US3668451A - Electrical brush structure - Google Patents

Electrical brush structure Download PDF

Info

Publication number
US3668451A
US3668451A US64550A US3668451DA US3668451A US 3668451 A US3668451 A US 3668451A US 64550 A US64550 A US 64550A US 3668451D A US3668451D A US 3668451DA US 3668451 A US3668451 A US 3668451A
Authority
US
United States
Prior art keywords
brush
fibers
current
current transfer
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US64550A
Inventor
Ian Roderick Mcnab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOHN THOMPSON (PIPEWORK AND ORDNANCE DIVISION) Ltd
Rolls Royce Power Engineering PLC
Original Assignee
Ian Roderick Mcnab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ian Roderick Mcnab filed Critical Ian Roderick Mcnab
Application granted granted Critical
Publication of US3668451A publication Critical patent/US3668451A/en
Assigned to JOHN THOMPSON (PIPEWORK AND ORDNANCE DIVISION) LIMITED reassignment JOHN THOMPSON (PIPEWORK AND ORDNANCE DIVISION) LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). 14, EFFECTIVE 1-15-74; 4-8-80 AND 12-8-80 Assignors: INTERNATIONAL RESEARCH & DEVELOPMENT COMPANY LIMITED
Assigned to NORTHERN ENGINEERING INDUSTRIES LIMITED reassignment NORTHERN ENGINEERING INDUSTRIES LIMITED ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JOHN THOMPSON (PIPEWORK AND ORDANCE DIVISION LIMITED)
Assigned to NORTHERN ENGINEERING INDUSTRIES PLC. reassignment NORTHERN ENGINEERING INDUSTRIES PLC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE FEB. 18, 1982 Assignors: NORTHERN ENGINEERING INDUSTRIES LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/18Contacts for co-operation with commutator or slip-ring, e.g. contact brush
    • H01R39/24Laminated contacts; Wire contacts, e.g. metallic brush, carbon fibres

Definitions

  • a current transfer brush for an electrical machine consists of refractory fibers, such as aluminum oxide fibers, with a deposited metallic film.
  • the fibers provide mechanical strength with flexibility while the metallic films carry the current and high current densities can be achieved with low wear rates for the brushes and the contact surface which they traverse.
  • a brush composed of individual resilient wires each of which consists of a tubular metal sheath having a core of graphite or other lubricant material in powdered form which serves to prevent welding of the wire to the slip ring or other current transfer surface and reduces friction while maintaining electrical contact.
  • the metal tube which forms 40 percent or more or the cross-sectional area of the wire, provides both the electrical conductivity and the mechanical strength of the wire. Because of the overall diameter and thickness of the tube it is relatively stiff and requires a large contact pressure which gives rise to substantial wear both of the brush wires and of the current transfer surface with which they are in contact. Also the relatively small number of wires in a brush means that the absence of adequate contact between one or two wires and the current transfer surface will cause a noticeable irregularity in the current-carrying capacity of the brush.
  • the brush elements of refractory non-conducting fibers which provide high Strength and flexibility, each of the fibers having a metallic film deposited' on the surface thereof to carry the current. Since the current is carried by the metallic film it is not necessary for the refractory non-metallic fiber to be electrically conductive. It is therefore possible to use fibers of boron nitride or refractory metal oxides such as aluminum oxide and even glass fibers. These fibers can be of very small diameter, less than thousandths of an inch, and with a relatively thin metallic coating are much less stiff than the metallic tubes of U.S. Pat. No. 3,382,387 referred to above and therefore require less contact pressure. Moreover the use of a large number of metal-coated fibers makes for greater uniformity in the current carrying capacity of the brush despite variation s in the degree of contact of individual elements of the brush with the contact surface.
  • the electrically-conducting metal film is preferably formed of a noble metal such as silver, or may take the form of an alloy of a noble metal and a metal such as copper. It may be applied to the fibers by electro-plating, vacuum deposition or any other suitable process.
  • one or more brushes constructed in accordance with the invention are used in conjunction with a surface moving relatively to the brush and to orfrom which the brush transfers current, the surface being constructed of a material having a lubricating effect such as, for example, graphite or metal-graphite composite materials.
  • the moving surface may comprise a conventional metallic material, such as copper or steel, in which case a suitable lubricant, such as molybdenum disulphide or graphite, is employed to reduce friction between the brush and the moving surface.
  • the moving surface may be metal with a surface coating of silver or other noble metal.
  • an alloy of two or more metals may be employed, for example, silver alloyed with copper.
  • FIG. 1 is a cross-section of part of an electrical machine showing a fiber type of brush in accordance with one embodiment of the present invention in contact with a moving conductor.
  • FIG. 2 shows an individual fiber of the brush of FIG. 1 provided with a metallic coating.
  • an electrical machine comprises a brush 1 for current transfer purposes in contact with the surface 2 of an electrically conducting member 3.
  • the member 3 may comprise, for example, a slip-ring or commutator segment in a dynarnoelectric machine, or alternatively it may comprise a continuous rail from which the brush 1 collects current for, say, traction purposes in vehicle systems.
  • Brush 1 comprises a plurality of fibers 4 retained in mutual contact with each other along substantially their entire length by a casing 5 of metallic material.
  • a braid 6 of electrically conductive material carries current to or from the brush to windings or temrinals of the machine.
  • FIG. 2 shows one of the fibers 4, which is a non-metallic refractory fiber, provided with a metallic film 7 extending over the whole peripheral surface of the fiber along its full length.
  • the metallic film is of silver.
  • each fiber is less than 10 thousandths of an inch and the thickness of the metallic coating is typically 06 thousandths of an inch and generally no more than one tenth of the diameter of the fiber.
  • Fibers of boron nitride or aluminum oxide can be fonned as coherent high strength fibers by methods similar to the method described in The Engineer" Vol. 221, 27th May 1966, Page 815, by W. West, L.N. Philips, and W. Johnston, under the title High strength, high modulus, carbon fibers" and in British Patent No. l ,l 10,791.
  • Brushes of the kind described can be used for current densities of the order of 1,000 amps per square inch and with relative speeds of movement between the brushes and the current transfer surface of as much as 18,000 ft/min.
  • the brush wear can be as little as 1 cm for 10 cm of travel of the brushes over the surface and the wear of the surface itself is of the same order of magnitude, being less than 1 mm for 3 X 10 cms of relative movement of the bnrsh and the current transfer surface.
  • the casing 5 clamps the metal coated fibers in mutual contact over a major part of their length and thus maintains electrical continuity between them.
  • the fibers may alternatively be joined to each other along a portion of their length by welding together of their metallic films. It is important however that the ends of the filaments which engage the current transfer surface should be free to flex individually in the manner of the bristles of a brush.
  • the electrical connecting braid 6 may be soldered, welded or rivetted to the casing 5, or alternatively it may be directly joined to the fibers using soldering, welding or other suitable methods.
  • the brush may be held in a conventional brush holder allowing it to be held against the surface 2 under the action of a spring.
  • a current transfer brush for an electrical machine comprising a plurality of refractory non-conducting fibers extending generally parallel to one another, each of said fibers having a metallic film deposited thereon, said film extending along the length of the fiber.
  • each of said fibers has a diameter less than 10 thousandths of an inch.
  • a brush as claimed in claim 1 having means holding said fibers with their metallic films in mutual contact.
  • a current transfer brush as claimed in claim 5 in which the surface of the contact member is composed of graphite or a metal-graphite composite material having a lubricating effect.

Abstract

A current transfer brush for an electrical machine consists of refractory fibers, such as aluminum oxide fibers, with a deposited metallic film. The fibers provide mechanical strength with flexibility while the metallic films carry the current and high current densities can be achieved with low wear rates for the brushes and the contact surface which they traverse.

Description

United States Patent McNab [54] ELECTRICAL BRUSH STRUCTURE [72] Inventor: Ian Roderick McNab, Fossway, Newcastle upon Tyne, 6, England [22] Filed: Aug. 14, 1970 [21] Appl. No.: 64,550
[52] US. Cl .......310/248, 310/251 [5 1] Int. (I .110lr39/l8 [58] Field of Search 310/2 19, 231, 239, 248-253 [56] References Cited UNITED STATES PATENTS 539,454 5/1895 Thomson ...310/248 3,153,163 10/1964 Foldesetal ..3l0/23l 1 June 6, 1972 539,453 5/1895 Thomson ..3 10/248 3,382,387 5/1968 Marshall ..3 10/2 1 9 3,525,006 8/1970 Parr et al. ..3 10/251 Primary Examiner-D. F. Duggan Attomey-Kemon, Palmer & Estabrook 1 1 ABSTRACT A current transfer brush for an electrical machine consists of refractory fibers, such as aluminum oxide fibers, with a deposited metallic film. The fibers provide mechanical strength with flexibility while the metallic films carry the current and high current densities can be achieved with low wear rates for the brushes and the contact surface which they traverse.
6 Claims, 2 Drawing Figures ELECTRICAL BRUSH STRUCTURE The invention relates to current transfer brushes for electri cal machines.
It is necessary in many electrical machines to provide an electrically conducting path between two parts of a machine moving relative to one another. In dynamo-electric machines, for example, it is common to use brushes of electrically conducting material sliding on the surface of a slip-ring or commutator to provide a current path between the rotor and an external connection. The principal requirements of such brushes are that they should be able to carry a high current per unit area of interface between the brush and the surface which it contacts and that they should have high wear resistance.
It has been proposed in US. Pat. No. 3,382,387 to use a brush composed of individual resilient wires each of which consists of a tubular metal sheath having a core of graphite or other lubricant material in powdered form which serves to prevent welding of the wire to the slip ring or other current transfer surface and reduces friction while maintaining electrical contact. The metal tube, which forms 40 percent or more or the cross-sectional area of the wire, provides both the electrical conductivity and the mechanical strength of the wire. Because of the overall diameter and thickness of the tube it is relatively stiff and requires a large contact pressure which gives rise to substantial wear both of the brush wires and of the current transfer surface with which they are in contact. Also the relatively small number of wires in a brush means that the absence of adequate contact between one or two wires and the current transfer surface will cause a noticeable irregularity in the current-carrying capacity of the brush.
In accordance with the present invention it is proposed to form the brush elements of refractory non-conducting fibers which provide high Strength and flexibility, each of the fibers having a metallic film deposited' on the surface thereof to carry the current. Since the current is carried by the metallic film it is not necessary for the refractory non-metallic fiber to be electrically conductive. It is therefore possible to use fibers of boron nitride or refractory metal oxides such as aluminum oxide and even glass fibers. These fibers can be of very small diameter, less than thousandths of an inch, and with a relatively thin metallic coating are much less stiff than the metallic tubes of U.S. Pat. No. 3,382,387 referred to above and therefore require less contact pressure. Moreover the use of a large number of metal-coated fibers makes for greater uniformity in the current carrying capacity of the brush despite variation s in the degree of contact of individual elements of the brush with the contact surface.
The electrically-conducting metal film is preferably formed of a noble metal such as silver, or may take the form of an alloy of a noble metal and a metal such as copper. It may be applied to the fibers by electro-plating, vacuum deposition or any other suitable process.
According to a further feature of the invention one or more brushes constructed in accordance with the invention are used in conjunction with a surface moving relatively to the brush and to orfrom which the brush transfers current, the surface being constructed of a material having a lubricating effect such as, for example, graphite or metal-graphite composite materials. Alternatively, the moving surface may comprise a conventional metallic material, such as copper or steel, in which case a suitable lubricant, such as molybdenum disulphide or graphite, is employed to reduce friction between the brush and the moving surface. Alternatively. the moving surface may be metal with a surface coating of silver or other noble metal. Alternatively an alloy of two or more metals may be employed, for example, silver alloyed with copper.
The invention will be further described with reference to the accompanying drawing in which:
FIG. 1 is a cross-section of part of an electrical machine showing a fiber type of brush in accordance with one embodiment of the present invention in contact with a moving conductor.
FIG. 2 shows an individual fiber of the brush of FIG. 1 provided with a metallic coating.
Referring to FIG. 1, an electrical machine comprises a brush 1 for current transfer purposes in contact with the surface 2 of an electrically conducting member 3. The member 3 may comprise, for example, a slip-ring or commutator segment in a dynarnoelectric machine, or alternatively it may comprise a continuous rail from which the brush 1 collects current for, say, traction purposes in vehicle systems.
Brush 1 comprises a plurality of fibers 4 retained in mutual contact with each other along substantially their entire length by a casing 5 of metallic material. A braid 6 of electrically conductive material carries current to or from the brush to windings or temrinals of the machine.
FIG. 2 shows one of the fibers 4, which is a non-metallic refractory fiber, provided with a metallic film 7 extending over the whole peripheral surface of the fiber along its full length. In this instance the the metallic film is of silver.
The diameter of each fiber is less than 10 thousandths of an inch and the thickness of the metallic coating is typically 06 thousandths of an inch and generally no more than one tenth of the diameter of the fiber.
Fibers of boron nitride or aluminum oxide can be fonned as coherent high strength fibers by methods similar to the method described in The Engineer" Vol. 221, 27th May 1966, Page 815, by W. West, L.N. Philips, and W. Johnston, under the title High strength, high modulus, carbon fibers" and in British Patent No. l ,l 10,791.
Brushes of the kind described can be used for current densities of the order of 1,000 amps per square inch and with relative speeds of movement between the brushes and the current transfer surface of as much as 18,000 ft/min. The brush wear can be as little as 1 cm for 10 cm of travel of the brushes over the surface and the wear of the surface itself is of the same order of magnitude, being less than 1 mm for 3 X 10 cms of relative movement of the bnrsh and the current transfer surface.
The casing 5 clamps the metal coated fibers in mutual contact over a major part of their length and thus maintains electrical continuity between them. The fibers may alternatively be joined to each other along a portion of their length by welding together of their metallic films. It is important however that the ends of the filaments which engage the current transfer surface should be free to flex individually in the manner of the bristles of a brush.
The electrical connecting braid 6 may be soldered, welded or rivetted to the casing 5, or alternatively it may be directly joined to the fibers using soldering, welding or other suitable methods. The brush may be held in a conventional brush holder allowing it to be held against the surface 2 under the action of a spring.
WE CLAIM:
l. A current transfer brush for an electrical machine comprising a plurality of refractory non-conducting fibers extending generally parallel to one another, each of said fibers having a metallic film deposited thereon, said film extending along the length of the fiber.
2. A current transfer brush as claimed in claim 1 in which each of said fibers has a diameter less than 10 thousandths of an inch.
3. A brush as claimed in claim 1 having means holding said fibers with their metallic films in mutual contact.
4. A brush as claimed in claim 3 in which said holding means comprises a metallic casing surrounding the fibers at one end thereof.
5. A current transfer brush as claimed in claim 1 in combination with a movable contact member having a lubricated surface.
6. A current transfer brush as claimed in claim 5 in which the surface of the contact member is composed of graphite or a metal-graphite composite material having a lubricating effect.
I '0 II I

Claims (5)

  1. 2. A current transfer brush as claimed in claim 1 in which each of said fibers has a diameter less than 10 thousandths of an inch.
  2. 3. A brush as claimed in claim 1 having means holding said fibers with their metallic films in mutual contact.
  3. 4. A brush as claimed in claim 3 in which said holding means comprises a metallic casing surrounding the fibers at one end thereof.
  4. 5. A current transfer brush as claimed in claim 1 in combination with a movable contact member having a lubricated surface.
  5. 6. A current transfer brush as claimed in claim 5 in which the surface of the contact member is composed of graphite or a metal-graphite composite material having a lubricating effect.
US64550A 1970-08-14 1970-08-14 Electrical brush structure Expired - Lifetime US3668451A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6455070A 1970-08-14 1970-08-14

Publications (1)

Publication Number Publication Date
US3668451A true US3668451A (en) 1972-06-06

Family

ID=22056746

Family Applications (1)

Application Number Title Priority Date Filing Date
US64550A Expired - Lifetime US3668451A (en) 1970-08-14 1970-08-14 Electrical brush structure

Country Status (1)

Country Link
US (1) US3668451A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818588A (en) * 1972-03-30 1974-06-25 Nat Res Dev Electrical brushes
US3826379A (en) * 1973-02-28 1974-07-30 W Wright Method and means for reducing the effect of electrostatic charges on paper in a copying system
US3886386A (en) * 1973-08-01 1975-05-27 Gen Electric Carbon fiber current collection brush
US4000430A (en) * 1973-02-13 1976-12-28 Vladimir Alexeevich Bely Contact brush
US4071795A (en) * 1975-09-02 1978-01-31 International Research & Development Company Limited Brush gear for electrical machinery
DE3006330A1 (en) * 1979-06-25 1981-01-29 Westinghouse Electric Corp ELECTRIC HIGH CURRENT MACHINE
US4267476A (en) * 1979-06-25 1981-05-12 Westinghouse Electric Corp. Metal-solid lubricant brushes for high-current rotating electrical machinery
US4306169A (en) * 1978-04-20 1981-12-15 Siemens Aktiengesellschaft Current transfer brush
US4361775A (en) * 1978-04-20 1982-11-30 Siemens Aktiengesellschaft Current transfer brush
US4398113A (en) * 1980-12-15 1983-08-09 Litton Systems, Inc. Fiber brush slip ring assembly
US4443726A (en) * 1981-05-09 1984-04-17 Toho Beslon Co., Ltd. Brushes and method for the production thereof
US4576082A (en) * 1982-12-23 1986-03-18 Westinghouse Electric Corp. Linear fiber armature for electromagnetic launchers
US4587723A (en) * 1985-05-02 1986-05-13 The United States Of America As Represented By The Secretary Of The Navy Method for making a high current fiber brush collector
US5177529A (en) * 1988-11-25 1993-01-05 Xerox Corporation Machine with removable unit having two element electrical connection
FR2743203A1 (en) * 1995-12-30 1997-07-04 Bosch Gmbh Robert CARBON BROOM FOR ELECTRIC MOTORS
US6400057B2 (en) * 2000-02-25 2002-06-04 Sgl Carbon Ag Slip-ring configuration in electric motors and generators, slip-ring body and method for retooling slip-ring bodies
US6444102B1 (en) 2000-02-07 2002-09-03 Micro Contacts Inc. Carbon fiber electrical contacts
DE102005013106A1 (en) * 2005-03-18 2006-09-21 Gerhard Präzisionspresstechnik GmbH Carbon brush arrangement for e.g. washing machine motors has latch plates fixed to mounting plate and separated by air gaps
EP1766761A2 (en) * 2004-06-18 2007-03-28 Moog Inc. Electrical contact technology and methodology for the manufacture of large-diameter electrical slip rings
US20070120437A1 (en) * 2004-06-18 2007-05-31 Day Michael J Compact slip ring incorporating fiber-on-tips contact technology
US7545073B2 (en) * 2004-06-18 2009-06-09 Moog Inc. Fluid-dispensing reservoir for large-diameter slip rings
US20110067900A1 (en) * 2000-02-07 2011-03-24 Michael Tucci Carbon fiber electrical contacts formed of composite carbon fiber material
US8398413B2 (en) 2000-02-07 2013-03-19 Micro Contacts, Inc. Carbon fiber electrical contacts formed of composite material including plural carbon fiber elements bonded together in low-resistance synthetic resin
US20130210243A1 (en) * 2010-10-26 2013-08-15 Nicolas Argibay Long-life metal sliding contacts
US10418770B2 (en) 2016-05-31 2019-09-17 Bae Systems Land & Armaments L.P. Multi-directional high current slip ring
US20230216250A1 (en) * 2022-01-05 2023-07-06 Tk Elevator Innovation And Operations Gmbh Grounding assemblies for an elevator assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US539454A (en) * 1895-05-21 Carbon brush
US539453A (en) * 1895-05-21 Carbon brush
US3153163A (en) * 1961-03-30 1964-10-13 Gen Electric Moving electric current collectors
US3382387A (en) * 1968-05-07 Gen Electric Electrical current collection and delivery method and apparatus
US3525006A (en) * 1968-02-29 1970-08-18 Nat Res Dev Carbon fibre brush

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US539454A (en) * 1895-05-21 Carbon brush
US539453A (en) * 1895-05-21 Carbon brush
US3382387A (en) * 1968-05-07 Gen Electric Electrical current collection and delivery method and apparatus
US3153163A (en) * 1961-03-30 1964-10-13 Gen Electric Moving electric current collectors
US3525006A (en) * 1968-02-29 1970-08-18 Nat Res Dev Carbon fibre brush

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818588A (en) * 1972-03-30 1974-06-25 Nat Res Dev Electrical brushes
US4000430A (en) * 1973-02-13 1976-12-28 Vladimir Alexeevich Bely Contact brush
US3826379A (en) * 1973-02-28 1974-07-30 W Wright Method and means for reducing the effect of electrostatic charges on paper in a copying system
US3886386A (en) * 1973-08-01 1975-05-27 Gen Electric Carbon fiber current collection brush
US4071795A (en) * 1975-09-02 1978-01-31 International Research & Development Company Limited Brush gear for electrical machinery
US4306169A (en) * 1978-04-20 1981-12-15 Siemens Aktiengesellschaft Current transfer brush
US4361775A (en) * 1978-04-20 1982-11-30 Siemens Aktiengesellschaft Current transfer brush
US4267476A (en) * 1979-06-25 1981-05-12 Westinghouse Electric Corp. Metal-solid lubricant brushes for high-current rotating electrical machinery
DE3006330A1 (en) * 1979-06-25 1981-01-29 Westinghouse Electric Corp ELECTRIC HIGH CURRENT MACHINE
US4398113A (en) * 1980-12-15 1983-08-09 Litton Systems, Inc. Fiber brush slip ring assembly
US4443726A (en) * 1981-05-09 1984-04-17 Toho Beslon Co., Ltd. Brushes and method for the production thereof
US4576082A (en) * 1982-12-23 1986-03-18 Westinghouse Electric Corp. Linear fiber armature for electromagnetic launchers
US4587723A (en) * 1985-05-02 1986-05-13 The United States Of America As Represented By The Secretary Of The Navy Method for making a high current fiber brush collector
US5177529A (en) * 1988-11-25 1993-01-05 Xerox Corporation Machine with removable unit having two element electrical connection
FR2743203A1 (en) * 1995-12-30 1997-07-04 Bosch Gmbh Robert CARBON BROOM FOR ELECTRIC MOTORS
US20110067900A1 (en) * 2000-02-07 2011-03-24 Michael Tucci Carbon fiber electrical contacts formed of composite carbon fiber material
US6444102B1 (en) 2000-02-07 2002-09-03 Micro Contacts Inc. Carbon fiber electrical contacts
US8398413B2 (en) 2000-02-07 2013-03-19 Micro Contacts, Inc. Carbon fiber electrical contacts formed of composite material including plural carbon fiber elements bonded together in low-resistance synthetic resin
US8029296B2 (en) 2000-02-07 2011-10-04 Micro Contacts, Inc. Carbon fiber electrical contacts formed of composite carbon fiber material
US6400057B2 (en) * 2000-02-25 2002-06-04 Sgl Carbon Ag Slip-ring configuration in electric motors and generators, slip-ring body and method for retooling slip-ring bodies
US20070120437A1 (en) * 2004-06-18 2007-05-31 Day Michael J Compact slip ring incorporating fiber-on-tips contact technology
US7545073B2 (en) * 2004-06-18 2009-06-09 Moog Inc. Fluid-dispensing reservoir for large-diameter slip rings
US7495366B2 (en) * 2004-06-18 2009-02-24 Moog Inc. Compact slip ring incorporating fiber-on-tips contact technology
EP1766761A2 (en) * 2004-06-18 2007-03-28 Moog Inc. Electrical contact technology and methodology for the manufacture of large-diameter electrical slip rings
EP1766761A4 (en) * 2004-06-18 2013-01-02 Moog Inc Electrical contact technology and methodology for the manufacture of large-diameter electrical slip rings
DE102005013106B4 (en) * 2005-03-18 2012-02-02 Gerhard Präzisionspresstechnik GmbH Carbon brush assembly
DE102005013106A1 (en) * 2005-03-18 2006-09-21 Gerhard Präzisionspresstechnik GmbH Carbon brush arrangement for e.g. washing machine motors has latch plates fixed to mounting plate and separated by air gaps
US20130210243A1 (en) * 2010-10-26 2013-08-15 Nicolas Argibay Long-life metal sliding contacts
US9450366B2 (en) * 2010-10-26 2016-09-20 University Of Florida Research Foundation, Inc. Long-life metal sliding contacts
US10418770B2 (en) 2016-05-31 2019-09-17 Bae Systems Land & Armaments L.P. Multi-directional high current slip ring
US20230216250A1 (en) * 2022-01-05 2023-07-06 Tk Elevator Innovation And Operations Gmbh Grounding assemblies for an elevator assembly

Similar Documents

Publication Publication Date Title
US3668451A (en) Electrical brush structure
US4277708A (en) Environment and brushes for high-current rotating electrical machinery
US4347456A (en) Sliding electrical contact devices
US3821024A (en) Current transfer brusher
SU725578A1 (en) Current-collecting device for electric machines
EP0054380A2 (en) Slip ring and brush assemblies
US3382387A (en) Electrical current collection and delivery method and apparatus
EP1898500B1 (en) Compact slip ring incorporating fiber-on-tips contact technology
US3648088A (en) Current transfer devices for electrical machines
US4267476A (en) Metal-solid lubricant brushes for high-current rotating electrical machinery
US4306169A (en) Current transfer brush
US2736830A (en) Current-conveying brushes
US3886386A (en) Carbon fiber current collection brush
JP2002025346A (en) Conductive member
US4361775A (en) Current transfer brush
US3297973A (en) Floating-brush contact assembly
US3980914A (en) Brushes for rotating electric machines
Reichner Metallic brushes for extreme high-current applications
US3376444A (en) Carbon brush assembly
US20090045694A1 (en) Microfiber high current conduction device
US539454A (en) Carbon brush
US3634710A (en) Brush holder for electric motors and generators
US4261099A (en) Method for making multi-element brushes
CN108551064A (en) Fiber brush bundle slip ring assembly
GB1595831A (en) Contact body for use in an electric circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORTHERN ENGINEERING INDUSTRIES LIMITED, NEI HOUSE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:JOHN THOMPSON (PIPEWORK AND ORDANCE DIVISION LIMITED);REEL/FRAME:003864/0376

Effective date: 19801208

AS Assignment

Owner name: NORTHERN ENGINEERING INDUSTRIES PLC.

Free format text: CHANGE OF NAME;ASSIGNOR:NORTHERN ENGINEERING INDUSTRIES LIMITED;REEL/FRAME:004101/0161

Effective date: 19821124