US3669907A - Semiconductive elements - Google Patents

Semiconductive elements Download PDF

Info

Publication number
US3669907A
US3669907A US687229A US3669907DA US3669907A US 3669907 A US3669907 A US 3669907A US 687229 A US687229 A US 687229A US 3669907D A US3669907D A US 3669907DA US 3669907 A US3669907 A US 3669907A
Authority
US
United States
Prior art keywords
metal oxide
semiconductive
powder
mixture
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US687229A
Inventor
Tadao Kohashi
Kazunobu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Application granted granted Critical
Publication of US3669907A publication Critical patent/US3669907A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors

Definitions

  • This invention relates to semiconductive elements, particularly to semiconductive elements which provide electric resistors with excellent properties.
  • One object of this invention is to provide semiconductive elements which are made from the mixture of a vitreous material and a semiconductive material or materials and which have an ohmic resistance of a specific resistivity of the order of 10 to 10 ohm-cm in the semiconductive region.
  • Another object of this invention is to provide a useful method for manufacturing the above-mentioned semiconductors.
  • the conventional conductive glasses which are made from the mixture of a vitreous material and powder of a metal, are intended to provide glasses which are very near, or as near as possible, to a conductor in resistivity, or semiconductive glasses with a directional resistivity whose specific resistivity is of the order of 10 to ohm-cm and is in the range of a semiconductor but unaffected by an electric field.
  • troublesome precaution must be taken about the processing atmosphere in order to prevent the powder of metal from being oxidized or degenerated because of the high temperature during the heating operation.
  • metals generally having a high maleability, are very difficult to be pulverized beyond a certain limit with the present techniques of crushing or granulation.
  • control of the resistivity is very difficult because the resistivity of the metal is substantially low.
  • Another formation of the semiconductive elements is organic resins or plastics containing a conductive powder, the former serving as binder for the latter particles.
  • Such a formation presents an extremely non-linear voltage-current characteristics owing to the incomplete contact between the conductive particles and the binder, and to the surface state barrier of the conductive particles.
  • the intended ohmic resistivity is not obtained by this kind of formation.
  • the temperature rise caused by an excessive current due to the non-linearity of the resistance deteriorates the binding resin which is of low heat-resistivity, and shortens the life of the element.
  • new semiconductive elements which are highly resistive to the environmental conditions and have an ohmic resistivity in the semiconductive range 10 to 10 ohm-cm), are obtained by using a pulverized metal oxide as semiconductive material which is stable in an atmosphere of considerably high temperature and can be pulverized comparatively easily.
  • FIG. 1 is a sectional view of a semiconductive element embodying this invention
  • FIG. 2 is a diagram showing the current vs voltage characteristics of the semiconductive element shown in FIG. 1;
  • FIG. 3 is a sectional view of another embodiment of this invention.
  • FIG. 4 is a plan view of another embodiment of this invention.
  • FIG. 5 is a sectional view of still another embodiment of this invention.
  • FIG. 6 is a diagram showing the current vs voltage characteristics of the element shown in FIG. 5;
  • FIG. 7 is a sectional view of another embodiment of this invention.
  • FIG. 8 is a plan view of another embodiment of this invention.
  • pulverized tin oxide (SnO,) 103 is contained, as a semiconductive material, in vitreous binding material 102.
  • This semiconductive layer is formed by applying the mixture of the semiconductive material 103 and the powder of the vitreous material on the surface of iron plate 104, and then dried by heating.
  • the iron plate 104 of glazing quality serves as an electrode and at the same time as a heatresistive substrate.
  • Electrode 101 consisting of an electro-conductive paint is applied on the above-mentioned semiconductive layer.
  • composition of the mixture which consists of pulverized frit (hereafter referred to as A) as the binding material and pulverized tin oxide (hereafter referred to as B) as the semiconductive material, is shown in the following table.
  • the percentage of the metal oxide may be varied in the range of 10 to 35 percent depending on the desired resultant resistivity.
  • the average grain size of A is preferably about 1 micron and that of B about 5 microns, at most. A larger grain size will cause less dispersion of the particles and a more difficult forming of the layer, resulting in a porous layer. On the other hand, a smaller grain size is desirable, presenting better dispersion, stable electric resistivity and easy forming.
  • the conditions that the grain size of A is smaller than that of B should be maintained. If the grain size of A is larger than that of B, the particles of the frit will be covered with the particles of the metal oxide and will be prevented from contacting each other. Accordingly, the layer will not be formed when heated.
  • the mixed powder of A and B thus measured is thoroughly stirred in a suitable mixing or stirring machine.
  • the mixture of A and B added with a volatile liquid such as diacetone-alcohol or octyl-alcohol of equivalent weight was stirred in a ball-mill for 12 hours.
  • a proper period for stirring is half a day to 1 day. A shorter period will cause insufficient dispersion of the particles, while a longer period will result in a less difference of grain size between A and B which is not enough to ensure the condition that the grain size of A is larger than that of B.
  • the liquid serving as dispersion medium is substantially in a sol-like state, the liquid serving as dispersion medium.
  • the mixture is applied on the surface of the heat-resistive substrate by the silk screen method which is a preferable method but to which this invention is not limited.
  • the object of heating is to fuse the vitreous binder without solving the metal oxide particle into the vitreous material, and to cause the binding material to adhere to the substrate, forming a layer with a smooth surface.
  • at least the surface portion of the metal oxide particles makes solid solution with the vitreous binder, thereby lowering the barrier in the surface of the metal oxide particles. This improves the electrical contact between the binding material and the semiconductive material, rendering an ohmic resistivity to the layer.
  • a heating temperature as low as possible is preferable. Accordingly, a frit of lower viscosity in a low temperature, that is, of lower softening point should be selected.
  • Table I shows the composition of the vitreous material used in this embodiment.
  • the softening point of this frit was about 600 to 640 C.
  • An iron plate of approximately the same heat expansion coefficient as the vitreous binder was used as the substrate. Heating was performed in an electric oven without any difficulty. That is, the heating can be carried on in the atmospheric environment without necessity of any special arrangement, because tin oxide (SnC used as the semiconductive material is very stable at a temperature around 640 C in the air and because the substrate used has substantially the same heat expansion coefficient as that of the vitreous material.
  • the sol-like mixture of A and B is applied on the substrate and heated up to 650 C in about 20 minutes after being placed in an electric oven, during which the liquid component is evaporated leaving the mixture of powder on the substrate.
  • the mixture on the substrate is maintained at that temperature (650 C) for about minutes, followed by a cooling period of about 20 minutes, after which the whole process is completed.
  • a silk screen of 130 mesh is used for sieving the powder of about 1 micron in grain size, a layer of about 20 microns in thickness can be formed with one cycle of the heating.
  • An additional layer can be made on the already formed layer, if required for some purposes.
  • FIG. 2 shows a current vs voltage characteristics of the semiconductive layer thus formed, the DC voltage being applied across the electrodes 101 and 104. It will be seen from the excellent straightness of the characteristics that the layer has ohmic resistivity. This layer has a considerable large current bearing capacity, no doubt being heat-resistive.
  • FIG. 3 shows another embodiment of this invention in which titanium oxide (TiO is used in place of the tin oxide of the previous embodiment.
  • binder 301 is a vitreous material having a softening point of 550 to 580 C and contains pulverized TiO dispersed therein.
  • Transparent electrodes 303 and 304 are formed separately on the glass substrate 305 whose softening point is 680 to 700 C.
  • a semiconductive layer consisting of binding material 301 and semiconductive particles 302 is formed over the electrodes and the substrate including the space between the two electrodes.
  • the embodiment shown in FIG. 1 is intended to be a resistor across the thickness of the layer, whereas this embodiment shown in FIG. 3 is intended as a lateral pass for the electric current.
  • the vitreous layer is formed on the surface of a glass or vitreous substrate. The method for forming the element and the requirements for the grain size are the same as in the previous embodiment.
  • the material is limited to iron plate, ceramics and other similar materials in the previous embodiment, whereas glass is also usable in this embodiment.
  • One is that the softening point of the binder be lower than that of the substrate. This is an essential condition, because the forming will be impossible if the substrate softens earlier than the binder during the heating.
  • the other condition is that the volume expansion coefficient of the substrate be approximately the same as that of the vitreous binder. If the expansion coefficients of both materials are significantly different, the substrate will crack from the strain caused during cooling, or at least the electrodes 303 and 304 will lose the conductivity owing to the strain.
  • Table 2 shows the volume expansion coefficients and the softening points of the binder and the substrate used in this embodiment.
  • the heating operation was performed at 630 C.
  • the transparent electrodes (Nesa electrodes) 303 and 304 do not lose the conductivity through the heating.
  • FIG. 4 shows another embodiment of this invention, in which the element is formed in a shape suitable for a potentiometer.
  • Transparent electrodes (Nesa electrodes) 401 and 402 are formed on the heat-resistive substrate (ceramics or glass) 403.
  • the semiconductive layer 404 which comprises a binding material containing pulverized metal oxide is formed on the substrate and the electrodes.
  • the semiconductive material is not limited to tin oxide (SnO or titanium oxide (TiO as in the previous embodiments, but can be one of other semiconductive metal oxides such as W0 Sb O Cr O R 0 V 0 and Bi O or a mixture of any two or more selected from these oxides.
  • this invention provides semiconductive elements wherein particles of semiconductive metal oxide are contained in a vitreous binding material. Owing to the fact that metal oxide is used for the component which imparts the conductivity to the element, the element has a high resistivity against severe environmental conditions, being stable even at a considerably high atmospheric temperature and accordingly can be manufactured without necessitating complicated and expensive equipment and operations.
  • semiconductive elements are provided which have an ohmic resistance of a specific resistivity of the semiconductive range (that is, 10 to 10 ohm-cm), the resistivity being controlled by the relative volume of the metal oxide contained in the binding material.
  • the semiconductive elements of this invention can be easily manufactured by a process comprising the following steps, that is; a step in which pulverized glass whose average grain size is smaller than 1 micron is mixed with pulverized semiconductive metal oxide whose average grain size is smaller than 5 microns but larger than that of said glass, the amount of the oxide being 10 to 35 percent in volume, and stirred with a volatile liquid additive until the mixture aquires a sol-like state; a step in which said mixture is applied in the form of a layer on the surface of a heat-resistive substrate whose melting point or softening point is higher than the softening point of said glass; and a step in which said layer of mixture is heated at a temperature higher than the softening point of said glass but lower than the melting point or softening point of said heat-resistive substrate.
  • the heating can be carried on in an atmospheric environment without necessity of any special consideration about the ambient conditions.
  • a smooth and strongly bound layer is obtained as the result of the fact that the grain size of the glass powder is selected to be smaller than that of the metal oxide powder.
  • the fact that the grain size of the glass powder and the metal oxide powder are smaller than 1 micron and 5 microns respectively eliminates the possibility of producing a porous layer and ensures the satisfactory dispersion of the oxide particles into the binding glass, thus making possible the manufacture of resistors with uniform and reliable properties, and at the same time rendering the formation of the layer very easy.
  • semiconductive elements having a specific resistivity of the semiconductor range that is, 10 to 10 ohm-cm
  • the semiconductive elements of this invention are stable even at a considerably high temperature and highly resistive against moisture and other ambient conditions.
  • a pulverized insulating material or materials are mixed with the above-described metal oxide powder in order to aid the dispersion of said metal oxide particles.
  • extremely durable semi-conductive elements with uniform properties are obtained which have an ohmic resistance in the semiconductor range to 10 ohm-cm) and have an improved dielectric strength.
  • the insulating material to be mixed is only required to be thermally stable, since this material is used to prevent the incomplete dispersion or maldistribution of the oxide particles and in no way contributes to the conductivity of the element.
  • the grain size of the glass powder should be selected to be smaller than those of the metal oxide powder and the powder of the insulating material. Mixing, application and heating of the powder are substantially the same as described in the previous paragraphs with other embodiments of this invention.
  • vitreous binding material 102 contains pulverized tin oxide (SnO 103 as semiconductive material and pulverized BaTiO 105 which is mixed in order to facilitate the dispersion or distribution of the semiconductive material 103 and to improve the dielectric strength of the element.
  • the mixture consisting of powders of 102, 103, and 105 is applied, in the form of a layer, on the surface of iron plate 103, and then dried by heating.
  • the iron plate 103 of glazing quality serves as an electrode and at the same time as a heat-resistive substrate.
  • Electrode 101 consisting of an electro-conductive paint is applied on the above semiconductive layer.
  • composition of the mixture which consists of pulverized frit (hereafter referred to as A), the pulverized tin oxide (hereafter referred to as B) and the pulverized BaTiO (hereafter referred to as C), is shown in the following table.
  • the percentage of Sn0 may be varied in the range of 10 to 35 percent depending on the desired resultant resistivity, with a corresponding decrease in the percentage of frit.
  • the same precaution as described in connection with the previous embodiments is required as to the grain size of B and C in relation to that of A.
  • the procedures of mixing and stirring of the mixture, the ingredients of the frit and the heating operation in this example are substantially the same as in the previous embodiments.
  • FIG. 6 shows a current vs voltage characteristics of the thus formed semiconductive layer, the DC voltage being applied across the electrodes 101 and 105.
  • the straightness of the characteristics shows that the layer has an ohmic resistance. This layer also has a considerably large current bearing capacity.
  • FIG. 7 shows another embodiment which is substantially the same as the embodiment shown in FIG. 3, except that pulverized A1 0 is added in order to facilitate the dispersion of TiO, particles.
  • binder 301 is a vitreous material having a softening point of 550 to 580 C and contains pulverized TiO as the semiconductive material 302 and pulverized A1 0 as the dispersing medium 303. Electrodes of SnO 304 and 303 are formed separately on the surface of glass substrate 305 whose softening point is 680 to 700 C. The semiconductive layer made from the powders 301, 302 and 306 also fills the space between the two electrodes. Other structural features of this embodiment are substantially the same as those of the embodiment described with reference to FIG. 3.
  • FIG. 8 shows another embodiment of this invention. This embodiment is substantially the same as the embodiment shown in FIG. 4, except that the dispersing medium is added in the mixture.
  • transparent electrodes (Nesa electrodes) 401 and 402 are formed on the heat-resistive substrate (ceramics or glass) 403. Then, the semiconductive layer 404 is formed on the substrate and the electrodes.
  • the semiconductive material is not limited to tin oxide (SnO or titanium oxide (TiO as mentioned above, but can be any one or any mixture of other semiconductive metal oxides such as W0 Sb,0,, C50 l e- 0 V 0 and E 0,.
  • the insulating or dispersing medium is not limited to BaTiO or A1 0 but can be any other material (for example, SiO which has a much higher electric resistance than the above-mentioned metal oxide and a higher melting point than the vitreous binding material.
  • semiconductive elements wherein particles of a semiconductive metal oxide and particles of an oxide whose specific resistivity is higher than that of said metal oxide are contained in a vitreous binding material.
  • Such elements have an improved dielectric strength and uniformity of resistivity owing to the sufficient dispersion of the semiconductive particles, besides the features described in connection with the previous embodiment according to the first aspect of this invention.
  • Such semiconductive elements can be easily manufactured by a process comprising the following steps, that is; a step in which pulverized glass whose average grain size is smaller than 1 micron is mixed with pulverized semiconductive metal oxide and pulverized oxide whose specific resistivity is higher than that of said metal oxide, the average grain size of said metal oxide and said oxide being smaller than 5 microns but larger than that of said glass, and the amount of said metal oxide being 10 to 35 percent in volume, and the mixture being stirred with a volatile liquid additive until said mixture acquires a sol-like state, a step in which said mixture is applied in the form of a layer on the surface of a heat-resistive substrate whose melting point or softening point is higher than the softening point of said glass; and a step in which said layer of mixture is heated at a temperature higher than the softening point of said glass but lower than the melting point or softening point of said heat-resistive substrate.
  • a method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing a powder of glass with a powder of at least one semiconductive metal oxide selected from the group consisting of SnO TiO W0 Sb O Cr O Fe o V 0 and Bi O whose grain size is larger than the grain size of said glass powder, the amount of said metal oxide being 10 to 35 percent in volume, until said particles of said metal oxide powder are well dispersed in said glass powder, and heating the mixture.
  • a method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing pulverized glass, whose average grain size is smaller than 1 micron, with a powder of at least one semiconductive metal oxide selected from the group consisting of SnO TiO,, W0 Sb O Cr O Fe O V 0 and Bi O whose average grain size is smaller than 5 microns but larger than the grain size of said glass, the amount of said metal oxide being 10 to 35 percent in volume; stirring the mixture with a volatile liquid additive until the mixture acquires a sol-like state; applying said mixture in the form of a layer on the surface of a heat-resistive substrate whose softening point is higher than the softening point of said glass; and heating said layer of mixture at a temperature higher than the softening point of said glass but lower than the softening point of said heat-resistive substrate, to thereby adhere said layer to said substrate.
  • a method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide and of pulverized oxide whose specific resistivity is higher than that of a semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing powder of glass with powder of at least one semiconductive metal oxide selected from the group consisting of SnO TiO W0 Sb O C50 Fe O V 0 and Bi O and powder of an oxide whose specific resistivity is higher than that of said semiconductive metal oxide, the grain size of said metal oxide powder and said oxide powder being larger than that of said glass powder, and particles of said metal oxide and said oxide being well dispersed in said glass powder, and heating the mixture.
  • a method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide and of pulverized oxide whose specific resistivity is higher than that of a semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing pulverized glass, whose average grain size is smaller than 1 micron, with powder of at least one semiconductive metal oxide selected from the group consisting of SnO TiO W Sb O, C50
  • Fe O V 0 and Bi O and pulverized oxide whose specific resistivity is higher than that of said metal oxide, the average grain size of said metal oxide and said oxide being smaller than 5 microns but larger than that of said glass, and the amount of said metal oxide being 10 to 35 percent in volume; stirring the mixture with a volatile liquid additive until said mixture acquires a sol-like state; applying said mixture in the form of a layer on the surface of a heat-resistive substrate whose softening point is higher but lower than the softening point of said heat-resistive substrate to thereby adhere said layer to said substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Glass Compositions (AREA)

Abstract

Semiconductive elements having a specific resistivity of the semiconductor range (that is, 105 to 108 ohm-cm) which have an ohmic resistance even in an considerably high electric field and are highly durable in adverse physical and atmospheric conditions, which are manufactured by heating a mixture of powder of vitreous binding material and powder of semiconductive metal oxide dispersed in the former powder. Further, the dielectric strength and the uniformity of resistivity of said semiconductive elements can be improved by adding, to the mixture, powder of an oxide whose conductivity is much higher than that of said semiconductive metal oxide.

Description

I United States Patent [151 3,669,907 Kohashi et al. [4 1 June 13, 1972 [54] SEMICONDUCTIVE ELEMENTS 3,137,586 6/1964 ..106/48 2,717,946 9/1955 ....252/518 [72] Inventors: Tadao Kohashi, Yokohama; Kazunobu 2 7 19 3 1957 z 19 Tanaka, Kawasaki-shi, both of Japan 2,920,005 1/1960 ....252/5 1 8 [73] Assignee: Matsushita Electric Industrial Co" Ltd. 3,044,901 7/1962 Garnsworthy ..1 17/229 Osaka Japan Primary Examiner-Douglas J. Drummond [22] Filed; 1, 19 7 Attorney-Stevens, Davis, Miller & Mosher PP 687,229 57 ABSTRACT Semiconductive elements having a specific resistivity of the [30] Foreign Application Priority Data semiconductor range (that is, 10" to 10" ohm-cm) which have an ohmic resistance even in an considerably high electric field Dec. 7, 1966 Japan ..41/80696 and are highly durable in adverse physical and atmospheric conditions, which are manufactured by heating a mixture of [52] US. Cl ..252/5l8, 1 17/229, 106/48, powder f vitreous binding material and powder of Semicom 252/519 252/520 ductive metal oxide dispersed in the fonner powder. Further, [51] Int. Cl. ..H01b l/06, C03C 17/00 the dielectric strength and the uniformity of resistivity of said [58] Field of Search ..252/5 1 8, 5 I 9, 520, 521; semiconductive elements can be improved by adding, to the 1 17/229; 106/39, 48, 49, 46 A mixture, powder of an oxide whose conductivity is much higher than that of said semiconductive metal oxide. [56] References Cited UNITED STATES PATENTS 4 Claims, 8 Drawing Figures 2,835,601 5/1958 Turk ..106/48 PATENTEBJUM 1 a 1m 3.669.907
VOLTAGE 10g V ,(VOLT) This invention relates to semiconductive elements, particularly to semiconductive elements which provide electric resistors with excellent properties.
One object of this invention is to provide semiconductive elements which are made from the mixture of a vitreous material and a semiconductive material or materials and which have an ohmic resistance of a specific resistivity of the order of 10 to 10 ohm-cm in the semiconductive region.
Another object of this invention is to provide a useful method for manufacturing the above-mentioned semiconductors.
The conventional conductive glasses which are made from the mixture of a vitreous material and powder of a metal, are intended to provide glasses which are very near, or as near as possible, to a conductor in resistivity, or semiconductive glasses with a directional resistivity whose specific resistivity is of the order of 10 to ohm-cm and is in the range of a semiconductor but unaffected by an electric field. In the manufacture of the conventional semiconductive glasses, troublesome precaution must be taken about the processing atmosphere in order to prevent the powder of metal from being oxidized or degenerated because of the high temperature during the heating operation. Further, metals, generally having a high maleability, are very difficult to be pulverized beyond a certain limit with the present techniques of crushing or granulation. Moreover, with the conventional conductive glasses, control of the resistivity is very difficult because the resistivity of the metal is substantially low.
Another formation of the semiconductive elements is organic resins or plastics containing a conductive powder, the former serving as binder for the latter particles. Such a formation, however, presents an extremely non-linear voltage-current characteristics owing to the incomplete contact between the conductive particles and the binder, and to the surface state barrier of the conductive particles. Thus, the intended ohmic resistivity is not obtained by this kind of formation. Further, the temperature rise caused by an excessive current due to the non-linearity of the resistance, deteriorates the binding resin which is of low heat-resistivity, and shortens the life of the element.
According to this invention, new semiconductive elements which are highly resistive to the environmental conditions and have an ohmic resistivity in the semiconductive range 10 to 10 ohm-cm), are obtained by using a pulverized metal oxide as semiconductive material which is stable in an atmosphere of considerably high temperature and can be pulverized comparatively easily.
Now, this invention will be explained in detail with reference to the attached drawings, in which;
FIG. 1 is a sectional view of a semiconductive element embodying this invention;
FIG. 2 is a diagram showing the current vs voltage characteristics of the semiconductive element shown in FIG. 1;
FIG. 3 is a sectional view of another embodiment of this invention;
FIG. 4 is a plan view of another embodiment of this invention;
FIG. 5 is a sectional view of still another embodiment of this invention;
FIG. 6 is a diagram showing the current vs voltage characteristics of the element shown in FIG. 5;
FIG. 7 is a sectional view of another embodiment of this invention; and,
FIG. 8 is a plan view of another embodiment of this invention.
Referring to FIG. 1, pulverized tin oxide (SnO,) 103 is contained, as a semiconductive material, in vitreous binding material 102. This semiconductive layer is formed by applying the mixture of the semiconductive material 103 and the powder of the vitreous material on the surface of iron plate 104, and then dried by heating. The iron plate 104 of glazing quality serves as an electrode and at the same time as a heatresistive substrate. Electrode 101 consisting of an electro-conductive paint is applied on the above-mentioned semiconductive layer.
Manufacturing steps for the above-mentioned embodiment of this invention will be described hereunder, by way of example. The composition of the mixture which consists of pulverized frit (hereafter referred to as A) as the binding material and pulverized tin oxide (hereafter referred to as B) as the semiconductive material, is shown in the following table.
The percentage of the metal oxide may be varied in the range of 10 to 35 percent depending on the desired resultant resistivity. The average grain size of A is preferably about 1 micron and that of B about 5 microns, at most. A larger grain size will cause less dispersion of the particles and a more difficult forming of the layer, resulting in a porous layer. On the other hand, a smaller grain size is desirable, presenting better dispersion, stable electric resistivity and easy forming. However, it should be noted that the conditions that the grain size of A is smaller than that of B should be maintained. If the grain size of A is larger than that of B, the particles of the frit will be covered with the particles of the metal oxide and will be prevented from contacting each other. Accordingly, the layer will not be formed when heated.
Next, the mixed powder of A and B thus measured is thoroughly stirred in a suitable mixing or stirring machine. In this example, the mixture of A and B added with a volatile liquid such as diacetone-alcohol or octyl-alcohol of equivalent weight was stirred in a ball-mill for 12 hours. A proper period for stirring is half a day to 1 day. A shorter period will cause insufficient dispersion of the particles, while a longer period will result in a less difference of grain size between A and B which is not enough to ensure the condition that the grain size of A is larger than that of B. Thus mixed and dispersed powder is substantially in a sol-like state, the liquid serving as dispersion medium. The mixture is applied on the surface of the heat-resistive substrate by the silk screen method which is a preferable method but to which this invention is not limited. The object of heating is to fuse the vitreous binder without solving the metal oxide particle into the vitreous material, and to cause the binding material to adhere to the substrate, forming a layer with a smooth surface. Thus, at least the surface portion of the metal oxide particles makes solid solution with the vitreous binder, thereby lowering the barrier in the surface of the metal oxide particles. This improves the electrical contact between the binding material and the semiconductive material, rendering an ohmic resistivity to the layer. A heating temperature as low as possible is preferable. Accordingly, a frit of lower viscosity in a low temperature, that is, of lower softening point should be selected. The following Table I shows the composition of the vitreous material used in this embodiment.
TABLE 1 Ingredients %(weight) Ingredients (weight) SiO, 20.01 Na,0 10.84 B 0 28.58 K,O 4.05 ZnO 18.33 TiO, 2.31 BaO 14.34 A1 0,, 0.41 CaO 0.74 Fe,0 0.009 MgO 0.016 PbO 0.012
The softening point of this frit was about 600 to 640 C. An iron plate of approximately the same heat expansion coefficient as the vitreous binder was used as the substrate. Heating was performed in an electric oven without any difficulty. That is, the heating can be carried on in the atmospheric environment without necessity of any special arrangement, because tin oxide (SnC used as the semiconductive material is very stable at a temperature around 640 C in the air and because the substrate used has substantially the same heat expansion coefficient as that of the vitreous material. The sol-like mixture of A and B is applied on the substrate and heated up to 650 C in about 20 minutes after being placed in an electric oven, during which the liquid component is evaporated leaving the mixture of powder on the substrate. The mixture on the substrate is maintained at that temperature (650 C) for about minutes, followed by a cooling period of about 20 minutes, after which the whole process is completed. If a silk screen of 130 mesh is used for sieving the powder of about 1 micron in grain size, a layer of about 20 microns in thickness can be formed with one cycle of the heating. An additional layer can be made on the already formed layer, if required for some purposes. As the viscosity of a glass is considerably high, it will not occur that the first layer of the glass flows or changes in thickness at the temperature of 650 C during the short time of 5 minutes. FIG. 2 shows a current vs voltage characteristics of the semiconductive layer thus formed, the DC voltage being applied across the electrodes 101 and 104. It will be seen from the excellent straightness of the characteristics that the layer has ohmic resistivity. This layer has a considerable large current bearing capacity, no doubt being heat-resistive.
FIG. 3 shows another embodiment of this invention in which titanium oxide (TiO is used in place of the tin oxide of the previous embodiment. In FIG. 3, binder 301 is a vitreous material having a softening point of 550 to 580 C and contains pulverized TiO dispersed therein. Transparent electrodes 303 and 304 are formed separately on the glass substrate 305 whose softening point is 680 to 700 C. A semiconductive layer consisting of binding material 301 and semiconductive particles 302 is formed over the electrodes and the substrate including the space between the two electrodes. The embodiment shown in FIG. 1 is intended to be a resistor across the thickness of the layer, whereas this embodiment shown in FIG. 3 is intended as a lateral pass for the electric current. Another feature of this embodiment is that the vitreous layer is formed on the surface of a glass or vitreous substrate. The method for forming the element and the requirements for the grain size are the same as in the previous embodiment.
As to the substrate, the material is limited to iron plate, ceramics and other similar materials in the previous embodiment, whereas glass is also usable in this embodiment. There are two conditions for a glass to be usable as substrate. One is that the softening point of the binder be lower than that of the substrate. This is an essential condition, because the forming will be impossible if the substrate softens earlier than the binder during the heating. The other condition is that the volume expansion coefficient of the substrate be approximately the same as that of the vitreous binder. If the expansion coefficients of both materials are significantly different, the substrate will crack from the strain caused during cooling, or at least the electrodes 303 and 304 will lose the conductivity owing to the strain. Table 2 shows the volume expansion coefficients and the softening points of the binder and the substrate used in this embodiment.
In this example, the heating operation was performed at 630 C. The transparent electrodes (Nesa electrodes) 303 and 304 do not lose the conductivity through the heating.
FIG. 4 shows another embodiment of this invention, in which the element is formed in a shape suitable for a potentiometer. Transparent electrodes (Nesa electrodes) 401 and 402 are formed on the heat-resistive substrate (ceramics or glass) 403. The semiconductive layer 404 which comprises a binding material containing pulverized metal oxide is formed on the substrate and the electrodes.
In these embodiments, the semiconductive material is not limited to tin oxide (SnO or titanium oxide (TiO as in the previous embodiments, but can be one of other semiconductive metal oxides such as W0 Sb O Cr O R 0 V 0 and Bi O or a mixture of any two or more selected from these oxides.
It will be understood that this invention is not limited to the above-described embodiment, but can be embodied in variously modified formations according to the respective purposes.
As described above, this invention provides semiconductive elements wherein particles of semiconductive metal oxide are contained in a vitreous binding material. Owing to the fact that metal oxide is used for the component which imparts the conductivity to the element, the element has a high resistivity against severe environmental conditions, being stable even at a considerably high atmospheric temperature and accordingly can be manufactured without necessitating complicated and expensive equipment and operations. Thus, according to this invention, semiconductive elements are provided which have an ohmic resistance of a specific resistivity of the semiconductive range (that is, 10 to 10 ohm-cm), the resistivity being controlled by the relative volume of the metal oxide contained in the binding material.
In short, the semiconductive elements of this invention can be easily manufactured by a process comprising the following steps, that is; a step in which pulverized glass whose average grain size is smaller than 1 micron is mixed with pulverized semiconductive metal oxide whose average grain size is smaller than 5 microns but larger than that of said glass, the amount of the oxide being 10 to 35 percent in volume, and stirred with a volatile liquid additive until the mixture aquires a sol-like state; a step in which said mixture is applied in the form of a layer on the surface of a heat-resistive substrate whose melting point or softening point is higher than the softening point of said glass; and a step in which said layer of mixture is heated at a temperature higher than the softening point of said glass but lower than the melting point or softening point of said heat-resistive substrate. According to the method of this invention, the heating can be carried on in an atmospheric environment without necessity of any special consideration about the ambient conditions. Further, a smooth and strongly bound layer is obtained as the result of the fact that the grain size of the glass powder is selected to be smaller than that of the metal oxide powder. Moreover, the fact that the grain size of the glass powder and the metal oxide powder are smaller than 1 micron and 5 microns respectively, eliminates the possibility of producing a porous layer and ensures the satisfactory dispersion of the oxide particles into the binding glass, thus making possible the manufacture of resistors with uniform and reliable properties, and at the same time rendering the formation of the layer very easy. Thus, semiconductive elements having a specific resistivity of the semiconductor range (that is, 10 to 10 ohm-cm) can be produced in a very simple manner.
The semiconductive elements of this invention are stable even at a considerably high temperature and highly resistive against moisture and other ambient conditions.
In the following paragraphs, another aspect of this invention will be described with other embodiments.
In this aspect of this invention, a pulverized insulating material or materials are mixed with the above-described metal oxide powder in order to aid the dispersion of said metal oxide particles. According to this embodiment, extremely durable semi-conductive elements with uniform properties are obtained which have an ohmic resistance in the semiconductor range to 10 ohm-cm) and have an improved dielectric strength. The insulating material to be mixed is only required to be thermally stable, since this material is used to prevent the incomplete dispersion or maldistribution of the oxide particles and in no way contributes to the conductivity of the element. Here again, the grain size of the glass powder should be selected to be smaller than those of the metal oxide powder and the powder of the insulating material. Mixing, application and heating of the powder are substantially the same as described in the previous paragraphs with other embodiments of this invention.
An example of this embodiment will be described hereunder with reference to the attached drawings. In FIG. 5, vitreous binding material 102 contains pulverized tin oxide (SnO 103 as semiconductive material and pulverized BaTiO 105 which is mixed in order to facilitate the dispersion or distribution of the semiconductive material 103 and to improve the dielectric strength of the element. The mixture consisting of powders of 102, 103, and 105 is applied, in the form of a layer, on the surface of iron plate 103, and then dried by heating. The iron plate 103 of glazing quality serves as an electrode and at the same time as a heat-resistive substrate. Electrode 101 consisting of an electro-conductive paint is applied on the above semiconductive layer. The composition of the mixture which consists of pulverized frit (hereafter referred to as A), the pulverized tin oxide (hereafter referred to as B) and the pulverized BaTiO (hereafter referred to as C), is shown in the following table.
The percentage of Sn0 may be varied in the range of 10 to 35 percent depending on the desired resultant resistivity, with a corresponding decrease in the percentage of frit. The same precaution as described in connection with the previous embodiments is required as to the grain size of B and C in relation to that of A. The procedures of mixing and stirring of the mixture, the ingredients of the frit and the heating operation in this example are substantially the same as in the previous embodiments. FIG. 6 shows a current vs voltage characteristics of the thus formed semiconductive layer, the DC voltage being applied across the electrodes 101 and 105. The straightness of the characteristics shows that the layer has an ohmic resistance. This layer also has a considerably large current bearing capacity.
FIG. 7 shows another embodiment which is substantially the same as the embodiment shown in FIG. 3, except that pulverized A1 0 is added in order to facilitate the dispersion of TiO, particles. Namely, binder 301 is a vitreous material having a softening point of 550 to 580 C and contains pulverized TiO as the semiconductive material 302 and pulverized A1 0 as the dispersing medium 303. Electrodes of SnO 304 and 303 are formed separately on the surface of glass substrate 305 whose softening point is 680 to 700 C. The semiconductive layer made from the powders 301, 302 and 306 also fills the space between the two electrodes. Other structural features of this embodiment are substantially the same as those of the embodiment described with reference to FIG. 3.
FIG. 8 shows another embodiment of this invention. This embodiment is substantially the same as the embodiment shown in FIG. 4, except that the dispersing medium is added in the mixture. In FIG. 8, transparent electrodes (Nesa electrodes) 401 and 402 are formed on the heat-resistive substrate (ceramics or glass) 403. Then, the semiconductive layer 404 is formed on the substrate and the electrodes.
In these embodiments too, the semiconductive material is not limited to tin oxide (SnO or titanium oxide (TiO as mentioned above, but can be any one or any mixture of other semiconductive metal oxides such as W0 Sb,0,, C50 l e- 0 V 0 and E 0,. Also, the insulating or dispersing medium is not limited to BaTiO or A1 0 but can be any other material (for example, SiO which has a much higher electric resistance than the above-mentioned metal oxide and a higher melting point than the vitreous binding material.
As described above, according to the second aspect of this invention are provided semiconductive elements wherein particles of a semiconductive metal oxide and particles of an oxide whose specific resistivity is higher than that of said metal oxide are contained in a vitreous binding material. Such elements have an improved dielectric strength and uniformity of resistivity owing to the sufficient dispersion of the semiconductive particles, besides the features described in connection with the previous embodiment according to the first aspect of this invention.
Such semiconductive elements can be easily manufactured by a process comprising the following steps, that is; a step in which pulverized glass whose average grain size is smaller than 1 micron is mixed with pulverized semiconductive metal oxide and pulverized oxide whose specific resistivity is higher than that of said metal oxide, the average grain size of said metal oxide and said oxide being smaller than 5 microns but larger than that of said glass, and the amount of said metal oxide being 10 to 35 percent in volume, and the mixture being stirred with a volatile liquid additive until said mixture acquires a sol-like state, a step in which said mixture is applied in the form of a layer on the surface of a heat-resistive substrate whose melting point or softening point is higher than the softening point of said glass; and a step in which said layer of mixture is heated at a temperature higher than the softening point of said glass but lower than the melting point or softening point of said heat-resistive substrate. Advantages obtained from such method have been described in connection with the first aspect of this invention, and therefore are not repeated here.
What we claim is:
l. A method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing a powder of glass with a powder of at least one semiconductive metal oxide selected from the group consisting of SnO TiO W0 Sb O Cr O Fe o V 0 and Bi O whose grain size is larger than the grain size of said glass powder, the amount of said metal oxide being 10 to 35 percent in volume, until said particles of said metal oxide powder are well dispersed in said glass powder, and heating the mixture.
2. A method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide dispersed in a vitreous binding material, comprising the steps of mixing pulverized glass, whose average grain size is smaller than 1 micron, with a powder of at least one semiconductive metal oxide selected from the group consisting of SnO TiO,, W0 Sb O Cr O Fe O V 0 and Bi O whose average grain size is smaller than 5 microns but larger than the grain size of said glass, the amount of said metal oxide being 10 to 35 percent in volume; stirring the mixture with a volatile liquid additive until the mixture acquires a sol-like state; applying said mixture in the form of a layer on the surface of a heat-resistive substrate whose softening point is higher than the softening point of said glass; and heating said layer of mixture at a temperature higher than the softening point of said glass but lower than the softening point of said heat-resistive substrate, to thereby adhere said layer to said substrate.
3. A method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide and of pulverized oxide whose specific resistivity is higher than that of a semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing powder of glass with powder of at least one semiconductive metal oxide selected from the group consisting of SnO TiO W0 Sb O C50 Fe O V 0 and Bi O and powder of an oxide whose specific resistivity is higher than that of said semiconductive metal oxide, the grain size of said metal oxide powder and said oxide powder being larger than that of said glass powder, and particles of said metal oxide and said oxide being well dispersed in said glass powder, and heating the mixture.
4. A method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide and of pulverized oxide whose specific resistivity is higher than that of a semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing pulverized glass, whose average grain size is smaller than 1 micron, with powder of at least one semiconductive metal oxide selected from the group consisting of SnO TiO W Sb O, C50
Fe O V 0 and Bi O and pulverized oxide, whose specific resistivity is higher than that of said metal oxide, the average grain size of said metal oxide and said oxide being smaller than 5 microns but larger than that of said glass, and the amount of said metal oxide being 10 to 35 percent in volume; stirring the mixture with a volatile liquid additive until said mixture acquires a sol-like state; applying said mixture in the form of a layer on the surface of a heat-resistive substrate whose softening point is higher but lower than the softening point of said heat-resistive substrate to thereby adhere said layer to said substrate.
* k l I t v UNITED ST; 'IES PATENT OFFICE CER'I'IFICATE OF CORRECTION Patent No. 3,669,907 4 Dated June 13. 1972 I In Tadao KOHASHI et a1 It is certified that error appears in the aboveidentified patent and that said Letters P atent are hereby corrected as shown below:
a- "*1 In the Claim for Priority, the following Ja pa nese application should be included:
Japan, Patent Application No. 80697/66- filed on December 7, 1966.
' Signed and sealed this 23rd day of January 1973. Z
(SEAL) Y Attest:
EDWARD M'.FLETCHER,JR. ROBERT GOTTSCHALK Attest'ing Officer Commissioner of Patents "3'53? 9 UNITED sm'nzs PATENT 01mm;
CERTHHCATE OF CORRECTION Patent No. 3,669,907 Dated June 13, 1972 In Tadao KOHASHI et al It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the Claim for Priority, the following Japanese application should be included:
Japan, Patent Application No. 80697/66- filed 0 December 7, 1966.
' Signed and sealed this ZS-rdd-ay of January 1973.,
(SEAL) e Attest:
EDWARD M.FLETCHER ,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents 2 53? i UNITED STA'IES PATEN'J OFFICE CERTIFICATE OF CORRECTION Patent No. 3,669,907 Dated June 13, 1972 Inven o 'Iadao KOHASHI et a1 It is certified that error appears in the above-idenfii fi ed patent and that said Letters Patent are hereby corrected as shown below:
In the Claim for Priority; the following Japanese application should be included:
Japan, Patent Application no. 80697/66- filed on December 7, 1966.
Signed and sealed this 23rd day of Jannary- 1973.,
(SEAL) Attest:
EDWARD M'.PLETCHER ,JR. ROBERT GOTTSCHALK Attest'ing Officer Commissioner of Patents

Claims (3)

  1. 2. A method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide dispersed in a vitreous binding material, comprising the steps of mixing pulverized glass, whose average grain size is smaller than 1 micron, with a powder of at least one semiconductive metal oxide selected from the group consisting of SnO2, TiO2, WO3, Sb2O5, Cr2O3, Fe2O3, V2O5 and Bi2O3, whose average grain size is smaller than 5 microns but larger than the grain size of said glass, the amount of said metal oxide being 10 to 35 percent in volume; stirring the mixture with a volatile liquid additive until the mixture acquires a sol-like state; applying said mixture in the form of a layer on the surface of a heat-resistive substrate whose softening point is higher than the softening point of said glass; and heating said layer of mixture at a temperature higher than the softening point of said glass but lower than the softening point of said heat-resistive substrate, to thereby adhere said layer to said substrate.
  2. 3. A method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide and of pulverized oxide whose specific resistivity is higher than that of a semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing powder of glass with powder of at least one semiconductive metal oxide selected from the group consisting of SnO2, TiO2, WO3, Sb2O5, Cr2O3, Fe2O3, V2O5 and Bi2O3 and powder of an oxide whose specific resistivity is higher than that of said semiconductive metal oxide, the grain size of said metal oxide powder and said oxide powder being larger than that of said glass powder, and particles of said metal oxide and said oxide being well dispersed in said glass powder, and heating the mixture.
  3. 4. A method for manufacturing a semiconductive element having particles of pulverized semiconductive metal oxide and of pulverized oxide whose specific resistivity is higher than that of a semiconductive metal oxide dispersed in a vitreous binding material comprising the steps of mixing pulverized glass, whose average grain size is smaller than 1 micron, with powder of at least one semiconductive metal oxide selected from the group consisting of SnO2, TiO2, WO3, Sb2O5, Cr2O3, Fe2O3, V2O5 and Bi2O3 and pulverized oxide, whose specific resistivity is higher than that of said metal oxide, the average grain size of said metal oxide and said oxide being smaller than 5 microns but larger than that of said glass, and the amount of said metal Oxide being 10 to 35 percent in volume; stirring the mixture with a volatile liquid additive until said mixture acquires a sol-like state; applying said mixture in the form of a layer on the surface of a heat-resistive substrate whose softening point is higher but lower than the softening point of said heat-resistive substrate to thereby adhere said layer to said substrate.
US687229A 1966-12-07 1967-12-01 Semiconductive elements Expired - Lifetime US3669907A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8069666 1966-12-07

Publications (1)

Publication Number Publication Date
US3669907A true US3669907A (en) 1972-06-13

Family

ID=13725477

Family Applications (1)

Application Number Title Priority Date Filing Date
US687229A Expired - Lifetime US3669907A (en) 1966-12-07 1967-12-01 Semiconductive elements

Country Status (1)

Country Link
US (1) US3669907A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899451A (en) * 1972-09-11 1975-08-12 Tokyo Shibaura Electric Co Oxide varistor
US3953372A (en) * 1972-06-17 1976-04-27 Huta Szkla Im.Pablinskiego Przedsiebiorstwo Panstwowe Preparation of extrinsic semiconductors for electric heating
US4018717A (en) * 1975-09-29 1977-04-19 Owens-Illinois, Inc. Arc suppression in a cathode ray tube
US4041436A (en) * 1975-10-24 1977-08-09 Allen-Bradley Company Cermet varistors
US4091144A (en) * 1976-05-24 1978-05-23 Rca Corporation Article with electrically-resistive glaze for use in high-electric fields and method of making same
US4101454A (en) * 1975-01-10 1978-07-18 Texas Instruments Incorporated Ceramic semiconductors
FR2421857A1 (en) * 1978-04-03 1979-11-02 Trw Inc COMPOSITION FOR ENAMELLED RESISTANCE, ENAMELLED RESISTANCE AND PROCESS FOR MAKING SUCH A RESISTANCE
US4293838A (en) * 1979-01-29 1981-10-06 Trw, Inc. Resistance material, resistor and method of making the same
US4322477A (en) * 1975-09-15 1982-03-30 Trw, Inc. Electrical resistor material, resistor made therefrom and method of making the same
US4333861A (en) * 1976-11-26 1982-06-08 Matsushita Electric Industrial Co., Ltd. Thick film varistor
US4378409A (en) * 1975-09-15 1983-03-29 Trw, Inc. Electrical resistor material, resistor made therefrom and method of making the same
US4397915A (en) * 1975-09-15 1983-08-09 Trw, Inc. Electrical resistor material, resistor made therefrom and method of making the same
US4469936A (en) * 1983-04-22 1984-09-04 Johnson Matthey, Inc. Heating element suitable for electric space heaters
US20030048172A1 (en) * 1998-07-31 2003-03-13 Oak-Mitsui Composition and method for manufacturing integral resistors in printed circuit boards

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2717946A (en) * 1950-10-14 1955-09-13 Sprague Electric Co Electrical resistance elements
US2786819A (en) * 1955-11-17 1957-03-26 Gen Motors Corp Resistor
US2835601A (en) * 1953-06-24 1958-05-20 Pemco Corp Production of ceramic ware
US2920005A (en) * 1955-12-09 1960-01-05 Welwyn Electrical Lab Ltd Electrical resistors
US3044901A (en) * 1958-10-27 1962-07-17 Welwyn Electric Ltd Process for the production of electrical resistors and resulting article
US3137586A (en) * 1960-01-28 1964-06-16 Gen Electric Low electrical resistance metal to metal oxide bonding composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2717946A (en) * 1950-10-14 1955-09-13 Sprague Electric Co Electrical resistance elements
US2835601A (en) * 1953-06-24 1958-05-20 Pemco Corp Production of ceramic ware
US2786819A (en) * 1955-11-17 1957-03-26 Gen Motors Corp Resistor
US2920005A (en) * 1955-12-09 1960-01-05 Welwyn Electrical Lab Ltd Electrical resistors
US3044901A (en) * 1958-10-27 1962-07-17 Welwyn Electric Ltd Process for the production of electrical resistors and resulting article
US3137586A (en) * 1960-01-28 1964-06-16 Gen Electric Low electrical resistance metal to metal oxide bonding composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953372A (en) * 1972-06-17 1976-04-27 Huta Szkla Im.Pablinskiego Przedsiebiorstwo Panstwowe Preparation of extrinsic semiconductors for electric heating
US3899451A (en) * 1972-09-11 1975-08-12 Tokyo Shibaura Electric Co Oxide varistor
US4101454A (en) * 1975-01-10 1978-07-18 Texas Instruments Incorporated Ceramic semiconductors
US4322477A (en) * 1975-09-15 1982-03-30 Trw, Inc. Electrical resistor material, resistor made therefrom and method of making the same
US4397915A (en) * 1975-09-15 1983-08-09 Trw, Inc. Electrical resistor material, resistor made therefrom and method of making the same
US4378409A (en) * 1975-09-15 1983-03-29 Trw, Inc. Electrical resistor material, resistor made therefrom and method of making the same
US4018717A (en) * 1975-09-29 1977-04-19 Owens-Illinois, Inc. Arc suppression in a cathode ray tube
US4041436A (en) * 1975-10-24 1977-08-09 Allen-Bradley Company Cermet varistors
US4091144A (en) * 1976-05-24 1978-05-23 Rca Corporation Article with electrically-resistive glaze for use in high-electric fields and method of making same
US4333861A (en) * 1976-11-26 1982-06-08 Matsushita Electric Industrial Co., Ltd. Thick film varistor
US4215020A (en) * 1978-04-03 1980-07-29 Trw Inc. Electrical resistor material, resistor made therefrom and method of making the same
FR2421857A1 (en) * 1978-04-03 1979-11-02 Trw Inc COMPOSITION FOR ENAMELLED RESISTANCE, ENAMELLED RESISTANCE AND PROCESS FOR MAKING SUCH A RESISTANCE
US4293838A (en) * 1979-01-29 1981-10-06 Trw, Inc. Resistance material, resistor and method of making the same
US4469936A (en) * 1983-04-22 1984-09-04 Johnson Matthey, Inc. Heating element suitable for electric space heaters
US20030048172A1 (en) * 1998-07-31 2003-03-13 Oak-Mitsui Composition and method for manufacturing integral resistors in printed circuit boards

Similar Documents

Publication Publication Date Title
US3669907A (en) Semiconductive elements
US2950996A (en) Electrical resistance material and method of making same
US2950995A (en) Electrical resistance element
US3484284A (en) Electroconductive composition and method
US4065743A (en) Resistor material, resistor made therefrom and method of making the same
US3663458A (en) Nonlinear resistors of bulk type
EP2124233B1 (en) Zno varistor powder
US2924540A (en) Ceramic composition and article
US3149002A (en) Method of making electrical resistance element
US4091144A (en) Article with electrically-resistive glaze for use in high-electric fields and method of making same
JPS648441B2 (en)
US4172922A (en) Resistor material, resistor made therefrom and method of making the same
US3154503A (en) Resistance material and resistor made therefrom
AU605329B2 (en) Improvements in or relating to thick film track material
US2934736A (en) Electrical resistor
EP0165821B1 (en) Oxide resistor
US3337365A (en) Electrical resistance composition and method of using the same to form a resistor
US4180483A (en) Method for forming zinc oxide-containing ceramics by hot pressing and annealing
US3916037A (en) Resistance composition and method of making electrical resistance elements
US3326720A (en) Cermet resistance composition and resistor
US4111852A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
US4460624A (en) Process for the manufacture of thick layer varistors on a hybrid circuit substrate
US3551355A (en) Resistor composition and element
US3479216A (en) Cermet resistance element
US4349496A (en) Method for fabricating free-standing thick-film varistors