47 and the annular piston 45 remains in its upper position holding the thrust shoes 54 in their inward position against the body member 30. When the apparatus has reached the desired depth, electrical current is supplied to the solenoid control coil 52 via the cable 13 thereby opening the solenoid valve 50. Cable tension is then slacked and, because of the friction between the drill pipe and the springs of the centering mechanism 27, a force opposing the lowering of the body member 30 is developed. The piston 41 thus moves downwardly into the cylinder 31 under the action of the ballast weight 12. The control piston 41 applies pressure to the hydraulic fluid 43 and this pressure is transmitted to the annular piston 45. The piston 45 thus slides downwardly in relation to the body member 30 and spreads the thrust shoes 54 outwardly and against the inner wall of the drill pipes 21, anchoring the tool in place. The apparatus is then in the position shown in FIG. 3. To disengage the anchoring system, it is only necessary to pull upwardly on the cable 13. The control piston 41 thus moves up in the cylinder 31 and moves the annular piston 45 which closes the shoes 54 to their inward position against the body member 30. lfthe solenoid-operated valve 50 is then placed in the closed position, the thrust shoes 54 will remain in closed position alongside the body member 30.
Designating the weight of the ballast weight as F the crosssectional area of the control piston s, and the cross-sectional area of the annular piston 45 as S, the downward force f applied on the piston 45 is given by Equation 1 as:
f= F SI; 1
If the length of the arms 55 and 56 are chosen such that for drill pipes of the smallest diameter, these arms form an angle of at least 30 with the longitudinal axis of the body member 30. Then the lateral thrust force provided by the shoes 54 against the wall of the interior surface of the drill pipe will be:
A large coeflicient of friction may be given to the surface of the shoes 54, for example, by providing teeth or wickers on these surfaces. It will be noted that there is no danger of wear of the surfaces since the shoes are not in contact with the walls of the drill pipe during the movement of the apparatus. Assuming that the coefficient of friction is equal to 0.5, which is very easily accomplished, the total weight of the apparatus including the ballast must be no greater than 0.5 times f in order that the apparatus be securely anchored. The ballast weight may be chosen so that this total weight is equal to twice the weight of the ballast. In this case we wpuld have:
2F S 0.5j S F,/4.S/s (3) or Even under these unfavorable conditions the ratio of the cross-sectional areas of pistons 45 and 41 need only be equal to 8. By using this system the size of the probe is no longer limited by the thrust force which can be exerted by the centering mechanism or springs 27. it is thus possible to use a stuckpoint indicator having a longer measuring base, thereby providing better sensitivity. One could, for example, combine two such anchoring devices each forming the anchor points of a stuckpoint tool on the drill pipe. No sliding will then be possible and the deformation of the drill pipe can be measured with greater accuracy then heretofore possible with tools whose size and weight were more limited.
In the embodiment described above the thrust shoes 54 were shown on mounted hinged arms. The shoes 54 may be eliminated if desired, thus using the arms 55 to bear directly on the wall of the well bore or casing. The arms can then open with a sufliciently large angle to buttress against the drill pipe permitting a larger weight to be supported. In the case where the inner diameter of the drill pipe is very small, the arm system may be replaced by a flexible compressible sleeve member whose external surface can be provided, for example, with a tungsten carbide coating to provide a large coefficient of friction. This sleeve can then be compressed by the piston 45 so as to expand radially and be brought to bear against the inner surface of the drill pipe or tubing. If desired, a further force multiplying system, preferably of hydraulic design, could also be incorporated into this anchoring system.
While a specific embodiment of the invention has been shown and described, it will be understood by those skilled in the art that certain modifications and variations both in form and detail can occur without departing from the basic concepts of the invention. All such modifications and variations therefore are intended to be included within the spirit and scope of the present invention as defined in the appended claims.
What is claimed is:
1. An anchoring system for use with a wireline well tool comprising: a body sized for passage in a well bore and adapted for coupling to a well tool; weight means vertically slidably mounted on said body; wall-engaging anchoring means pivotally coupled to said body and adapted to move outwardly in relation to said body member; force-multiplying hydraulic means coupled between said weight means and said anchoring means and adapted for transmitting forces developed by movement of said weight means to said anchoring means, whereby a vertical movement of said weight means in relation to said body causes an outward movement of said anchoring means in relation to said body; and selectively operable valve means for deactivating said hydraulic means.
2. The apparatus of claim 8 wherein said hydraulic means include: a first chamber closed by a control piston of relatively small cross-sectional area and coupled to said weight means and joined by a fluid passage to a second chamber closed by a slave piston of relatively larger cross-sectional area and coupled to said anchoring means; and wherein said selectively operable valve means include a solenoid-operated valve disposed in said fluid passage between said chambers and adapted for selectively opening and closing said fluid passage.
'3. The apparatus of claim 2 wherein the ratio of cross-sectional areas of said slave piston and said control piston is chosen to be greater than 8 so that the weight of said weight means is of the same order of magnitude as the weight of a well tool attached to said body.
4. The apparatus of claim 2 further including: spring means operable to hold said solenoid-operated valve normally closed, the force constant of said spring being chosen so that said solenoid-operated valve will open when the pressure of a hydraulic fluid in said second chamber exceeds that of a hydraulic fluid in said first chamber.
5. A well tool adapted for suspension in a well bore from a suspension cable and comprising: a body; ballast means adapted for connection to a suspension cable and slidably mounted on said body for upward and downward movements thereon in response to corresponding movements of a suspension cable coupled to said ballast means; anchoring means operatively arranged on said body and including at least one wall-engaging member movably coupled to said body and adapted for lateral movements back and forth in relation to said body; and hydraulic means cooperatively interconnecting said wall-engaging member and said ballast means and adapted for selectively moving said wall-engaging member into and out of anchoring engagement with a well bore wall in response to said upward and downward movements of said ballast means relative to said body.
6. The well tool of claim 5 wherein said hydraulic means include: first and second piston means respectively arranged in first and second piston chambers and coupled to said ballast means and to said wall-engaging member, and fluid passage means interconnecting said first and second piston chambers; and further including selectively operable valve means adapted for controlling fluid communication through said fluid passage means in response to signals from the surface to selectively activate and deactivate said hydraulic means.
7. The well tool of claim 5 wherein said hydraulic means include: a first piston chamber slidably receiving a first piston member and operatively arranged between said ballast means and said body for developing increased hydraulic pressures upon downward movement of said ballast means in relation to said body, a second piston chamber slidably receiving a second piston member and operatively arranged between said body and said wall-engaging member for extending said wallengaging member outwardly in response to increased hydraulic pressures in said second piston chamber, and a fluid conduit interconnecting said piston chambers.
8. The well tool of claim 7 further including: a solenoid-actuated valve cooperatively arranged in said fluid conduit and adapted for controlling fluid communication therethrough in response to electrical signals transmitted from the surface by way of a suspension cable connected to said ballast means.

Claims (8)

1. An anchoring system for use with a wireline well tool comprising: a body sized for passage in a well bore and adapted for coupling to a well tool; weight means vertically slidably mounted on said body; wall-engaging anchoring means pivotally coupled to said body and adapted to move outwardly in relation to said body member; force-multiplying hydraulic means coupled between said weight means and said anchoring means and adapted for transmitting forces developed by movement of said weight means to said anchoring means, whereby a vertical movement of said weight means in relation to said body causes an outward movement of said anchoring means in relation to said body; and selectively operable valve means for deactivating said hydraulic means.
2. The apparatus of claim 8 wherein said hydraulic means include: a first chamber closed by a control piston of relatively small cross-sectional area and coupled to said weight means and joined by a fluid passage to a second chamber closed by a slave piston of relatively larger cross-sectional area and coupled to said anchoring means; and wherein said selectively operable valve means include a solenoid-operated valve disposed in said fluid passage between said chambers and adapted for selectively opening and closing said fluid passage.
3. The apparatus of claim 2 wherein the ratio of cross-sectional areas of said slave piston and said control piston is chosen to be greater than 8 so that the weight of said weight means is of the same order of magnitude as the weight of a well tool attached to said body.
4. The apparatus of claim 2 further including: spring means operable to hold said solenoid-operated valve normally closed, the force constant of said spring being chosen so that said solenoid-operated valve will open when the pressure of a hydraulic fluid in said second chamber exceeds that of a hydraulic fluid in said first chamber.
5. A well tool adapted for suspension in a well bore from a suspension cable and comprising: a body; ballast means adapted for connection to a suspension cable and slidably mounted on said body for upward and downward movements thereon in response to corresponding movements of a suspension cable coupled to said ballast means; anchoring means operatively arranged on said body and including at least one wall-engaging member movably coupled to said body and adapted for lateral movements back and forth in relation to said body; and hydraulic means cooperativelY interconnecting said wall-engaging member and said ballast means and adapted for selectively moving said wall-engaging member into and out of anchoring engagement with a well bore wall in response to said upward and downward movements of said ballast means relative to said body.
6. The well tool of claim 5 wherein said hydraulic means include: first and second piston means respectively arranged in first and second piston chambers and coupled to said ballast means and to said wall-engaging member, and fluid passage means interconnecting said first and second piston chambers; and further including selectively operable valve means adapted for controlling fluid communication through said fluid passage means in response to signals from the surface to selectively activate and deactivate said hydraulic means.
7. The well tool of claim 5 wherein said hydraulic means include: a first piston chamber slidably receiving a first piston member and operatively arranged between said ballast means and said body for developing increased hydraulic pressures upon downward movement of said ballast means in relation to said body, a second piston chamber slidably receiving a second piston member and operatively arranged between said body and said wall-engaging member for extending said wall-engaging member outwardly in response to increased hydraulic pressures in said second piston chamber, and a fluid conduit interconnecting said piston chambers.
8. The well tool of claim 7 further including: a solenoid-actuated valve cooperatively arranged in said fluid conduit and adapted for controlling fluid communication therethrough in response to electrical signals transmitted from the surface by way of a suspension cable connected to said ballast means.
US42179A 1969-06-03 1970-06-01 Wireline well tool anchoring system Expired - Lifetime US3664416A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR6918133A FR2048156A5 (en) 1969-06-03 1969-06-03

Publications (1)

Publication Number Publication Date
US3664416A true US3664416A (en) 1972-05-23

Family

ID=9035028

Family Applications (1)

Application Number Title Priority Date Filing Date
US42179A Expired - Lifetime US3664416A (en) 1969-06-03 1970-06-01 Wireline well tool anchoring system

Country Status (2)

Country Link
US (1) US3664416A (en)
FR (1) FR2048156A5 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777814A (en) * 1972-05-19 1973-12-11 Gulf Research Development Co Clamped detector
US4126848A (en) * 1976-12-23 1978-11-21 Shell Oil Company Drill string telemeter system
US4616703A (en) * 1983-07-06 1986-10-14 Institut Francais Du Petrole Device for anchoring a probe in a well, by opening mobile arms
FR2597544A1 (en) * 1986-04-22 1987-10-23 Elf Aquitaine Device for anchoring a measuring and recording instrument on the walls of a well
EP0281737A1 (en) * 1987-02-23 1988-09-14 Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE) Device for placing loads in cavities
US4776394A (en) * 1987-02-13 1988-10-11 Tri-State Oil Tool Industries, Inc. Hydraulic stabilizer for bore hole tool
EP0526294A1 (en) * 1991-08-02 1993-02-03 Institut Francais Du Petrole System for carrying out measurements or interventions in a drilled well or while drilling
US5191936A (en) * 1991-04-10 1993-03-09 Schlumberger Technology Corporation Method and apparatus for controlling a well tool suspended by a cable in a wellbore by selective axial movements of the cable
US5303776A (en) * 1990-11-27 1994-04-19 Pipe Recovery Consultants Limited Device for a down-hole assembly
US5765640A (en) * 1996-03-07 1998-06-16 Baker Hughes Incorporated Multipurpose tool
US5850879A (en) * 1997-06-03 1998-12-22 Halliburton Energy Services, Inc. Method of comminicating data through a slickline of other single cable suspension element
US6464003B2 (en) * 2000-05-18 2002-10-15 Western Well Tool, Inc. Gripper assembly for downhole tractors
WO2003069115A2 (en) * 2002-02-11 2003-08-21 Baker Hughes Incorporated Method of repair of collapsed or damaged tubulars downhole
US6651747B2 (en) * 1999-07-07 2003-11-25 Schlumberger Technology Corporation Downhole anchoring tools conveyed by non-rigid carriers
GB2369639B (en) * 1999-07-07 2004-02-18 Schlumberger Technology Corp Downhole anchoring tools conveyed by non-rigid carriers
WO2004016902A1 (en) * 2002-08-19 2004-02-26 Baker Hughes Incorporated High expansion anchor system
US6715559B2 (en) * 2001-12-03 2004-04-06 Western Well Tool, Inc. Gripper assembly for downhole tractors
US6758279B2 (en) 1995-08-22 2004-07-06 Western Well Tool, Inc. Puller-thruster downhole tool
US20040168796A1 (en) * 2003-02-28 2004-09-02 Baugh John L. Compliant swage
WO2005090739A1 (en) * 2004-03-17 2005-09-29 Western Well Tool, Inc. Roller link toggle gripper for downhole tractor
US20060196696A1 (en) * 1998-12-18 2006-09-07 Duane Bloom Electrically sequenced tractor
US20080053663A1 (en) * 2006-08-24 2008-03-06 Western Well Tool, Inc. Downhole tool with turbine-powered motor
US20080196901A1 (en) * 2007-02-19 2008-08-21 Franz Aguirre Self-Aligning Open-Hole Tractor
US20080217024A1 (en) * 2006-08-24 2008-09-11 Western Well Tool, Inc. Downhole tool with closed loop power systems
US7624808B2 (en) 2006-03-13 2009-12-01 Western Well Tool, Inc. Expandable ramp gripper
US7748476B2 (en) 2006-11-14 2010-07-06 Wwt International, Inc. Variable linkage assisted gripper
EP0951611B2 (en) 1996-07-03 2010-11-03 Expro Americas, Inc Wellbore tractor
US20100307832A1 (en) * 2000-12-01 2010-12-09 Western Well Tool, Inc. Tractor with improved valve system
US20110073300A1 (en) * 2009-09-29 2011-03-31 Mock Philip W Methods and apparatuses for inhibiting rotational misalignment of assemblies in expandable well tools
US20140102719A1 (en) * 2010-12-17 2014-04-17 Welltec A/S Rock anchor
US20160010409A1 (en) * 2014-07-11 2016-01-14 Sercel Apparatus and method for a motorless seismic tool
US9447648B2 (en) 2011-10-28 2016-09-20 Wwt North America Holdings, Inc High expansion or dual link gripper
US9488020B2 (en) 2014-01-27 2016-11-08 Wwt North America Holdings, Inc. Eccentric linkage gripper
US10287834B2 (en) 2014-12-24 2019-05-14 Reeves Wireline Technologies Limited Logging tool
US10968712B1 (en) * 2019-10-25 2021-04-06 Baker Hughes Oilfield Operations Llc Adaptable anchor, system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942666A (en) * 1956-12-27 1960-06-28 Jersey Prod Res Co Wireline plugging device
US3352363A (en) * 1965-06-01 1967-11-14 Sun Oil Co Apparatus for positioning a tool member within well tubing at a desired location
US3358760A (en) * 1965-10-14 1967-12-19 Schlumberger Technology Corp Method and apparatus for lining wells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942666A (en) * 1956-12-27 1960-06-28 Jersey Prod Res Co Wireline plugging device
US3352363A (en) * 1965-06-01 1967-11-14 Sun Oil Co Apparatus for positioning a tool member within well tubing at a desired location
US3358760A (en) * 1965-10-14 1967-12-19 Schlumberger Technology Corp Method and apparatus for lining wells

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777814A (en) * 1972-05-19 1973-12-11 Gulf Research Development Co Clamped detector
US4126848A (en) * 1976-12-23 1978-11-21 Shell Oil Company Drill string telemeter system
US4616703A (en) * 1983-07-06 1986-10-14 Institut Francais Du Petrole Device for anchoring a probe in a well, by opening mobile arms
FR2597544A1 (en) * 1986-04-22 1987-10-23 Elf Aquitaine Device for anchoring a measuring and recording instrument on the walls of a well
US4776394A (en) * 1987-02-13 1988-10-11 Tri-State Oil Tool Industries, Inc. Hydraulic stabilizer for bore hole tool
AU591026B2 (en) * 1987-02-13 1989-11-23 Tri-State Oil Tool Industries, Inc. Hydraulic stabilizer for bore hole tool
EP0281737A1 (en) * 1987-02-23 1988-09-14 Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE) Device for placing loads in cavities
US5303776A (en) * 1990-11-27 1994-04-19 Pipe Recovery Consultants Limited Device for a down-hole assembly
US5191936A (en) * 1991-04-10 1993-03-09 Schlumberger Technology Corporation Method and apparatus for controlling a well tool suspended by a cable in a wellbore by selective axial movements of the cable
US5353872A (en) * 1991-08-02 1994-10-11 Institut Francais Du Petrole System, support for carrying out measurings and/or servicings in a wellbore or in a well in the process of being drilled and uses thereof
EP0526294A1 (en) * 1991-08-02 1993-02-03 Institut Francais Du Petrole System for carrying out measurements or interventions in a drilled well or while drilling
FR2679958A1 (en) * 1991-08-02 1993-02-05 Inst Francais Du Petrole SYSTEM, SUPPORT FOR PERFORMING MEASUREMENTS OR INTERVENTIONS IN A WELL BORE OR DURING DRILLING, AND USES THEREOF.
US20070000697A1 (en) * 1995-08-22 2007-01-04 Moore Norman B Puller-thruster downhole tool
US7156181B2 (en) * 1995-08-22 2007-01-02 Western Well Tool, Inc. Puller-thruster downhole tool
US7273109B2 (en) 1995-08-22 2007-09-25 Western Well Tool Puller-thruster downhole tool
US20040182580A1 (en) * 1995-08-22 2004-09-23 Moore Norman Bruce Puller-thruster downhole tool
US20060108151A1 (en) * 1995-08-22 2006-05-25 Moore Norman B Puller-thruster downhole tool
US6758279B2 (en) 1995-08-22 2004-07-06 Western Well Tool, Inc. Puller-thruster downhole tool
US7059417B2 (en) 1995-08-22 2006-06-13 Western Well Tool, Inc. Puller-thruster downhole tool
US5765640A (en) * 1996-03-07 1998-06-16 Baker Hughes Incorporated Multipurpose tool
EP0951611B2 (en) 1996-07-03 2010-11-03 Expro Americas, Inc Wellbore tractor
US5850879A (en) * 1997-06-03 1998-12-22 Halliburton Energy Services, Inc. Method of comminicating data through a slickline of other single cable suspension element
US7185716B2 (en) 1998-12-18 2007-03-06 Western Well Tool, Inc. Electrically sequenced tractor
US20060196696A1 (en) * 1998-12-18 2006-09-07 Duane Bloom Electrically sequenced tractor
US7174974B2 (en) 1998-12-18 2007-02-13 Western Well Tool, Inc. Electrically sequenced tractor
US20060196694A1 (en) * 1998-12-18 2006-09-07 Duane Bloom Electrically sequenced tractor
GB2369639B (en) * 1999-07-07 2004-02-18 Schlumberger Technology Corp Downhole anchoring tools conveyed by non-rigid carriers
US6651747B2 (en) * 1999-07-07 2003-11-25 Schlumberger Technology Corporation Downhole anchoring tools conveyed by non-rigid carriers
US7048047B2 (en) 2000-02-16 2006-05-23 Western Well Tool, Inc. Gripper assembly for downhole tools
US6640894B2 (en) * 2000-02-16 2003-11-04 Western Well Tool, Inc. Gripper assembly for downhole tools
US20070017670A1 (en) * 2000-02-16 2007-01-25 Duane Bloom Gripper assembly for downhole tools
US20050082055A1 (en) * 2000-02-16 2005-04-21 Duane Bloom Gripper assembly for downhole tools
US7275593B2 (en) 2000-02-16 2007-10-02 Western Well Tool, Inc. Gripper assembly for downhole tools
US7191829B2 (en) * 2000-02-16 2007-03-20 Western Well Tool, Inc. Gripper assembly for downhole tools
US20060201716A1 (en) * 2000-02-16 2006-09-14 Duane Bloom Gripper assembly for downhole tools
US9228403B1 (en) 2000-05-18 2016-01-05 Wwt North America Holdings, Inc. Gripper assembly for downhole tools
US8555963B2 (en) 2000-05-18 2013-10-15 Wwt International, Inc. Gripper assembly for downhole tools
US8944161B2 (en) 2000-05-18 2015-02-03 Wwt North America Holdings, Inc. Gripper assembly for downhole tools
US8069917B2 (en) 2000-05-18 2011-12-06 Wwt International, Inc. Gripper assembly for downhole tools
US20080078559A1 (en) * 2000-05-18 2008-04-03 Western Well Tool, Inc. Griper assembly for downhole tools
US9988868B2 (en) 2000-05-18 2018-06-05 Wwt North America Holdings, Inc. Gripper assembly for downhole tools
US6464003B2 (en) * 2000-05-18 2002-10-15 Western Well Tool, Inc. Gripper assembly for downhole tractors
US7604060B2 (en) 2000-05-18 2009-10-20 Western Well Tool, Inc. Gripper assembly for downhole tools
US8245796B2 (en) 2000-12-01 2012-08-21 Wwt International, Inc. Tractor with improved valve system
US20100307832A1 (en) * 2000-12-01 2010-12-09 Western Well Tool, Inc. Tractor with improved valve system
US6715559B2 (en) * 2001-12-03 2004-04-06 Western Well Tool, Inc. Gripper assembly for downhole tractors
GB2402415A (en) * 2002-02-11 2004-12-08 Baker Hughes Inc Method of repair of collapsed or damaged tubulars downhole
WO2003069115A2 (en) * 2002-02-11 2003-08-21 Baker Hughes Incorporated Method of repair of collapsed or damaged tubulars downhole
US20050161213A1 (en) * 2002-02-11 2005-07-28 Baker Hughes Incorporated Method of repair of collapsed or damaged tubulars downhole
US7222669B2 (en) 2002-02-11 2007-05-29 Baker Hughes Incorporated Method of repair of collapsed or damaged tubulars downhole
US7114559B2 (en) 2002-02-11 2006-10-03 Baker Hughes Incorporated Method of repair of collapsed or damaged tubulars downhole
GB2402415B (en) * 2002-02-11 2005-10-12 Baker Hughes Inc Method of repair of collapsed or damaged tubulars downhole
WO2003069115A3 (en) * 2002-02-11 2004-02-12 Baker Hughes Inc Method of repair of collapsed or damaged tubulars downhole
US20030155118A1 (en) * 2002-02-11 2003-08-21 Sonnier James A. Method of repair of collapsed or damaged tubulars downhole
AU2003257946B2 (en) * 2002-08-19 2008-09-04 Baker Hughes Incorporated High expansion anchor system
GB2408061B (en) * 2002-08-19 2007-03-07 Baker Hughes Inc High expansion anchor system
WO2004016902A1 (en) * 2002-08-19 2004-02-26 Baker Hughes Incorporated High expansion anchor system
US6796380B2 (en) 2002-08-19 2004-09-28 Baker Hughes Incorporated High expansion anchor system
CN100436752C (en) * 2002-08-19 2008-11-26 贝克休斯公司 High expansion anchor system
GB2408061A (en) * 2002-08-19 2005-05-18 Baker Hughes Inc High expansion anchor system
US7128146B2 (en) 2003-02-28 2006-10-31 Baker Hughes Incorporated Compliant swage
US20040168796A1 (en) * 2003-02-28 2004-09-02 Baugh John L. Compliant swage
US7392859B2 (en) 2004-03-17 2008-07-01 Western Well Tool, Inc. Roller link toggle gripper and downhole tractor
US20100163251A1 (en) * 2004-03-17 2010-07-01 Mock Philip W Roller link toggle gripper and downhole tractor
US20050247488A1 (en) * 2004-03-17 2005-11-10 Mock Philip W Roller link toggle gripper and downhole tractor
US20090008152A1 (en) * 2004-03-17 2009-01-08 Mock Philip W Roller link toggle gripper and downhole tractor
US7954563B2 (en) 2004-03-17 2011-06-07 Wwt International, Inc. Roller link toggle gripper and downhole tractor
WO2005090739A1 (en) * 2004-03-17 2005-09-29 Western Well Tool, Inc. Roller link toggle gripper for downhole tractor
US7607497B2 (en) 2004-03-17 2009-10-27 Western Well Tool, Inc. Roller link toggle gripper and downhole tractor
US20100018720A1 (en) * 2006-03-13 2010-01-28 Western Well Tool, Inc. Expandable ramp gripper
US8302679B2 (en) 2006-03-13 2012-11-06 Wwt International, Inc. Expandable ramp gripper
US7624808B2 (en) 2006-03-13 2009-12-01 Western Well Tool, Inc. Expandable ramp gripper
US7954562B2 (en) 2006-03-13 2011-06-07 Wwt International, Inc. Expandable ramp gripper
US20080217024A1 (en) * 2006-08-24 2008-09-11 Western Well Tool, Inc. Downhole tool with closed loop power systems
US20080053663A1 (en) * 2006-08-24 2008-03-06 Western Well Tool, Inc. Downhole tool with turbine-powered motor
US20100314131A1 (en) * 2006-11-14 2010-12-16 Wwt International, Inc. Variable linkage assisted gripper
US8061447B2 (en) 2006-11-14 2011-11-22 Wwt International, Inc. Variable linkage assisted gripper
US7748476B2 (en) 2006-11-14 2010-07-06 Wwt International, Inc. Variable linkage assisted gripper
US8770303B2 (en) * 2007-02-19 2014-07-08 Schlumberger Technology Corporation Self-aligning open-hole tractor
US20080196901A1 (en) * 2007-02-19 2008-08-21 Franz Aguirre Self-Aligning Open-Hole Tractor
US8485278B2 (en) 2009-09-29 2013-07-16 Wwt International, Inc. Methods and apparatuses for inhibiting rotational misalignment of assemblies in expandable well tools
US20110073300A1 (en) * 2009-09-29 2011-03-31 Mock Philip W Methods and apparatuses for inhibiting rotational misalignment of assemblies in expandable well tools
US20140102719A1 (en) * 2010-12-17 2014-04-17 Welltec A/S Rock anchor
US9447648B2 (en) 2011-10-28 2016-09-20 Wwt North America Holdings, Inc High expansion or dual link gripper
US9488020B2 (en) 2014-01-27 2016-11-08 Wwt North America Holdings, Inc. Eccentric linkage gripper
US10156107B2 (en) 2014-01-27 2018-12-18 Wwt North America Holdings, Inc. Eccentric linkage gripper
US10934793B2 (en) 2014-01-27 2021-03-02 Wwt North America Holdings, Inc. Eccentric linkage gripper
US11608699B2 (en) 2014-01-27 2023-03-21 Wwt North America Holdings, Inc. Eccentric linkage gripper
US9556694B2 (en) * 2014-07-11 2017-01-31 Sercel Apparatus and method for a motorless seismic tool
US20160010409A1 (en) * 2014-07-11 2016-01-14 Sercel Apparatus and method for a motorless seismic tool
US10287834B2 (en) 2014-12-24 2019-05-14 Reeves Wireline Technologies Limited Logging tool
US10968712B1 (en) * 2019-10-25 2021-04-06 Baker Hughes Oilfield Operations Llc Adaptable anchor, system and method
US20210123309A1 (en) * 2019-10-25 2021-04-29 Baker Hughes Oilfield Operations Llc Adaptable anchor, system and method

Also Published As

Publication number Publication date
FR2048156A5 (en) 1971-03-19

Similar Documents

Publication Publication Date Title
US3664416A (en) Wireline well tool anchoring system
US3661205A (en) Well tool anchoring system
US9187957B2 (en) Method for motion compensation using wired drill pipe
US6585045B2 (en) Formation testing while drilling apparatus with axially and spirally mounted ports
US8499836B2 (en) Electrically activating a jarring tool
US4678035A (en) Methods and apparatus for subsurface testing of well bore fluids
US8322433B2 (en) Wired slip joint
US8136591B2 (en) Method and system for using wireline configurable wellbore instruments with a wired pipe string
US5092423A (en) Downhole seismic array system
US3796261A (en) Releasable connection for pressure controlled test valve system
US3022822A (en) Method of manipulating well tools
US3441095A (en) Retrievable through drill pipe formation fluid sampler
US3407886A (en) Apparatus for wellbore telemetering
GB1588813A (en) Method and apparatus for determining the stuck point of a conduit in a borehole
US3059695A (en) Drill stem testing device
US11248427B2 (en) Systems and methods for manipulating wellbore completion products
US2352833A (en) Choke valve borehole indicating system
US4351186A (en) Apparatus for conduit free-point detection in boreholes
US5018574A (en) Tubing conveyed wellbore fluid flow measurement apparatus
US4402219A (en) Apparatus for detecting the stuck point of drill pipes in a borehole
US4328866A (en) Check valve assembly
US3041875A (en) Surface recording drill stem testing combination
US4420045A (en) Drill pipe tester and safety valve
US4295361A (en) Drill pipe tester with automatic fill-up
US4109521A (en) Method and apparatus for logging inclined earth boreholes using the measured acceleration of the well logging instrument