US3697574A - Boron derivatives of high molecular weight mannich condensation products - Google Patents

Boron derivatives of high molecular weight mannich condensation products Download PDF

Info

Publication number
US3697574A
US3697574A US816079A US3697574DA US3697574A US 3697574 A US3697574 A US 3697574A US 816079 A US816079 A US 816079A US 3697574D A US3697574D A US 3697574DA US 3697574 A US3697574 A US 3697574A
Authority
US
United States
Prior art keywords
boron
oil
molecular weight
percent
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US816079A
Inventor
Edmund J Piasek
Robert E Karll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Application granted granted Critical
Publication of US3697574A publication Critical patent/US3697574A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/16Reaction products obtained by Mannich reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C275/14Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton being further substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/064Thiourea type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • ABSTRACT High molecular weight Mannich condensation products of (1) high molecular weight alkyl-substituted hydroxyaromatic compounds whose alkyl substituent has upward from 40 to 20,000 carbon atoms, (2) an amine which contains an HN group and (3) an aldehyde in the respective reactant molar ratio of 1:0.1-10:1.0-10 condensed with a boron compound are novel dispersant-detergent lubricant oil addition agents. Solutions of those addition agents in lubricant oil are novel and unique compositions affording anti-sludge and varnish deposition and corrosion inhibition.
  • crankcase lubricating oils a mixture of hydrocarbons derived from petroleum. There is a limit to which those hydrocarbon oils per se can be improved, e.g.
  • Crankcase oils are formulated (dissolving of addition agents in highly refined hydrocarbon lubricating oils) not only to reduce thermal decomposition of oil solvent and addition agent solutes but also to keep in suspension (as a dispersant) or to resuspend (as a detergent) insoluble combustion and thermal degradation products as well as neutralize acidic products.
  • Neutral and over-based metallo-organic compounds such as the alkaline earth metal salts of sulfonic acids and hydrocarbon-P 8 reaction products were first used as dispersant-detergent addition agents.
  • the present invention is directed to boron-containing derivatives of high molecular weight Mannich condensation products derived from high molecular weight alkylated hydroxyaromatic compounds.
  • Mannich condensation products derived from alkyl-substituted hydroxyaromatic compounds having relatively low molecular weight alkyl substituents, i.e. four to 20 carbon atoms in the alkyl hydrocarbon substituent and chlorinated wax (straight chain) type alkyl-substituents are known from prior U.S. Pats. such as No. 2,403,453, No. 2,353,491, No. 2,459,112, No. 2,984,550 and No. 3,036,003.
  • boron-containing derivatives of those prior Mannich condensation products have not been disclosed for any lubricant oil use perhaps because those prior Mannich condensation products per se are not particularly suitable as sole dispersantdetergent addition agents for crankcase lubricants.
  • Mannich condensation products closest to those from which the boron-containing derivatives of the present invention are derived are those Mannich condensation products illustrated below.
  • One type of prior Mannich condensation product is that derived from the reaction of a low molecular weight alkyl phenol, an N, N-disubstituted amine and formaldehyde according to the following equation:
  • R is a C to C alkyl group or chlorinated wax (straight chain) alkyl group and R is an alkyl and/or aryl radical.
  • a second type of prior Mannich condensation product is obtained by C to C alkyl phenols, formaldehyde and a diamine or diamino arene in the ratio of two moles of said alkyl phenol and two moles formaldehyde for each mole of diamine of the formula H N- R-NI-I where R is a divalent alkylene or arylene hydrocarbon.
  • Such condensation products have been illustrated in the prior art by the following structural formula:
  • Mannich condensation products of the prior art are prepared by reacting the alkyl phenol, lower aliphatic aldehyde (such as formaldehyde, paraformaldehyde and acetaldehyde) and amine, diaminoalkane, diaminoarene or alkylene polyamine at 100 to 350 F. in the absence or presence of a solvent.
  • lower aliphatic aldehyde such as formaldehyde, paraformaldehyde and acetaldehyde
  • amine diaminoalkane
  • diaminoarene or alkylene polyamine at 100 to 350 F.
  • benzene, toluene, xylene and others easily removed from the condensation product are useful as are light mineral oil such as those used in blending stocks to prepare lubricant oil formulations as well as mixtures of these two types of solvents.
  • the condensation reaction is conducted at least in part at a temperature sufficiently high, at least during the last part of the process, to drive off by-product either as water, as such, or as an azeotropic mixture with the aromatic solvent.
  • novel boron-containing derivatives of high molecular weight Mannich condensation products can be prepared from reactants (1) an alkyl-substituted hydroxyaromatic (phenolic) compounds having upward from 40 to about 20,000 carbon atoms in the alkyl substituent, (2) a compound having an active hydrogen on a nitrogen, i.e. having an and (3) an aldehyde by reacting or condensing a boron compound, e.g. boric acids and boric acid esters with the high molecular weight Mannich condensation products to provide a boron to nitrogen (B/N) weight ratio of 0.1 to. 4.0.
  • a boron compound e.g. boric acids and boric acid esters
  • lubricating oil solutions of those boron-containing high molecular weight Mannich condensation products having 0.1 to weight percent of such boron-containing additives as solutes are novel compositions that provide or can be used to provide improved lubricant compositions having highly efficient dispersant-detergent properties and antioxidant properties.
  • the high molecular weight Mannich condensation products of this invention can be made by using the above-named reactants in the respective molar ratio suitable of l:0.ll0:l.0l0 and desirably l:0.7l.0:l.0 5-2.1.
  • the technique for preparing such high molecular weight condensation products is, in general, the same as that before described to prepare the prior art low molecular weight Mannich condensation products. But for Mannich products having more than one molar equivalent of methylene or substituted methylene bridge (from the aldehyde reactant) joining hydroxyalkylphenyl to amino nitrogen, a two condensation step preparative method can be advantageously used.
  • the two Mannich condensation step route is advantageous for use of reactants (l), (2) and (3) above in the respective molar ratio of l.0:0.7-l.0:l .052.l when the amine reactant contains two primary amino (-Nl-l radicals.
  • Such a two Mannich step condensation reaction product is a mixture of head-to-tail and tail-to-tail type of bis-Mannich condensation products hereafter illustrated in simplified form rather than a more complex mixture of condensation products as would likely result from a one step Mannich reaction using the same three reactants in the same'reactant molar ratio
  • Analytical inspection of such mixture of head-to-tail and tail-to-tail condensation products tends to exclude methylene group bridging between nitrogen of secondary-amino groups and aromatic nuclear carbons especially when the amine reactant is a polyalkylene polyamine having three or more nitrogens as in diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine and the like polyamines.
  • the general Mannich condensation preparative technique of adding all of the formaldehyde yielding reactant to the mixture of high molecular weight alkyl phenol and polyamine reactant under Mannich reaction conditions produces from the respective molar ratio of those reactants (l), (2) and (3) of 1107-1215 -2.l, highly useful products substantially equivalent in nitrogen utilization, viscosity and in service performance to the products from the above described two Mannich condensation step process.
  • the boron-containing derivatives of any of the foregoing high molecular weight Mannich condensation products are the products of this invention and, as before stated, are highly useful as lubricating oil addition agents. These boron-containing derivatives that a B/N ratio of 0.1 to 4.0 and can be made by condensation or reaction compound of 1) those high molecular weight Mannich condensation products and (2) a boron compound reactive and/or coordinatable with a polar group such as an hydroxy group and/or a nitrogen-containing group present in the Mannich condensation products.
  • Boron compounds having that property of reaction and/or coordination include boron oxide, boron oxide hydrate, boron trifluoride, boron tribromide, boron trichloride, HBF boron acids such as boronic acid (e.g., alkylB(OH) or aryl--B(OH) boric acid (i.e. H 80 tetraboric acid (i.e., H B 0 metaboric acid (i.e., H80 amides of such boron acids, and esters of such boron acids.
  • boronic acid e.g., alkylB(OH) or aryl--B(OH) boric acid
  • H 80 tetraboric acid i.e., H B 0 metaboric acid (i.e., H80 amides of such boron acids, and esters of such boron acids.
  • the boron-containing derivatives of the high molecular weight Mannich condensation products of this invention are exceptionally useful addition agents for lubricating oil imparting thereto dispersant-detergent and antioxidant properties at relatively low concentrations of the addition agents, e.g. 0.1 to 10 weight percent in formulated crankcase lubricating oils. Higher concentrations of those addition agents, e.g. upward from 10 and up to 70 weight percent are useful concentrates for the preparation of those formulated crankcase lubricating oils and the fortification of used crankcase oil prior to scheduled complete drain.
  • Such ratings are determined on a 0-50 scale where a rating of 50 for each of sludge and varnish means a clean engine free from detectable sludge and varnish.
  • the boron-containing prior art Mannich condensation products used in crankcase lubricating oils as the sole source of dispersant-detergent addition agent at the maximum concentration levels at which they can be incorporated in lubricating oil cannot provide acceptable sludge or varnish ratings when used in such a standardized engine test.
  • the present inventive boron-containing Mannich condensation products when used as the sole dispersant-detergent addition agent in lubricating oils suitably in the range of 0.1 to 10 and preferably 0.5 to 5.0, weight percent provide crankcase lubricating oils that in the same standardized engine tests give sludge and varnish ratings of 40 and higher, e.g. in the range of 45 to 50.
  • Representative high molecular weight Mannich condensation products used to prepare the inventive boron-containing products can be prepared from the following representative reactants of the classes before defined.
  • substituted cresols, thymol, carvacrol, hydroxy xylenes, naphthols and the like with C to Czomo alkyl-substituents can be used.
  • the C to Czomo substituted alkyl-substituted phenols are preferred.
  • the C and higher high molecular weight alkyl-substituted phenols preferably are derived from the appropriate polypropylenes, polybutenes (polymers of lbutene, 2-butene, isobutylene and mixtures thereof) copolymers of propylene with monomers copolymerizable therewith or copolymers of butenes (butene-l, butene-2 and isobutylene) with monomers copolymerizable therewith wherein the copolymer molecule contains at least 90 percent, i.e. 90 to 100 percent, propylene or butene units.
  • Said monomers copolymerizable with propylene or said butenes need not be hydrocarbon monomers for they can contain polar groups such as chloro, bromo, keto, ethereal, aldehydo and other polar groups. can also containnonaliphatic groups such as from styrene, a-methyl styrene,a, p-dimethyl styrene, divinyl benzene and the like. From the foregoing limitation placed on the propylene and butylene units (90 to 100 percent of those units) the. comonomers copolymerized .with propylene or said butenes, provide from to percent of the units in the copolymer. Said polymers and copolymers of propylene and butenes are thus substantially aliphatic hydrocarbon polymers. The resulting alkylated phenols are C and higher carbon content substantially alkyl hydrocarbon substituted phenols.
  • the high molecular weightalkyl-substituted phenol reactants are those whose alkyl-substituent has a molecular weight in the range of 600 to 3,000 and more preferably in the rang of 800 to 2,500.
  • the polypropyl and polybutyl'phenols having 100 percent propyl or butyl units in the polypropyl or polybutyl-substituent are preferred.
  • grou CONTAINING REACTANTS Representative of this class of reactants are those amine reactants having at least one active hydrogen atom on a nitrogenatom known as useful amine reactants for the preparation of the prior art Mannich products. Such containing reactants can contain only primary amino groups, only secondary amino groups or both primary and secondary amino groups. Monoand di-alkyl amines suitable for use in the preparation of Mannich condensation products are well known.
  • amine reactants include the diamino alkanes, and such diamino arenes as 0-, mand p-phenylene diamine and diaminonaphthalenes and di(ar'nino alkyl) substituted nitrogen-heterocyclic amines as the N,N- di(amino methyl), di(amino ethyl) and di(amino propyl) piperazines.
  • the polyalkylene polyamines of theformula wherein A is a divalent hydrocarbon radical having two to eight carbons and x is an integer from 1 to 10 are quite useful because of the alkalivity provided by the secondary amino radicals in the chain.
  • the divalent radical A is preferably an ethylene or propylene radical although it can desirably be a phenylene radical.
  • Other useful representative amine reactants are disclosed in prior art relating to prior Mannich product preparation from C to C alkyl-sbustitued phenols and reference can be made to prior art disclosures for additional amine reactants having at least one HN radical.
  • Suitable alkylene polyamine reactants include ethylendiamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene hepta-amine, heptaethylene octamine, octaethylene nonamine, nonaethylene decamine and decaethylene undecamine and mixtures of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H N-(A- NH-) H, mentioned before, A is divalent ethylene and x is 3 to 10 of the foregoing formula.
  • Corresponding propylene polyamines such as propylene diamine and di-, tri-, tetra-, penta-propylene tri-, tetra-, penta propylene tri-, tetra-, and hexa-, heptaand octaamines are also suitable reactants.
  • the alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes.
  • dichloro alkanes such as dichloro alkanes.
  • the alkylene polyamines obtained from the reaction of 2 to l 1 moles of ammonia with l to 10 moles of dichloro alkanes having two to eight carbon atoms and the chlorines on different carbons.
  • a condensation product can have the formula:
  • x is 1-10 and A are as above defined and 2 in oxygen or sulfur.
  • aldehyde reactants include the aldehyde reactants disclosed in the prior art concerned with the preparation of Mannich condensation products from C to C alkyl-substituted phenols. For specific classes of such aldehydes and specific members of those classes reference can be made to such prior art disclosures.
  • the aldehyde preferred is formaldehyde and formaldehyde affording compounds such as formalin, paraformaldehyde and trioxymethylene.
  • the present invention is not predicated on the fact that the C and above alkyl substituents in the boroncontaining derivatives of the Mannich condensation products make them more oil-soluble than the C to C type-prior art Mannich condensation products. But rather invention is predicated on the fact that those higher molecular weight, C4 to C alkyl substituents make the high molecular weight boron-containing derivatives of the Mannich condensation products superior dispersant-detergent addition agents.
  • the products of this invention are ultimately for use in preparing lubricant oil formulations, it is advantageous to use light mineral oil, e.g. from white mineral oils to solvent extracted SAE 10 grade oils, as the reaction solvent.
  • the high molecular weight Mannich condensation products of this invention are then obtained as solutes in concentrations of 40 to 70 weight percent in said mineral oil solvents. This is readily accomplished by using oil solutions of the C and higher carbon content alkyl-substituted phenol reactant dissolved in light mineral oil of from white mineral oil to SAE l grade oil.
  • the examples which follow illustrate the preparation of products of this invention.
  • Mannich condensation products obtained from the two step condensation are products that are likely mixtures of tail-to-tail, tail-tohead coupling.
  • the following formulas are illustrative of such couplings in simple single but predominant products of the Mannich condensation:
  • inventive boroncontaining derivatives of compounds of Formulas I, II, III and IV are believed to have the respective moieties from boric acid, boron oxide, boron halides and esters of boron acids as a stable complex with the amino nitrogens (sometimes referred to as boroncoordinate complexes). These boron-containing derivatives are more properly boron compound interaction products for the reasons hereinafter appearing.
  • boron halides such as boron trifluoride, boron triiodide and boron trichloride can form a interaction product with phenolic hydroxy groups, i.e. hydroxy group substituents on a benzene ring.
  • .ganic acids, inorganic acids or hydrocarbons complexed with boron halides can be used as convenient means for introducing the boron compound as a reactant into the oil solutions of the high molecular weight Mannich products to prepare the boron-containing products of this invention.
  • DMF dimethyl formamide
  • the boron reactant when introduced as a boronic acid can be methylboronic acid, phenylboronic acid, cyclohexylboronic acid, p-octyl-phenylboronic acid,
  • decylboronic acid and the like decylboronic acid and the like.
  • the boron reactant when introduced as an ester of boric acid can be monodiand tri-esters derived by a means well known to the chemist by reacting one mole boric acid or tetraboric acid with such hydroxy compounds as alkanols, alkylene diols, cycloalkanols and the like.
  • These esters of boric acids can be used to replace boric acid reactant illustrated in the examples hereinbefore set forth.
  • the boron reactant can form an interaction product with any or all of the polar groups, the phenol- IL MQPBLlh999913y ami and Primary amino groups present in compounds having structural formulas I, II, III and IV hereinbefore set forth, it is not known with certainty which of the polar groups are involved in the formation of the interaction product but it is believed that it is the amino groups with which boric acid forms the stable interaction product. It is not essential for the purposes of this invention for the boron compound reactant to form an interaction product with one or more particular polar group present as long as a stable boron compound interaction product forms.
  • stable boron compound interaction product is meant one that can be heated at least to 300-350 F. and filtered at 300-350 F.
  • B/N ratios weight ratio of boron to nitrogen
  • B/N ratios weight ratio of boron to nitrogen
  • Such stable boron interaction products when used in lubricant oil formulations provide better anticorrosion and/or anti-wear protection and dispersancydetergency than boron-containing derivatives of prior Mannich products especially when alkaline earth metal salts of alkylbenzenes sulfonic acids, e.g. calcium or magnesium salts of C to C alkyl-substituted benzene sulfonic acids, are also employed as addition agents.
  • EXAMPLE 1 There are combined 1,000 grams of a SAE oil solution having35 percent NAMW 892 polypropyl phenols (alkyl group from polypropylene) by weight-(0.392 mole alkyl phenol) and 0.392 mole tetraethylene pentamine (TEPA). This mixture is stirred and heated to 210 F. and 32 milliliters formaldehyde (0.392 mole) are added slowly permitting the temperature of the reaction mixture to increase to about 240 F. The resulting mixture is heated to 340 F. and nitrogen is in-. jected at 1.0 CFl-l for 90 minutes. The finaltemperature is 320 F. This mixture is stirred and cooled to 180 F. and an additional 32 milliliters formaldehyde are .added increasing the reaction temperature to 200 F.
  • SAE oil solution having35 percent NAMW 892 polypropyl phenols (alkyl group from polypropylene) by weight-(0.392 mole alkyl phenol) and 0.392 mole te
  • EXAMPLE2 There are combined, stirred and heated to 180 F. 0.482 mole TEPA and 2,500 gramsof 33 percent by weight 1713 NAMW polybutyl phenol in solvent extracted SAE 5W oil to provide 0.482 mole of said polybutyl phenol. Then 0.482 mole CH O is added and the liquid mixture is stirred and heated to 340 F. and held at thattemperature for 105 minutes while injecting nitrogen at 2 CFH. Thereafter the liquid reaction mixture is coo1ed.to'l80 F., an additional 0.482 mole formaldehyde is added and the resulting liquid is stirred and heated to 340 F. while 2 CFl-l nitrogen is injected for 5 hours. The resulting liquid is filtered at 300 F.
  • EXAMPLE 3 There are combined, stirred and heated to F. 334 grams of 33 weight percent 1,900 NAMW (0.058 mole) alkyl phenol in SAE 5W oil and 0.058 mole of a boric acid derivative of TEPA (0.2 BIN). Then 0.058 mole C11 0 is added, the mixture is heated to 200 F. and .an additional 0.058 mole CH,O is added 45 minutes after the first addition. The mixture is stirred and heated to 270F., held at 270F. for 2 hours with 1.5 CFH nitrogen injection. The liquid product is filtered at 270 F.
  • EXAMPLE 4 There are combined 0.217 mole TEPA and 1250 grams of 33 weight percent 1900 NAMW polybutyl phenol dissolved in SAE 5 oil to provide 0.217 mole of that alkyl phenol and the mixture is stirred and heated to 120F. The first 0.217 mole CH O is added at 120 F nitrogen is injected at 2 CFH for 30 minutes, the mixture is heated to and held at 220 F. for 105 minutes, then cooled to 200 F. at which temperature the second addition of 0.217 mole CH O is made and the reaction temperature is raised to 220 F. and there held for 2 hours. Thereafter. 16 grams boric acid dissolved in 25 grams water is added at 200F. by means of a dropping funnel. Then the reaction temperature is increased to 300 F. and held there for90 minutes with 2 CFH nitrogen injection. The liquid product is filtered. The clear bright filtrate is found, by analysis, to contain 0.16 percent boron and 1.07 percent nitrogen by weight.
  • EXAMPLE 5 There are combined, stirred and heated to F. 0.05 8 mole diethylene triamine and 306 grams of a 38 percent solution of 2,000 NAMW polybutyl phenol (0.058 mole) in white oil. A first addition of 0.058
  • EXAMPLE 6 By substituting 0.058 mole bis-carbamide derived from DETA and urea (2 moles of BETA and 1 mole urea) in the foregoing reaction, a liquid product of 1.3 to 1.5 percent nitrogen by weight may be obtained. Boration of the foregoing Mannich product to a B/N ratio of 3.0 can be accomplished with boric acid dissolved in DMF reacted at 320 F. for 30 minutes followed by nitrogen injection until no further water comes off.
  • EXAMPLE 7 There are combined, stirred and heated to 140 F. while injecting 2 CFH nitrogen, 0.48 mole TEPA and 2,500 grams of solution containing 33 percent by weight 1713 NAMW polybutyl phenol in SAE 5W oil. The first addition of 0.48 mole formaldehyde is made and the liquid mixture is heated to 220 F. while stirring and nitrogen injection is continued for 105 minutes. The liquid reaction mixture is cooled to 200 F., the second addition of 0.48 mole formaldehyde is made and the liquid mixture is heated to 220 F. with continued stirring and nitrogen injection for 105 minutes. Thereafter a solution of 32 grams boric acid in 76 grams water heated to 210 F. is added dropwise to the stirred liquid reaction product still at 220 F.
  • reaction temperature is increased to 300 F. and held at 300 F. for 90 minutes with continued stirring and nitrogen injection.
  • the resulting oil solution of borated reaction product is filtered at 300 F.
  • the filtrate is a clear, bright liquid and by analysis is found to contain 0.17 percent boron and 1.05 percent nitrogen, both by weight.
  • the weight ratio B/N in said product is 0.16.
  • EXAMPLE 8 There are combined, stirred and heated to 140 F. with nitrogen injection at 1.5 CFH, a solution of 33 per-, cent polybutyl phenol of 1713 NAMW (0.159 mole) in SAE 5W oil and 0.159 mole TEPA. The first addition of 0. 1 59 mole formaldehyde is made, the reaction temperature is increased to 320 F. and held there for 90 minutes with continued stirring and nitrogen injection. The reaction mixture is cooled to 160 F. and the second addition of 0.159 mole formaldehyde is made and 1 1.5 grams boric acid crystals are also added. This mixture is stirred and heated to 300 F. under a nitrogen atmosphere and held at 300 F. until no solid boric acid can be seen.
  • reaction product is found by analysis to have 1.1 1 percent nitrogen and 0.18 percent boron, both by weight.
  • solute reaction product has a B/N, weight ratio of 0.16.
  • EXAMPLE 9 There are combined, stirred and heated to 140 F., 2700 grams of solution of 1713 NAMW polybutyl phenol (0.58 mole) in SAE 5W oil and 0.58 mole TEPA. At 140 F. the first addition of 0.58 mole formaldehyde is made and the mixture is stirred and heated to 200 F. while injecting nitrogen at 1.0 CFH for 30 minutes and then the second 0.58 mole formaldehyde addition is made at 200 F. with no nitrogen injection. This mixture is heated to 260 F. with nitrogen injection and stirred for 3 hours at 260 F. Thereafter a slurry of 63 grams boric acid in 50 grams SAE 5W oil is added with no nitrogen injection but while stirring the resulting mixture under a nitrogen blanket atmosphere.
  • the oil solution-boric acid slurry is stirred and heated to 300 F. and held at 290 to 300 F. for 60 minutes while injecting nitrogen at 1.0 CFl-l.
  • the resulting SAE 5 W oil solution of reaction product is filtered at 320 F.
  • the filtrate is found by analysis to contain 0.16 percent boron and 1.12 percent nitrogen (B/N weight ratio of 0.14) and has a 210 F. viscosity of 1,700 SSU.
  • EXAMPLE 10 i The process of Example 9 is repeated using 2,990 grams of 37.2 percent by weight 1,900 NAMW polybutyl phenol (0.58 mole), 0.58 mole TEPA, two additions of 0.58 mole each of formaldehyde, and 43 grams boric acid slurried in 50 grams SAE 5W oil.
  • the filtrate has a 210F. viscosity of 1,766 SSU and is found by analysis to contain 0.08 percent boron and 1 percent nitrogen with weight ratio of B/N of 0.08.
  • EXAMPLE 1 1 The process of Example 10 is repeated using 2,255 gallons of 46 percent by weight 1,750 NAMW pol ybutyl phenol (4.32 pound moles), 376 gallons SAE 5W oil, 98 gallons (4.42 pound moles) TEPA, two additions of 350 pounds formalin (37 percent CH O) to provide 4.32 pound moles formaldehyde at eachaddition, 200 pounds boric acid slurried in 100 gallons SAE 5W oil at 250 F., and 50 gallons SAE 5W oil at 250 F. to wash boric acid slurry transler line into the reactor.
  • the filtrate obtained from such a process typically has a 210 F.
  • Example 2 An amount of the product of Example 2 containing 0.56 grams of the disubstituted amine shown is added to a measured volume of crankcase lubricant oil form ulation which had been used in a Lincoln Sequence V Engine Test for 384 hours (twice the time of the standard test time). This composition is heated and stirred at 300 F. for 16 hours and an aliquot of it is transferred to blotting paper. A control is made at the same time by stirring and heating at 300 F. for 16 hours an equal volume of used oil from the 394 hour Lincoln Sequence V Engine Test and depositing an aliquot on blotting paper. The deposits on the blotting paper are measured to obtain the average diameter of the outer oil ring (Do) and the average diameter of the inner sludge ring (Ds). The ratio of Ds/Do is an indication of the detergent-dispersant property of the addition agent. These ratios and the sludge settling tests are shown in TABLE 1.
  • a high molecular weight Mannich condensation product is prepared by the one step process using high molecular weight polybutyl substituted (polybutyl group has anaverage of 60 carbons) phenol (916.
  • NAMW dissolved in SAE 5W oil, 0.9 mole tetraethylene pentamine and 1.8 mole formaldehyde for a respective molar ratio of reactants of 1:0.5:1.
  • the dry product contains 82 percent high molecular weight Mannich condensation product (2,000 NAMW) in the solvent oil.
  • This product is borated in the following manner. For each 250 grams of product (82 percent of 2000 NAMW Mannich condensation product) there is added 250 grams of SAE 5W oil and 19 grams boric acid. The mixture is stirred, heated slowly to and held at 300 F. for 7 hours while injecting nitrogen to remove by-product water. The dried product is filtered to remove unreacted boric acid using Celite filter-aid; The filtrate is a clear solution containing 0.23 percent' boron.
  • EXAMPLE 13 There are combined, stirred and heated to 160 F., 2,000 grams" of SAE 5 oil solution of (45.9 percent) polybutyl-substituted phenol of 1600 NAMW to provide 0.716 mole of that substituted phenol, 94 grams (0.495 mole) tetraethylene pentamine and 420 grams of SAE 5W oil. Then one drop of liquid silicon antifoam agent and 100 milliliters of formalin (37 percent CH O) to provide 1.318 moles formaldehyde are added at one time to the hot stirred mixture. After the temperature'increase from the reaction of the added formaldehyde has occurred, the temperature of the stirred solution of reaction product is increased to 300 F. and nitrogen is injected into stirred and heated solution.
  • SAE 5 oil solution of (45.9 percent) polybutyl-substituted phenol of 1600 NAMW to provide 0.716 mole of that substituted phenol, 94 grams (0.495 mole) tetraethylene pentamine and
  • the solution contains about 42 percent by weight of high molecular weight Mannich condensation product, a nitrogen content of 1.02 percent and a viscosity of 1013 SSU at 210 F.
  • the reactants polybu; tyl-substituted phenol, amine and formaldehyde are used in the respective molar ratio of 1:069: l .835.
  • oil solution having 1.07 percent nitrogen and of the high molecular weight Mannich condensation product as solute in the 42 percent concentration is borated with boric acid to a boron content of 0.1 percent.
  • This boric acid borated derivative is used in a crankcase lubricant oil formulation at a 4.5 volume percent concentration (about 2 weight percent of condensation product) with either 2.0 volume percent of 300 total basenumber (TBN) calcium sulfonate or 1.0- volume percent 300 TBN magnesium sulfonate and 1.0 volume percent of the solution of zinc dialkyl dithiophosphate anti-wear and anti-corrosion agent (hereafter more specifically defined).
  • TBN total basenumber
  • crankcase lubricant oil formulations (one with 300 TBN Ca-sulfonate and the other with 300 TBN Mg-sulfonate) when used in the Ford-289 cubic inch displacement Engine Test hereafter described, result in Total Sludge values in the range of 41 to 48 and Total Varnish values in the range of 41 to 43.
  • Similar crankcase lubricant oil formulations the only exception being the use of 3 volume percent of boric acid borated product of the foregoing example having 0.3 percent boron product equivalent high detergency-dispersancy results in the Ford-289 Engine Test (Sludge values of 41 to 48 and Varnish Values of 40 to 43) and provide in the CLR-L38 Engine Test.
  • hydroxyalkyl benzyl sub stituted amine products of this invention used in said tests unlike hydroxyalkyl benzyl substituted amines of the prior art are not used as their calcium, barium, magnesium or other alkaline earth metal or alkali metal salts.
  • the compounds of this invention can function as detergent-dispersant addition agents in lubricant oil compositions in the weight percent range suitably of from 0.1 to 10 percent, desirably in the range of 0.2 to 8.0 percent and preferably in the range of 0.5 to 5 percent.
  • lubricant oil solutions having 10 to 50 percent or more by weight of the novel hydroxyalkyl benzyl substituted polyalkylene amines of this invention including the bis(polyalkylene amine) carbamides and thiocarbamides are useful in the preparation of finished lubricant oil compositions because they can be readily and conveniently combined withconcentrates of other lubricant oil addition agents suchas oil solutions of the alkaline earth metal sulfonates, e.g.
  • the oil solution concentrates having 10 to 50 percent by weight of the novel substituted amine products of this invention can be easily blend mixed with base oils and oil solution concentrates of the aforementioned addition agents having anti-wear, anti-corrosion, viscosity-index improving, anti-foam, etc. properties in transfer line blending, i.e. each concentrate and base oil are charged to a transfer line from sources of supply of each concentrate in therequired proportions so that there flows from the transfer line a completely finished, fully formulated lubricant oil com-' position ready for packaging in quart, gallon, quart, 30 gallon or 55 gallon containers or tank car and/or truck for delivery to the ultimate consumer.
  • Such finished and fully formulated lubricant oil compositions are useful as crankcase lubricants for automobile, truck and railway gasoline and/or diesel engines.
  • the four-hour cycle is reset a total of 48 times (192 hours running time). After each 16 hours of operation the engine is shut down for 8 hours. Two-ounce samples of oil are taken every 30 hours and the oil level is adjusted with fresh oil to a level of five quarts. Added oil is weighed. At the time of the test, the hot oil is drained, weighed and recorded. The engine is then disassembled and the test for deposits of varnish and sludge among other observable results as set out in the table below. Engine components are examined visually and rated on a scale of l to l0, being a perfect reading indicating no sludge or varnish. A rating of 50 for total sludge and for total varnish is considered perfect; a rating of 60 percent or lower is considered passing for screen clogging; and a rating of 50 percent or lower is considered passing for ring plugging.
  • FORD289 ENGINE TEST The Ford 289 cubic inch displacement engine test, hereinafter designated as I -289 Test, is conducted in the same manner as the Lincoln Test Sequence V except for the apparent difference in test engines.
  • This F-289 Test is more severe with respect to both sludge and varnish formulation and deposition.
  • the F-289 Test is conducted with vapors from the crankcase being introduced into the engine fuel intake system by means of a positive crankcase ventilation system which, in part, results in the more severe sludge and varnish formation during test operation.
  • L-38 ENGINE TEST The L-38 Engine Test is also known as CLR L-38 Engine Test and is designed to evaluate high temperature oxidation stability of the formulated lubri cant oil and such evaluation is based on piston varnish deposit and copper-lead bearing corrosion.
  • CLR L-38 Engine Test CLR L-38 Engine Test
  • a single cylinder water cooled Labeco oil test engine is operated at 3150 rpm for 40 hours with the test oil formulation. The oil is maintained at 300 F. and cooling water is maintained at F. Copper-lead connecting rod bearings are weighed before and after the 40 hour test. Bearing weight loss (BWL) of 50 milligrams or less is desired.
  • varnish value is assigned by comparison to varnish deposit pictorial standards having assigned values of l to 10 for the color and extent of varnish deposit.
  • the value 10 represents a clean and varnish free piston and the value 1 represents a substantially complete dark varnish coated piston.
  • the varnish value should be 9.0 and above.
  • the designation ZOP is used to' identify a zinc dialkyldithiophosphate anti-wear anticorrosion addition agent whose alkyl groups are derived from the conjoint reaction of three different alcohols, two of which are primary alcohols such as C and C oxo-derived alcohols and the third is a secondary alcohol such as isopropyl or sec-butyl alcohols, with phosphorus pentasulfide and the total moles of the three alcohols is the stoichiometric amount required to obtain dialkyl dithiophosphoric acid for reaction with zinc or zinc oxide.
  • the Z0? is a statistical mixture of the zinc salts having the three aforementioned alcohol derived alkyl groups.
  • a ZOP product typical of that used is a concentrate zinc dialkyl dithiophosphate in SAE 5W oil having the following typical properties: Solution has 210 F. viscosity of 67 SSU, 5% Zn, 8% P and 16% S, all by weight.
  • An oil soluble boron-containing product comprising a boron-containing derivative of a Mannich condensation product of( l a high molecular weight alkylsubstituted hydroxyaromatic compound whose alkylsubstituent has from 40 to 20,000 carbon atoms, (2) a polyamine of the formula NHz H )1 wherein X is an integer of from 1 to 10 and A is a divalent hydrocarbon to of two to eight carbon atoms and (3) a formaldehyde affording compound in the respective reactant molar ratio of 1.010.
  • ll0.0:l .0-l0.0 condensed with a boron compound selected from the group consisting of boron oxide, boron acids and boron halides, to provide a boron-containing product having a B/N weight ratio of 0. l-4:l .0.
  • the boron-containing product of claim 1 derived from boric acid condensed with the Mannich product derived from a high molecular weight alkyl-substituted phenol whose alkyl substituent has a molecular weight of 6003,000 as reactant l 3.

Abstract

High molecular weight Mannich condensation products of (1) high molecular weight alkyl-substituted hydroxyaromatic compounds whose alkyl substituent has upward from 40 to 20,000 carbon atoms, (2) an amine which contains an AND (3) AN ALDEHYDE IN THE RESPECTIVE REACTANT MOLAR RATIO OF 1: 0.1-10:1.0-10 CONDENSED WITH A BORON COMPOUND ARE NOVEL DISPERSANT-DETERGENT LUBRICANT OIL ADDITION AGENTS. Solutions of those addition agents in lubricant oil are novel and unique compositions affording anti-sludge and varnish deposition and corrosion inhibition.

Description

United States Patent Piasek et al.
[451 Oct. 10,1972
1 1 BORON DERIVATIVES OF HIGH MOLECULAR WEIGHT MANNICH CONDENSATION PRODUCTS [72] Inventors: Edmund J. Piasek, Chicago, 1.;
Robert E. Karll, Munster, Ind.
[73] Assignee: Standard Oil Company, Chicago, Ill.
[22] Filed: April 14,1969 [21] Appl. No.: 816,079
Related US. Application Data [63] Continuation-in-part of Ser. No. 502,368, Oct.
22, 1965, Pat. No, 3,539,633.
Primary Examiner-Leon Zitver Assistant Examiner-L. B. De Crescente Attorney-Arthur G. Gilkes, William T. McClain and Fred R. Ahlers [5 7] ABSTRACT High molecular weight Mannich condensation products of (1) high molecular weight alkyl-substituted hydroxyaromatic compounds whose alkyl substituent has upward from 40 to 20,000 carbon atoms, (2) an amine which contains an HN group and (3) an aldehyde in the respective reactant molar ratio of 1:0.1-10:1.0-10 condensed with a boron compound are novel dispersant-detergent lubricant oil addition agents. Solutions of those addition agents in lubricant oil are novel and unique compositions affording anti-sludge and varnish deposition and corrosion inhibition.
6 Claims, N0 Drawings BORON DERIVATIVES OF HIGH MOLECULAR WEIGHT MANNICH CONDENSATION PRODUCTS RELATED APPLICATIONS This application is a continuation in part of our copending application Ser. No. 502,368, filed Oct. 22, 1965, now US. Pat. No. 3,539,633.
BACKGROUND OF THE INVENTION Present-day automobile and diesel engines have been designed for higher-power output, lower combustion products emission and longer in service periods of use of crankcase lubricating oils. All of these design changes have necessitated devising higher efficiency lubricating oils that will under the increased severity of in service use afford protection against corrosion of and deposition of sludge and varnish on engine parts that otherwise tend to accelerate decrease in both operating efficiency and life of the engine. The principle ingredient of crankcase lubricants is lubricating oil, a mixture of hydrocarbons derived from petroleum. There is a limit to which those hydrocarbon oils per se can be improved, e.g. removal of polymerizable components, acidic or acid forming components, waxes and other low temperature solids formers, and other deleterious components. A lubricant base oil refined even to the optimum still requires certain oil-soluble chemical addition agents to resist oxidation of the oil, deposition of sludge and varnish on metal parts and corrosion of metal parts and to provide added lubricity and regulated viscosity change from low to high temperatures. No one chemical addition agent has been found that provides all those extra functions.
Combustion products from the burning of fuel, lubricating oil and nitrogen of air as well as products of thermal degradation of hydrocarbon lubricating oils and addition agents tend to concentrate in the crankcase oil. Those products of combustion and thermal degradation tend to form oil-insoluble products that either surface coat metal parts (lacquer or varnish like films) or settle out as viscous (sludge) deposits or form solid ash-like or carbonaceous deposits. Any of these deposits can restrict and even plug grooves, channels and holes provided for lubricant flow to moving surfaces requiring lubrication. Crankcase oils are formulated (dissolving of addition agents in highly refined hydrocarbon lubricating oils) not only to reduce thermal decomposition of oil solvent and addition agent solutes but also to keep in suspension (as a dispersant) or to resuspend (as a detergent) insoluble combustion and thermal degradation products as well as neutralize acidic products. Neutral and over-based metallo-organic compounds such as the alkaline earth metal salts of sulfonic acids and hydrocarbon-P 8 reaction products were first used as dispersant-detergent addition agents. Their in service drawbacks were that their combustion and/or thermal degradation products left metal ash solids, they could not efficiently resuspend or disperse lacquer and varnish formers or sludge formers to meet present-day engine requirements and they lost their dispersant-detergent function when their alkaline earth metal component had been consumed by neutralizing acidic products of combustion.
Thus as the periods of in service use of crankcase oils were lengthened, lengthening of periods between oil drains for both automobile engines and railway diesel engines, more efficient dispersancy and detergency performance acid neutralization and a lower ash-forming tendency were needed for chemical addition agents used in lubricating oils. Many researchers have recently expended much effort directed to this problem. One new approach taken by researchers in different laboratories was to devise amine derivatives, e.g. salts, amides, imides and amidines of polycarboxylic acids that would function as dispersant-detergent addition agents. Others devised polymeric compounds having pendent or grafted-on pendent polar groups that provided the dispersant-detergent function. Still others devised for that dispersant-detergent function combinations of alkaline earth metal sulfonates and Mannich condensation products of a low molecular weight alkyl-substituted (C to C hydroxyaromatic compound, an amine having at least one replaceable hydrogen on a nitrogen and an aldehyde or alkaline earth metal salts (phenates) of those Mannich condensation products. Those combinations did not overcome the formation of metal-ash nor were they particularly suitable for the increased dispersancy-detergency service for long drain service of present-day engine requirements even though the combination offered some anti-oxidation activity.
The present invention is directed to boron-containing derivatives of high molecular weight Mannich condensation products derived from high molecular weight alkylated hydroxyaromatic compounds. Mannich condensation products derived from alkyl-substituted hydroxyaromatic compounds having relatively low molecular weight alkyl substituents, i.e. four to 20 carbon atoms in the alkyl hydrocarbon substituent and chlorinated wax (straight chain) type alkyl-substituents are known from prior U.S. Pats. such as No. 2,403,453, No. 2,353,491, No. 2,459,112, No. 2,984,550 and No. 3,036,003. However, boron-containing derivatives of those prior Mannich condensation products have not been disclosed for any lubricant oil use perhaps because those prior Mannich condensation products per se are not particularly suitable as sole dispersantdetergent addition agents for crankcase lubricants.
The Mannich condensation products closest to those from which the boron-containing derivatives of the present invention are derived are those Mannich condensation products illustrated below. One type of prior Mannich condensation product is that derived from the reaction of a low molecular weight alkyl phenol, an N, N-disubstituted amine and formaldehyde according to the following equation:
wherein R is a C to C alkyl group or chlorinated wax (straight chain) alkyl group and R is an alkyl and/or aryl radical.
A second type of prior Mannich condensation product is obtained by C to C alkyl phenols, formaldehyde and a diamine or diamino arene in the ratio of two moles of said alkyl phenol and two moles formaldehyde for each mole of diamine of the formula H N- R-NI-I where R is a divalent alkylene or arylene hydrocarbon. Such condensation products have been illustrated in the prior art by the following structural formula:
OH OH where A is a divalent alkylene radical of two to six carbon atoms and n is an integer of from 1 to or a polymeric ethylene imine of 30,000 to 40,000 molecular weight. The resulting products are illustrated in U.S. Pat: No. 3,036,003. It would appear from this reference that the reactants used for the preparation of those Mannich condensation products react equally with either the primary amino (-NH group or the secondary amino (--Nl-l-) groups in the alkylene polyamine or polymeric ethylene imine chain substantially without preference.
Certain of "the Mannich condensation products are disclosed by U.S. Pat. No. 3,036,003 as useful per se in as an oil soluble dispersant. For example, 2 percentof the tetra-(2-hydroxy-5-tertiary-octyl-benzyl) substituted product (from use of the molar ratio reaction of 4 moles p-t.octyl phenol, 4 moles formaldehyde and one mole tetraethylene pentamine used in a carbon black suspension test according to that patent'kept all (0.25 grams) of vthe carbon black suspended in a hydrocarbon solvent (mixture of equal volumes of each of kerosene and a mineral oil blend having a viscosity of 90 SSU at 210 F.). However, that patent demonstrates by an oxidation stability test that the same tetra- (2-hydroxy-t.octylbenzyl) substituted tetraethylene pentamine alone (no other detergent) permits sludge and varnish formulation as well as oxidation of the base oil solvent. Thus U.S. Pat. No. 3,036,003 demonstrates as unsuitable its Mannich condensation products when used alone as the sole dispersant or detergent.
Mannich condensation products of the prior art are prepared by reacting the alkyl phenol, lower aliphatic aldehyde (such as formaldehyde, paraformaldehyde and acetaldehyde) and amine, diaminoalkane, diaminoarene or alkylene polyamine at 100 to 350 F. in the absence or presence of a solvent. When a solvent is used, benzene, toluene, xylene and others easily removed from the condensation product are useful as are light mineral oil such as those used in blending stocks to prepare lubricant oil formulations as well as mixtures of these two types of solvents. Since water is formed as a by-product, the condensation reaction is conducted at least in part at a temperature sufficiently high, at least during the last part of the process, to drive off by-product either as water, as such, or as an azeotropic mixture with the aromatic solvent.
Also the prior art type Mannich condensation products were mainly taught as useful in lubricants in the form of the exactly neutralized or highly basic (or over-based) alkaline earth metal salts (alkaline earth metal phenate derivatives) of the Mannich products. The free phenates were not considered to have sufficient detergency or dispersancy to supply these functions alone but rather were taught as useful in combination with other detergent or dispersant, e.g. calcium or magnesium sulfonates, addition agents.
SUMMARY OF THE INVENTION Our invention is predicated upon the following discoveries: We have discovered that novel boron-containing derivatives of high molecular weight Mannich condensation products can be prepared from reactants (1) an alkyl-substituted hydroxyaromatic (phenolic) compounds having upward from 40 to about 20,000 carbon atoms in the alkyl substituent, (2) a compound having an active hydrogen on a nitrogen, i.e. having an and (3) an aldehyde by reacting or condensing a boron compound, e.g. boric acids and boric acid esters with the high molecular weight Mannich condensation products to provide a boron to nitrogen (B/N) weight ratio of 0.1 to. 4.0. Further, we have discovered that lubricating oil solutions of those boron-containing high molecular weight Mannich condensation products having 0.1 to weight percent of such boron-containing additives as solutes are novel compositions that provide or can be used to provide improved lubricant compositions having highly efficient dispersant-detergent properties and antioxidant properties.
The high molecular weight Mannich condensation products of this invention can be made by using the above-named reactants in the respective molar ratio suitable of l:0.ll0:l.0l0 and desirably l:0.7l.0:l.0 5-2.1. The technique for preparing such high molecular weight condensation products is, in general, the same as that before described to prepare the prior art low molecular weight Mannich condensation products. But for Mannich products having more than one molar equivalent of methylene or substituted methylene bridge (from the aldehyde reactant) joining hydroxyalkylphenyl to amino nitrogen, a two condensation step preparative method can be advantageously used. For example, the two Mannich condensation step route is advantageous for use of reactants (l), (2) and (3) above in the respective molar ratio of l.0:0.7-l.0:l .052.l when the amine reactant contains two primary amino (-Nl-l radicals. For example, in place of adding all of the formaldehyde yielding reactant to a mixture of alkyl phenol and such amines as have two primary amino radicals under Mannich condensation reaction conditions as in the general technique, twothirds of the formaldehyde yielding reactant is added to a mixture of alkyl phenol and amine having two primary amino radicals under Mannich reaction conditions and after the first by-product water has been substantially removed, the last one-third of formaldehyde yielding reactant is added under Mannich reaction conditions. Such a two Mannich step condensation reaction product, it is believed, is a mixture of head-to-tail and tail-to-tail type of bis-Mannich condensation products hereafter illustrated in simplified form rather than a more complex mixture of condensation products as would likely result from a one step Mannich reaction using the same three reactants in the same'reactant molar ratio, Analytical inspection of such mixture of head-to-tail and tail-to-tail condensation products tends to exclude methylene group bridging between nitrogen of secondary-amino groups and aromatic nuclear carbons especially when the amine reactant is a polyalkylene polyamine having three or more nitrogens as in diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine and the like polyamines.
The general Mannich condensation preparative technique of adding all of the formaldehyde yielding reactant to the mixture of high molecular weight alkyl phenol and polyamine reactant under Mannich reaction conditions produces from the respective molar ratio of those reactants (l), (2) and (3) of 1107-1215 -2.l, highly useful products substantially equivalent in nitrogen utilization, viscosity and in service performance to the products from the above described two Mannich condensation step process.
The boron-containing derivatives of any of the foregoing high molecular weight Mannich condensation products are the products of this invention and, as before stated, are highly useful as lubricating oil addition agents. These boron-containing derivatives that a B/N ratio of 0.1 to 4.0 and can be made by condensation or reaction compound of 1) those high molecular weight Mannich condensation products and (2) a boron compound reactive and/or coordinatable with a polar group such as an hydroxy group and/or a nitrogen-containing group present in the Mannich condensation products. Boron compounds having that property of reaction and/or coordination include boron oxide, boron oxide hydrate, boron trifluoride, boron tribromide, boron trichloride, HBF boron acids such as boronic acid (e.g., alkylB(OH) or aryl--B(OH) boric acid (i.e. H 80 tetraboric acid (i.e., H B 0 metaboric acid (i.e., H80 amides of such boron acids, and esters of such boron acids. The use of boric acid as the reactant to introduce boron into the high molecular weight Mannich condensation products is preferred. The manner of using such boron reactants with nitrogen-containing compounds in general is known and is disclosed for example in U.S. Pats. No. 3,000,916 and No. 3,087,936 among others.
As mentioned before the boron-containing derivatives of the high molecular weight Mannich condensation products of this invention are exceptionally useful addition agents for lubricating oil imparting thereto dispersant-detergent and antioxidant properties at relatively low concentrations of the addition agents, e.g. 0.1 to 10 weight percent in formulated crankcase lubricating oils. Higher concentrations of those addition agents, e.g. upward from 10 and up to 70 weight percent are useful concentrates for the preparation of those formulated crankcase lubricating oils and the fortification of used crankcase oil prior to scheduled complete drain. In contrast, boron-containing .derivatives of prior known Mannich condensation products derived from low molecular weight alkyl-substituted hydroxyaromatic compounds whose alkyl groups contain two to 20 carbon atoms are wholly unacceptable as dispersant-detergent addition agents for crank-case lubricating oils.
Illustration of the foregoing superiority of the present inventive boron-containing derivatives of Mannich condensation products from high molecular weight alkyl-substituted phenols over the prior art Mannich condensation products from low molecular weight alkyl phenols can be made by consideration of their abilities to prevent sludge and varnish deposition in standardized, industry accepted engine tests. To be acceptable dispersant-detergent addition agents for such in service use in present-day engines, the addition agents must provide dispersancy-detergency functions in those tests so that at the end of the engine test upon inspection of disassembled engine parts they provide over-all sludge and varnish deposit ratings of 40 and over. Such ratings are determined on a 0-50 scale where a rating of 50 for each of sludge and varnish means a clean engine free from detectable sludge and varnish. The boron-containing prior art Mannich condensation products used in crankcase lubricating oils as the sole source of dispersant-detergent addition agent at the maximum concentration levels at which they can be incorporated in lubricating oil cannot provide acceptable sludge or varnish ratings when used in such a standardized engine test. However, the present inventive boron-containing Mannich condensation products when used as the sole dispersant-detergent addition agent in lubricating oils suitably in the range of 0.1 to 10 and preferably 0.5 to 5.0, weight percent provide crankcase lubricating oils that in the same standardized engine tests give sludge and varnish ratings of 40 and higher, e.g. in the range of 45 to 50.
EMBODIMENTS OF THE INVENTION Representative high molecular weight Mannich condensation products used to prepare the inventive boron-containing products can be prepared from the following representative reactants of the classes before defined.
( 1) HIGH MOLECULAR WEIGHT ALKYL- SUBSTITUTED HYDROXYAROMATICS Representative of these high molecular weight alkylsubstituted hydroxyaromatic compounds are polypropylphenol, polybutylphenol, polyamylphenol and other polyalkyl phenols obtained by the alkylation of polyamylphenol with the appropriate molecular weight polypropylene, polybutylene, polyamylene and the like to give the suitable C to Czomo alkyl substituent on the benzene ring of phenol. Also such substituted cresols, thymol, carvacrol, hydroxy xylenes, naphthols and the like with C to Czomo alkyl-substituents can be used. The C to Czomo substituted alkyl-substituted phenols are preferred.
The C and higher high molecular weight alkyl-substituted phenols preferably are derived from the appropriate polypropylenes, polybutenes (polymers of lbutene, 2-butene, isobutylene and mixtures thereof) copolymers of propylene with monomers copolymerizable therewith or copolymers of butenes (butene-l, butene-2 and isobutylene) with monomers copolymerizable therewith wherein the copolymer molecule contains at least 90 percent, i.e. 90 to 100 percent, propylene or butene units. Said monomers copolymerizable with propylene or said butenes need not be hydrocarbon monomers for they can contain polar groups such as chloro, bromo, keto, ethereal, aldehydo and other polar groups. can also containnonaliphatic groups such as from styrene, a-methyl styrene,a, p-dimethyl styrene, divinyl benzene and the like. From the foregoing limitation placed on the propylene and butylene units (90 to 100 percent of those units) the. comonomers copolymerized .with propylene or said butenes, provide from to percent of the units in the copolymer. Said polymers and copolymers of propylene and butenes are thus substantially aliphatic hydrocarbon polymers. The resulting alkylated phenols are C and higher carbon content substantially alkyl hydrocarbon substituted phenols.
Preferred as the high molecular weightalkyl-substituted phenol reactants are those whose alkyl-substituent has a molecular weight in the range of 600 to 3,000 and more preferably in the rang of 800 to 2,500. Of such alkyl-substitutedphenols the polypropyl and polybutyl'phenols, having 100 percent propyl or butyl units in the polypropyl or polybutyl-substituent are preferred.
HN p
grou CONTAINING REACTANTS Representative of this class of reactants are those amine reactants having at least one active hydrogen atom on a nitrogenatom known as useful amine reactants for the preparation of the prior art Mannich products. Such containing reactants can contain only primary amino groups, only secondary amino groups or both primary and secondary amino groups. Monoand di-alkyl amines suitable for use in the preparation of Mannich condensation products are well known. Other typically suitable amine reactants include the diamino alkanes, and such diamino arenes as 0-, mand p-phenylene diamine and diaminonaphthalenes and di(ar'nino alkyl) substituted nitrogen-heterocyclic amines as the N,N- di(amino methyl), di(amino ethyl) and di(amino propyl) piperazines. The polyalkylene polyamines of theformula wherein A is a divalent hydrocarbon radical having two to eight carbons and x is an integer from 1 to 10 are quite useful because of the alkalivity provided by the secondary amino radicals in the chain. The divalent radical A is preferably an ethylene or propylene radical although it can desirably be a phenylene radical. Other useful representative amine reactants are disclosed in prior art relating to prior Mannich product preparation from C to C alkyl-sbustitued phenols and reference can be made to prior art disclosures for additional amine reactants having at least one HN radical.
Suitable alkylene polyamine reactants include ethylendiamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene hepta-amine, heptaethylene octamine, octaethylene nonamine, nonaethylene decamine and decaethylene undecamine and mixtures of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H N-(A- NH-) H, mentioned before, A is divalent ethylene and x is 3 to 10 of the foregoing formula. Corresponding propylene polyamines such as propylene diamine and di-, tri-, tetra-, penta-propylene tri-, tetra-, penta propylene tri-, tetra-, and hexa-, heptaand octaamines are also suitable reactants. The alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes. Thus the alkylene polyamines obtained from the reaction of 2 to l 1 moles of ammonia with l to 10 moles of dichloro alkanes having two to eight carbon atoms and the chlorines on different carbons.
Also suitable polyamine type reactants are condensation products of urea or thiourea and the alkylene polyamines wherein for each x moles of urea or thiourea 2x moles of alkylene polyamine are used. Such a condensation product can have the formula:
wherein x is 1-10 and A are as above defined and 2 in oxygen or sulfur.
ALDEHYDE REACTANTS Representative aldehyde reactants include the aldehyde reactants disclosed in the prior art concerned with the preparation of Mannich condensation products from C to C alkyl-substituted phenols. For specific classes of such aldehydes and specific members of those classes reference can be made to such prior art disclosures. For the purposes of this invention the aldehyde preferred is formaldehyde and formaldehyde affording compounds such as formalin, paraformaldehyde and trioxymethylene.
The present invention is not predicated on the fact that the C and above alkyl substituents in the boroncontaining derivatives of the Mannich condensation products make them more oil-soluble than the C to C type-prior art Mannich condensation products. But rather invention is predicated on the fact that those higher molecular weight, C4 to C alkyl substituents make the high molecular weight boron-containing derivatives of the Mannich condensation products superior dispersant-detergent addition agents.
Since the products of this invention are ultimately for use in preparing lubricant oil formulations, it is advantageous to use light mineral oil, e.g. from white mineral oils to solvent extracted SAE 10 grade oils, as the reaction solvent. The high molecular weight Mannich condensation products of this invention are then obtained as solutes in concentrations of 40 to 70 weight percent in said mineral oil solvents. This is readily accomplished by using oil solutions of the C and higher carbon content alkyl-substituted phenol reactant dissolved in light mineral oil of from white mineral oil to SAE l grade oil. The examples which follow illustrate the preparation of products of this invention.
As mentioned before the Mannich condensation products obtained from the two step condensation are products that are likely mixtures of tail-to-tail, tail-tohead coupling. The following formulas are illustrative of such couplings in simple single but predominant products of the Mannich condensation:
Formula (I): TaiLto-Tail Formula (II): Tail-to-Head Formula (III): Tail-t0-Tail HZH H H H E Formula, (IV) Tail-to-Head OH OH wherein A is a saturated divalent alkyl hydrocarbon group of two to eight carbon atoms, x is 1 to 10, Z is oxygen or sulfur and R is an alkyl hydrocarbon group of from 40 to 20,000 carbon atoms. The inventive boroncontaining derivatives of compounds of Formulas I, II, III and IV are believed to have the respective moieties from boric acid, boron oxide, boron halides and esters of boron acids as a stable complex with the amino nitrogens (sometimes referred to as boroncoordinate complexes). These boron-containing derivatives are more properly boron compound interaction products for the reasons hereinafter appearing.
It is known that boron halides such as boron trifluoride, boron triiodide and boron trichloride can form a interaction product with phenolic hydroxy groups, i.e. hydroxy group substituents on a benzene ring. It has also been demonstrated that boron oxide, boron oxide hydrate, boron trifluoride, boron triiodide, boron tribromide, boron trichloride, boric acid, boronic acids (such as alkyl-B-(OH) and aryl-B- (OI-D tetraboric acid, metaboric acid and esters of boric acids form interaction products with other polar groups such as the primary andsecondary amino radical as well as phenolic hydroxy groups. Ethers, or-
.ganic acids, inorganic acids or hydrocarbons complexed with boron halides can be used as convenient means for introducing the boron compound as a reactant into the oil solutions of the high molecular weight Mannich products to prepare the boron-containing products of this invention. More specifically in place of the aqueous solution of boric acid, dimethyl formamide (DMF) solution of boric acid and oil slurry of boric acid used in the examples hereinbefore set forth, there can be used boron trifluoride-diethyl ether complex, boron trifluoride-phosphoric acid complex, boron trichloride-choroacetic acid complex, boron tribromide-dioxane complex, boron trifluoride-methyl ethyl ether complex. I
The boron reactant when introduced as a boronic acid can be methylboronic acid, phenylboronic acid, cyclohexylboronic acid, p-octyl-phenylboronic acid,
decylboronic acid and the like. The boron reactant when introduced as an ester of boric acid can be monodiand tri-esters derived by a means well known to the chemist by reacting one mole boric acid or tetraboric acid with such hydroxy compounds as alkanols, alkylene diols, cycloalkanols and the like. These esters of boric acids can be used to replace boric acid reactant illustrated in the examples hereinbefore set forth.
Since the boron reactant can form an interaction product with any or all of the polar groups, the phenol- IL MQPBLlh999913y ami and Primary amino groups present in compounds having structural formulas I, II, III and IV hereinbefore set forth, it is not known with certainty which of the polar groups are involved in the formation of the interaction product but it is believed that it is the amino groups with which boric acid forms the stable interaction product. It is not essential for the purposes of this invention for the boron compound reactant to form an interaction product with one or more particular polar group present as long as a stable boron compound interaction product forms. By stable boron compound interaction product is meant one that can be heated at least to 300-350 F. and filtered at 300-350 F. without substantially completely removing boron from the solute in the filtrate. It is desirable to have B/N ratios (weight ratio of boron to nitrogen) in the range of 0.01 to 1.0 and preferably in the range of from 0.05 to 0.5, present in the solute inventive boron-containing Mannich condensation products. Such stable boron interaction products when used in lubricant oil formulations provide better anticorrosion and/or anti-wear protection and dispersancydetergency than boron-containing derivatives of prior Mannich products especially when alkaline earth metal salts of alkylbenzenes sulfonic acids, e.g. calcium or magnesium salts of C to C alkyl-substituted benzene sulfonic acids, are also employed as addition agents.
The following examples will illustrate specific embodiments of this invention.
EXAMPLE 1 There are combined 1,000 grams ofa SAE oil solution having35 percent NAMW 892 polypropyl phenols (alkyl group from polypropylene) by weight-(0.392 mole alkyl phenol) and 0.392 mole tetraethylene pentamine (TEPA). This mixture is stirred and heated to 210 F. and 32 milliliters formaldehyde (0.392 mole) are added slowly permitting the temperature of the reaction mixture to increase to about 240 F. The resulting mixture is heated to 340 F. and nitrogen is in-. jected at 1.0 CFl-l for 90 minutes. The finaltemperature is 320 F. This mixture is stirred and cooled to 180 F. and an additional 32 milliliters formaldehyde are .added increasing the reaction temperature to 200 F.
At this temperature 40.9 grams (0.55 mole) boric acid I (ratio of 0.48 to 1.0N) is added and the resulting mixture is stirred and heated to 330 F., held at this temcontent is 0116 percent, both by weight.
EXAMPLE2 There are combined, stirred and heated to 180 F. 0.482 mole TEPA and 2,500 gramsof 33 percent by weight 1713 NAMW polybutyl phenol in solvent extracted SAE 5W oil to provide 0.482 mole of said polybutyl phenol. Then 0.482 mole CH O is added and the liquid mixture is stirred and heated to 340 F. and held at thattemperature for 105 minutes while injecting nitrogen at 2 CFH. Thereafter the liquid reaction mixture is coo1ed.to'l80 F., an additional 0.482 mole formaldehyde is added and the resulting liquid is stirred and heated to 340 F. while 2 CFl-l nitrogen is injected for 5 hours. The resulting liquid is filtered at 300 F.
The 300 F. filtrate, a clear-bright liquid, is cooled to 250 F. under a,.nitrogen.gas blanket and then 9.5 grams boric acid slurried in 20 grams SAE 5 oil is added. The resulting mixture is held at 250 F. for 60 minutes, isthen heated to 300 F. and held at 300 F.
with nitrogen injection at 2 CFH for 60 minutes. The
oil is filtered through celite at about 300 F. The filtrate is a bright liquid showing no Tyndall effect when light is reflected from the filtrate. By analysis it is found that the filtrate contains 1.08 percent nitrogen and 0.04 percent boron, all by weight.
EXAMPLE 3 There are combined, stirred and heated to F. 334 grams of 33 weight percent 1,900 NAMW (0.058 mole) alkyl phenol in SAE 5W oil and 0.058 mole of a boric acid derivative of TEPA (0.2 BIN). Then 0.058 mole C11 0 is added, the mixture is heated to 200 F. and .an additional 0.058 mole CH,O is added 45 minutes after the first addition. The mixture is stirred and heated to 270F., held at 270F. for 2 hours with 1.5 CFH nitrogen injection. The liquid product is filtered at 270 F.
To 250 grams of filtrate there is slowly added 3.14 grams boric acid dissolved in 10 ml. dimethylformamide. to minimize frothing by DMFboiling. This mixture is heated to 340 F. and 2 CFH nitrogen is injected for 60 minutes. The liquid product is bright and clear. DMF appears to promote the interaction of boric acid with the free amine groups. The liquid product is filtered. The filtrate is a bright clear liquid having 025 percent boron and 0.83 percent nitrogen as determined by analysis.
EXAMPLE 4 There are combined 0.217 mole TEPA and 1250 grams of 33 weight percent 1900 NAMW polybutyl phenol dissolved in SAE 5 oil to provide 0.217 mole of that alkyl phenol and the mixture is stirred and heated to 120F. The first 0.217 mole CH O is added at 120 F nitrogen is injected at 2 CFH for 30 minutes, the mixture is heated to and held at 220 F. for 105 minutes, then cooled to 200 F. at which temperature the second addition of 0.217 mole CH O is made and the reaction temperature is raised to 220 F. and there held for 2 hours. Thereafter. 16 grams boric acid dissolved in 25 grams water is added at 200F. by means of a dropping funnel. Then the reaction temperature is increased to 300 F. and held there for90 minutes with 2 CFH nitrogen injection. The liquid product is filtered. The clear bright filtrate is found, by analysis, to contain 0.16 percent boron and 1.07 percent nitrogen by weight.
EXAMPLE 5 There are combined, stirred and heated to F. 0.05 8 mole diethylene triamine and 306 grams of a 38 percent solution of 2,000 NAMW polybutyl phenol (0.058 mole) in white oil. A first addition of 0.058
mole formaldehyde is made and the mixture is stirred and heated to 220 F. and held at 220 F. for 60 minutes. Thereafter the mixture is cooled to 200 F. and the second addition of 0.05 8 mole formaldehyde is made. This mixture is stirred and heated to 300F. and held at that temperature for 2 hours. There is no evidence of unreacted formaldehyde or amine. The liquid product is filtered. The filtrate, is a light and clear-liquid and has a 210 F. viscosity of 1531 SSU, a specific gravity of 0.8996 at 77 F. and from analysis is found to contain 0.67 percent nitrogen by weight. Boration of the foregoing Mannich product to a B/N ratio of 3.0 can be accomplished with boric acid dissolved in DMF reacted at 320 F. for 30 minutes followed by nitrogen injection until no further water comes off.
EXAMPLE 6 By substituting 0.058 mole bis-carbamide derived from DETA and urea (2 moles of BETA and 1 mole urea) in the foregoing reaction, a liquid product of 1.3 to 1.5 percent nitrogen by weight may be obtained. Boration of the foregoing Mannich product to a B/N ratio of 3.0 can be accomplished with boric acid dissolved in DMF reacted at 320 F. for 30 minutes followed by nitrogen injection until no further water comes off.
EXAMPLE 7 There are combined, stirred and heated to 140 F. while injecting 2 CFH nitrogen, 0.48 mole TEPA and 2,500 grams of solution containing 33 percent by weight 1713 NAMW polybutyl phenol in SAE 5W oil. The first addition of 0.48 mole formaldehyde is made and the liquid mixture is heated to 220 F. while stirring and nitrogen injection is continued for 105 minutes. The liquid reaction mixture is cooled to 200 F., the second addition of 0.48 mole formaldehyde is made and the liquid mixture is heated to 220 F. with continued stirring and nitrogen injection for 105 minutes. Thereafter a solution of 32 grams boric acid in 76 grams water heated to 210 F. is added dropwise to the stirred liquid reaction product still at 220 F. After the aqueous solution of boric acid is added, the reaction temperature is increased to 300 F. and held at 300 F. for 90 minutes with continued stirring and nitrogen injection. The resulting oil solution of borated reaction product is filtered at 300 F. The filtrate is a clear, bright liquid and by analysis is found to contain 0.17 percent boron and 1.05 percent nitrogen, both by weight. The weight ratio B/N in said product is 0.16.
EXAMPLE 8 There are combined, stirred and heated to 140 F. with nitrogen injection at 1.5 CFH, a solution of 33 per-, cent polybutyl phenol of 1713 NAMW (0.159 mole) in SAE 5W oil and 0.159 mole TEPA. The first addition of 0. 1 59 mole formaldehyde is made, the reaction temperature is increased to 320 F. and held there for 90 minutes with continued stirring and nitrogen injection. The reaction mixture is cooled to 160 F. and the second addition of 0.159 mole formaldehyde is made and 1 1.5 grams boric acid crystals are also added. This mixture is stirred and heated to 300 F. under a nitrogen atmosphere and held at 300 F. until no solid boric acid can be seen. Thereafter nitrogen is injected at '1 .5 CF l-l until water is substantially removed. The filtered solution of reaction product is found by analysis to have 1.1 1 percent nitrogen and 0.18 percent boron, both by weight. The solute reaction product has a B/N, weight ratio of 0.16.
EXAMPLE 9 There are combined, stirred and heated to 140 F., 2700 grams of solution of 1713 NAMW polybutyl phenol (0.58 mole) in SAE 5W oil and 0.58 mole TEPA. At 140 F. the first addition of 0.58 mole formaldehyde is made and the mixture is stirred and heated to 200 F. while injecting nitrogen at 1.0 CFH for 30 minutes and then the second 0.58 mole formaldehyde addition is made at 200 F. with no nitrogen injection. This mixture is heated to 260 F. with nitrogen injection and stirred for 3 hours at 260 F. Thereafter a slurry of 63 grams boric acid in 50 grams SAE 5W oil is added with no nitrogen injection but while stirring the resulting mixture under a nitrogen blanket atmosphere. The oil solution-boric acid slurry is stirred and heated to 300 F. and held at 290 to 300 F. for 60 minutes while injecting nitrogen at 1.0 CFl-l. The resulting SAE 5 W oil solution of reaction product is filtered at 320 F. The filtrate is found by analysis to contain 0.16 percent boron and 1.12 percent nitrogen (B/N weight ratio of 0.14) and has a 210 F. viscosity of 1,700 SSU.
EXAMPLE 10 i The process of Example 9 is repeated using 2,990 grams of 37.2 percent by weight 1,900 NAMW polybutyl phenol (0.58 mole), 0.58 mole TEPA, two additions of 0.58 mole each of formaldehyde, and 43 grams boric acid slurried in 50 grams SAE 5W oil. The filtrate has a 210F. viscosity of 1,766 SSU and is found by analysis to contain 0.08 percent boron and 1 percent nitrogen with weight ratio of B/N of 0.08.
EXAMPLE 1 1 The process of Example 10 is repeated using 2,255 gallons of 46 percent by weight 1,750 NAMW pol ybutyl phenol (4.32 pound moles), 376 gallons SAE 5W oil, 98 gallons (4.42 pound moles) TEPA, two additions of 350 pounds formalin (37 percent CH O) to provide 4.32 pound moles formaldehyde at eachaddition, 200 pounds boric acid slurried in 100 gallons SAE 5W oil at 250 F., and 50 gallons SAE 5W oil at 250 F. to wash boric acid slurry transler line into the reactor. The filtrate obtained from such a process typically has a 210 F. viscosity in the range of 800 to 900 SSU and contains about 40 weight percent borated reaction product dissolved in SAE 5W oil (40 percent product- 60 percent oil by weight), 1.18 to 1.22 percent nitrogen by weight, 0.09 to 0.11 percent boron by weight and a B/N ratio of 0.075 to 0.085.
An amount of the product of Example 2 containing 0.56 grams of the disubstituted amine shown is added to a measured volume of crankcase lubricant oil form ulation which had been used in a Lincoln Sequence V Engine Test for 384 hours (twice the time of the standard test time). This composition is heated and stirred at 300 F. for 16 hours and an aliquot of it is transferred to blotting paper. A control is made at the same time by stirring and heating at 300 F. for 16 hours an equal volume of used oil from the 394 hour Lincoln Sequence V Engine Test and depositing an aliquot on blotting paper. The deposits on the blotting paper are measured to obtain the average diameter of the outer oil ring (Do) and the average diameter of the inner sludge ring (Ds). The ratio of Ds/Do is an indication of the detergent-dispersant property of the addition agent. These ratios and the sludge settling tests are shown in TABLE 1.
TABLE] Ring Ratio Detergent-dispersant Screening Test Example Control 2 (hams None 0.56 Dull)" 100 60 91.5
The same test'procedure conducted with boron-containing Mannich condensation products of C to C alkyl-substituted phenol, typical of prior art products made for example from the respective molar ratio of 2 moles nonylphenolzl mole TEPA and 2 moles'formaldehyde, do not have sufficient dispersancy nature and hence show littleor no improvement over the control.
EXAMPLE 12 A high molecular weight Mannich condensation product is prepared by the one step process using high molecular weight polybutyl substituted (polybutyl group has anaverage of 60 carbons) phenol (916.
NAMW) dissolved in SAE 5W oil, 0.9 mole tetraethylene pentamine and 1.8 mole formaldehyde for a respective molar ratio of reactants of 1:0.5:1. The dry product contains 82 percent high molecular weight Mannich condensation product (2,000 NAMW) in the solvent oil.
This product is borated in the following manner. For each 250 grams of product (82 percent of 2000 NAMW Mannich condensation product) there is added 250 grams of SAE 5W oil and 19 grams boric acid. The mixture is stirred, heated slowly to and held at 300 F. for 7 hours while injecting nitrogen to remove by-product water. The dried product is filtered to remove unreacted boric acid using Celite filter-aid; The filtrate is a clear solution containing 0.23 percent' boron.
EXAMPLE 13 There are combined, stirred and heated to 160 F., 2,000 grams" of SAE 5 oil solution of (45.9 percent) polybutyl-substituted phenol of 1600 NAMW to provide 0.716 mole of that substituted phenol, 94 grams (0.495 mole) tetraethylene pentamine and 420 grams of SAE 5W oil. Then one drop of liquid silicon antifoam agent and 100 milliliters of formalin (37 percent CH O) to provide 1.318 moles formaldehyde are added at one time to the hot stirred mixture. After the temperature'increase from the reaction of the added formaldehyde has occurred, the temperature of the stirred solution of reaction product is increased to 300 F. and nitrogen is injected into stirred and heated solution. Nitrogen injection and stirring is continued while the solution is held ata temperature of about 310 F. F.) for two hours to drive off by-product watenThen' the solution is filtered. The hot filtrate is bright, i.e., has a good clarity. The, solution contains about 42 percent by weight of high molecular weight Mannich condensation product, a nitrogen content of 1.02 percent and a viscosity of 1013 SSU at 210 F. The reactants polybu; tyl-substituted phenol, amine and formaldehyde are used in the respective molar ratio of 1:069: l .835.
The product of the foregoing example, oil solution having 1.07 percent nitrogen and of the high molecular weight Mannich condensation product as solute in the 42 percent concentration, is borated with boric acid to a boron content of 0.1 percent. This boric acid borated derivative is used in a crankcase lubricant oil formulation at a 4.5 volume percent concentration (about 2 weight percent of condensation product) with either 2.0 volume percent of 300 total basenumber (TBN) calcium sulfonate or 1.0- volume percent 300 TBN magnesium sulfonate and 1.0 volume percent of the solution of zinc dialkyl dithiophosphate anti-wear and anti-corrosion agent (hereafter more specifically defined). Both crankcase lubricant oil formulations (one with 300 TBN Ca-sulfonate and the other with 300 TBN Mg-sulfonate) when used in the Ford-289 cubic inch displacement Engine Test hereafter described, result in Total Sludge values in the range of 41 to 48 and Total Varnish values in the range of 41 to 43. Similar crankcase lubricant oil formulations, the only exception being the use of 3 volume percent of boric acid borated product of the foregoing example having 0.3 percent boron product equivalent high detergency-dispersancy results in the Ford-289 Engine Test (Sludge values of 41 to 48 and Varnish Values of 40 to 43) and provide in the CLR-L38 Engine Test. (hereafter described) designed to evaluate high temperature oxidation stability of crankcase lubricant oils, varnish and bearing loss values in the passing range for premium oils. Spot Dispersancy Test (hereafter described) using 3.1 volume percent of the oil solution having 0.3 percent boron produced a value of 88.5.
ENGINE TESTS The effectiveness of the substituted amine products of this invention as detergent-dispersant addition agent for lubricant oil compositions can be demonstrated by their use in such compositions as crankcase lubricants in actual engine tests such as the LincolnSequence V Engine Test, the Ford 289 Engine Test and the L-38 Engine Test aforementioned.
It will be noted that the hydroxyalkyl benzyl sub stituted amine products of this invention used in said tests unlike hydroxyalkyl benzyl substituted amines of the prior art are not used as their calcium, barium, magnesium or other alkaline earth metal or alkali metal salts.
The compounds of this invention can function as detergent-dispersant addition agents in lubricant oil compositions in the weight percent range suitably of from 0.1 to 10 percent, desirably in the range of 0.2 to 8.0 percent and preferably in the range of 0.5 to 5 percent. However, lubricant oil solutions having 10 to 50 percent or more by weight of the novel hydroxyalkyl benzyl substituted polyalkylene amines of this invention including the bis(polyalkylene amine) carbamides and thiocarbamides are useful in the preparation of finished lubricant oil compositions because they can be readily and conveniently combined withconcentrates of other lubricant oil addition agents suchas oil solutions of the alkaline earth metal sulfonates, e.g. normal and high based calcium and magnesium salts of petroleum sulfonic acids such as sour oil, mahagony acid and alkyl substituted benzene sulfonic acids having alkyl hydrocarbon groups of a carbon content of greater than 16 and more specifically of 30 to 20,000 carbon atom alkyl hydrocarbon group size, oil solutions of zinc dialkyl-dithiophosphates and other concentrate solutions of lubricant addition agents all of which are used for their anti-wear, anti-corrosion, anti-foam, oxidation inhibition, oiliness, viscosity-index improving properties. For example, the oil solution concentrates having 10 to 50 percent by weight of the novel substituted amine products of this invention can be easily blend mixed with base oils and oil solution concentrates of the aforementioned addition agents having anti-wear, anti-corrosion, viscosity-index improving, anti-foam, etc. properties in transfer line blending, i.e. each concentrate and base oil are charged to a transfer line from sources of supply of each concentrate in therequired proportions so that there flows from the transfer line a completely finished, fully formulated lubricant oil com-' position ready for packaging in quart, gallon, quart, 30 gallon or 55 gallon containers or tank car and/or truck for delivery to the ultimate consumer. Such finished and fully formulated lubricant oil compositions are useful as crankcase lubricants for automobile, truck and railway gasoline and/or diesel engines.
The aforementioned Lincoln Sequence V Engine Test, Ford 289 Engine Test and L-38 Engine Test are conducted in the following manner.
LINCOLN SEQUENCE V ENGINE TEST Briefly, this test designed to evaluate dispersancy characteristics of formulated lubricant oils consists of using the oil to be tested as a lubricating oil in a V-8 Lincoln Engine under prescribed test conditions. Accordingly, five quarts of oil are placed in the crankcase and the engine is started and run in accordance with the four-hour cycle:
The four-hour cycle is reset a total of 48 times (192 hours running time). After each 16 hours of operation the engine is shut down for 8 hours. Two-ounce samples of oil are taken every 30 hours and the oil level is adjusted with fresh oil to a level of five quarts. Added oil is weighed. At the time of the test, the hot oil is drained, weighed and recorded. The engine is then disassembled and the test for deposits of varnish and sludge among other observable results as set out in the table below. Engine components are examined visually and rated on a scale of l to l0, being a perfect reading indicating no sludge or varnish. A rating of 50 for total sludge and for total varnish is considered perfect; a rating of 60 percent or lower is considered passing for screen clogging; and a rating of 50 percent or lower is considered passing for ring plugging.
FORD289 ENGINE TEST The Ford 289 cubic inch displacement engine test, hereinafter designated as I -289 Test, is conducted in the same manner as the Lincoln Test Sequence V except for the apparent difference in test engines. This F-289 Test is more severe with respect to both sludge and varnish formulation and deposition. Also the F-289 Test is conducted with vapors from the crankcase being introduced into the engine fuel intake system by means of a positive crankcase ventilation system which, in part, results in the more severe sludge and varnish formation during test operation.
L-38 ENGINE TEST The L-38 Engine Test" is also known as CLR L-38 Engine Test and is designed to evaluate high temperature oxidation stability of the formulated lubri cant oil and such evaluation is based on piston varnish deposit and copper-lead bearing corrosion. In this test a single cylinder water cooled Labeco oil test engine is operated at 3150 rpm for 40 hours with the test oil formulation. The oil is maintained at 300 F. and cooling water is maintained at F. Copper-lead connecting rod bearings are weighed before and after the 40 hour test. Bearing weight loss (BWL) of 50 milligrams or less is desired. After the 40 hour test the piston is visually evaluated and a varnish value is assigned by comparison to varnish deposit pictorial standards having assigned values of l to 10 for the color and extent of varnish deposit. In this varnish value scale of l to 10, the value 10 represents a clean and varnish free piston and the value 1 represents a substantially complete dark varnish coated piston. To qualify as a premium oil additive the varnish value should be 9.0 and above.
The following lubricant formulations in which all of the addition agent indicated are by volume, are prepared for use in the foregoing engine tests. Products of this invention are identified by reference to the appropriate example of preparation and the volume percent solution produced. The weight percent of the solute product or dissolved is that of the active ingredient, i.e., the dissolved substituted amine product, is shown under weight Where used Ca300 and Mg-300 designate the respective sulfonates dissolved as concentrates in SAE 5W oil with a total base number of 300 for the solution and other higher or lower numbers designate higher or lower solution total base numbers. The designation ZOP is used to' identify a zinc dialkyldithiophosphate anti-wear anticorrosion addition agent whose alkyl groups are derived from the conjoint reaction of three different alcohols, two of which are primary alcohols such as C and C oxo-derived alcohols and the third is a secondary alcohol such as isopropyl or sec-butyl alcohols, with phosphorus pentasulfide and the total moles of the three alcohols is the stoichiometric amount required to obtain dialkyl dithiophosphoric acid for reaction with zinc or zinc oxide. Thus the Z0? is a statistical mixture of the zinc salts having the three aforementioned alcohol derived alkyl groups. Since the relative proportions of C iso, C primary and C primary alcohols can be varied considerably to provide an oil-soluble zinc salt, their precise proportions need not be indicated. A ZOP product typical of that used is a concentrate zinc dialkyl dithiophosphate in SAE 5W oil having the following typical properties: Solution has 210 F. viscosity of 67 SSU, 5% Zn, 8% P and 16% S, all by weight.
TABLE 11 Test Oil Formulations Formulation Example Number Numbervol.% wt.% 20] (Ia-300 Mg-300base oil The results of using above formulations in the Lincoln Sequence V Engine Test are presented in TABLE III.
TABLE III Lincoln Sequence V Engine Test Results The results of the use of the indicated formulations in the Ford-289 Engine Test are given in Table IV.
TABLE IV Ford-289 Engine Test Results Oil Ring Varnish Plugging Sludge 48 Formulation No.
The results from the CLR L-38 Engine Test using the formulations indicated are given in Table V.
TABLE V CLR L-38 Engine Test Results Formulation no. piston varnish bearing weight loss-mg.
What is claimed is: 1. An oil soluble boron-containing product comprising a boron-containing derivative of a Mannich condensation product of( l a high molecular weight alkylsubstituted hydroxyaromatic compound whose alkylsubstituent has from 40 to 20,000 carbon atoms, (2) a polyamine of the formula NHz H )1 wherein X is an integer of from 1 to 10 and A is a divalent hydrocarbon to of two to eight carbon atoms and (3) a formaldehyde affording compound in the respective reactant molar ratio of 1.010. ll0.0:l .0-l0.0 condensed with a boron compound selected from the group consisting of boron oxide, boron acids and boron halides, to provide a boron-containing product having a B/N weight ratio of 0. l-4:l .0.
2. The boron-containing product of claim 1 derived from boric acid condensed with the Mannich product derived from a high molecular weight alkyl-substituted phenol whose alkyl substituent has a molecular weight of 6003,000 as reactant l 3. The boron-containing product of claim 2 wherein said alkyl-substituted phenol is a polypropyl or polybutyl-substituted phenol.
4. The boron-containing product of claim 2 wherein said alkyl-substituent has a molecular weight of 800 to 2,500.
5. The product of claim 1 wherein the polyamine reactant (2) is a polyethylene polyamine.
6. The product of claim 5 wherein the polyethylene "H050 UNITED STATES PATENT OFFICE 15", n i CER'HJHCATE @F CORREC'IIQN Patent No. 3, 97, 57LL Dated OCTOBER 10, 97
Inventor) EDMUND J. PIASEK AND ROBERT E. KARLL It is certified that error appears in the above--identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 55: On second ring insert R as in preceding ring Column h, line 4-5: "suitable" should be v-- suitably Column 5, line 10: following "molar ratio, the comma should be a period Column 6; line 6: "crank-case" should be crankcase Column 6, line 55: "of polyamylphenol" should be of phenol Column 7, line 25: "rang" should be range 4 Column 8, a
' line 25 delete "propylene tri-, tetraand" Column 15', line 57: "(=1oF.)" should read (+lOF.) Column 19, line 8: in TABLE II for "Fomulation Nmnber-I" under the heading CA-300" insert omitted number O In Claim 1: (Column 20, line 2 the word "to", first occurrence should be cancelled and replaced with radical si ned and sealed this 15th day of May 1973.
(SEAL) Attest:
I EDWARD M.F.LETCHER, JR. ROBERT GOTTSCHALK ttesting Off cer Commissioner of Patents J

Claims (5)

  1. 2. The boron-containing product of claim 1 derived from boric acid condensed with the Mannich product derived from a high molecular weight alkyl-substituted phenol whose alkyl substituent has a molecular weight of 600-3,000 as reactant (1).
  2. 3. The boron-containing product of claim 2 wherein said alkyl-substituted phenol is a polypropyl or polybutyl-substituted phenol.
  3. 4. The boron-containing product of claim 2 wherein said alkyl-substituent has a molecular weight of 800 to 2,500.
  4. 5. The product of claim 1 wherein the polyamine reactant (2) is a polyethylene polyamine.
  5. 6. The product of claim 5 wherein the polyethylene polyamine reactant is tetraethylene polyamine.
US816079A 1965-10-22 1969-04-14 Boron derivatives of high molecular weight mannich condensation products Expired - Lifetime US3697574A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50236865A 1965-10-22 1965-10-22
US81607969A 1969-04-14 1969-04-14

Publications (1)

Publication Number Publication Date
US3697574A true US3697574A (en) 1972-10-10

Family

ID=27054135

Family Applications (1)

Application Number Title Priority Date Filing Date
US816079A Expired - Lifetime US3697574A (en) 1965-10-22 1969-04-14 Boron derivatives of high molecular weight mannich condensation products

Country Status (1)

Country Link
US (1) US3697574A (en)

Cited By (298)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016092A (en) * 1975-03-28 1977-04-05 Mobil Oil Corporation Organic compositions containing borate and phosphonate derivatives as detergents
US4303445A (en) * 1980-07-18 1981-12-01 Exxon Research & Engineering Co. Ink jet printing formulations
US4394278A (en) * 1981-05-26 1983-07-19 Mobil Oil Corporation Friction reducing additives and compositions thereof
US4425249A (en) 1979-06-28 1984-01-10 Standard Oil Company (Indiana) Benzene sulfonic acid catalyzed aromatic Mannich products from alkyl phenols
US4426305A (en) 1981-03-23 1984-01-17 Edwin Cooper, Inc. Lubricating compositions containing boronated nitrogen-containing dispersants
US4446037A (en) * 1981-05-26 1984-05-01 Mobil Oil Corporation Friction reducing additives and compositions thereof
EP0132383A2 (en) * 1983-07-25 1985-01-30 Amoco Corporation Boration of polyamine dispersants with polyborate esters
US4511516A (en) * 1980-06-12 1985-04-16 Union Oil Company Of California Boron containing heterocyclic compounds
US4557843A (en) * 1981-11-09 1985-12-10 Union Oil Company Of California Boron-containing heterocyclic compounds and lubricating compositions containing the same
US4595514A (en) * 1983-08-23 1986-06-17 Union Oil Company Of California Boron-containing heterocyclic compound and lubricating compositions containing same
WO1986004601A1 (en) 1985-01-31 1986-08-14 The Lubrizol Corporation Sulfur-containing compositions, and additive concentrates and lubricating oils containing same
US4623474A (en) * 1981-12-10 1986-11-18 Union Oil Company Of California Oxidation and corrosion inhibitors for boron-containing lubricants
US4627930A (en) * 1980-06-12 1986-12-09 Union Oil Company Of California Boron-containing heterocyclic compounds and lubricating oil containing same
US4629580A (en) * 1980-06-12 1986-12-16 Union Oil Company Of California Boron-containing heterocyclic compounds and lubricating oil containing same
US4629579A (en) * 1980-06-12 1986-12-16 Union Oil Company Of California Boron derivatives
US4655948A (en) * 1985-08-27 1987-04-07 Mobil Oil Corporation Grease compositions containing borated catechol compounds and hydroxy-containing soap thickeners
US4657686A (en) * 1980-06-12 1987-04-14 Union Oil Company Of California Lubricating compositions
US4661274A (en) * 1986-01-13 1987-04-28 Mobil Oil Corporation Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds
US4686056A (en) * 1980-06-12 1987-08-11 Union Oil Company Of California Metal-boron derivatives as lubricant additives
US4724099A (en) * 1980-06-12 1988-02-09 Union Oil Company Of California Lubricating compositions
US4743386A (en) * 1983-01-10 1988-05-10 Mobil Oil Corporation Grease compositions containing phenolic- or thio-amine borates and hydroxy-containing soap thickeners
US4780227A (en) * 1984-08-22 1988-10-25 Mobil Oil Corporation Grease composition containing borated alkoxylated alcohols
US4781850A (en) * 1985-08-27 1988-11-01 Mobil Oil Corporation Grease compositions containing borated catechol compounds and hydroxy-containing soap thickeners
US4801729A (en) * 1980-06-12 1989-01-31 Union Oil Company Of California Lubricating compositions
US4828734A (en) * 1985-08-27 1989-05-09 Mobil Oil Corporation Grease compositions containing borated oxazoline compounds and hydroxy-containing soap thickeners
US4892670A (en) * 1985-01-29 1990-01-09 Union Oil Company Of California Lubricating compositions
US4925983A (en) * 1986-11-12 1990-05-15 The Lubrizol Corporation Boronated compounds
US4961868A (en) * 1983-01-10 1990-10-09 Mobil Oil Corporation Grease composition
EP0399764A1 (en) 1989-05-22 1990-11-28 Ethyl Petroleum Additives Limited Lubricant compositions
US5084194A (en) * 1984-03-07 1992-01-28 Mobil Oil Corporation Grease composition
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
US5169547A (en) * 1986-08-20 1992-12-08 Mobil Oil Corporation Amine-containing hindered phenolic antioxidant lubricant additives and compositions thereof
EP0558835A1 (en) 1992-01-30 1993-09-08 Albemarle Corporation Biodegradable lubricants and functional fluids
US5310491A (en) * 1993-04-13 1994-05-10 Uniroyal Chemical Company, Inc. Lubricant composition containing antioxidant
US5334329A (en) * 1988-10-07 1994-08-02 The Lubrizol Corporation Lubricant and functional fluid compositions exhibiting improved demulsibility
EP0683220A2 (en) 1994-05-18 1995-11-22 Ethyl Corporation Lubricant additive compositions
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
EP0769546A2 (en) 1995-10-18 1997-04-23 The Lubrizol Corporation Antiwear enhancing composition for lubricants and functional fluids
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US5814111A (en) * 1995-03-14 1998-09-29 Shell Oil Company Gasoline compositions
WO1998047989A1 (en) 1997-04-21 1998-10-29 Exxon Chemical Patents Inc. Power transmission fluids containing alkyl phosphonates
US6034184A (en) * 1998-06-23 2000-03-07 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: Mannich reaction products
US6042626A (en) * 1997-08-01 2000-03-28 Ethyl Corporation Phosphorylated and/or boronated dispersants as thermal stability additives for distillate fuels
US6054539A (en) * 1998-07-31 2000-04-25 Mobil Oil Corporation Selectively hydrogenated polymer compositions: polybutadiene-isoprene-polybutadiene
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6103676A (en) * 1998-06-23 2000-08-15 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: hydroformylation/reductive amination reaction products
US6162768A (en) * 1990-01-16 2000-12-19 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: free radically initiated direct grafting reaction products
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
US6215033B1 (en) 1998-12-11 2001-04-10 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: blends with lower molecular weight components
US6228817B1 (en) 1990-01-16 2001-05-08 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers
US6248702B1 (en) 1990-01-16 2001-06-19 Mobil Oil Corporation Dispersant and dispersant viscosity index improvers from selectively hydrogenated aryl-substituted olefin containing diene copolymers
US6319881B1 (en) 1998-06-23 2001-11-20 Exxonmobil Oil Corporation Haze free oil additive compositions containing dispersants from selectively hydrogenated diene copolymers
WO2002010276A2 (en) 2000-07-31 2002-02-07 The Lubrizol Corporation Polymeric mixture useful as viscosity improver for lubricating oils
US20020193650A1 (en) * 2001-05-17 2002-12-19 Goze Maria Caridad B. Low noack volatility poly alpha-olefins
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US20040014612A1 (en) * 2002-07-17 2004-01-22 Esche Carl K. Hybridized olefin copolymer additives
US20040147410A1 (en) * 2003-01-15 2004-07-29 Milner Jeffrey L Extended drain, thermally stable, gear oil formulations
US6827750B2 (en) 2001-08-24 2004-12-07 Dober Chemical Corp Controlled release additives in fuel systems
US6835218B1 (en) 2001-08-24 2004-12-28 Dober Chemical Corp. Fuel additive compositions
US20050027592A1 (en) * 2003-07-30 2005-02-03 Pettigrew F. Alexander Powered platform fuel consumption economy credits method
US6860241B2 (en) 1999-06-16 2005-03-01 Dober Chemical Corp. Fuel filter including slow release additive
US6869917B2 (en) 2002-08-16 2005-03-22 Exxonmobil Chemical Patents Inc. Functional fluid lubricant using low Noack volatility base stock fluids
US20050101496A1 (en) * 2003-11-06 2005-05-12 Loper John T. Hydrocarbyl dispersants and compositions containing the dispersants
US20050101494A1 (en) * 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
US20050143265A1 (en) * 2003-12-31 2005-06-30 Loper John T. Hydrocarbyl dispersants including pendant polar functional groups
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US20050250656A1 (en) * 2004-05-04 2005-11-10 Masahiro Ishikawa Continuously variable transmission fluid
US7001531B2 (en) 2001-08-24 2006-02-21 Dober Chemical Corp. Sustained release coolant additive composition
EP1640440A1 (en) 2004-09-22 2006-03-29 Infineum International Limited Friction and/or wear reduction in manual or automated manual transmissions
EP1669435A1 (en) 2004-12-10 2006-06-14 Afton Chemical Corporation Dispersant reaction product with antioxidant capability
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
US20070054813A1 (en) * 2003-09-25 2007-03-08 Chip Hewette Boron free automotive gear oil
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
US20070111908A1 (en) * 2004-07-19 2007-05-17 Lam William Y Titanium-containing lubricating oil composition
US20070111907A1 (en) * 2005-11-16 2007-05-17 Esche Carl K Jr Additives and lubricant formulations for providing friction modification
US20070135317A1 (en) * 2005-12-12 2007-06-14 Tze-Chi Jao Nanosphere additives and lubricant formulations containing the nanosphere additives
US20070149418A1 (en) * 2005-12-22 2007-06-28 Esche Carl K Jr Additives and lubricant formulations having improved antiwear properties
US20070254820A1 (en) * 2006-04-28 2007-11-01 Tze-Chi Jao Diblock monopolymers as lubricant additives and lubricant formulations containing same
US20070259792A1 (en) * 2006-03-22 2007-11-08 Null Volker K Functional fluid compositions
US20080015124A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant composition
WO2008013698A1 (en) 2006-07-21 2008-01-31 Exxonmobil Research And Engineering Company Method for lubricating heavy duty geared apparatus
US20080132432A1 (en) * 2006-12-01 2008-06-05 Mathur Naresh C Additives and lubricant formulations for providing friction modification
US20080139429A1 (en) * 2006-12-06 2008-06-12 Guinther Gregory H Titanium-containing lubricating oil composition
US20080161213A1 (en) * 2007-01-03 2008-07-03 Tze-Chi Jao Nanoparticle additives and lubricant formulations containing the nanoparticle additives
DE102007056248A1 (en) 2006-12-08 2008-07-10 Afton Chemical Corp. Additive and lubricant formulations for improved antiwear properties
US20080223018A1 (en) * 2007-03-16 2008-09-18 Aradi Allen A Supplying tungsten to a combustion system or combustion system exhaust stream containing iron
DE102008005874A1 (en) 2007-03-15 2008-09-18 Afton Chemical Corp. Additive and lubricant formulations for improved antiwear properties
US20080236538A1 (en) * 2007-03-26 2008-10-02 Lam William Y Lubricating oil composition for improved oxidation, viscosity increase, oil consumption, and piston deposit control
US20080280796A1 (en) * 2007-05-08 2008-11-13 Guinther Gregory H Additives and lubricant formulations for improved catalyst performance
DE102008009042A1 (en) 2007-05-08 2008-11-13 Afton Chemical Corp. Additive and lubricant formulations for improved phosphorus retention properties
EP2017329A1 (en) 2007-05-04 2009-01-21 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
US20090042752A1 (en) * 2007-08-09 2009-02-12 Malcolm Waddoups Lubricant Compositions with Reduced Phosphorous Content for Engines having Catalytic Converters
EP2025737A1 (en) 2007-08-01 2009-02-18 Afton Chemical Corporation Environmentally-friendly fuel compositions
US20090069205A1 (en) * 2007-09-10 2009-03-12 Devlin Mark T Additives and lubricant formulations having improved antiwear properties
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
US20090111722A1 (en) * 2007-10-25 2009-04-30 Guinther Gregory H Engine wear protection in engines operated using ethanol-based fuel
US20090143265A1 (en) * 2007-11-30 2009-06-04 Ellington Joruetta R Additives and lubricant formulations for improved antioxidant properties
US20090156445A1 (en) * 2007-12-13 2009-06-18 Lam William Y Lubricant composition suitable for engines fueled by alternate fuels
EP2077316A2 (en) 2007-12-17 2009-07-08 Infineum International Limited Lubricant compositions with low HTHS for a given SAE viscosity grade
US7581558B2 (en) 2001-08-24 2009-09-01 Cummins Filtration Ip Inc. Controlled release of additives in fluid systems
US20090233823A1 (en) * 2008-03-11 2009-09-17 Volkswagen Aktiengesellschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
US20090233822A1 (en) * 2008-03-11 2009-09-17 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
WO2009119831A1 (en) 2008-03-28 2009-10-01 富士フイルム株式会社 Composition and method for forming coating film
DE102009012567A1 (en) 2008-03-11 2009-10-01 Afton Chemical Corp. Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
US7615520B2 (en) 2005-03-14 2009-11-10 Afton Chemical Corporation Additives and lubricant formulations for improved antioxidant properties
US7615519B2 (en) 2004-07-19 2009-11-10 Afton Chemical Corporation Additives and lubricant formulations for improved antiwear properties
EP2135925A1 (en) 2008-06-18 2009-12-23 Afton Chemical Corporation Method for making a titanium-containing lubricant additive
US20090318319A1 (en) * 2008-06-23 2009-12-24 Afton Chemical Corporation Friction modifiers for slideway applications
US7645728B2 (en) 2004-02-17 2010-01-12 Afton Chemical Corporation Lubricant and fuel additives derived from treated amines
US20100035774A1 (en) * 2008-08-08 2010-02-11 Afton Chemical Corporation Lubricant additive compositions having improved viscosity index increase properties
US7682526B2 (en) 2005-12-22 2010-03-23 Afton Chemical Corporation Stable imidazoline solutions
US20100144563A1 (en) * 2008-12-09 2010-06-10 Afton Chemical Corporation Additives and lubricant formulations for improved antiwear properties
US7743738B2 (en) 2007-03-01 2010-06-29 Afton Chemical Corporation Scavenging phosphorus, sulfur, and lead from combustion exhaust using tungsten compounds and lubricant
US7776800B2 (en) 2005-12-09 2010-08-17 Afton Chemical Corporation Titanium-containing lubricating oil composition
US20100263262A1 (en) * 2009-04-10 2010-10-21 Exxonmobil Research And Engineering Company Unleaded aviation gasoline
US7833953B2 (en) 2006-08-28 2010-11-16 Afton Chemical Corporation Lubricant composition
EP2251401A2 (en) 2009-05-15 2010-11-17 Afton Chemical Corporation Lubricant formulations and methods
US20100292112A1 (en) * 2009-05-14 2010-11-18 Afton Chemical Corporation Extended drain diesel lubricant formulations
EP2261311A1 (en) 2009-06-10 2010-12-15 Afton Chemical Corporation Lubricating method and composition for reducing engine deposits
WO2010147993A1 (en) 2009-06-16 2010-12-23 Chevron Phillips Chemical Company Lp Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
US7883638B2 (en) 2008-05-27 2011-02-08 Dober Chemical Corporation Controlled release cooling additive compositions
WO2011026990A1 (en) 2009-09-07 2011-03-10 Shell Internationale Research Maatschappij B.V. Lubricating compositions
US20110067662A1 (en) * 2009-09-22 2011-03-24 Afton Chemical Corporation Lubricating oil composition for crankcase applications
US7938277B2 (en) 2001-08-24 2011-05-10 Dober Chemical Corporation Controlled release of microbiocides
WO2011102836A1 (en) 2010-02-19 2011-08-25 Infineum International Limited Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents
WO2011102835A1 (en) 2010-02-19 2011-08-25 Toyota Jidosha Kabushiki Kaisha Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents
US20110237476A1 (en) * 2010-03-25 2011-09-29 Afton Chemical Corporation Lubricant compositions for improved engine performance
WO2011143418A1 (en) 2010-05-12 2011-11-17 Exxonmobil Research And Engineering Company Method for reducing one or more of deposits and friction of a lubricating oil
EP2489637A1 (en) 2011-02-17 2012-08-22 Afton Chemical Corporation Cerium oxide nanoparticle additives and lubricant formulations containing the nanoparticle additives
EP2524958A1 (en) 2011-05-20 2012-11-21 Afton Chemical Corporation Lubricant compositions containing a heteroaromatic compound
WO2013003392A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyetheramines
WO2013003406A1 (en) 2011-06-29 2013-01-03 Exxonmobil Research And Engineering Company Low viscosity engine oil with superior engine wear protection
WO2013003405A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyalkylene glycol mono ethers
JP2013503925A (en) * 2009-09-01 2013-02-04 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Polycondensate having isobutylene side chain
EP2557144A1 (en) 2011-08-11 2013-02-13 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant
US8377856B2 (en) 2009-05-14 2013-02-19 Afton Chemical Corporation Extended drain diesel lubricant formulations
WO2013055481A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company High efficiency engine oil compositions
US8425772B2 (en) 2006-12-12 2013-04-23 Cummins Filtration Ip, Inc. Filtration device with releasable additive
WO2013066915A1 (en) 2011-11-01 2013-05-10 Exxonmobil Research And Engineering Company Lubricants with improved low-temperature fuel economy
WO2013074498A1 (en) 2011-11-14 2013-05-23 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2013082206A1 (en) 2011-12-02 2013-06-06 Exxonmobil Research And Engineering Company Method for improving engine wear and corrosion resistance
WO2013096532A1 (en) 2011-12-22 2013-06-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2013142110A1 (en) 2012-03-22 2013-09-26 Exxonmobil Research And Engineering Company Novel antioxidant combination and synthetic base oils containing the same
US8557752B2 (en) 2005-03-23 2013-10-15 Afton Chemical Corporation Lubricating compositions
US8586520B2 (en) 2011-06-30 2013-11-19 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US8591747B2 (en) 2008-05-27 2013-11-26 Dober Chemical Corp. Devices and methods for controlled release of additive compositions
WO2013181318A1 (en) 2012-06-01 2013-12-05 Exxonmobil Research And Engineering Company Lubricant compostions and processes for preparing same
WO2013182581A1 (en) 2012-06-06 2013-12-12 Evonik Oil Additives Gmbh Fuel efficient lubricating oils
WO2014008121A1 (en) 2012-07-02 2014-01-09 Exxonmobil Research And Engineering Company Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
EP2687582A1 (en) 2012-07-18 2014-01-22 Afton Chemical Corporation Lubricant compositions for direct injection engines
EP2698418A1 (en) * 2012-08-17 2014-02-19 Afton Chemical Corporation Calcium neutral and overbased mannich and anhydride adducts as detergents for engine oil lubricants
US8702995B2 (en) 2008-05-27 2014-04-22 Dober Chemical Corp. Controlled release of microbiocides
WO2014065984A1 (en) 2012-10-24 2014-05-01 Exxonmobil Reearch And Engineering Company High viscosity index lubricating oil base stock viscosity modifier combinations, and lubricating oils derived therefrom
WO2014066444A1 (en) 2012-10-24 2014-05-01 Exxonmobil Research And Engineering Comapny Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives
WO2014107315A1 (en) 2013-01-04 2014-07-10 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2014107314A1 (en) 2013-01-03 2014-07-10 Exxonmobil Research And Engineering Company Lubricating compositions having improved shear stability
WO2014149406A1 (en) 2013-03-15 2014-09-25 Exxonmobil Research And Engineering Company Method for improving thermal -oxidative stability and elastomer compatibility
WO2014158602A1 (en) 2013-03-14 2014-10-02 Exxonmobil Research And Engineering Company Method for improving emulsion characteristics of engine oils
WO2014158533A1 (en) 2013-03-14 2014-10-02 Exxonmobil Research And Engineering Company Lubricating composition providing high wear resistance
WO2015050690A1 (en) 2013-10-03 2015-04-09 Exxonmobil Research And Engineering Company Compositions with improved varnish control properties
WO2015088893A1 (en) 2013-12-10 2015-06-18 The Lubrizol Corporation Organic salts of glyceride-cyclic carboxylic acid anhydride adducts as corrosion inhibitors
WO2015095336A1 (en) 2013-12-18 2015-06-25 Chevron Phillips Chemical Company Lp Method for making polyolefins using aluminum halide catalyzed oligomerization of olefins
WO2015099907A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Low viscosity ester lubricant and method for using
WO2015099821A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099820A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099819A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015171978A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015171981A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015171292A1 (en) 2014-05-08 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
WO2015171980A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015183455A1 (en) 2014-05-29 2015-12-03 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016043944A1 (en) 2014-09-17 2016-03-24 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US9315756B2 (en) 2012-04-06 2016-04-19 Exxonmobil Research And Engineering Company Bio-feeds based hybrid group V base stocks and method of production thereof
WO2016073149A1 (en) 2014-11-03 2016-05-12 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
WO2016077134A1 (en) 2014-11-12 2016-05-19 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2016106214A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for determining condition and quality of petroleum products
WO2016106211A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for authentication and identification of petroleum products
WO2016109376A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016109322A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
WO2016109382A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US9422497B2 (en) 2012-09-21 2016-08-23 Exxonmobil Research And Engineering Company Synthetic lubricant basestocks and methods of preparation thereof
US9506008B2 (en) 2013-12-23 2016-11-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2016191409A1 (en) 2015-05-28 2016-12-01 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016200606A1 (en) 2015-06-09 2016-12-15 Exxonmobil Research And Engineering Company Inverse micellar compositions containing lubricant additives
WO2017007670A1 (en) 2015-07-07 2017-01-12 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2017083042A1 (en) 2015-11-09 2017-05-18 The Lubrizol Corporation Using quaternary amine additives to improve water separation
WO2017117178A1 (en) 2015-12-28 2017-07-06 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
US9732300B2 (en) 2015-07-23 2017-08-15 Chevron Phillipa Chemical Company LP Liquid propylene oligomers and methods of making same
WO2017146896A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
WO2017146897A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
WO2017172254A1 (en) 2016-03-31 2017-10-05 Exxonmobil Research And Engineering Company Lubricant compositions
EP3246383A1 (en) 2016-05-17 2017-11-22 Afton Chemical Corporation Synergistic dispersants
WO2017200688A1 (en) 2016-05-18 2017-11-23 The Lubrizol Corporation Hydraulic fluid composition
WO2017218664A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2018013249A1 (en) 2016-07-12 2018-01-18 Chevron Phillips Chemical Company Lp Decene oligomers
WO2018017449A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017454A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
US9885004B2 (en) 2013-12-23 2018-02-06 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2018027227A1 (en) 2016-08-05 2018-02-08 Rutgers, The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
WO2018026982A1 (en) 2016-08-03 2018-02-08 Exxonmobil Research And Engineering Company Lubricating engine oil for improved wear protection and fuel efficiency
US9926509B2 (en) 2015-01-19 2018-03-27 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection and solubility
WO2018057377A1 (en) 2016-09-20 2018-03-29 Exxonmobil Research And Engineering Company Non-newtonian engine oil with superior engine wear protection and fuel economy
WO2018057675A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Polyacrylate antifoam components with improved thermal stability
WO2018057678A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
WO2018067908A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Low conductivity lubricating oils for electric and hybrid vehicles
WO2018067905A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains
WO2018067903A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains
WO2018094216A1 (en) 2016-11-18 2018-05-24 International Petroleum Products & Additives Company, Inc. Thiadiazole components, compositions, and methods
EP3336163A1 (en) 2016-12-13 2018-06-20 Afton Chemical Corporation Polyolefin-derived dispersants
WO2018118477A1 (en) 2016-12-19 2018-06-28 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition compression spark ignition engines
WO2018118163A1 (en) 2016-12-22 2018-06-28 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
WO2018125956A1 (en) 2016-12-30 2018-07-05 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2018144166A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
WO2018156304A1 (en) 2017-02-21 2018-08-30 Exxonmobil Research And Engineering Company Lubricating oil compositions and methods of use thereof
WO2018170110A1 (en) 2017-03-16 2018-09-20 Chevron Phillips Chemical Company Lp Lubricant compositions containing hexene-based oligomers
WO2018175830A1 (en) 2017-03-24 2018-09-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
WO2018236592A1 (en) 2017-06-20 2018-12-27 The Lubrizol Corporation Lubricating composition
US10174272B2 (en) 2016-07-14 2019-01-08 Afton Chemical Corporation Dispersant viscosity index improver-containing lubricant compositions and methods of use thereof
WO2019014092A1 (en) 2017-07-13 2019-01-17 Exxonmobil Research And Engineering Company Continuous process for the manufacture of grease
WO2019018145A1 (en) 2017-07-21 2019-01-24 Exxonmobil Research And Engineering Company Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil
US10190072B2 (en) 2013-12-23 2019-01-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2019028310A1 (en) 2017-08-04 2019-02-07 Exxonmobil Research And Engineering Company Novel formulation for lubrication of hyper compressors providing improved pumpability under high-pressure conditions
WO2019055291A1 (en) 2017-09-18 2019-03-21 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability
WO2019060144A1 (en) 2017-09-22 2019-03-28 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity and deposit control
WO2019089181A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2019090038A1 (en) 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
WO2019094019A1 (en) 2017-11-09 2019-05-16 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2019103808A1 (en) 2017-11-22 2019-05-31 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines
US10316712B2 (en) 2015-12-18 2019-06-11 Exxonmobil Research And Engineering Company Lubricant compositions for surface finishing of materials
WO2019112711A1 (en) 2017-12-04 2019-06-13 Exxonmobil Research And Enginerring Company Method for preventing or reducing low speed pre-ignition
WO2019118115A1 (en) 2017-12-15 2019-06-20 Exxonmobil Research And Engineering Company Lubricating oil compositions containing microencapsulated additives
WO2019133407A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Low traction/energy efficient liquid crystal base stocks
WO2019133218A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with wear and sludge control
WO2019133191A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubrication of oxygenated diamond-like carbon surfaces
WO2019133255A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Grease compositions with improved performance comprising thixotropic polyamide, and methods of preparing and using the same
WO2019183365A1 (en) 2018-03-21 2019-09-26 The Lubrizol Corporation NOVEL FLUORINATED POLYACRYLATES ANTIFOAMS IN ULTRA-LOW VISCOSITY (<5 CST) finished fluids
US10435491B2 (en) 2015-08-19 2019-10-08 Chevron Phillips Chemical Company Lp Method for making polyalphaolefins using ionic liquid catalyzed oligomerization of olefins
WO2019217058A1 (en) 2018-05-11 2019-11-14 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof
WO2019240965A1 (en) 2018-06-11 2019-12-19 Exxonmobil Research And Engineering Company Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same
US10519394B2 (en) 2014-05-09 2019-12-31 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2020023430A1 (en) 2018-07-23 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel
WO2020023437A1 (en) 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine corrosion protection
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US10550341B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Sequential deasphalting for base stock production
WO2020068439A1 (en) 2018-09-27 2020-04-02 Exxonmobil Research And Engineering Company Low viscosity lubricating oils with improved oxidative stability and traction performance
US10647936B2 (en) 2016-12-30 2020-05-12 Exxonmobil Research And Engineering Company Method for improving lubricant antifoaming performance and filterability
WO2020096804A1 (en) 2018-11-05 2020-05-14 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
WO2020112338A1 (en) 2018-11-28 2020-06-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with improved deposit resistance and methods thereof
WO2020123440A1 (en) 2018-12-10 2020-06-18 Exxonmobil Research And Engineering Company Method for improving oxidation and deposit resistance of lubricating oils
US10689593B2 (en) 2014-08-15 2020-06-23 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2020131310A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Method for improving high temperature antifoaming performance of a lubricating oil
WO2020131441A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having improved performance
WO2020132166A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with antioxidant formation and dissipation control
WO2020131439A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers
WO2020131440A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having calcium sulfonate and polyurea thickeners
WO2020132164A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity control
WO2020131515A2 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricant compositions with improved wear control
WO2020139333A1 (en) 2018-12-26 2020-07-02 Exxonmobil Research And Engineering Company Formulation approach to extend the high temperature performance of lithium complex greases
US10712105B1 (en) 2019-06-19 2020-07-14 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
EP3680312A1 (en) 2019-01-11 2020-07-15 Afton Chemical Corporation Oxazoline modified dispersants
WO2020149958A1 (en) 2019-01-18 2020-07-23 Afton Chemical Corporation Engine oils for soot handling and friction reduction
WO2020176171A1 (en) 2019-02-28 2020-09-03 Exxonmobil Research And Engineering Company Low viscosity gear oil compositions for electric and hybrid vehicles
US10781397B2 (en) 2014-12-30 2020-09-22 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US10793801B2 (en) 2017-02-06 2020-10-06 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
US10808196B2 (en) 2017-03-28 2020-10-20 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
EP3739025A1 (en) 2019-05-13 2020-11-18 Afton Chemical Corporation Additive and lubricant for industrial lubrication
US10858610B2 (en) 2017-03-24 2020-12-08 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
WO2020257379A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257373A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257378A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257375A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257377A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257374A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257371A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257376A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257370A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
US10876062B2 (en) 2017-03-24 2020-12-29 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
WO2020264534A2 (en) 2019-06-27 2020-12-30 Exxonmobil Research And Engineering Company Method for reducing solubilized copper levels in wind turbine gear oils
WO2021138285A1 (en) 2020-01-03 2021-07-08 Afton Chemical Corporation Silicone functionlized viscosity index improver
WO2021154497A1 (en) 2020-01-30 2021-08-05 Exxonmobil Research And Engineering Company Sulfur-free, ashless, low phosphorus lubricant compositions with improved oxidation stability
WO2021183230A1 (en) 2020-03-12 2021-09-16 The Lubrizol Corporation Oil-based corrosion inhibitors
WO2021194813A1 (en) 2020-03-27 2021-09-30 Exxonmobil Research And Engineering Company Monitoring health of heat transfer fluids for electric systems
WO2022010606A1 (en) 2020-07-09 2022-01-13 Exxonmobil Research And Engineering Company Engine oil lubricant compositions and methods for making same with superior engine wear protection and corrosion protection
WO2022072962A1 (en) 2020-09-30 2022-04-07 Exxonmobil Research And Engineering Company Low friction and low traction lubricant compositions useful in dry clutch motorcycles
WO2022099291A1 (en) 2020-11-06 2022-05-12 Exxonmobil Research And Engineering Company Engine oil lubricant compositions and methods for making same with steel corrosion protection
US11639480B1 (en) 2022-06-20 2023-05-02 Afton Chemical Corporation Phosphorus antiwear system for improved gear protection
WO2023122405A1 (en) 2021-12-21 2023-06-29 ExxonMobil Technology and Engineering Company Engine oil lubricant compostions and methods for making same with superior oil consumption
US11760952B2 (en) 2021-01-12 2023-09-19 Ingevity South Carolina, Llc Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods
WO2024006132A1 (en) 2022-06-27 2024-01-04 The Lubrizol Corporation Lubricating composition
US11884892B1 (en) 2023-03-31 2024-01-30 Afton Chemical Corporation Antiwear system for improved copper corrosion
US11884893B1 (en) 2023-03-31 2024-01-30 Afton Chemical Corporation Antiwear system for improved copper corrosion
EP4342964A1 (en) 2022-09-22 2024-03-27 Afton Chemical Corporation Extreme pressure additives with improved copper corrosion
US11958875B1 (en) 2023-03-31 2024-04-16 Afton Chemical Corporation Thiophosphoric acid products for antiwear additives

Cited By (421)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016092A (en) * 1975-03-28 1977-04-05 Mobil Oil Corporation Organic compositions containing borate and phosphonate derivatives as detergents
US4425249A (en) 1979-06-28 1984-01-10 Standard Oil Company (Indiana) Benzene sulfonic acid catalyzed aromatic Mannich products from alkyl phenols
US4629580A (en) * 1980-06-12 1986-12-16 Union Oil Company Of California Boron-containing heterocyclic compounds and lubricating oil containing same
US4627930A (en) * 1980-06-12 1986-12-09 Union Oil Company Of California Boron-containing heterocyclic compounds and lubricating oil containing same
US4629579A (en) * 1980-06-12 1986-12-16 Union Oil Company Of California Boron derivatives
US4801729A (en) * 1980-06-12 1989-01-31 Union Oil Company Of California Lubricating compositions
US4511516A (en) * 1980-06-12 1985-04-16 Union Oil Company Of California Boron containing heterocyclic compounds
US4657686A (en) * 1980-06-12 1987-04-14 Union Oil Company Of California Lubricating compositions
US4724099A (en) * 1980-06-12 1988-02-09 Union Oil Company Of California Lubricating compositions
US4686056A (en) * 1980-06-12 1987-08-11 Union Oil Company Of California Metal-boron derivatives as lubricant additives
US4303445A (en) * 1980-07-18 1981-12-01 Exxon Research & Engineering Co. Ink jet printing formulations
US4426305A (en) 1981-03-23 1984-01-17 Edwin Cooper, Inc. Lubricating compositions containing boronated nitrogen-containing dispersants
US4394278A (en) * 1981-05-26 1983-07-19 Mobil Oil Corporation Friction reducing additives and compositions thereof
US4446037A (en) * 1981-05-26 1984-05-01 Mobil Oil Corporation Friction reducing additives and compositions thereof
US4557843A (en) * 1981-11-09 1985-12-10 Union Oil Company Of California Boron-containing heterocyclic compounds and lubricating compositions containing the same
US4623474A (en) * 1981-12-10 1986-11-18 Union Oil Company Of California Oxidation and corrosion inhibitors for boron-containing lubricants
US4743386A (en) * 1983-01-10 1988-05-10 Mobil Oil Corporation Grease compositions containing phenolic- or thio-amine borates and hydroxy-containing soap thickeners
US4961868A (en) * 1983-01-10 1990-10-09 Mobil Oil Corporation Grease composition
EP0132383A3 (en) * 1983-07-25 1986-09-24 Amoco Corporation Boration of polyamine dispersants with polyborate esters
EP0132383A2 (en) * 1983-07-25 1985-01-30 Amoco Corporation Boration of polyamine dispersants with polyborate esters
US4595514A (en) * 1983-08-23 1986-06-17 Union Oil Company Of California Boron-containing heterocyclic compound and lubricating compositions containing same
US5084194A (en) * 1984-03-07 1992-01-28 Mobil Oil Corporation Grease composition
US4780227A (en) * 1984-08-22 1988-10-25 Mobil Oil Corporation Grease composition containing borated alkoxylated alcohols
US4892670A (en) * 1985-01-29 1990-01-09 Union Oil Company Of California Lubricating compositions
WO1986004601A1 (en) 1985-01-31 1986-08-14 The Lubrizol Corporation Sulfur-containing compositions, and additive concentrates and lubricating oils containing same
US4781850A (en) * 1985-08-27 1988-11-01 Mobil Oil Corporation Grease compositions containing borated catechol compounds and hydroxy-containing soap thickeners
US4655948A (en) * 1985-08-27 1987-04-07 Mobil Oil Corporation Grease compositions containing borated catechol compounds and hydroxy-containing soap thickeners
US4828734A (en) * 1985-08-27 1989-05-09 Mobil Oil Corporation Grease compositions containing borated oxazoline compounds and hydroxy-containing soap thickeners
US4661274A (en) * 1986-01-13 1987-04-28 Mobil Oil Corporation Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds
US5169547A (en) * 1986-08-20 1992-12-08 Mobil Oil Corporation Amine-containing hindered phenolic antioxidant lubricant additives and compositions thereof
US4925983A (en) * 1986-11-12 1990-05-15 The Lubrizol Corporation Boronated compounds
US5583099A (en) * 1986-11-12 1996-12-10 The Lubrizol Corporation Boronated compounds
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
US5334329A (en) * 1988-10-07 1994-08-02 The Lubrizol Corporation Lubricant and functional fluid compositions exhibiting improved demulsibility
EP0399764A1 (en) 1989-05-22 1990-11-28 Ethyl Petroleum Additives Limited Lubricant compositions
US6248702B1 (en) 1990-01-16 2001-06-19 Mobil Oil Corporation Dispersant and dispersant viscosity index improvers from selectively hydrogenated aryl-substituted olefin containing diene copolymers
US6228817B1 (en) 1990-01-16 2001-05-08 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers
US6162768A (en) * 1990-01-16 2000-12-19 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: free radically initiated direct grafting reaction products
EP0558835A1 (en) 1992-01-30 1993-09-08 Albemarle Corporation Biodegradable lubricants and functional fluids
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5663130A (en) * 1992-12-17 1997-09-02 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US6030930A (en) * 1992-12-17 2000-02-29 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5310491A (en) * 1993-04-13 1994-05-10 Uniroyal Chemical Company, Inc. Lubricant composition containing antioxidant
EP0683220A2 (en) 1994-05-18 1995-11-22 Ethyl Corporation Lubricant additive compositions
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
US5814111A (en) * 1995-03-14 1998-09-29 Shell Oil Company Gasoline compositions
EP0769546A2 (en) 1995-10-18 1997-04-23 The Lubrizol Corporation Antiwear enhancing composition for lubricants and functional fluids
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6468948B1 (en) 1996-06-17 2002-10-22 Infineum Usa L.P. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
WO1998047989A1 (en) 1997-04-21 1998-10-29 Exxon Chemical Patents Inc. Power transmission fluids containing alkyl phosphonates
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
US6042626A (en) * 1997-08-01 2000-03-28 Ethyl Corporation Phosphorylated and/or boronated dispersants as thermal stability additives for distillate fuels
US6103676A (en) * 1998-06-23 2000-08-15 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: hydroformylation/reductive amination reaction products
US6034184A (en) * 1998-06-23 2000-03-07 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: Mannich reaction products
US6319881B1 (en) 1998-06-23 2001-11-20 Exxonmobil Oil Corporation Haze free oil additive compositions containing dispersants from selectively hydrogenated diene copolymers
US6054539A (en) * 1998-07-31 2000-04-25 Mobil Oil Corporation Selectively hydrogenated polymer compositions: polybutadiene-isoprene-polybutadiene
US6215033B1 (en) 1998-12-11 2001-04-10 Mobil Oil Corporation Dispersants and dispersant viscosity index improvers from selectively hydrogenated polymers: blends with lower molecular weight components
US6860241B2 (en) 1999-06-16 2005-03-01 Dober Chemical Corp. Fuel filter including slow release additive
WO2002010276A2 (en) 2000-07-31 2002-02-07 The Lubrizol Corporation Polymeric mixture useful as viscosity improver for lubricating oils
US20020193650A1 (en) * 2001-05-17 2002-12-19 Goze Maria Caridad B. Low noack volatility poly alpha-olefins
US20050045527A1 (en) * 2001-05-17 2005-03-03 Goze Maria Caridad B. Low noack volatility poly alpha-olefins
US6949688B2 (en) 2001-05-17 2005-09-27 Exxonmobil Chemical Patents Inc. Low Noack volatility poly α-olefins
US6824671B2 (en) 2001-05-17 2004-11-30 Exxonmobil Chemical Patents Inc. Low noack volatility poly α-olefins
US7581558B2 (en) 2001-08-24 2009-09-01 Cummins Filtration Ip Inc. Controlled release of additives in fluid systems
US8109287B2 (en) 2001-08-24 2012-02-07 Cummins Filtration Ip, Inc. Controlled release of additives in fluid systems
US6827750B2 (en) 2001-08-24 2004-12-07 Dober Chemical Corp Controlled release additives in fuel systems
US7001531B2 (en) 2001-08-24 2006-02-21 Dober Chemical Corp. Sustained release coolant additive composition
US6835218B1 (en) 2001-08-24 2004-12-28 Dober Chemical Corp. Fuel additive compositions
US7938277B2 (en) 2001-08-24 2011-05-10 Dober Chemical Corporation Controlled release of microbiocides
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US7049273B2 (en) 2002-07-17 2006-05-23 Afton Chemical Intangibles Llc Hybridized olefin copolymer additives
US20040014612A1 (en) * 2002-07-17 2004-01-22 Esche Carl K. Hybridized olefin copolymer additives
US6869917B2 (en) 2002-08-16 2005-03-22 Exxonmobil Chemical Patents Inc. Functional fluid lubricant using low Noack volatility base stock fluids
US7888299B2 (en) 2003-01-15 2011-02-15 Afton Chemical Japan Corp. Extended drain, thermally stable, gear oil formulations
US20040147410A1 (en) * 2003-01-15 2004-07-29 Milner Jeffrey L Extended drain, thermally stable, gear oil formulations
US20050027592A1 (en) * 2003-07-30 2005-02-03 Pettigrew F. Alexander Powered platform fuel consumption economy credits method
US20070054813A1 (en) * 2003-09-25 2007-03-08 Chip Hewette Boron free automotive gear oil
US20050101496A1 (en) * 2003-11-06 2005-05-12 Loper John T. Hydrocarbyl dispersants and compositions containing the dispersants
US20050101494A1 (en) * 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
EP2230292A1 (en) 2003-11-10 2010-09-22 Afton Chemical Corporation Methods of lubricating transmissions
US20100279901A1 (en) * 2003-11-10 2010-11-04 Iyer Ramnath N Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
US20080009426A1 (en) * 2003-11-10 2008-01-10 Iyer Ramnath N Lubricant Compositions and Methods Comprising Dispersant and Detergent
US9267093B2 (en) 2003-11-10 2016-02-23 Afton Chemical Corporation Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
US20050143265A1 (en) * 2003-12-31 2005-06-30 Loper John T. Hydrocarbyl dispersants including pendant polar functional groups
US7214649B2 (en) 2003-12-31 2007-05-08 Afton Chemical Corporation Hydrocarbyl dispersants including pendant polar functional groups
US7645728B2 (en) 2004-02-17 2010-01-12 Afton Chemical Corporation Lubricant and fuel additives derived from treated amines
US7947636B2 (en) 2004-02-27 2011-05-24 Afton Chemical Corporation Power transmission fluids
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US20050250656A1 (en) * 2004-05-04 2005-11-10 Masahiro Ishikawa Continuously variable transmission fluid
US7615519B2 (en) 2004-07-19 2009-11-10 Afton Chemical Corporation Additives and lubricant formulations for improved antiwear properties
US7879774B2 (en) 2004-07-19 2011-02-01 Afton Chemical Corporation Titanium-containing lubricating oil composition
US20070111908A1 (en) * 2004-07-19 2007-05-17 Lam William Y Titanium-containing lubricating oil composition
EP1640440A1 (en) 2004-09-22 2006-03-29 Infineum International Limited Friction and/or wear reduction in manual or automated manual transmissions
US20080318813A1 (en) * 2004-12-10 2008-12-25 Loper John T Dispersant reaction product with antioxidant capability
US20060128571A1 (en) * 2004-12-10 2006-06-15 Loper John T Dispersant reaction product with antioxidant capability
EP1669435A1 (en) 2004-12-10 2006-06-14 Afton Chemical Corporation Dispersant reaction product with antioxidant capability
US7645726B2 (en) 2004-12-10 2010-01-12 Afton Chemical Corporation Dispersant reaction product with antioxidant capability
US8048831B2 (en) 2004-12-10 2011-11-01 Afton Chemical Corporation Dispersant reaction product with antioxidant capability
US7615520B2 (en) 2005-03-14 2009-11-10 Afton Chemical Corporation Additives and lubricant formulations for improved antioxidant properties
US8557752B2 (en) 2005-03-23 2013-10-15 Afton Chemical Corporation Lubricating compositions
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
US7709423B2 (en) 2005-11-16 2010-05-04 Afton Chemical Corporation Additives and lubricant formulations for providing friction modification
US20070111907A1 (en) * 2005-11-16 2007-05-17 Esche Carl K Jr Additives and lubricant formulations for providing friction modification
US7776800B2 (en) 2005-12-09 2010-08-17 Afton Chemical Corporation Titanium-containing lubricating oil composition
US7632788B2 (en) 2005-12-12 2009-12-15 Afton Chemical Corporation Nanosphere additives and lubricant formulations containing the nanosphere additives
US20070135317A1 (en) * 2005-12-12 2007-06-14 Tze-Chi Jao Nanosphere additives and lubricant formulations containing the nanosphere additives
US7767632B2 (en) 2005-12-22 2010-08-03 Afton Chemical Corporation Additives and lubricant formulations having improved antiwear properties
US20070149418A1 (en) * 2005-12-22 2007-06-28 Esche Carl K Jr Additives and lubricant formulations having improved antiwear properties
US7682526B2 (en) 2005-12-22 2010-03-23 Afton Chemical Corporation Stable imidazoline solutions
US20070259792A1 (en) * 2006-03-22 2007-11-08 Null Volker K Functional fluid compositions
US20070254820A1 (en) * 2006-04-28 2007-11-01 Tze-Chi Jao Diblock monopolymers as lubricant additives and lubricant formulations containing same
US7867958B2 (en) 2006-04-28 2011-01-11 Afton Chemical Corporation Diblock monopolymers as lubricant additives and lubricant formulations containing same
US20080015124A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant composition
US7902133B2 (en) 2006-07-14 2011-03-08 Afton Chemical Corporation Lubricant composition
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
WO2008013698A1 (en) 2006-07-21 2008-01-31 Exxonmobil Research And Engineering Company Method for lubricating heavy duty geared apparatus
US7833953B2 (en) 2006-08-28 2010-11-16 Afton Chemical Corporation Lubricant composition
US20080132432A1 (en) * 2006-12-01 2008-06-05 Mathur Naresh C Additives and lubricant formulations for providing friction modification
US7772167B2 (en) 2006-12-06 2010-08-10 Afton Chemical Corporation Titanium-containing lubricating oil composition
US20080139429A1 (en) * 2006-12-06 2008-06-12 Guinther Gregory H Titanium-containing lubricating oil composition
DE102007056248A1 (en) 2006-12-08 2008-07-10 Afton Chemical Corp. Additive and lubricant formulations for improved antiwear properties
US8425772B2 (en) 2006-12-12 2013-04-23 Cummins Filtration Ip, Inc. Filtration device with releasable additive
US20080161213A1 (en) * 2007-01-03 2008-07-03 Tze-Chi Jao Nanoparticle additives and lubricant formulations containing the nanoparticle additives
US8741821B2 (en) 2007-01-03 2014-06-03 Afton Chemical Corporation Nanoparticle additives and lubricant formulations containing the nanoparticle additives
DE102007023939A1 (en) 2007-01-03 2008-07-10 Afton Chemical Corp. Nanoparticle additives and lubricant formulations containing the nanoparticle additives
US7743738B2 (en) 2007-03-01 2010-06-29 Afton Chemical Corporation Scavenging phosphorus, sulfur, and lead from combustion exhaust using tungsten compounds and lubricant
US7897548B2 (en) 2007-03-15 2011-03-01 Afton Chemical Corporation Additives and lubricant formulations for improved antiwear properties
DE102008005874A1 (en) 2007-03-15 2008-09-18 Afton Chemical Corp. Additive and lubricant formulations for improved antiwear properties
US7794512B2 (en) 2007-03-16 2010-09-14 Afton Chemical Corporation Supplying tungsten to a combustion system or combustion system exhaust stream containing iron
US20080223018A1 (en) * 2007-03-16 2008-09-18 Aradi Allen A Supplying tungsten to a combustion system or combustion system exhaust stream containing iron
DE102007061422A1 (en) 2007-03-26 2008-10-02 Afton Chemical Corp. Lubricating oil composition for improved oxidation, viscosity increase, oil consumption and piston deposition control
US20080236538A1 (en) * 2007-03-26 2008-10-02 Lam William Y Lubricating oil composition for improved oxidation, viscosity increase, oil consumption, and piston deposit control
EP2017329A1 (en) 2007-05-04 2009-01-21 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
EP2420553A1 (en) 2007-05-04 2012-02-22 Afton Chemical Corporation Environmentally-Friendly Lubricant Compositions
US20100152078A1 (en) * 2007-05-04 2010-06-17 Ian Macpherson Environmentally-friendly lubricant compositions
US20080280796A1 (en) * 2007-05-08 2008-11-13 Guinther Gregory H Additives and lubricant formulations for improved catalyst performance
DE102008009042A1 (en) 2007-05-08 2008-11-13 Afton Chemical Corp. Additive and lubricant formulations for improved phosphorus retention properties
US20080277203A1 (en) * 2007-05-08 2008-11-13 Guinther Gregory H Additives and lubricant formulations for improved phosphorus retention properties
US8048834B2 (en) 2007-05-08 2011-11-01 Afton Chemical Corporation Additives and lubricant formulations for improved catalyst performance
EP2025737A1 (en) 2007-08-01 2009-02-18 Afton Chemical Corporation Environmentally-friendly fuel compositions
US20090042752A1 (en) * 2007-08-09 2009-02-12 Malcolm Waddoups Lubricant Compositions with Reduced Phosphorous Content for Engines having Catalytic Converters
EP2031045A1 (en) 2007-08-09 2009-03-04 Infineum International Limited Lubricant compositions with reduced phosphorous content for engines having catalytic converters
US20090069205A1 (en) * 2007-09-10 2009-03-12 Devlin Mark T Additives and lubricant formulations having improved antiwear properties
US8278254B2 (en) 2007-09-10 2012-10-02 Afton Chemical Corporation Additives and lubricant formulations having improved antiwear properties
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
EP2039741A1 (en) 2007-09-17 2009-03-25 Afton Chemical Corporation Additives and lubricant formulations for improved catalyst performance
US7737094B2 (en) 2007-10-25 2010-06-15 Afton Chemical Corporation Engine wear protection in engines operated using ethanol-based fuel
US20090111722A1 (en) * 2007-10-25 2009-04-30 Guinther Gregory H Engine wear protection in engines operated using ethanol-based fuel
EP2067843A1 (en) 2007-11-30 2009-06-10 Afton Chemical Corporation Additives and lubricant formulations for improved antioxidant properties
US20090143265A1 (en) * 2007-11-30 2009-06-04 Ellington Joruetta R Additives and lubricant formulations for improved antioxidant properties
US7897552B2 (en) 2007-11-30 2011-03-01 Afton Chemical Corporation Additives and lubricant formulations for improved antioxidant properties
EP2072611A1 (en) 2007-12-13 2009-06-24 Afton Chemical Corporation Lubricant composition suitable for engines fueled by alternate fuels
US20090156445A1 (en) * 2007-12-13 2009-06-18 Lam William Y Lubricant composition suitable for engines fueled by alternate fuels
EP2077316A2 (en) 2007-12-17 2009-07-08 Infineum International Limited Lubricant compositions with low HTHS for a given SAE viscosity grade
US8546311B2 (en) 2008-03-11 2013-10-01 Volkswagen Aktiengesellsschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
US20090233823A1 (en) * 2008-03-11 2009-09-17 Volkswagen Aktiengesellschaft Method for lubricating a clutch-only automatic transmission component requiring lubrication
US20090233822A1 (en) * 2008-03-11 2009-09-17 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
DE102009001301A1 (en) 2008-03-11 2009-09-24 Volkswagen Ag Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication
US8703669B2 (en) 2008-03-11 2014-04-22 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
DE102009012567A1 (en) 2008-03-11 2009-10-01 Afton Chemical Corp. Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
WO2009119831A1 (en) 2008-03-28 2009-10-01 富士フイルム株式会社 Composition and method for forming coating film
US7883638B2 (en) 2008-05-27 2011-02-08 Dober Chemical Corporation Controlled release cooling additive compositions
US8702995B2 (en) 2008-05-27 2014-04-22 Dober Chemical Corp. Controlled release of microbiocides
US8591747B2 (en) 2008-05-27 2013-11-26 Dober Chemical Corp. Devices and methods for controlled release of additive compositions
EP2135925A1 (en) 2008-06-18 2009-12-23 Afton Chemical Corporation Method for making a titanium-containing lubricant additive
US20090318318A1 (en) * 2008-06-18 2009-12-24 Afton Chemical Corporation Method for making a titanium-containing lubricant additive
US8008237B2 (en) 2008-06-18 2011-08-30 Afton Chemical Corporation Method for making a titanium-containing lubricant additive
EP2143781A1 (en) 2008-06-23 2010-01-13 Afton Chemical Corporation Friction modifiers for slideway applications
US20090318319A1 (en) * 2008-06-23 2009-12-24 Afton Chemical Corporation Friction modifiers for slideway applications
US8778857B2 (en) 2008-08-08 2014-07-15 Afton Chemical Corporation Lubricant additive compositions having improved viscosity index increase properties
US20100035774A1 (en) * 2008-08-08 2010-02-11 Afton Chemical Corporation Lubricant additive compositions having improved viscosity index increase properties
EP2154230A1 (en) 2008-08-08 2010-02-17 Afton Chemical Corporation Lubricant additive compositions having improved viscosity index increasing properties
EP2196522A1 (en) 2008-12-09 2010-06-16 Afton Chemical Corporation Additives and lubricant formulations having improved antiwear properties
US20100144563A1 (en) * 2008-12-09 2010-06-10 Afton Chemical Corporation Additives and lubricant formulations for improved antiwear properties
US8211840B2 (en) 2008-12-09 2012-07-03 Afton Chemical Corporation Additives and lubricant formulations for improved antiwear properties
US20100263262A1 (en) * 2009-04-10 2010-10-21 Exxonmobil Research And Engineering Company Unleaded aviation gasoline
US8377856B2 (en) 2009-05-14 2013-02-19 Afton Chemical Corporation Extended drain diesel lubricant formulations
US20100292112A1 (en) * 2009-05-14 2010-11-18 Afton Chemical Corporation Extended drain diesel lubricant formulations
EP2251401A2 (en) 2009-05-15 2010-11-17 Afton Chemical Corporation Lubricant formulations and methods
US20100292113A1 (en) * 2009-05-15 2010-11-18 Afton Chemical Corporation Lubricant formulations and methods
EP2261311A1 (en) 2009-06-10 2010-12-15 Afton Chemical Corporation Lubricating method and composition for reducing engine deposits
US20100317552A1 (en) * 2009-06-10 2010-12-16 Afton Chemical Corporation Lubricating method and composition for reducing engine deposits
US9663743B2 (en) 2009-06-10 2017-05-30 Afton Chemical Corporation Lubricating method and composition for reducing engine deposits
EP3587458A1 (en) 2009-06-16 2020-01-01 Chevron Phillips Chemical Company LP Compositions comprising polyalphaolefins
WO2010147993A1 (en) 2009-06-16 2010-12-23 Chevron Phillips Chemical Company Lp Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
JP2013503925A (en) * 2009-09-01 2013-02-04 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Polycondensate having isobutylene side chain
WO2011026990A1 (en) 2009-09-07 2011-03-10 Shell Internationale Research Maatschappij B.V. Lubricating compositions
US8207099B2 (en) 2009-09-22 2012-06-26 Afton Chemical Corporation Lubricating oil composition for crankcase applications
US20110067662A1 (en) * 2009-09-22 2011-03-24 Afton Chemical Corporation Lubricating oil composition for crankcase applications
US9365794B2 (en) 2010-02-19 2016-06-14 Infineum International Limited Wet friction clutch—lubricant systems providing high dynamic coefficients of friction through the use of borated detergents
WO2011102836A1 (en) 2010-02-19 2011-08-25 Infineum International Limited Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents
WO2011102835A1 (en) 2010-02-19 2011-08-25 Toyota Jidosha Kabushiki Kaisha Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents
EP2371935A1 (en) 2010-03-25 2011-10-05 Afton Chemical Corporation Lubricant compositions for improved engine performance
US9725673B2 (en) 2010-03-25 2017-08-08 Afton Chemical Corporation Lubricant compositions for improved engine performance
US20110237476A1 (en) * 2010-03-25 2011-09-29 Afton Chemical Corporation Lubricant compositions for improved engine performance
WO2011143418A1 (en) 2010-05-12 2011-11-17 Exxonmobil Research And Engineering Company Method for reducing one or more of deposits and friction of a lubricating oil
EP2489637A1 (en) 2011-02-17 2012-08-22 Afton Chemical Corporation Cerium oxide nanoparticle additives and lubricant formulations containing the nanoparticle additives
US8333945B2 (en) 2011-02-17 2012-12-18 Afton Chemical Corporation Nanoparticle additives and lubricant formulations containing the nanoparticle additives
EP2524958A1 (en) 2011-05-20 2012-11-21 Afton Chemical Corporation Lubricant compositions containing a heteroaromatic compound
US9090847B2 (en) 2011-05-20 2015-07-28 Afton Chemical Corporation Lubricant compositions containing a heteroaromatic compound
WO2013003406A1 (en) 2011-06-29 2013-01-03 Exxonmobil Research And Engineering Company Low viscosity engine oil with superior engine wear protection
US8586520B2 (en) 2011-06-30 2013-11-19 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003392A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyetheramines
WO2013003405A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyalkylene glycol mono ethers
EP2557144A1 (en) 2011-08-11 2013-02-13 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant
US8927469B2 (en) 2011-08-11 2015-01-06 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant
WO2013055481A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company High efficiency engine oil compositions
WO2013055480A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company Low viscosity engine oil compositions
WO2013055482A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company Lubricating compositions
WO2013066915A1 (en) 2011-11-01 2013-05-10 Exxonmobil Research And Engineering Company Lubricants with improved low-temperature fuel economy
WO2013074498A1 (en) 2011-11-14 2013-05-23 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2013082206A1 (en) 2011-12-02 2013-06-06 Exxonmobil Research And Engineering Company Method for improving engine wear and corrosion resistance
US9068134B2 (en) 2011-12-02 2015-06-30 Exxonmobil Research And Engineering Company Method for improving engine wear and corrosion resistance
WO2013096532A1 (en) 2011-12-22 2013-06-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2013142110A1 (en) 2012-03-22 2013-09-26 Exxonmobil Research And Engineering Company Novel antioxidant combination and synthetic base oils containing the same
US9150812B2 (en) 2012-03-22 2015-10-06 Exxonmobil Research And Engineering Company Antioxidant combination and synthetic base oils containing the same
US9315756B2 (en) 2012-04-06 2016-04-19 Exxonmobil Research And Engineering Company Bio-feeds based hybrid group V base stocks and method of production thereof
WO2013181318A1 (en) 2012-06-01 2013-12-05 Exxonmobil Research And Engineering Company Lubricant compostions and processes for preparing same
US8703666B2 (en) 2012-06-01 2014-04-22 Exxonmobil Research And Engineering Company Lubricant compositions and processes for preparing same
WO2013182581A1 (en) 2012-06-06 2013-12-12 Evonik Oil Additives Gmbh Fuel efficient lubricating oils
US9228149B2 (en) 2012-07-02 2016-01-05 Exxonmobil Research And Engineering Company Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
WO2014008121A1 (en) 2012-07-02 2014-01-09 Exxonmobil Research And Engineering Company Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
EP2687582A1 (en) 2012-07-18 2014-01-22 Afton Chemical Corporation Lubricant compositions for direct injection engines
US9206373B2 (en) 2012-08-17 2015-12-08 Afton Chemical Corporation Calcium neutral and overbased mannich and anhydride adducts as detergents for engine oil lubricants
EP2698418A1 (en) * 2012-08-17 2014-02-19 Afton Chemical Corporation Calcium neutral and overbased mannich and anhydride adducts as detergents for engine oil lubricants
US9422497B2 (en) 2012-09-21 2016-08-23 Exxonmobil Research And Engineering Company Synthetic lubricant basestocks and methods of preparation thereof
WO2014065984A1 (en) 2012-10-24 2014-05-01 Exxonmobil Reearch And Engineering Company High viscosity index lubricating oil base stock viscosity modifier combinations, and lubricating oils derived therefrom
US9487729B2 (en) 2012-10-24 2016-11-08 Exxonmobil Chemical Patents Inc. Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives
WO2014066444A1 (en) 2012-10-24 2014-05-01 Exxonmobil Research And Engineering Comapny Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives
WO2014107314A1 (en) 2013-01-03 2014-07-10 Exxonmobil Research And Engineering Company Lubricating compositions having improved shear stability
WO2014107315A1 (en) 2013-01-04 2014-07-10 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2014158602A1 (en) 2013-03-14 2014-10-02 Exxonmobil Research And Engineering Company Method for improving emulsion characteristics of engine oils
WO2014158533A1 (en) 2013-03-14 2014-10-02 Exxonmobil Research And Engineering Company Lubricating composition providing high wear resistance
US9062269B2 (en) 2013-03-15 2015-06-23 Exxonmobil Research And Engineering Company Method for improving thermal-oxidative stability and elastomer compatibility
WO2014149406A1 (en) 2013-03-15 2014-09-25 Exxonmobil Research And Engineering Company Method for improving thermal -oxidative stability and elastomer compatibility
WO2015050690A1 (en) 2013-10-03 2015-04-09 Exxonmobil Research And Engineering Company Compositions with improved varnish control properties
WO2015088893A1 (en) 2013-12-10 2015-06-18 The Lubrizol Corporation Organic salts of glyceride-cyclic carboxylic acid anhydride adducts as corrosion inhibitors
US9688605B2 (en) 2013-12-10 2017-06-27 The Lubrizol Corporation Organic salts of glyceride-cyclic carboxylic acid anhydride adducts as corrosion inhibitors
US9708549B2 (en) 2013-12-18 2017-07-18 Chevron Phillips Chemical Company Lp Method for making polyalphaolefins using aluminum halide catalyzed oligomerization of olefins
WO2015095336A1 (en) 2013-12-18 2015-06-25 Chevron Phillips Chemical Company Lp Method for making polyolefins using aluminum halide catalyzed oligomerization of olefins
US9506008B2 (en) 2013-12-23 2016-11-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US10190072B2 (en) 2013-12-23 2019-01-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099820A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099907A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Low viscosity ester lubricant and method for using
WO2015099821A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099819A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9885004B2 (en) 2013-12-23 2018-02-06 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US10208269B2 (en) 2013-12-23 2019-02-19 Exxonmobil Research And Engineering Company Low viscosity ester lubricant and method for using
US9896634B2 (en) 2014-05-08 2018-02-20 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
WO2015171292A1 (en) 2014-05-08 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
WO2015171981A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US10519394B2 (en) 2014-05-09 2019-12-31 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2015171978A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015171980A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US9506009B2 (en) 2014-05-29 2016-11-29 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2015183455A1 (en) 2014-05-29 2015-12-03 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US10689593B2 (en) 2014-08-15 2020-06-23 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
US9944877B2 (en) 2014-09-17 2018-04-17 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016043944A1 (en) 2014-09-17 2016-03-24 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US9957459B2 (en) 2014-11-03 2018-05-01 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
US10920161B2 (en) 2014-11-03 2021-02-16 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
WO2016073149A1 (en) 2014-11-03 2016-05-12 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
WO2016077134A1 (en) 2014-11-12 2016-05-19 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2016106211A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for authentication and identification of petroleum products
WO2016106214A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for determining condition and quality of petroleum products
US10000717B2 (en) 2014-12-30 2018-06-19 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
WO2016109376A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016109322A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
WO2016109382A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016109325A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
US10781397B2 (en) 2014-12-30 2020-09-22 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US10066184B2 (en) 2014-12-30 2018-09-04 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
US10000721B2 (en) 2014-12-30 2018-06-19 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US9926509B2 (en) 2015-01-19 2018-03-27 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection and solubility
WO2016191409A1 (en) 2015-05-28 2016-12-01 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10119093B2 (en) 2015-05-28 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016200606A1 (en) 2015-06-09 2016-12-15 Exxonmobil Research And Engineering Company Inverse micellar compositions containing lubricant additives
US10119090B2 (en) 2015-07-07 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2017007670A1 (en) 2015-07-07 2017-01-12 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US9732300B2 (en) 2015-07-23 2017-08-15 Chevron Phillipa Chemical Company LP Liquid propylene oligomers and methods of making same
US10435491B2 (en) 2015-08-19 2019-10-08 Chevron Phillips Chemical Company Lp Method for making polyalphaolefins using ionic liquid catalyzed oligomerization of olefins
WO2017083042A1 (en) 2015-11-09 2017-05-18 The Lubrizol Corporation Using quaternary amine additives to improve water separation
US10316712B2 (en) 2015-12-18 2019-06-11 Exxonmobil Research And Engineering Company Lubricant compositions for surface finishing of materials
US10550341B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Sequential deasphalting for base stock production
US10647925B2 (en) 2015-12-28 2020-05-12 Exxonmobil Research And Engineering Company Fuel components from hydroprocessed deasphalted oils
US10947464B2 (en) 2015-12-28 2021-03-16 Exxonmobil Research And Engineering Company Integrated resid deasphalting and gasification
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US10808185B2 (en) 2015-12-28 2020-10-20 Exxonmobil Research And Engineering Company Bright stock production from low severity resid deasphalting
WO2017117178A1 (en) 2015-12-28 2017-07-06 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
WO2017146896A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
US10377961B2 (en) 2016-02-26 2019-08-13 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
US10377962B2 (en) 2016-02-26 2019-08-13 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
WO2017146897A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
US9951290B2 (en) 2016-03-31 2018-04-24 Exxonmobil Research And Engineering Company Lubricant compositions
WO2017172254A1 (en) 2016-03-31 2017-10-05 Exxonmobil Research And Engineering Company Lubricant compositions
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof
US10494583B2 (en) 2016-05-17 2019-12-03 Afton Chemical Corporation Synergistic dispersants
EP3246383A1 (en) 2016-05-17 2017-11-22 Afton Chemical Corporation Synergistic dispersants
US10179886B2 (en) 2016-05-17 2019-01-15 Afton Chemical Corporation Synergistic dispersants
US11261398B2 (en) 2016-05-18 2022-03-01 The Lubrizol Corporation Hydraulic fluid composition
WO2017200688A1 (en) 2016-05-18 2017-11-23 The Lubrizol Corporation Hydraulic fluid composition
WO2017218664A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2018013249A1 (en) 2016-07-12 2018-01-18 Chevron Phillips Chemical Company Lp Decene oligomers
US10647626B2 (en) 2016-07-12 2020-05-12 Chevron Phillips Chemical Company Lp Decene oligomers
US10174272B2 (en) 2016-07-14 2019-01-08 Afton Chemical Corporation Dispersant viscosity index improver-containing lubricant compositions and methods of use thereof
WO2018017454A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017449A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018026982A1 (en) 2016-08-03 2018-02-08 Exxonmobil Research And Engineering Company Lubricating engine oil for improved wear protection and fuel efficiency
US10640725B2 (en) 2016-08-05 2020-05-05 Rutgers, The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
WO2018027227A1 (en) 2016-08-05 2018-02-08 Rutgers, The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
WO2018057377A1 (en) 2016-09-20 2018-03-29 Exxonmobil Research And Engineering Company Non-newtonian engine oil with superior engine wear protection and fuel economy
US10479956B2 (en) 2016-09-20 2019-11-19 Exxonmobil Research And Engineering Company Non-newtonian engine oil with superior engine wear protection and fuel economy
WO2018057678A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
WO2018057675A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Polyacrylate antifoam components with improved thermal stability
WO2018067903A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains
WO2018067908A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Low conductivity lubricating oils for electric and hybrid vehicles
WO2018067905A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains
WO2018067902A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Lubricating oil compositions for electric vehicle powertrains
WO2018067906A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company High conductivity lubricating oils for electric and hybrid vehicles
WO2018094216A1 (en) 2016-11-18 2018-05-24 International Petroleum Products & Additives Company, Inc. Thiadiazole components, compositions, and methods
WO2019117992A1 (en) 2016-12-13 2019-06-20 Afton Chemical Corporation Polyolefin-derived dispersants
US10584297B2 (en) 2016-12-13 2020-03-10 Afton Chemical Corporation Polyolefin-derived dispersants
EP3336163A1 (en) 2016-12-13 2018-06-20 Afton Chemical Corporation Polyolefin-derived dispersants
WO2018111846A1 (en) 2016-12-13 2018-06-21 Afton Chemical Corporation Polyolefin-derived dispersants
US10829708B2 (en) 2016-12-19 2020-11-10 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2018118477A1 (en) 2016-12-19 2018-06-28 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition compression spark ignition engines
WO2018118163A1 (en) 2016-12-22 2018-06-28 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
WO2018125956A1 (en) 2016-12-30 2018-07-05 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
US10647936B2 (en) 2016-12-30 2020-05-12 Exxonmobil Research And Engineering Company Method for improving lubricant antifoaming performance and filterability
WO2018144167A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
WO2018144166A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
US10793801B2 (en) 2017-02-06 2020-10-06 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
US10487289B2 (en) 2017-02-21 2019-11-26 Exxonmobil Research And Engineering Company Lubricating oil compositions and methods of use thereof
WO2018156304A1 (en) 2017-02-21 2018-08-30 Exxonmobil Research And Engineering Company Lubricating oil compositions and methods of use thereof
WO2018170110A1 (en) 2017-03-16 2018-09-20 Chevron Phillips Chemical Company Lp Lubricant compositions containing hexene-based oligomers
US10240102B2 (en) 2017-03-16 2019-03-26 Chevron Phillips Chemical Company, Lp Lubricant compositions containing hexene-based oligomers
US10738258B2 (en) 2017-03-24 2020-08-11 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
WO2018175830A1 (en) 2017-03-24 2018-09-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
US10858610B2 (en) 2017-03-24 2020-12-08 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10876062B2 (en) 2017-03-24 2020-12-29 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10808196B2 (en) 2017-03-28 2020-10-20 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
WO2018236592A1 (en) 2017-06-20 2018-12-27 The Lubrizol Corporation Lubricating composition
WO2019014092A1 (en) 2017-07-13 2019-01-17 Exxonmobil Research And Engineering Company Continuous process for the manufacture of grease
WO2019018145A1 (en) 2017-07-21 2019-01-24 Exxonmobil Research And Engineering Company Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil
WO2019028310A1 (en) 2017-08-04 2019-02-07 Exxonmobil Research And Engineering Company Novel formulation for lubrication of hyper compressors providing improved pumpability under high-pressure conditions
WO2019055291A1 (en) 2017-09-18 2019-03-21 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability
WO2019060144A1 (en) 2017-09-22 2019-03-28 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity and deposit control
WO2019089177A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US10738262B2 (en) 2017-10-30 2020-08-11 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2019089181A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2019089180A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
WO2019090038A1 (en) 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
WO2019094019A1 (en) 2017-11-09 2019-05-16 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2019103808A1 (en) 2017-11-22 2019-05-31 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines
WO2019112711A1 (en) 2017-12-04 2019-06-13 Exxonmobil Research And Enginerring Company Method for preventing or reducing low speed pre-ignition
WO2019118115A1 (en) 2017-12-15 2019-06-20 Exxonmobil Research And Engineering Company Lubricating oil compositions containing microencapsulated additives
WO2019133411A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Flat viscosity fluids and lubricating oils based on liquid crystal base stocks
WO2019133407A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Low traction/energy efficient liquid crystal base stocks
WO2019133409A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Friction and wear reduction using liquid crystal base stocks
WO2019133255A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Grease compositions with improved performance comprising thixotropic polyamide, and methods of preparing and using the same
WO2019133191A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubrication of oxygenated diamond-like carbon surfaces
WO2019133218A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with wear and sludge control
US10774286B2 (en) 2017-12-29 2020-09-15 Exxonmobil Research And Engineering Company Grease compositions with improved performance and methods of preparing and using the same
WO2019183365A1 (en) 2018-03-21 2019-09-26 The Lubrizol Corporation NOVEL FLUORINATED POLYACRYLATES ANTIFOAMS IN ULTRA-LOW VISCOSITY (<5 CST) finished fluids
WO2019217058A1 (en) 2018-05-11 2019-11-14 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2019240965A1 (en) 2018-06-11 2019-12-19 Exxonmobil Research And Engineering Company Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same
WO2020023430A1 (en) 2018-07-23 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel
WO2020023437A1 (en) 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine corrosion protection
WO2020068439A1 (en) 2018-09-27 2020-04-02 Exxonmobil Research And Engineering Company Low viscosity lubricating oils with improved oxidative stability and traction performance
WO2020096804A1 (en) 2018-11-05 2020-05-14 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
WO2020112338A1 (en) 2018-11-28 2020-06-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with improved deposit resistance and methods thereof
WO2020123440A1 (en) 2018-12-10 2020-06-18 Exxonmobil Research And Engineering Company Method for improving oxidation and deposit resistance of lubricating oils
WO2020131439A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers
WO2020131440A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having calcium sulfonate and polyurea thickeners
WO2020131310A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Method for improving high temperature antifoaming performance of a lubricating oil
WO2020131441A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having improved performance
WO2020132166A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with antioxidant formation and dissipation control
WO2020131515A2 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricant compositions with improved wear control
WO2020132164A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity control
WO2020139333A1 (en) 2018-12-26 2020-07-02 Exxonmobil Research And Engineering Company Formulation approach to extend the high temperature performance of lithium complex greases
EP3680312A1 (en) 2019-01-11 2020-07-15 Afton Chemical Corporation Oxazoline modified dispersants
WO2020149958A1 (en) 2019-01-18 2020-07-23 Afton Chemical Corporation Engine oils for soot handling and friction reduction
US11008527B2 (en) 2019-01-18 2021-05-18 Afton Chemical Corporation Engine oils for soot handling and friction reduction
WO2020176171A1 (en) 2019-02-28 2020-09-03 Exxonmobil Research And Engineering Company Low viscosity gear oil compositions for electric and hybrid vehicles
EP3739025A1 (en) 2019-05-13 2020-11-18 Afton Chemical Corporation Additive and lubricant for industrial lubrication
US11396639B2 (en) 2019-05-13 2022-07-26 Afton Chemical Corporation Additive and lubricant for industrial lubrication
WO2020257373A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257371A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257376A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257370A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257368A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257374A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257377A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257375A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257378A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
US10712105B1 (en) 2019-06-19 2020-07-14 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257379A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
US11092393B1 (en) 2019-06-19 2021-08-17 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020264534A2 (en) 2019-06-27 2020-12-30 Exxonmobil Research And Engineering Company Method for reducing solubilized copper levels in wind turbine gear oils
US11214753B2 (en) 2020-01-03 2022-01-04 Afton Chemical Corporation Silicone functionalized viscosity index improver
WO2021138285A1 (en) 2020-01-03 2021-07-08 Afton Chemical Corporation Silicone functionlized viscosity index improver
WO2021154497A1 (en) 2020-01-30 2021-08-05 Exxonmobil Research And Engineering Company Sulfur-free, ashless, low phosphorus lubricant compositions with improved oxidation stability
WO2021183230A1 (en) 2020-03-12 2021-09-16 The Lubrizol Corporation Oil-based corrosion inhibitors
WO2021194813A1 (en) 2020-03-27 2021-09-30 Exxonmobil Research And Engineering Company Monitoring health of heat transfer fluids for electric systems
WO2022010606A1 (en) 2020-07-09 2022-01-13 Exxonmobil Research And Engineering Company Engine oil lubricant compositions and methods for making same with superior engine wear protection and corrosion protection
WO2022072962A1 (en) 2020-09-30 2022-04-07 Exxonmobil Research And Engineering Company Low friction and low traction lubricant compositions useful in dry clutch motorcycles
WO2022099291A1 (en) 2020-11-06 2022-05-12 Exxonmobil Research And Engineering Company Engine oil lubricant compositions and methods for making same with steel corrosion protection
US11760952B2 (en) 2021-01-12 2023-09-19 Ingevity South Carolina, Llc Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods
WO2023122405A1 (en) 2021-12-21 2023-06-29 ExxonMobil Technology and Engineering Company Engine oil lubricant compostions and methods for making same with superior oil consumption
US11639480B1 (en) 2022-06-20 2023-05-02 Afton Chemical Corporation Phosphorus antiwear system for improved gear protection
EP4296338A1 (en) 2022-06-20 2023-12-27 Afton Chemical Corporation Phosphorus antiwear system for improved gear protection
WO2024006132A1 (en) 2022-06-27 2024-01-04 The Lubrizol Corporation Lubricating composition
EP4342964A1 (en) 2022-09-22 2024-03-27 Afton Chemical Corporation Extreme pressure additives with improved copper corrosion
US11884892B1 (en) 2023-03-31 2024-01-30 Afton Chemical Corporation Antiwear system for improved copper corrosion
US11884893B1 (en) 2023-03-31 2024-01-30 Afton Chemical Corporation Antiwear system for improved copper corrosion
US11958875B1 (en) 2023-03-31 2024-04-16 Afton Chemical Corporation Thiophosphoric acid products for antiwear additives

Similar Documents

Publication Publication Date Title
US3697574A (en) Boron derivatives of high molecular weight mannich condensation products
US3756953A (en) Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri
US3751365A (en) Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products
US3704308A (en) Boron-containing high molecular weight mannich condensation
US3539633A (en) Di-hydroxybenzyl polyamines
US3798165A (en) Lubricating oils containing high molecular weight mannich condensation products
US3985802A (en) Lubricating oils containing high molecular weight Mannich condensation products
US3736357A (en) High molecular weight mannich condensation products from two different alkyl-substituted hydroxy-aromatic compounds
EP0208560B2 (en) Oil-soluble dispersant additives in fuels and lubricating oils
USRE26433E (en) Amide and imide derivatives of metal salts of substituted succinic acids
US3725277A (en) Lubricant compositions
US3865740A (en) Multifunctional lubricating oil additive
US3448047A (en) Lube oil dispersants
US3442808A (en) Lubricating oil additives
US3368972A (en) High molecular weight mannich bases as engine oil additives
CA1335282C (en) Dispersant additives derived from amido-amines
US3185647A (en) Lubricant composition
US4428849A (en) Lubricating oil with improved diesel dispersancy
US4131551A (en) Railway lubricating oil
US5259967A (en) Low ash lubricant composition
CA1299163C (en) Chlorine-free silver protective lubricant composition (iii)
US3945933A (en) Metal complexes of nitrogen compounds in fluids
GB2083048A (en) Lubricating oil with improved diesel dispersancy
PL70101B1 (en)
US4025316A (en) Mannich base reaction products useful as liquid hydrocarbon additives