US3678675A - Antistatic fabric - Google Patents

Antistatic fabric Download PDF

Info

Publication number
US3678675A
US3678675A US29822A US3678675DA US3678675A US 3678675 A US3678675 A US 3678675A US 29822 A US29822 A US 29822A US 3678675D A US3678675D A US 3678675DA US 3678675 A US3678675 A US 3678675A
Authority
US
United States
Prior art keywords
yarn
carpet
conductive
fine
heterogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US29822A
Inventor
William G Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3678675A publication Critical patent/US3678675A/en
Assigned to BRUNSWICK CORPORATION reassignment BRUNSWICK CORPORATION TO CORRECT S.N. ERRONEOUSLY STATED AS 29,882 AT REEL 2617 FRAME 070 RECORDED JUNE 11, 1970. Assignors: KLEIN, WILLIAM G.
Assigned to BRUNSWICK CORPORATION reassignment BRUNSWICK CORPORATION RE-RECORD OF INSTRUMENT PREVIOUSLY RECORDED JUNE 11, 1970 AT REEL 2617 FRAME 070 TO CORRECT SERIAL NUMBER 29,822 ERRONEOUSLY STATED AS S.N. 29,882 Assignors: KLEIN, WILLIAM G.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/12Threads containing metallic filaments or strips
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/533Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/903Microfiber, less than 100 micron diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/901Antistatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23986With coating, impregnation, or bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2907Staple length fiber with coating or impregnation

Definitions

  • ABSTRACT A fine heterogeneous hybrid spun yarn is blended from electrostatically conductive staple fibers and electrostatically nonconductive staple fibers so that the yarn is electrostatically conductive only over short distance lengths.
  • pile fabrics such as carpets
  • the fine y yearn is introduced with at least some of the carpet facing yarns during the carpet making operations.
  • the resultant carpet structure substantially eliminates electrostatic shock to a human walking across the carpet and approaching a ground such as a light switch, radio, or another person. Such a carpet provides control for the generation of static electricity and does not constitute a dangerous floor covering.
  • the unique heterogeneous hybrid spun blended yarn is achieved by process techniques completely contrary to accepted blending practices.
  • Brown et al. recognized that it was possible to blend staple synthetic or natural textile fibers with staple electrically conductive fiber (which could be a textile metal fiber) wherein the electrically conductive fiber constitutes less than 1 percent by weight of the blend, in order to provide an antistatic textile yarn or textile fabric.
  • This spun blended staple yarn has been used by the carpet industry as the facing yarn. It has been found that as little as l/3 to 1/6 of one per cent by weight of the conductive fiber is effective to control a static electricity build-up in a carpet when used continuously in adjacent car pet facing yarns and when a conductive latex coating is applied to the backing fabric.
  • Brown-Webber method provides a good antistatic carpet made from spun blended staple yarns, it is not adaptable to continuous filament carpets. According to the American Carpet Institute, about 80 percent of all carpets sold in the United States are made from continuous filament yarns and only percent are made from spun yarns. There has been an ever-increasing shift from natural fibers for carpets (i.e., wool) to synthetic filaments which can be made in a continuous form.
  • the Brown-Webber method although a fine system, is limited to staple carpet facing yarns and therefore not useful in the standard continuous filament carpet field.
  • antistatic fabric is defined as a fabric not capable of generating a static electrical potential of 2,500 volts on an individual under ordinary use conditions.
  • electrostatic non-conductive or electrostatically non-conductive is defined to refer to a material that has a resistivity in excess of 10 ohm centimeters.
  • electrostatically conductive is defined to refer to a material having a resistivity of less than 10 ohm centimeters. To be meaningful, these resistivity values are to be measured when the relative humidity is approximately 20 percent or lower and the temperature is approximately 60 to 80 F.
  • This invention relates to fabrics and is concerned with a new and novel antistatic fabric structure made with new and novel yarns that provide the antistatic characteristics to the textile fabric and especially adapted to carpets.
  • the invention also relates to methods of making new and novel yarns.
  • a feature of this invention is the provision that the spun yarn is heterogeneously blended from electrostatically conductive and electrostatically non-conductive fibers.
  • Yet another feature of this invention is the provision that the facing yarns of the carpet have less than 0.5 percent by weight of the electrostatically conductive fibers therein.
  • Still another feature of this invention is the provision that a fine staple discontinuously electrostatically conductive yarn blended from electrostatically conductive staple fibers and electrostatically non-conductive fibers can be woven or tufted directly into the carpet backing fabric, along with the facing yarns, or plied therewith prior to weaving or tufting.
  • Another feature of this invention is the provision for making such a yarn by combining organic sliver and continuous filaments in a roller drafting machine followed by roving and single roving spinning operations.
  • Still another feature of this invention is the provision that the conductive fibers in the fine yarn are in a clustered arrangement that migrates radially along the length of the yarn.
  • Another feature of this invention is to provide'a heterogeneously hybrid composite sliver and the method of making the composite sliver by simultaneously breaking and blending continuous filaments in combination with a sliver.
  • FIG. 1 is a cross section of a homogeneously blended spun yarn
  • FIG. 2 is a partial cross section of a roller drafting machine containing a sliver and a tow;
  • FIG. 3 is a partial cross section of a roller drafting machine containing two slivers and a tow;
  • FIG. 4 is a cross section of a heterogeneously hybridly blended ,spun yarn with the conductive fibers in a compact 1 cluster form;
  • FIG. 5" is a cross section of another heterogeneously hybridly blended spun yarn with the conductive fibers in a cluster form;
  • FIG. 6 is an enlarged and distorted representation of a section of a tufted carpet
  • FIG. 7 is a cross section of the carpet of FIG. 6;
  • FIG. 8 is a graph with curves showing the relationships between different carpet constructions
  • FIG. 9 isa graph with curves showing the relationship between embodimentsof this invention and wires in carpet constructions.
  • FIG. 10 is an enlarged diagrammatic view of a section of the fine heterogeneous yarn.
  • this yarn is combined with standard carpet facing yarns in a pre-selected arrangement in order to provide the desired antistatic carpet.
  • this yarn and method for making this yarn comprise sub-combinations of the total carpet systems.
  • a fine spun yarn made from electrostatically non-conductive staple fibers are represented by organic fibers and electrostatically conductive staple fibers are referred to as conductive fibers.
  • the organic fibers may be made from synthetic materials including nylon, acrylic, polyester and the like, as well as natural materials including wool, cotton, flax, and the like, or any desired mixtures thereof.
  • the conductive fibers may be made from materials including metal fibers (e.g., the Webber et al. fibers), organic fibers having an electrostatically conductive surface coating thereon, or the like.
  • the conductive fibers used generally have a size range of approximately 25 microns to 2 microns or less.
  • the organic fibers used generally have a size range of 011 Tex to 2 Tex.
  • the international Tex measurement system (grams per 1,000 meters) is being used herein for ease of understanding because some of the older textile measuring systems are associated with specific textile yarn forming systems, e.g., cotton, wool, and worsted.
  • the metal fibers used herein can have a rough, unmachined, unbumished and reentrant fracture-free outer surface which facilitates blending with organic fibers.
  • the heterogeneous yarn so formed provided a significantly improved yarn to make an antistatic fabric.
  • One method of producing such a yarn is to combine at least one pro-drawn organic sliver with a consolidated tow of conduc-' tive' filaments.
  • the organic sliver and tow of conductive filaments are passed in a roller drafting machine wherein the metal filaments are broken into staple and blended with the organic sliver by the drawing action of the machine.
  • the organic sliver 20 and the tow of conductive filaments 22 are introduced at the backing rolls 24 of a portion of roller drafting machine 26.
  • Suitable roller drafting machines include the Perlock, Turbo, Gastonia rebreakers and the like.
  • the tow of con-v ductive filaments 22A is introduced in the :roll'er drafting machine 26A as the backrolls 24A inbetween the organic slivers.
  • the conductive fibers remain in close proximity to each other undergoing the minimum possible amount of mixing or blending. This produces the heterogeneously blended sliver.
  • the resultant sliver is then processed on a roving frame to produce a roving.
  • the roving is then spun into yarn by the use of single roving spinning.
  • the amount of conductive fiber used can vary in a range from under 1 percent to approximately 30 percent.
  • metal filaments preferably each having a diameter from [5 microns to 2 microns, arev used it has been found desirable to use this material in weightratios of approximately 2%, 4%, 6%, 8%, 12%, 13%, 15%, 20%, and 25% to the organic material. It has also been found that the weight percentage for the metal fibers can vary according to size of metal filament used, as well as the weight of theorganic fiber being used. Alternatively, when using a conductive filament that comprises a conductive coating on an organic substrate filament, the weight ratios will vary depending ori the weight of the conductive fiber and the organic fiber.
  • a heterogeneous hybrid blended yarn 30 is produced as shown in FIG. 4 wherein a cross section of this yarn 30 contains organic staple fibers 32 and conductive fibers 34.
  • the cluster of the staple conductive fibers 34 indicates that the blend is heterogeneous or non-uniform, non-intimate and nonhomogeneous. It has been observed that this cluster 36 of fibers 34 migrates radially along the length of the yarn 30 as shown in FIG. 10.
  • a cross section of the yarn 40 of FIG. 5 is illustrative of the yarn produced by the method wherein the organic staple fibers 42 are not very well blended with the conductive fibers 44.
  • the fine heterogeneously blended yarns may be made in any desired size from approximately 45 Tex to as small as Tex depending on the application of the yarn. For use in antistatic carpets, it has been found that a yarn having a range from 35 Tex to Tex is desirable.
  • the individual synthetic fibers in the yarn can have a range of from 011 Tex to 2 Tex with a 022 Tex to 0.55 Tex being a desirable size range. It has been found that by using more but smaller diameter conductive fibers in a highly heterogeneous cluster, the weight per cent of the conductive fibers can be reduced and yet provide better overall results.
  • the proper weight ratio number of conductive fibers per yarn cross section
  • the proper heterogeneous blending and the proper spinning provide yarns that exhibit contact between conductive fibers over preselected short lengths of the yarn.
  • the longest continuous contact length of conductive contact is a function of the average staple length and the number of conductive fibers in cross section.
  • Tests have shown that the desired antistatic characteristics for the carpets are obtained when the longest conductive contact of conductive fibers is approximately 8 feet or less for the fine heterogeneous yarn to function properly, thereby avoiding the hazard of the continuous contact taught in the prior art. Since textile blending is not precise and demonstrably accurately reproducible, there will always be a few minor exceptions to the longest conductive contact length.
  • a fine heterogeneous hybrid spun blended yarn having approximately 17.72 Tex was blended from nylon fibers having an approximate size of 0.165 Tex and I a conductive fiber (stainless steel) having an effective diameter of approximately 12 microns.
  • the conductive staple fiber (metal) constituted approximately 25 percent by weight of the total yarn weight.
  • the nylon fiber sliver and metal fiber sliver were first drafted and blended forming a combined sliver.
  • the combined sliver was reduced on a roving frame and then single roving spun directly into the fine heterogeneous hybrid spun yarn. This yarn exhibited continuous contact between conductive fibers over a length ranging from 2 feet to 3 feet.
  • EXAMPLE 2 A fine heterogeneous hybrid spun blended yarn was made in the fashion as Example 1 and was the same size except that the conductive fibers comprised approximately percent by weight. This yarn exhibited continuous contact between conductive fibers over a length ranging from 2 feet to 2- /4 feet.
  • EXAMPLE 3 A fine heterogeneous hybrid spun blended yarn was made in the same fashion as Example 1 and was the same size except that the conductive fiber comprised approximately 15 percent by weight. This yarn exhibited continuous contact between conductive fibers over a length ranging from 1% feet to 2 feet.
  • EXAMPLE 4 A fine heterogeneous hybrid spun blended yarn was made in the same fashion as Example 1 and was the same size except that the conductive fiber comprised approximately 10 percent by weight. This yarn exhibited continuous contact between conductive fibers over a length ranging from 1 foot to 1% feet.
  • a fine heterogeneous hybrid spun yarn having a size of approximately 18 Tex was blended from nylon fibers having an approximate size of 0.165 Tex and metal fibers having an effective diameter of approximately 8 microns.
  • the metal fibers constituted approximately 12-5: percent by weight of the total yam weight.
  • the nylon fiber sliver and continuous metal filaments were introduced into a roller drafting machine where the continuous metal fibers were broken and blended with the nylon sliver burning a partially blended sliver.
  • the partially mixed sliver was reduced on a roving frame and then single roving spun directly into the fine heterogeneous hybrid spun blended yarn.
  • the metal fibers were presented in a close clustered form when a cross section of the yarn was examined. The cluster migrated radially along the length of the yarn. This yarn exhibited a continuous contact between conductive fibers over a length ranging from 4 feet to 8 feet.
  • the fine heterogeneous yams discussed hereinabove are combined during the manufacturing of the carpet to provide the desired antistatic characteristics.
  • end refers to the individual carpet facing yarns that are either woven or tufted into a backing such as a jute fabric.
  • An end may comprise one or more single yarn elements.
  • FIG. 6 is an enlarged representation of a tufted carpet with the backing material 53 having warp yarns 51 and filling yarns 50 comprising the standard grid form of the backing fabric 53.
  • the carpet facing yarns 52 and 54 each are considered ends.
  • the facing yarns S2 and 54 are secured to the backing by forced insertion between the warp yarns 51 and filling yarns 50. Thereafter many standard means may be employed to further secure the facing yarns to the backing, including flexible coatings such as latex and the like.
  • these continuous filament tufted facing yarns have an approximate size from 166 Tex to 444 Tex.
  • a carpet manufacturer may use any size facing yarn desired.
  • a fine heterogeneous blended spun yarn is introduced with carpet facing yarn just prior to tufting. As shown in FIG. 6, the two yarns, the carpet facing yarn 52 and the fine heterogeneous yarn 56, were introduced and tufted together into the backing fabric and secured thereto.
  • the fine heterogeneous yarn may be used equally satisfactorily in carpets made by l) weaving continuous filament facing yarns, (2) weaving spun blended facing yarns, (3) tufting spunblended facing yams, (4) knitting either continuous filamentor spun blended carpet yarns and (5) other special carpet making processes. Rather than introducing the fine heterogeneous yarn with carpet facing yarn as the carpet is being made, prior thereto these two yarns can be plied together and introduced in the carpet making step as a plied am. y
  • the following examples of specific carpet structures were made containing fine heterogeneous yarns and carpet facing yams in accordance with this invention, but should not be construed in any way to limit the scope contemplated by this invention.
  • EXAMPLE 6 Same carpet as Example 6, but a fine heterogeneous hybrid spun blended yarn having a size of 18 Tex and containing 12 micron stainless steel metal fibers in a weight ratio of 10 percent was introduced with every lth end of carpet facing yarn.
  • EXAMPLE 8 Same as Example 7 except that the fine heterogeneous blended yarn was introduced with every th end of carpet facing-yarn.
  • Example 9 Same as Example 7 except that the fine heterogeneous blended yarn was introduced with every 2nd end of carpet facing yarn.
  • EXAMPLE 10 Same as Example 7 except that the fine heterogeneous blended yarnwasintroduced with every end of carpet facing yarn.
  • EXAMPLE 15 Same as Example 15 except that the fine heterogeneous blended yarn was introduced with every 5th end of carpet facing yarn.
  • EXAMPLE 17 Same as Example 15 except that the fine heterogeneous blended yarn was introduced with every 2nd end of carpet facing yam.
  • EXAMPLE 23 Same carpet as Example 6 but a fine heterogeneous hybrid spun blended yarn having an approximate size of 18 Tex and containing 8 micron stainless steel metal fiber in a weight ratio of approximately 12.5 percent 13 percent was introduced with every 12th end of carpet facing yarn.
  • EXAMPLE 24 Same as Example 23 except that the fine heterogeneous blended yarn was introduced with every 8th end of carpet facing yarn.
  • EXAMPLE 25 Same as Example 23 except that the fine heterogeneous blended yarn was introduced with every 4th end of carpet facing yarn.
  • EXAMPLE 26 Same as Example 23 except that the fine heterogeneous blended yarn was introduced with every 2nd end of carpet facing yarn.
  • Each of these carpets was tested in'an atmosphere control room having a' temperature maintained-at approximately 70 F. and a relative humidity of approximately 20 percent. The tests were conducted where a person walked and/or shuffled across the carpet and the electrostatic potential generated on the person was measured. As a reference point, the electrostatic charge developed when Example 1 was tested amounted to 12,000 volts.
  • the graph on FIG. 8 shows the test results of each of the samples. The graph is arranged where the ordinate is the electrostatic voltage developed as a person walks and/or shuffles across the carpet and the abscissa is the total weight percent of the conductive fiber (metal fiber) present in the total facing yarn.
  • Curve A is for Examples 7 through 10; Curve B is for Examples 1 1 through l4; Curve C is for Examples 15 through 18; Curve D is for Examples 19 through 22', and Curve E is for Examples 23 through 27. It has been found that increasing the weight of the conductive fiber in the total carpet yarn does not necessarily improve the antistatic control characteristics. It has been found desirable to create a concentration of conductive fibers in the fine yarn as long as the concentration does not lead to conductive lengths beyond approximately 8 feet. Another series of curves on the graph shown in FIG. 9 indicate the test results made on another series of carpet samples which show the antistatic characteristics of another set of carpet examples. Four series of carpets made by 2 EXAMPLE 28 A 100 percent continuous filament nylon carpet having a facing yarn weight of 25 ounces per square yard was constructed by tufting the facing yarns to a 10 ounce per square yard primary jute backing.
  • EXAMPLE 30 Same as Example 28 but every 8th carpet facing yarn had the fine yarn of Example 1 plied therewith.
  • EXAMPLE 32 Same as Example 28 but every 4th carpet. facing yarn end had the fine yarn of Example 1 plied therewith.
  • EXAMPLE 34 Same as Example 30 except the carpet had a conductive latex applied to the backing thereof.
  • EXAMPLE 35 Same as Example 31 except the carpet had a conductive latex applied to the backing thereof.
  • EXAMPLE 36 Same as Example 32 except the carpet had a conductive latex applied to the backing thereof.
  • EXAMPLE 38 Same as Example 28 but every 16th carpet facing yarn end had a fine continuous 3 mil stainless steel wire plied therewith.
  • EXAMPLE 42 Same as Example 38 except the carpet had a conductive latex applied to the backing thereof.
  • EXAMPLE 45 Same as Example 41 except the carpet had a conductive latex applied to the backing thereof. All of the examples were tested in a controlled atmosphere room where the temperature was approximately 72 F. and relative humidity was about percent. The results of these tests were plotted on a graph where the ordinate is the voltage measured on a person walking and/or shuffling across a carpet and the abscissa is the percentage of total weight of conductive fiber (metal staple fiber or wire) to total weight of the carpet facing yarn. As reference points, the electrostatic potential developed when Example 28 was tested was 12,000 volts and when Example 29 was tested was 7,500 volts.
  • the conductive staple fibers in the fine heterogeneous hybrid blended spun yarn function as small brushes to reduce the ability to accumulate static electricity.
  • the blending technique used to make the fine heterogeneous hybrid blended spun yarn influences the static control ability of the carpet by providing a close cluster (in cross section) of the conductive fibers.
  • the conductive fiber cluster radially migrates along the length of the heterogeneous spun yarn.
  • shock-free carpeting can be provided wherein the weight percentage of the conductive fibers (that are in contact for only short preselected discrete lengths) can vary from 0.5 percent to 0.05 percent and less.
  • the fine heterogeneous yarn may be introduced in the carpet structure with every Nth carpet facing yarn or end in a regular preselected pattern or arrangement.
  • the Nth carpet facing yarn may be every th facing yarn or end so that the 49 adjacent carpet facing yarns or ends inbetween the Nth, e.g., 50th, yarns or ends do not have the fine heterogeneous yarn. It is fully contemplated that the Nth end may be, for example, every 50th, 40th, 30th, 25th, 20th, 15th, 12th, 8th, 4th,
  • the carpet structure may be such that the Nth end (that contains the fine yarn) is introduced with the primary carpet facing yarn in any desired mathematical series (as long as the carpet is antistatic); for example, the fine yarn is introduced with carpet facing ends in a pattern such that the first end containing the fine yarn is spaced 6 ends from the next end containing the fine yarn, which in turn is spaced 4 ends from the next end containing the fine yam, which in turn is spaced 2 ends from the next end containing the fine yarn, which in turn is'spaced 6 ends from the next end containing the fine yarn,
  • any such specific or random arrangement or spacing may be used as desired.
  • the specific arrangement and spacing of the fine yarn may vary according to (l) the specific carpet construction; (2) the organic material used for the carpet facing yarn; (3) the method of making the carpet, e.g., weaving, tufting, knitting, and the like; and (4) the pattern of the carpet.
  • the exact spacing of such a'fine discontinuously electrostatically conductive yarn may be preselected for each specific carpet. It has been found that for out pile carpets, it is necessary to add a conductive latex to the backing of the carpet because of certain unique characteristics of cut pile carpets. it is fully contemplated to be within the scope of this invention that static electricity can be equally well controlled in other textile fabrics including pile fabrics, upholstery, blankets,
  • An antistatic fabric comprising:
  • said spun yam comprising organic staple fibers and conductive staple fibers, said conductive fibers radially migratorily clustered along the length of said heterogeneous spun yarn.
  • An antistatic carpet comprising:
  • fine discontinuously electrostatically conductive heterogeneous spun yarn comprising a blend of conductive staple fibers and non-conductive staple fibers, said conductive fibers radially migratorily clustered along the length of said heterogeneous spun yarn, and a portion of said spun yarn secured to a portion of said backing in combination with a portion of said facing yams.
  • said conductive fiber is a metal fiber having an effective diameter ranging from 25 microns to 2 microns or less.
  • the antistatic carpet of claim 4 wherein said heterogeneous yarn has a size range from about 10 Tex to about 45 Tex.
  • said conductive fiber comprises organic fiber with an electrostatically conductive coating thereon.
  • a fine hybrid textile yarn comprising:
  • said conductive fiber is a metal fiber having an effective diameter ranging from 25 microns to 2 microns or less.
  • said conductive fiber comprises an organic fiber with an electrostatically conductive coating thereon.

Abstract

A fine heterogeneous hybrid spun yarn is blended from electrostatically conductive staple fibers and electrostatically non-conductive staple fibers so that the yarn is electrostatically conductive only over short distance lengths. When used in pile fabrics, such as carpets, the fine y yearn is introduced with at least some of the carpet facing yarns during the carpet making operations. The resultant carpet structure substantially eliminates electrostatic shock to a human walking across the carpet and approaching a ground such as a light switch, radio, or another person. Such a carpet provides control for the generation of static electricity and does not constitute a dangerous floor covering. The unique heterogeneous hybrid spun blended yarn is achieved by process techniques completely contrary to accepted blending practices.

Description

United States Patent Klein [54] ANTISTATIC FABRIC William G. Klein, 13 Washburn Ave., Wellesley Hills, Mass. 02181 [22] Filed: April 20, 1970 [21] Appl.No.: 29,822
[72] Inventor:
[52] US. Cl ..57/140 BY, 112/410, 139/425 R,
161/65, 161/66, 317/2 C [51] Int. Cl. ..D02g 3/04, D02g 3/12 [58] Field ofSearch ..57/139, 140 R, 140 BY, 156,
Webber; Metal Fibers, Modern Textile Magazine, Vol. 47,
[ 1 July 25, 1972 May 1966, pp. 72- 75 57-139 Primary Examiner.lohn Petrakes Attorney-Donald S. Olexa, Jerome M. Teplitz, John G. I-Ieimovics, William G. Lawler, Jr. and l-lofgren, Wegner, Allen, Stellman & McCord [5 7] ABSTRACT A fine heterogeneous hybrid spun yarn is blended from electrostatically conductive staple fibers and electrostatically nonconductive staple fibers so that the yarn is electrostatically conductive only over short distance lengths. When used in pile fabrics, such as carpets, the fine y yearn is introduced with at least some of the carpet facing yarns during the carpet making operations. The resultant carpet structure substantially eliminates electrostatic shock to a human walking across the carpet and approaching a ground such as a light switch, radio, or another person. Such a carpet provides control for the generation of static electricity and does not constitute a dangerous floor covering.
The unique heterogeneous hybrid spun blended yarn is achieved by process techniques completely contrary to accepted blending practices.
19 Claims, 10 Drawing Figures Patented July 25, 1972 5 Sheets-Sheet l W@ m M mmwmmww ATTORNEY ANTISTATIC FABRIC BACKGROUND OF THE INVENTION usually not dangerous problem has plagued humans, the shock or jolt of a static electricity discharge received after walking or shuffling across a carpet and touching an electrical ground, such as a lamp, light switch, TV, or water faucet. This problem is much more prevalent during periods of cold temperatures when the relative humidity inside a heated building is low. In an effort to eliminate this problem, many different types of solutions have been tried; for example, (1) chemical treatments (antistats) applied to the carpet-facing yarn fibers by spraying, coating, etc., (2) line continuous metal wires (having a diameter ranging from 3 to mils) woven with the carpet facing into the backing fabric, (3) a conductive latex applied to the backing fabric, and (4) the use of special synthetic fibers that have a surface capable of absorbing moisture. Each of these solutions has proven unsatisfactory either because (I it does not work at all, (2) it works for only a short period of time, (3) it works only under certain conditions, i.e., when the relative humidity is sufficiently high so that no antistatic method is really needed, or (4) it can be extremely dangerous in the case of fine electrically continuous metal wires. In fact, carpets with such continuous wires have been tested and it was found that the low electrical resistance of the continuous fine metal wire in the carpet creates the atmosphere for an electrical hazard. Under the proper conditions, a person having wet shoes or being barefoot touching a faulty lamp while standing on such a carpet can incur serious injury. In other words, such carpets under certain conditions can be extremely dangerous.
In US. Pat. Nos. 3,277,564 and 3,379,000, owned by the assignee hereof, Webber et al. teach a new metal filament having the characteristics of a textile. Valko, in US. Pat. No. 3,288,175, recognized the advantages of these metal filaments and taught that if such continuous metal filaments were provided in association with continuous filament synthetic yarns and then woven into a grid structure fabric, the resulting fabric would exhibit antistatic characteristics. In order to insure an antistatic fabric, Valko teaches that there must be a continuous filament metal-to-metal contact in the yarn wherein the metal filaments comprise approximately 10 percent by weight of the textile fabric. Valkos continuous metal filament portion of the continuous filament yarn or the continuous metal-to-metal contact of a spun blended yarn would produce a carpet that would function similarly to the fine continuous metal wire and could be just as dangerous.
One solution to providing an antistatic carpet that is not dangerous has been taught by Brown and Webber in their application for US. Letters Pat., Ser. No. 643,983, filed June 6, 1967, and owned by the assignee hereof.
Brown et al. recognized that it was possible to blend staple synthetic or natural textile fibers with staple electrically conductive fiber (which could be a textile metal fiber) wherein the electrically conductive fiber constitutes less than 1 percent by weight of the blend, in order to provide an antistatic textile yarn or textile fabric. This spun blended staple yarn has been used by the carpet industry as the facing yarn. It has been found that as little as l/3 to 1/6 of one per cent by weight of the conductive fiber is effective to control a static electricity build-up in a carpet when used continuously in adjacent car pet facing yarns and when a conductive latex coating is applied to the backing fabric.
Although the Brown-Webber method provides a good antistatic carpet made from spun blended staple yarns, it is not adaptable to continuous filament carpets. According to the American Carpet Institute, about 80 percent of all carpets sold in the United States are made from continuous filament yarns and only percent are made from spun yarns. There has been an ever-increasing shift from natural fibers for carpets (i.e., wool) to synthetic filaments which can be made in a continuous form. The Brown-Webber method, although a fine system, is limited to staple carpet facing yarns and therefore not useful in the standard continuous filament carpet field.
INTRODUCTION As discussed heretofore, many teachings have been advanced to make textiles antistatic, and recently many statements have been made in an attempt to follow the Brown- Webber lead in the antistatic non-dangerous textile field. The culmination of these attempts has caused the introduction of terms such as non-static textiles," semi-static free textiles," low-static textiles and partially antistatic textiles. However, there has been no meaningful definition of these terms to quantitatively or qualitatively independently identify such textiles.
It is common knowledge that an electrostatic potential can be developed when walking and/or shuffling over a carpet. When the potential is 2,500 volts or more, this voltage creates an annoying and uncomfortable static electric shock to a human when nearing a ground that causes a spark discharge. Accordingly an electrostatic potential of 2,500 volts is acknowledged as an undesirable voltage level. This has been adopted by the architectural profession and is currently in the process of being adopted as an industry standard. Therefore, as used hereinafter in this disclosure antistatic fabric is defined as a fabric not capable of generating a static electrical potential of 2,500 volts on an individual under ordinary use conditions. As used hereinafter in this disclosure, the term electrostatic non-conductive or electrostatically non-conductive is defined to refer to a material that has a resistivity in excess of 10 ohm centimeters. As used hereinafter in this disclosure, the term electrostatically conductive is defined to refer to a material having a resistivity of less than 10 ohm centimeters. To be meaningful, these resistivity values are to be measured when the relative humidity is approximately 20 percent or lower and the temperature is approximately 60 to 80 F.
SUMMARY OF THE INVENTION This invention relates to fabrics and is concerned with a new and novel antistatic fabric structure made with new and novel yarns that provide the antistatic characteristics to the textile fabric and especially adapted to carpets. The invention also relates to methods of making new and novel yarns.
It is a primary object of this invention to provide an antistatic fabric particularly adapted to carpets made by combining continuous filament yarns with a fine spun blended yarn that has short lengths of continuous electrostatic conductivity, and whereby such a fabric functions to control static electricity and is not electrically dangerous.
A feature of this invention is the provision that the spun yarn is heterogeneously blended from electrostatically conductive and electrostatically non-conductive fibers.
Yet another feature of this invention is the provision that the facing yarns of the carpet have less than 0.5 percent by weight of the electrostatically conductive fibers therein.
Still another feature of this invention is the provision that a fine staple discontinuously electrostatically conductive yarn blended from electrostatically conductive staple fibers and electrostatically non-conductive fibers can be woven or tufted directly into the carpet backing fabric, along with the facing yarns, or plied therewith prior to weaving or tufting.
Another feature of this invention is the provision for making such a yarn by combining organic sliver and continuous filaments in a roller drafting machine followed by roving and single roving spinning operations.
Still another feature of this invention is the provision that the conductive fibers in the fine yarn are in a clustered arrangement that migrates radially along the length of the yarn.
Another feature of this invention is to provide'a heterogeneously hybrid composite sliver and the method of making the composite sliver by simultaneously breaking and blending continuous filaments in combination with a sliver.
The above and other and further objects and features will be more readily understood by reference to thefollowing detailed description and the accompanying drawings.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross section of a homogeneously blended spun yarn; r p
FIG. 2 is a partial cross section of a roller drafting machine containing a sliver and a tow;
FIG. 3 is a partial cross section of a roller drafting machine containing two slivers and a tow;
FIG. 4 is a cross section of a heterogeneously hybridly blended ,spun yarn with the conductive fibers in a compact 1 cluster form;
, FIG. 5" is a cross section of another heterogeneously hybridly blended spun yarn with the conductive fibers in a cluster form; v
FIG. 6 is an enlarged and distorted representation of a section of a tufted carpet; 1
' FIG. 7 is a cross section of the carpet of FIG. 6;
"FIG. 8 is a graph with curves showing the relationships between different carpet constructions;
FIG. 9 isa graph with curves showing the relationship between embodimentsof this invention and wires in carpet constructions; and
FIG. 10 is an enlarged diagrammatic view of a section of the fine heterogeneous yarn.
By way of introduction, it is necessary first to make the fine discontinuously electrostatically conductive staple blended yarn. This yarn is combined with standard carpet facing yarns in a pre-selected arrangement in order to provide the desired antistatic carpet. Thus, this yarn and method for making this yarn comprise sub-combinations of the total carpet systems.
In a preferred embodiment of the' invention, a fine spun yarn made from electrostatically non-conductive staple fibers are represented by organic fibers and electrostatically conductive staple fibers are referred to as conductive fibers. The organic fibers may be made from synthetic materials including nylon, acrylic, polyester and the like, as well as natural materials including wool, cotton, flax, and the like, or any desired mixtures thereof. The conductive fibers may be made from materials including metal fibers (e.g., the Webber et al. fibers), organic fibers having an electrostatically conductive surface coating thereon, or the like. The conductive fibers used generally have a size range of approximately 25 microns to 2 microns or less. The organic fibers used generally have a size range of 011 Tex to 2 Tex. The international Tex measurement system (grams per 1,000 meters) is being used herein for ease of understanding because some of the older textile measuring systems are associated with specific textile yarn forming systems, e.g., cotton, wool, and worsted. The metal fibers used herein can have a rough, unmachined, unbumished and reentrant fracture-free outer surface which facilitates blending with organic fibers.
It is axiomatic in the textile industry that uniform, intimate and homogeneous blends of spun textile yarns are desired, whether different fiber materials or nominally the same fiber materials are being blended. Several reasons for trying to achieve a uniform, intimate, homogeneous blend are: (l) reproducibility of the yams physical properties, (2) good dyeing properties, (3) uniform abrasion resistance, and the like. It is customary, therefore, in making spun blended yarns that the component slivers are drawn and doubled together a number of times, as well as frequently using double roving spinning, in an attempt to produce a uniform, intimate, homogeneous spun blended yarn. A typical cross section of such a yarn is shown in FIG. 1 wherein yarn 8 is a spun blend illustratinga 35 percent cotton 65 percent polyester yarn with the cotton fibers 12 and the polyester fibers 10.
It was quite surprisingly found that in order to achieve improved antistatic properties in the spun yarn and the resulting fabric, it was necessary to employ blending techniques contrary to accepted standards to produce the fine heterogeneous hybrid, non-uniform, non-intimate and non-homogeneous spun blended yarn which is a preferred embodiment of this invention. The heterogeneous yarn so formed provided a significantly improved yarn to make an antistatic fabric. One method of producing such a yarnis to combine at least one pro-drawn organic sliver with a consolidated tow of conduc-' tive' filaments. The organic sliver and tow of conductive filaments are passed in a roller drafting machine wherein the metal filaments are broken into staple and blended with the organic sliver by the drawing action of the machine. to produce the heterogeneous or non-homogeneous blend. Thus, a new heterogeneous blended sliver is formed. In FIG. 2, the organic sliver 20 and the tow of conductive filaments 22 are introduced at the backing rolls 24 of a portion of roller drafting machine 26. Suitable roller drafting machines include the Perlock, Turbo, Gastonia rebreakers and the like.
In another embodiment, as shown in FIG. 3, the tow of con-v ductive filaments 22A is introduced in the :roll'er drafting machine 26A as the backrolls 24A inbetween the organic slivers. During the drawing and blending, the conductive fibers remain in close proximity to each other undergoing the minimum possible amount of mixing or blending. This produces the heterogeneously blended sliver. The resultant sliver is then processed on a roving frame to produce a roving. The roving is then spun into yarn by the use of single roving spinning. The amount of conductive fiber used can vary in a range from under 1 percent to approximately 30 percent. When metal filaments, preferably each having a diameter from [5 microns to 2 microns, arev used it has been found desirable to use this material in weightratios of approximately 2%, 4%, 6%, 8%, 12%, 13%, 15%, 20%, and 25% to the organic material. It has also been found that the weight percentage for the metal fibers can vary according to size of metal filament used, as well as the weight of theorganic fiber being used. Alternatively, when using a conductive filament that comprises a conductive coating on an organic substrate filament, the weight ratios will vary depending ori the weight of the conductive fiber and the organic fiber.
By this completely unorthodox method of making a spun yarn, a heterogeneous hybrid blended yarn 30 is produced as shown in FIG. 4 wherein a cross section of this yarn 30 contains organic staple fibers 32 and conductive fibers 34. The cluster of the staple conductive fibers 34 indicates that the blend is heterogeneous or non-uniform, non-intimate and nonhomogeneous. It has been observed that this cluster 36 of fibers 34 migrates radially along the length of the yarn 30 as shown in FIG. 10.
In another similar method when organic fiber sliver and conductive fiber sliver are passed once through a pin drafter, reduced on a roving frame and single roving spun, a heterogeneous hybrid spun blended yarn was also produced. A cross section of the yarn 40 of FIG. 5 is illustrative of the yarn produced by the method wherein the organic staple fibers 42 are not very well blended with the conductive fibers 44.
It was found that the cluster of conductive fibers 44 was more dispersed in the yarn 40 than the conductive fibers 34. It is believed that this difference in heterogeneity is attributed to the fact that it is possible to introduce the conductive material only in sliver form in the pin drafter losing the ability to proratio of the fibers and the size is essentially the same as mentioned before.
The fine heterogeneously blended yarns may be made in any desired size from approximately 45 Tex to as small as Tex depending on the application of the yarn. For use in antistatic carpets, it has been found that a yarn having a range from 35 Tex to Tex is desirable. The individual synthetic fibers in the yarn can have a range of from 011 Tex to 2 Tex with a 022 Tex to 0.55 Tex being a desirable size range. It has been found that by using more but smaller diameter conductive fibers in a highly heterogeneous cluster, the weight per cent of the conductive fibers can be reduced and yet provide better overall results. In order to prevent the disadvantage of continuous contact between the conductive fibers, the proper weight ratio (number of conductive fibers per yarn cross section), the proper heterogeneous blending and the proper spinning provide yarns that exhibit contact between conductive fibers over preselected short lengths of the yarn. Thus, it has been found that for different yarns made by different textile systems; e.g., cotton, woolen and worsted, the longest continuous contact length of conductive contact is a function of the average staple length and the number of conductive fibers in cross section. Tests have shown that the desired antistatic characteristics for the carpets are obtained when the longest conductive contact of conductive fibers is approximately 8 feet or less for the fine heterogeneous yarn to function properly, thereby avoiding the hazard of the continuous contact taught in the prior art. Since textile blending is not precise and demonstrably accurately reproducible, there will always be a few minor exceptions to the longest conductive contact length.
The following examples of specific fine heterogeneous blended yarns containing conductive and non-conductive fibers made in accordance with this invention should not be construed in any way to limit the scope contemplated by this invention.
EXAMPLE 1 A fine heterogeneous hybrid spun blended yarn having approximately 17.72 Tex was blended from nylon fibers having an approximate size of 0.165 Tex and I a conductive fiber (stainless steel) having an effective diameter of approximately 12 microns. The conductive staple fiber (metal) constituted approximately 25 percent by weight of the total yarn weight. The nylon fiber sliver and metal fiber sliver were first drafted and blended forming a combined sliver. The combined sliver was reduced on a roving frame and then single roving spun directly into the fine heterogeneous hybrid spun yarn. This yarn exhibited continuous contact between conductive fibers over a length ranging from 2 feet to 3 feet.
EXAMPLE 2 A fine heterogeneous hybrid spun blended yarn was made in the fashion as Example 1 and was the same size except that the conductive fibers comprised approximately percent by weight. This yarn exhibited continuous contact between conductive fibers over a length ranging from 2 feet to 2- /4 feet.
EXAMPLE 3 A fine heterogeneous hybrid spun blended yarn was made in the same fashion as Example 1 and was the same size except that the conductive fiber comprised approximately 15 percent by weight. This yarn exhibited continuous contact between conductive fibers over a length ranging from 1% feet to 2 feet.
EXAMPLE 4 A fine heterogeneous hybrid spun blended yarn was made in the same fashion as Example 1 and was the same size except that the conductive fiber comprised approximately 10 percent by weight. This yarn exhibited continuous contact between conductive fibers over a length ranging from 1 foot to 1% feet.
EXAMPLE 5 A fine heterogeneous hybrid spun yarn having a size of approximately 18 Tex was blended from nylon fibers having an approximate size of 0.165 Tex and metal fibers having an effective diameter of approximately 8 microns. The metal fibers constituted approximately 12-5: percent by weight of the total yam weight. The nylon fiber sliver and continuous metal filaments were introduced into a roller drafting machine where the continuous metal fibers were broken and blended with the nylon sliver burning a partially blended sliver. The partially mixed sliver was reduced on a roving frame and then single roving spun directly into the fine heterogeneous hybrid spun blended yarn. The metal fibers were presented in a close clustered form when a cross section of the yarn was examined. The cluster migrated radially along the length of the yarn. This yarn exhibited a continuous contact between conductive fibers over a length ranging from 4 feet to 8 feet.
In a preferred embodiment of the invention the fine heterogeneous yams discussed hereinabove are combined during the manufacturing of the carpet to provide the desired antistatic characteristics.
By way of definition and as used hereinafter, the term end" refers to the individual carpet facing yarns that are either woven or tufted into a backing such as a jute fabric. An end may comprise one or more single yarn elements. FIG. 6 is an enlarged representation of a tufted carpet with the backing material 53 having warp yarns 51 and filling yarns 50 comprising the standard grid form of the backing fabric 53. The carpet facing yarns 52 and 54 each are considered ends. During the initial carpet formation, the facing yarns S2 and 54 are secured to the backing by forced insertion between the warp yarns 51 and filling yarns 50. Thereafter many standard means may be employed to further secure the facing yarns to the backing, including flexible coatings such as latex and the like. Generally these continuous filament tufted facing yarns have an approximate size from 166 Tex to 444 Tex. However, since there is no absolute standard, a carpet manufacturer may use any size facing yarn desired. In order to provide an antistatic carpet, a fine heterogeneous blended spun yarn is introduced with carpet facing yarn just prior to tufting. As shown in FIG. 6, the two yarns, the carpet facing yarn 52 and the fine heterogeneous yarn 56, were introduced and tufted together into the backing fabric and secured thereto. Depending on the size of the carpet yarns and the exact construction of the fine heterogeneous blended yarn, there can be a different spacing between carpet facing yarns 52 or ends containing the fine heterogeneous yarn 56 and the standard carpet facing yarns 54. The fine heterogeneous yarn may be used equally satisfactorily in carpets made by l) weaving continuous filament facing yarns, (2) weaving spun blended facing yarns, (3) tufting spunblended facing yams, (4) knitting either continuous filamentor spun blended carpet yarns and (5) other special carpet making processes. Rather than introducing the fine heterogeneous yarn with carpet facing yarn as the carpet is being made, prior thereto these two yarns can be plied together and introduced in the carpet making step as a plied am. y The following examples of specific carpet structures were made containing fine heterogeneous yarns and carpet facing yams in accordance with this invention, but should not be construed in any way to limit the scope contemplated by this invention.
EXAMPLE 6 EXAMPLE 7 Same carpet as Example 6, but a fine heterogeneous hybrid spun blended yarn having a size of 18 Tex and containing 12 micron stainless steel metal fibers in a weight ratio of 10 percent was introduced with every lth end of carpet facing yarn.
EXAMPLE 8 Same as Example 7 except that the fine heterogeneous blended yarn was introduced with every th end of carpet facing-yarn.
' EXAMPLE9 Same as Example 7 except that the fine heterogeneous blended yarn was introduced with every 2nd end of carpet facing yarn.
EXAMPLE 10 Same as Example 7 except that the fine heterogeneous blended yarnwasintroduced with every end of carpet facing yarn.
EXAMPLE 11 Same as Example 7 but with the addition of a conductive latex backing.
EXAMPLE 12 Same as example 8 but with the addition of a conductive latex backing.
EXAMPLE 13 Same as Example 9 but with the addition of a conductive latex backing.
EXAMPLE 14 Same as Example 10 but with the addition of a conductive latex backing.
EXAMPLE 15 EXAMPLE 16 Same as Example 15 except that the fine heterogeneous blended yarn was introduced with every 5th end of carpet facing yarn.
EXAMPLE 17 Same as Example 15 except that the fine heterogeneous blended yarn was introduced with every 2nd end of carpet facing yam.
EXAMPLE 18 Same Example 15 except that the fine heterogeneous blended yarn was introduced with every end of carpet facing yarn.
. .3 EXAMPLE 19 Same as Example 15 but with the addition of a conductive latex backing.
EXAMPLE 20 Same as Example 16 but with the addition of a conductive latex backing.
EXAMPLE 21 Same as Example 17 but with the addition of a conductive latex backing.
EXAMPLE 22 Same as Example 18 but with the addition of a conductive latex backing.
EXAMPLE 23 Same carpet as Example 6 but a fine heterogeneous hybrid spun blended yarn having an approximate size of 18 Tex and containing 8 micron stainless steel metal fiber in a weight ratio of approximately 12.5 percent 13 percent was introduced with every 12th end of carpet facing yarn.
EXAMPLE 24 Same as Example 23 except that the fine heterogeneous blended yarn was introduced with every 8th end of carpet facing yarn.
EXAMPLE 25 Same as Example 23 except that the fine heterogeneous blended yarn was introduced with every 4th end of carpet facing yarn.
EXAMPLE 26 Same as Example 23 except that the fine heterogeneous blended yarn was introduced with every 2nd end of carpet facing yarn.
7 EXAMPLE 27 Same as Example 15 except that the fine heterogeneous blended yarn was introduced with every end of carpet facing yarn. 1
Each of these carpets was tested in'an atmosphere control room having a' temperature maintained-at approximately 70 F. and a relative humidity of approximately 20 percent. The tests were conducted where a person walked and/or shuffled across the carpet and the electrostatic potential generated on the person was measured. As a reference point, the electrostatic charge developed when Example 1 was tested amounted to 12,000 volts. The graph on FIG. 8 shows the test results of each of the samples. The graph is arranged where the ordinate is the electrostatic voltage developed as a person walks and/or shuffles across the carpet and the abscissa is the total weight percent of the conductive fiber (metal fiber) present in the total facing yarn.
On the graph of FIG. 8, Curve A is for Examples 7 through 10; Curve B is for Examples 1 1 through l4; Curve C is for Examples 15 through 18; Curve D is for Examples 19 through 22', and Curve E is for Examples 23 through 27. It has been found that increasing the weight of the conductive fiber in the total carpet yarn does not necessarily improve the antistatic control characteristics. It has been found desirable to create a concentration of conductive fibers in the fine yarn as long as the concentration does not lead to conductive lengths beyond approximately 8 feet. Another series of curves on the graph shown in FIG. 9 indicate the test results made on another series of carpet samples which show the antistatic characteristics of another set of carpet examples. Four series of carpets made by 2 EXAMPLE 28 A 100 percent continuous filament nylon carpet having a facing yarn weight of 25 ounces per square yard was constructed by tufting the facing yarns to a 10 ounce per square yard primary jute backing.
EXAMPLE 29 Same as Example 28 but with the addition of a conductive latex coating to the jute backing.
EXAMPLE 30 EXAMPLE 31 Same as Example 28 but every 8th carpet facing yarn had the fine yarn of Example 1 plied therewith.
EXAMPLE 32 Same as Example 28 but every 4th carpet. facing yarn end had the fine yarn of Example 1 plied therewith.
EXAMPLE 33 Same as Example 28 but every 2nd carpet facing yarn end had the fine yarn of Example 1 plied therewith.
EXAMPLE 34 Same as Example 30 except the carpet had a conductive latex applied to the backing thereof.
EXAMPLE 35 Same as Example 31 except the carpet had a conductive latex applied to the backing thereof.
EXAMPLE 36 Same as Example 32 except the carpet had a conductive latex applied to the backing thereof.
EXAMPLE 3 7 Same as Example 33 except 'the carpet had a conductive latex applied to the backing thereof.
EXAMPLE 38 Same as Example 28 but every 16th carpet facing yarn end had a fine continuous 3 mil stainless steel wire plied therewith.
EXAMPLE 39 Same as Example 28 but every 8th carpet facing yarn end had a fine continuous 3 mil stainless steel wire plied therewith.
EXAMPLE 40 Same as Example 28 but every 4th carpet facing yarn end had a fine continuous 3 mil stainless steel wire plied therewith.
EXAMPLE 41 Same as Example 28 but every 2nd carpet facing yarn end had a fine continuous 3 mil stainless steel wire plied therewith.
EXAMPLE 42 Same as Example 38 except the carpet had a conductive latex applied to the backing thereof.
EXAMPLE 43 Same as Example 39 except the carpet had a conductive latex applied to the backing thereof.
EXAMPLE 44 Same as Example 40 except the carpet had a conductive latex applied to the backing thereof.
EXAMPLE 45 Same as Example 41 except the carpet had a conductive latex applied to the backing thereof. All of the examples were tested in a controlled atmosphere room where the temperature was approximately 72 F. and relative humidity was about percent. The results of these tests were plotted on a graph where the ordinate is the voltage measured on a person walking and/or shuffling across a carpet and the abscissa is the percentage of total weight of conductive fiber (metal staple fiber or wire) to total weight of the carpet facing yarn. As reference points, the electrostatic potential developed when Example 28 was tested was 12,000 volts and when Example 29 was tested was 7,500 volts. The results obtained indicate that, by using a conductive wire in the carpet (Examples 37 through 40), there is no enhancement in control of static electricity when a conductive latex was added to the carpet backing (Examples 41 through 44). However, just the contrary was true when a conductive latex (Examples 33 through 36) was added to the carpet backing of Examples 30 through 33.
By combining the results obtained from the test shown on FIGS. 8 and 9, it has been found that the enhancement in static control on a carpet may be attributed to several factors, 5 to wit:
1. The conductive staple fibers in the fine heterogeneous hybrid blended spun yarn function as small brushes to reduce the ability to accumulate static electricity.
2. The greater the number of conductive staple fibers in the fine heterogeneous hybrid blended spun yarn (due to the reduction in size of the conductive fibers), further reduces the ability to accumulate static electricity.
3. The blending technique used to make the fine heterogeneous hybrid blended spun yarn influences the static control ability of the carpet by providing a close cluster (in cross section) of the conductive fibers.
4. The conductive fiber cluster radially migrates along the length of the heterogeneous spun yarn.
Obviously, the exact mechanisms by which static is controlled in carpets depend on a multitude of related factors and many others than those listed above may be equally or more important.
Tests conducted on the carpet examples containing the fine heterogeneous hybrid blended spun yarn have indicated that when such yarns are woven or tufted into the carpet facing structure, the linear continuous contact distance of conductive fibers is much shorter than the linear contact length of the conductive fibers for the yarn itself. it has been found that this is largely due to the fact that such a yarn in a carpet is in a serpentine configuration, as shown in FIG. 7, and is attributable to the looping effect of the carpet construction. Other factors influencing the conductive length of the fine heterogeneous yarn in the carpet facing yarn are the breakage of conductive fibers during plying, carpet manufacturing operations and the like. The pile height of the carpet facing yarns will affect this distance.
Thus, it has been described that by the proper construction of a fine heterogeneous hybrid blended spun yam made from conductive and non-conductive fibers and combined with a carpet facing yarn, a significant effect in control of the generation of static electricity can be achieved. It is within the scope of this invention that shock-free carpeting can be provided wherein the weight percentage of the conductive fibers (that are in contact for only short preselected discrete lengths) can vary from 0.5 percent to 0.05 percent and less.
' .The fine heterogeneous yarn may be introduced in the carpet structure with every Nth carpet facing yarn or end in a regular preselected pattern or arrangement. The Nth carpet facing yarn may be every th facing yarn or end so that the 49 adjacent carpet facing yarns or ends inbetween the Nth, e.g., 50th, yarns or ends do not have the fine heterogeneous yarn. It is fully contemplated that the Nth end may be, for example, every 50th, 40th, 30th, 25th, 20th, 15th, 12th, 8th, 4th,
3rd, 2nd or every end, or other spacing, as desired. Altematively, the carpet structure may be such that the Nth end (that contains the fine yarn) is introduced with the primary carpet facing yarn in any desired mathematical series (as long as the carpet is antistatic); for example, the fine yarn is introduced with carpet facing ends in a pattern such that the first end containing the fine yarn is spaced 6 ends from the next end containing the fine yarn, which in turn is spaced 4 ends from the next end containing the fine yam, which in turn is spaced 2 ends from the next end containing the fine yarn, which in turn is'spaced 6 ends from the next end containing the fine yarn,
etc., and thus the pattern starts to repeat itself. Any such specific or random arrangement or spacing may be used as desired. The specific arrangement and spacing of the fine yarn may vary according to (l) the specific carpet construction; (2) the organic material used for the carpet facing yarn; (3) the method of making the carpet, e.g., weaving, tufting, knitting, and the like; and (4) the pattern of the carpet. Thus the exact spacing of such a'fine discontinuously electrostatically conductive yarn may be preselected for each specific carpet. It has been found that for out pile carpets, it is necessary to add a conductive latex to the backing of the carpet because of certain unique characteristics of cut pile carpets. it is fully contemplated to be within the scope of this invention that static electricity can be equally well controlled in other textile fabrics including pile fabrics, upholstery, blankets,
drapes, industrial textiles (e.g., belting, wet and dry papermachine felts, filter bags, filtration fabrics) and the like in addition to carpets. It has also been found that this type of fabric structure provides for easier cleaning because the dirt holding capacity of .the fabric has been reduced. Although specific embodiments of the invention have been described, many modifications and changes may be made in the configurations of the fine heterogeneous hybrid blended spun yarn, the methods of blending such a heterogeneous or non-homogeneous fine yarn, the desired and preselected spacing of such a fine yarn in fabrics (i.e., carpets) and in the materials used to make the desired fabric and/or fine yarn, without departing from the spirit and the scope of the invention as defined in the appended claims.
I claim:
1. An antistatic fabric comprising:
' organic yarn combined with heterogeneous spun yarn, said spun yam comprising organic staple fibers and conductive staple fibers, said conductive fibers radially migratorily clustered along the length of said heterogeneous spun yarn.
2. The fabric of claim 1 wherein said conductive fibers comprise 0.5 percent or less of the weight of the total fabric.
3. The fabric of claim 1 wherein said conductive fiber contact is discontinuous at preselected distances along the length of said spun yarn.
4. An antistatic carpet comprising:
a backing;
carpet facing yarns having a portion thereof secured to a portion of said backing; and
fine discontinuously electrostatically conductive heterogeneous spun yarn comprising a blend of conductive staple fibers and non-conductive staple fibers, said conductive fibers radially migratorily clustered along the length of said heterogeneous spun yarn, and a portion of said spun yarn secured to a portion of said backing in combination with a portion of said facing yams.
5. The antistatic carpet of claim 4 wherein said fine spun yarn is introduced with every Nth carpet facing yarn in a preselected arrangement and wherein N ranges from 1 to S0.
6. The antistatic carpet of claim 4 wherein said fine yarn is introduced with every Nth carpet facing yarn in a preselected arrangement and wherein N is determined by a mathematical series.
7. The antistatic carpet of claim 4 wherein said conductive staple fibers comprise 0.5 percent or less of the weight of the total carpet facing yarn.
8. The antistatic carpet of claim 4 wherein said heterogeneous spun yarn is continuously electrostatically conductive for a maximum length of approximately 3 feet or less when measured on a finished carpet surface.
9. The antistatic carpet of claim 4 wherein said heterogene ous spun yarn is continuously electrostatically conductive over a cyclic length with electrostatic discontinuities existing at approximately every 8 feet or less.
10. The antistatic carpet of claim 4 wherein said conductive staple fibers comprise 0.05 percent or less of the weight of the total carpet facing yarn.
11. The antistatic carpet of claim 4 wherein said backing has a conductive layer.
12. The antistatic carpet of claim 4 wherein said conductive fiber is a metal fiber having an effective diameter ranging from 25 microns to 2 microns or less.
13. The antistatic carpet of claim 4 wherein said non-conductive fibers have a size range from 0.1 l Tex to about 2 Tex.
14. The antistatic carpet of claim 4 wherein said heterogeneous yarn has a size range from about 10 Tex to about 45 Tex.
15. The carpet of claim 4 wherein said conductive fiber comprises organic fiber with an electrostatically conductive coating thereon.
16. A fine hybrid textile yarn comprising:
a heterogeneous blend of electrostatically non-conductive staple fibers and electrostatically conductive staple fibers radially migratorially clustered along the length of said yarn, said yarn being continuously electrostatically conductive along a cyclic length thereof, each cycle having a length of approximately 8 feet or less and said yarn having electrostatic discontinuities existing between each cyclic length.
17. The yarn of claim 16 wherein said conductive fibers are present in said yarn ranging from 2 percent to 25 percent by weight.
18. The yarn of claim 16 wherein said conductive fiber is a metal fiber having an effective diameter ranging from 25 microns to 2 microns or less.
19. The yarn of claim 16 wherein said conductive fiber comprises an organic fiber with an electrostatically conductive coating thereon.

Claims (18)

  1. 2. The fabric of claim 1 wherein said conductive fibers comprise 0.5 percent or less of the weight of the total fabric.
  2. 3. The fabric of claim 1 wherein said conductive fiber contact is discontinuous at preselected distances along the length of said spun yarn.
  3. 4. An antistatic carpet comprising: a backing; carpet facing yarns having a portion thereof secured to a portion of said backing; and fine discontinuously electrostatically conductive heterogeneous spun yarn comprising a blend of conductive staple fibers and non-conductive staple fibers, said conductive fibers radially migratorily clustered along the length of said heterogeneous spun yarn, and a portion of said spun yarn secured to a portion of said backing in combination with a portion of said facing yarns.
  4. 5. The antistatic carpet of claim 4 wherein said fine spun yarn is introduced with every Nth carpet facing yarn in a preselected arrangement and wherein N ranges from 1 to 50.
  5. 6. The antistatic carpet of claim 4 wherein said fine yarn is introduced with every Nth carpet facing yarn in a preselected arrangement and wherein N is determined by a mathematical series.
  6. 7. The antistatic carpet of claim 4 wherein said conductive staple fibers comprise 0.5 percent or less of the weight of the total carpet facing yarn.
  7. 8. The antistatic carpet of claim 4 wherein said heterogeneous spun yarn is continuously electrostatically conductive for a maximum length of approximately 3 feet or less when measured on a finished carpet surface.
  8. 9. The antistatic carpet of claim 4 wherein said heterogeneous spun yarn is continuously electrostatically conductive over a cyclic length with electrostatic discontinuities existing at approximately every 8 feet or less.
  9. 10. The antistatic carpet of claim 4 wherein said conductive staple fibers comprise 0.05 percent or less of the weight of the total carpet facing yarn.
  10. 11. The antistatic carpet of claim 4 wherein said backing has a conductive layer.
  11. 12. The antistatic carpet of claim 4 wherein said conductive fiber is a metal fiber having an effective diameter ranging from 25 microns to 2 microns or less.
  12. 13. The antistatic carpet of claim 4 wherein said non-conductive fibers have a size range from 0.11 Tex to about 2 Tex.
  13. 14. The antistatic carpet of claim 4 wherein said heterogeneous yarn has a size range from about 10 Tex to about 45 Tex.
  14. 15. The carpet of claim 4 wherein said conductive fiber comprises organic fiber with an electrostatically conductive coating thereon.
  15. 16. A fine hybrid textile yarn comprising: a heterogeneous blend of electrostatically non-conductive staple fibers and electrostatically conductive staple fibers radially migratorially clustered along the length of said yarn, said yarn being continuously electrostatically conductive along a cyclic length thereof, each cycle having a length of approximately 8 feet or less and said yarn having electrostatic discontinuities existing between each cyclic length.
  16. 17. The yarn of claim 16 wherein said conductive fibers are present in said yarn ranging from 2 percent to 25 percent by weight.
  17. 18. The yarn of claim 16 wherein said conductive fiber is a metal fiber having an effective diameter ranging from 25 microns to 2 microns or less.
  18. 19. The yarn of claim 16 wherein said conductive fiber comprises an organic fiber with an electrostatically conductive coating thereon.
US29822A 1970-04-20 1970-04-20 Antistatic fabric Expired - Lifetime US3678675A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2982270A 1970-04-20 1970-04-20

Publications (1)

Publication Number Publication Date
US3678675A true US3678675A (en) 1972-07-25

Family

ID=21851070

Family Applications (1)

Application Number Title Priority Date Filing Date
US29822A Expired - Lifetime US3678675A (en) 1970-04-20 1970-04-20 Antistatic fabric

Country Status (8)

Country Link
US (1) US3678675A (en)
JP (3) JPS5120618B1 (en)
BE (1) BE750896A (en)
CA (1) CA919767A (en)
DE (1) DE2023128C3 (en)
FR (1) FR2092190A5 (en)
GB (1) GB1303902A (en)
NL (1) NL171288C (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839135A (en) * 1970-11-27 1974-10-01 Dow Badische Co Antistatic laminate filament and fabric prepared therefrom
US3846968A (en) * 1973-06-11 1974-11-12 Bigelow Sanford Inc Yarn structure and method for producing same
DE2337978A1 (en) * 1973-07-26 1975-02-06 Nippon Seisen Co Ltd Antistatic yarn - includes metal fibres of polygonal section with sharp corners
US3900624A (en) * 1971-10-06 1975-08-19 Walter G Schare Static charge resistant synthetic yarns
US3955022A (en) * 1972-10-16 1976-05-04 E. I. Du Pont De Nemours And Company Antistatic tufted carpet
US4064305A (en) * 1975-05-13 1977-12-20 Barracudaverken Ab Knitted camouflage material
US4154881A (en) * 1976-09-21 1979-05-15 Teijin Limited Antistatic composite yarn and carpet
US4369622A (en) * 1980-03-24 1983-01-25 Riegel Textile Corporation Method and apparatus for drawing and blending textile materials
USRE31376E (en) * 1973-06-11 1983-09-13 Bigelow-Sanford, Inc. Yarn structure and method for producing same
US4420529A (en) * 1980-08-22 1983-12-13 Scapa Dryers, Inc. Anti-static dryer fabrics
US4431316A (en) * 1982-07-01 1984-02-14 Tioxide Group Plc Metal fiber-containing textile materials and their use in containers to prevent voltage build up
US4448838A (en) * 1981-09-04 1984-05-15 Lear Fan Corp. Graphite fiber reinforced laminate structure capable of withstanding lightning strikes
US4450498A (en) * 1982-09-15 1984-05-22 Coral Industrial Sales Co. Electrically grounded, static absorbing drapery installation
US4519201A (en) * 1982-09-08 1985-05-28 Toon John J Process for blending fibers and textiles obtained from the fiber blends
US4532724A (en) * 1983-05-02 1985-08-06 Midori Anzen Industry Co., Ltd. Antistatic footwear
US4724184A (en) * 1986-10-15 1988-02-09 Kimberly-Clark Corporation Elastomeric polyether block amide nonwoven web
US4771596A (en) * 1970-04-20 1988-09-20 Brunswick Corporation Method of making fiber composite
US4820572A (en) * 1986-10-15 1989-04-11 Kimberly-Clark Corporation Composite elastomeric polyether block amide nonwoven web
US4870535A (en) * 1987-11-16 1989-09-26 Tokyo Sen-I Kogyo Co., Ltd. Antistatic hose
US4923742A (en) * 1986-10-15 1990-05-08 Kimberly-Clark Corporation Elastomeric polyether block amide nonwoven web
US5213865A (en) * 1988-07-02 1993-05-25 Daiwa Co., Ltd. Antistatic mat
US5478154A (en) * 1994-06-01 1995-12-26 Linq Industrial Fabrics, Inc. Quasi-conductive anti-incendiary flexible intermediate bulk container
US5679449A (en) * 1993-10-21 1997-10-21 Linq Industrial Fabrics, Inc. Low discharge anti-incendiary flexible intermediate bulk container
US5690014A (en) * 1994-05-20 1997-11-25 Larkin; William J. Small diameter ionizing cord for removing static charge
US5881547A (en) * 1998-05-28 1999-03-16 China Textile Institute Conducting yarn
WO2000075406A1 (en) * 1999-06-03 2000-12-14 Solutia Inc. Antistatic yarn, fabric, carpet and fiber blend formed from conductive or quasi-conductive staple fiber
US20040086673A1 (en) * 2000-10-25 2004-05-06 Trevor Arthurs Anti-static woven flexible bulk container
US6750164B2 (en) * 2000-05-15 2004-06-15 William J. Larkin Ionizing wiper
US20070087149A1 (en) * 2000-10-25 2007-04-19 Trevor Arthurs Anti-static woven flexible bulk container
US20070281569A1 (en) * 2006-06-05 2007-12-06 Ming Lai Wu Thermally Insulated and Moisture-Repellent Textile Structure
CN102839460A (en) * 2012-09-07 2012-12-26 湖南明星麻业股份有限公司 Stainless steel metal fiber and ramie fiber long yarn blended yarn and production method thereof
GB2507981A (en) * 2012-05-29 2014-05-21 Shandong Lalela Wool Spinning Co Ltd A textile product with yarn comprising metal filaments
CN104433702A (en) * 2014-11-17 2015-03-25 苏州迈瑞迪工程材料有限公司 Dampproof aluminum alloy ground mat
WO2016061112A1 (en) * 2014-10-14 2016-04-21 Coolcore Llc Hybrid yarns, methods of making hybrid yarns and fabrics made of hybrid yarns
US10455675B2 (en) 2013-12-20 2019-10-22 3M Innovative Properties Company Articles for eliminating static electricity and methods for their use
CN110468482A (en) * 2019-09-05 2019-11-19 义乌市申凯线业有限公司 A kind of dacron polyester sewing thread and its production method
US20200069250A1 (en) * 2017-03-10 2020-03-05 Myant Inc. Method of forming a three-dimensional conductive knit patch

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126051A1 (en) * 1981-07-02 1983-01-20 Hacoba Textilmaschinen Gmbh & Co Kg, 5600 Wuppertal Multi-component yarn for multi-coloured velours and process for producing it
KR960004910B1 (en) * 1987-12-01 1996-04-17 도오요오 보오세끼 가부시끼가이샤 Antistatic and soil resistant fiber sheet
KR930000286B1 (en) * 1988-07-02 1993-01-15 가부시키가이샤 다이와 Antistatic mat
GB2283990A (en) * 1993-10-26 1995-05-24 Hery Anwar Coloured metallic thread
CN102181977B (en) * 2011-04-11 2012-09-05 浙江春江轻纺集团有限责任公司 Antistatic yarns and processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508852A (en) * 1948-04-26 1950-05-23 Blumfield Joseph Tufted, hooked, and woven fabric
US3099066A (en) * 1960-09-30 1963-07-30 Metal Film Company Inc Metallized synthetic spun yarn
US3288175A (en) * 1964-10-22 1966-11-29 Stevens & Co Inc J P Textile material
US3291897A (en) * 1963-01-12 1966-12-13 Bramley Anthony Electrically conducting rope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508852A (en) * 1948-04-26 1950-05-23 Blumfield Joseph Tufted, hooked, and woven fabric
US3099066A (en) * 1960-09-30 1963-07-30 Metal Film Company Inc Metallized synthetic spun yarn
US3291897A (en) * 1963-01-12 1966-12-13 Bramley Anthony Electrically conducting rope
US3288175A (en) * 1964-10-22 1966-11-29 Stevens & Co Inc J P Textile material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Webber; Metal Fibers, Modern Textile Magazine, Vol. 47, May 1966, pp. 72 75 57 139 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771596A (en) * 1970-04-20 1988-09-20 Brunswick Corporation Method of making fiber composite
US3839135A (en) * 1970-11-27 1974-10-01 Dow Badische Co Antistatic laminate filament and fabric prepared therefrom
US3900624A (en) * 1971-10-06 1975-08-19 Walter G Schare Static charge resistant synthetic yarns
US3955022A (en) * 1972-10-16 1976-05-04 E. I. Du Pont De Nemours And Company Antistatic tufted carpet
US3846968A (en) * 1973-06-11 1974-11-12 Bigelow Sanford Inc Yarn structure and method for producing same
USRE31376E (en) * 1973-06-11 1983-09-13 Bigelow-Sanford, Inc. Yarn structure and method for producing same
DE2337978A1 (en) * 1973-07-26 1975-02-06 Nippon Seisen Co Ltd Antistatic yarn - includes metal fibres of polygonal section with sharp corners
US4064305A (en) * 1975-05-13 1977-12-20 Barracudaverken Ab Knitted camouflage material
US4154881A (en) * 1976-09-21 1979-05-15 Teijin Limited Antistatic composite yarn and carpet
US4369622A (en) * 1980-03-24 1983-01-25 Riegel Textile Corporation Method and apparatus for drawing and blending textile materials
US4420529A (en) * 1980-08-22 1983-12-13 Scapa Dryers, Inc. Anti-static dryer fabrics
US4448838A (en) * 1981-09-04 1984-05-15 Lear Fan Corp. Graphite fiber reinforced laminate structure capable of withstanding lightning strikes
US4431316A (en) * 1982-07-01 1984-02-14 Tioxide Group Plc Metal fiber-containing textile materials and their use in containers to prevent voltage build up
US4519201A (en) * 1982-09-08 1985-05-28 Toon John J Process for blending fibers and textiles obtained from the fiber blends
US4450498A (en) * 1982-09-15 1984-05-22 Coral Industrial Sales Co. Electrically grounded, static absorbing drapery installation
US4532724A (en) * 1983-05-02 1985-08-06 Midori Anzen Industry Co., Ltd. Antistatic footwear
US4724184A (en) * 1986-10-15 1988-02-09 Kimberly-Clark Corporation Elastomeric polyether block amide nonwoven web
US4820572A (en) * 1986-10-15 1989-04-11 Kimberly-Clark Corporation Composite elastomeric polyether block amide nonwoven web
US4923742A (en) * 1986-10-15 1990-05-08 Kimberly-Clark Corporation Elastomeric polyether block amide nonwoven web
US4870535A (en) * 1987-11-16 1989-09-26 Tokyo Sen-I Kogyo Co., Ltd. Antistatic hose
US5213865A (en) * 1988-07-02 1993-05-25 Daiwa Co., Ltd. Antistatic mat
US5679449A (en) * 1993-10-21 1997-10-21 Linq Industrial Fabrics, Inc. Low discharge anti-incendiary flexible intermediate bulk container
US5690014A (en) * 1994-05-20 1997-11-25 Larkin; William J. Small diameter ionizing cord for removing static charge
US5478154A (en) * 1994-06-01 1995-12-26 Linq Industrial Fabrics, Inc. Quasi-conductive anti-incendiary flexible intermediate bulk container
US5881547A (en) * 1998-05-28 1999-03-16 China Textile Institute Conducting yarn
WO2000075406A1 (en) * 1999-06-03 2000-12-14 Solutia Inc. Antistatic yarn, fabric, carpet and fiber blend formed from conductive or quasi-conductive staple fiber
US6750164B2 (en) * 2000-05-15 2004-06-15 William J. Larkin Ionizing wiper
US20070087149A1 (en) * 2000-10-25 2007-04-19 Trevor Arthurs Anti-static woven flexible bulk container
US7115311B2 (en) 2000-10-25 2006-10-03 Central Products Company Anti-static woven flexible bulk container
US20040086673A1 (en) * 2000-10-25 2004-05-06 Trevor Arthurs Anti-static woven flexible bulk container
US20070281569A1 (en) * 2006-06-05 2007-12-06 Ming Lai Wu Thermally Insulated and Moisture-Repellent Textile Structure
GB2507981A (en) * 2012-05-29 2014-05-21 Shandong Lalela Wool Spinning Co Ltd A textile product with yarn comprising metal filaments
GB2507981B (en) * 2012-05-29 2019-11-20 Shandong Lalela Wool Spinning Co Ltd A textile product of mixed metal filament yarn
CN102839460A (en) * 2012-09-07 2012-12-26 湖南明星麻业股份有限公司 Stainless steel metal fiber and ramie fiber long yarn blended yarn and production method thereof
US10455675B2 (en) 2013-12-20 2019-10-22 3M Innovative Properties Company Articles for eliminating static electricity and methods for their use
WO2016061112A1 (en) * 2014-10-14 2016-04-21 Coolcore Llc Hybrid yarns, methods of making hybrid yarns and fabrics made of hybrid yarns
CN107109715A (en) * 2014-10-14 2017-08-29 Coolcore有限责任公司 Mixed fiber yarn, the method for manufacturing mixed fiber yarn and the fabric being made up of mixed fiber yarn
CN104433702A (en) * 2014-11-17 2015-03-25 苏州迈瑞迪工程材料有限公司 Dampproof aluminum alloy ground mat
US20200069250A1 (en) * 2017-03-10 2020-03-05 Myant Inc. Method of forming a three-dimensional conductive knit patch
CN110468482A (en) * 2019-09-05 2019-11-19 义乌市申凯线业有限公司 A kind of dacron polyester sewing thread and its production method

Also Published As

Publication number Publication date
JPS5237099B1 (en) 1977-09-20
FR2092190A5 (en) 1971-01-21
JPS5940931B1 (en) 1984-10-03
NL7009906A (en) 1971-10-22
BE750896A (en) 1970-11-03
JPS5120618B1 (en) 1976-06-26
DE2023128C3 (en) 1980-01-31
NL171288C (en) 1983-03-01
GB1303902A (en) 1973-01-24
NL171288B (en) 1982-10-01
DE2023128A1 (en) 1971-11-11
CA919767A (en) 1973-01-23
DE2023128B2 (en) 1978-06-29

Similar Documents

Publication Publication Date Title
US3678675A (en) Antistatic fabric
US4771596A (en) Method of making fiber composite
US3987613A (en) Process for preparing textiles without static charge accumulation and resulting product
US3317366A (en) Woven polyester carpet backing and tufted carpet incorporating the same
US3852948A (en) Yarns, tows, and fibers having differential shrinkability
US3582444A (en) Self-extinguishing and static charge resistant pile fabric
US2991537A (en) Method of making felt-like fabric
US4045605A (en) Carpeting having stiff fibers
US4756941A (en) Method and materials for manufacture of anti-static carpet and backing
US2991536A (en) Felted fabric and process for producing
US4643931A (en) Method and materials for manufacture of anti-static carpet having tufts containing electroconductive carbonized filaments or fibers
US2754578A (en) Pile fabric and method of making same
Ruppenicker et al. Comparison of cotton/polyester core and staple blend yarns and fabrics
US3295308A (en) Multifilament polyolefin carpets of non-regular cross-section and method of manufacture
EP0359881B1 (en) A method of stabilising pile yarns of tufted, woven or knitted pile products
Baird et al. Felting shrinkage of plain-knitted wool fabrics: its dependence upon fabric structure and shrinkproofing level
US3706195A (en) Synthetic yarns
US2706845A (en) Process for treating textiles
US2388140A (en) Composite yarn and fabric
US3461024A (en) Fabric floor surface and floor covering
US6030685A (en) Carpet and yarns therefor
US3900623A (en) Carpets and rugs
US3910026A (en) Acrylic fiber product having animal hairy hand
US3470836A (en) Yarn of reduced liveliness and pile carpet thereof
US2143574A (en) Yarn and fabric

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: BRUNSWICK CORPORATION

Free format text: TO CORRECT S.N. ERRONEOUSLY STATED AS 29,882 AT REEL 2617 FRAME 070 RECORDED JUNE 11, 1970.;ASSIGNOR:KLEIN, WILLIAM G.;REEL/FRAME:005041/0616

Effective date: 19700404

AS Assignment

Owner name: BRUNSWICK CORPORATION

Free format text: RE-RECORD OF INSTRUMENT PREVIOUSLY RECORDED JUNE 11, 1970 AT REEL 2617 FRAME 070 TO CORRECT SERIAL NUMBER 29,822 ERRONEOUSLY STATED AS S.N. 29,882;ASSIGNOR:KLEIN, WILLIAM G.;REEL/FRAME:005037/0537

Effective date: 19870404