Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »


  1. Recherche avancée dans les brevets
Numéro de publicationUS3668451 A
Type de publicationOctroi
Date de publication6 juin 1972
Date de dépôt14 août 1970
Date de priorité14 août 1970
Numéro de publicationUS 3668451 A, US 3668451A, US-A-3668451, US3668451 A, US3668451A
InventeursMcnab Ian Roderick
Cessionnaire d'origineMcnab Ian Roderick
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Electrical brush structure
US 3668451 A
A current transfer brush for an electrical machine consists of refractory fibers, such as aluminum oxide fibers, with a deposited metallic film. The fibers provide mechanical strength with flexibility while the metallic films carry the current and high current densities can be achieved with low wear rates for the brushes and the contact surface which they traverse.
Previous page
Next page
Revendications  disponible en
Description  (Le texte OCR peut contenir des erreurs.)

United States Patent McNab [54] ELECTRICAL BRUSH STRUCTURE [72] Inventor: Ian Roderick McNab, Fossway, Newcastle upon Tyne, 6, England [22] Filed: Aug. 14, 1970 [21] Appl. No.: 64,550

[52] US. Cl .......310/248, 310/251 [5 1] Int. (I .110lr39/l8 [58] Field of Search 310/2 19, 231, 239, 248-253 [56] References Cited UNITED STATES PATENTS 539,454 5/1895 Thomson ...310/248 3,153,163 10/1964 Foldesetal ..3l0/23l 1 June 6, 1972 539,453 5/1895 Thomson ..3 10/248 3,382,387 5/1968 Marshall ..3 10/2 1 9 3,525,006 8/1970 Parr et al. ..3 10/251 Primary Examiner-D. F. Duggan Attomey-Kemon, Palmer & Estabrook 1 1 ABSTRACT A current transfer brush for an electrical machine consists of refractory fibers, such as aluminum oxide fibers, with a deposited metallic film. The fibers provide mechanical strength with flexibility while the metallic films carry the current and high current densities can be achieved with low wear rates for the brushes and the contact surface which they traverse.

6 Claims, 2 Drawing Figures ELECTRICAL BRUSH STRUCTURE The invention relates to current transfer brushes for electri cal machines.

It is necessary in many electrical machines to provide an electrically conducting path between two parts of a machine moving relative to one another. In dynamo-electric machines, for example, it is common to use brushes of electrically conducting material sliding on the surface of a slip-ring or commutator to provide a current path between the rotor and an external connection. The principal requirements of such brushes are that they should be able to carry a high current per unit area of interface between the brush and the surface which it contacts and that they should have high wear resistance.

It has been proposed in US. Pat. No. 3,382,387 to use a brush composed of individual resilient wires each of which consists of a tubular metal sheath having a core of graphite or other lubricant material in powdered form which serves to prevent welding of the wire to the slip ring or other current transfer surface and reduces friction while maintaining electrical contact. The metal tube, which forms 40 percent or more or the cross-sectional area of the wire, provides both the electrical conductivity and the mechanical strength of the wire. Because of the overall diameter and thickness of the tube it is relatively stiff and requires a large contact pressure which gives rise to substantial wear both of the brush wires and of the current transfer surface with which they are in contact. Also the relatively small number of wires in a brush means that the absence of adequate contact between one or two wires and the current transfer surface will cause a noticeable irregularity in the current-carrying capacity of the brush.

In accordance with the present invention it is proposed to form the brush elements of refractory non-conducting fibers which provide high Strength and flexibility, each of the fibers having a metallic film deposited' on the surface thereof to carry the current. Since the current is carried by the metallic film it is not necessary for the refractory non-metallic fiber to be electrically conductive. It is therefore possible to use fibers of boron nitride or refractory metal oxides such as aluminum oxide and even glass fibers. These fibers can be of very small diameter, less than thousandths of an inch, and with a relatively thin metallic coating are much less stiff than the metallic tubes of U.S. Pat. No. 3,382,387 referred to above and therefore require less contact pressure. Moreover the use of a large number of metal-coated fibers makes for greater uniformity in the current carrying capacity of the brush despite variation s in the degree of contact of individual elements of the brush with the contact surface.

The electrically-conducting metal film is preferably formed of a noble metal such as silver, or may take the form of an alloy of a noble metal and a metal such as copper. It may be applied to the fibers by electro-plating, vacuum deposition or any other suitable process.

According to a further feature of the invention one or more brushes constructed in accordance with the invention are used in conjunction with a surface moving relatively to the brush and to orfrom which the brush transfers current, the surface being constructed of a material having a lubricating effect such as, for example, graphite or metal-graphite composite materials. Alternatively, the moving surface may comprise a conventional metallic material, such as copper or steel, in which case a suitable lubricant, such as molybdenum disulphide or graphite, is employed to reduce friction between the brush and the moving surface. Alternatively. the moving surface may be metal with a surface coating of silver or other noble metal. Alternatively an alloy of two or more metals may be employed, for example, silver alloyed with copper.

The invention will be further described with reference to the accompanying drawing in which:

FIG. 1 is a cross-section of part of an electrical machine showing a fiber type of brush in accordance with one embodiment of the present invention in contact with a moving conductor.

FIG. 2 shows an individual fiber of the brush of FIG. 1 provided with a metallic coating.

Referring to FIG. 1, an electrical machine comprises a brush 1 for current transfer purposes in contact with the surface 2 of an electrically conducting member 3. The member 3 may comprise, for example, a slip-ring or commutator segment in a dynarnoelectric machine, or alternatively it may comprise a continuous rail from which the brush 1 collects current for, say, traction purposes in vehicle systems.

Brush 1 comprises a plurality of fibers 4 retained in mutual contact with each other along substantially their entire length by a casing 5 of metallic material. A braid 6 of electrically conductive material carries current to or from the brush to windings or temrinals of the machine.

FIG. 2 shows one of the fibers 4, which is a non-metallic refractory fiber, provided with a metallic film 7 extending over the whole peripheral surface of the fiber along its full length. In this instance the the metallic film is of silver.

The diameter of each fiber is less than 10 thousandths of an inch and the thickness of the metallic coating is typically 06 thousandths of an inch and generally no more than one tenth of the diameter of the fiber.

Fibers of boron nitride or aluminum oxide can be fonned as coherent high strength fibers by methods similar to the method described in The Engineer" Vol. 221, 27th May 1966, Page 815, by W. West, L.N. Philips, and W. Johnston, under the title High strength, high modulus, carbon fibers" and in British Patent No. l ,l 10,791.

Brushes of the kind described can be used for current densities of the order of 1,000 amps per square inch and with relative speeds of movement between the brushes and the current transfer surface of as much as 18,000 ft/min. The brush wear can be as little as 1 cm for 10 cm of travel of the brushes over the surface and the wear of the surface itself is of the same order of magnitude, being less than 1 mm for 3 X 10 cms of relative movement of the bnrsh and the current transfer surface.

The casing 5 clamps the metal coated fibers in mutual contact over a major part of their length and thus maintains electrical continuity between them. The fibers may alternatively be joined to each other along a portion of their length by welding together of their metallic films. It is important however that the ends of the filaments which engage the current transfer surface should be free to flex individually in the manner of the bristles of a brush.

The electrical connecting braid 6 may be soldered, welded or rivetted to the casing 5, or alternatively it may be directly joined to the fibers using soldering, welding or other suitable methods. The brush may be held in a conventional brush holder allowing it to be held against the surface 2 under the action of a spring.


l. A current transfer brush for an electrical machine comprising a plurality of refractory non-conducting fibers extending generally parallel to one another, each of said fibers having a metallic film deposited thereon, said film extending along the length of the fiber.

2. A current transfer brush as claimed in claim 1 in which each of said fibers has a diameter less than 10 thousandths of an inch.

3. A brush as claimed in claim 1 having means holding said fibers with their metallic films in mutual contact.

4. A brush as claimed in claim 3 in which said holding means comprises a metallic casing surrounding the fibers at one end thereof.

5. A current transfer brush as claimed in claim 1 in combination with a movable contact member having a lubricated surface.

6. A current transfer brush as claimed in claim 5 in which the surface of the contact member is composed of graphite or a metal-graphite composite material having a lubricating effect.

I '0 II I

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US539453 *6 févr. 189521 mai 1895By Mesne assignmentsCarbon brush
US539454 *21 mai 1895 Carbon brush
US3153163 *30 mars 196113 oct. 1964Gen ElectricMoving electric current collectors
US3382387 *21 juin 19657 mai 1968Gen ElectricElectrical current collection and delivery method and apparatus
US3525006 *29 févr. 196818 août 1970Nat Res DevCarbon fibre brush
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US3818588 *29 mars 197325 juin 1974Nat Res DevElectrical brushes
US3886386 *1 août 197327 mai 1975Gen ElectricCarbon fiber current collection brush
US4000430 *13 févr. 197328 déc. 1976Vladimir Alexeevich BelyContact brush
US4071795 *2 sept. 197531 janv. 1978International Research & Development Company LimitedBrush gear for electrical machinery
US4267476 *25 juin 197912 mai 1981Westinghouse Electric Corp.Metal-solid lubricant brushes for high-current rotating electrical machinery
US4306169 *29 mai 197915 déc. 1981Siemens AktiengesellschaftCurrent transfer brush
US4361775 *2 mars 198130 nov. 1982Siemens AktiengesellschaftCurrent transfer brush
US4398113 *15 déc. 19809 août 1983Litton Systems, Inc.Fiber brush slip ring assembly
US4443726 *10 mai 198217 avr. 1984Toho Beslon Co., Ltd.Brushes and method for the production thereof
US4576082 *23 déc. 198218 mars 1986Westinghouse Electric Corp.Linear fiber armature for electromagnetic launchers
US4587723 *2 mai 198513 mai 1986The United States Of America As Represented By The Secretary Of The NavyMethod for making a high current fiber brush collector
US5177529 *25 nov. 19885 janv. 1993Xerox CorporationMachine with removable unit having two element electrical connection
US6400057 *14 févr. 20014 juin 2002Sgl Carbon AgSlip-ring configuration in electric motors and generators, slip-ring body and method for retooling slip-ring bodies
US64441027 févr. 20003 sept. 2002Micro Contacts Inc.Carbon fiber electrical contacts
US7495366 *11 sept. 200624 févr. 2009Moog Inc.Compact slip ring incorporating fiber-on-tips contact technology
US7545073 *10 juin 20089 juin 2009Moog Inc.Fluid-dispensing reservoir for large-diameter slip rings
US80292965 juil. 20014 oct. 2011Micro Contacts, Inc.Carbon fiber electrical contacts formed of composite carbon fiber material
US839841321 sept. 201119 mars 2013Micro Contacts, Inc.Carbon fiber electrical contacts formed of composite material including plural carbon fiber elements bonded together in low-resistance synthetic resin
US9450366 *26 oct. 201120 sept. 2016University Of Florida Research Foundation, Inc.Long-life metal sliding contacts
US20070120437 *11 sept. 200631 mai 2007Day Michael JCompact slip ring incorporating fiber-on-tips contact technology
US20110067900 *5 juil. 200124 mars 2011Michael TucciCarbon fiber electrical contacts formed of composite carbon fiber material
US20130210243 *26 oct. 201115 août 2013Nicolas ArgibayLong-life metal sliding contacts
DE3006330A1 *20 févr. 198029 janv. 1981Westinghouse Electric CorpElektrische hochstrommaschine
DE102005013106A1 *18 mars 200521 sept. 2006Gerhard Präzisionspresstechnik GmbHCarbon brush arrangement for e.g. washing machine motors has latch plates fixed to mounting plate and separated by air gaps
DE102005013106B4 *18 mars 20052 févr. 2012Gerhard Präzisionspresstechnik GmbHKohlebürstenanordnung
EP1766761A2 *7 juin 200528 mars 2007Moog Inc.Electrical contact technology and methodology for the manufacture of large-diameter electrical slip rings
EP1766761A4 *7 juin 20052 janv. 2013Moog IncElectrical contact technology and methodology for the manufacture of large-diameter electrical slip rings
Classification aux États-Unis310/248, 310/251
Classification internationaleH01R39/24, H01R39/00
Classification coopérativeH01R39/24
Classification européenneH01R39/24
Événements juridiques
7 févr. 1983AS01Change of name
Effective date: 19821124
7 févr. 1983ASAssignment
Effective date: 19821124
8 juin 1981ASAssignment
Effective date: 19801208
26 janv. 1981AS01Change of name
Effective date: 19810108