US3699452A - Active antenna arrangement for a plurality of frequency ranges - Google Patents

Active antenna arrangement for a plurality of frequency ranges Download PDF

Info

Publication number
US3699452A
US3699452A US11569A US3699452DA US3699452A US 3699452 A US3699452 A US 3699452A US 11569 A US11569 A US 11569A US 3699452D A US3699452D A US 3699452DA US 3699452 A US3699452 A US 3699452A
Authority
US
United States
Prior art keywords
set forth
active antenna
antenna
frequency band
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11569A
Inventor
Heinz Lindenmeier
Hans-Heinrich Meinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hans Kolbe and Co
Original Assignee
Hans Kolbe and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans Kolbe and Co filed Critical Hans Kolbe and Co
Application granted granted Critical
Publication of US3699452A publication Critical patent/US3699452A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3266Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle using the mirror of the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements

Definitions

  • the frequency ranges lie within the longwave, intermediate wave, shortwave and ultra shortwave regions, that is, between frequencies of 0.15 and H MHz a number of frequency ranges, with large gaps therebetween, exist.
  • Such short antennas tuned for the ultra shortwave region, represent only a small capacitive coupling to the electromagnetic field in the longwave, intermediate wave and shortwave regions.
  • Such antennas are almost exclusively energized by the electrical component of the electromagnetic field.
  • cables must be used interconnecting the antenna and the receiver, which represent a very small capacitive component, that is, cables, which do not have a well-defined characteristic impedance.
  • rod-like antennas which are generally employed in a telescopic arrangement in commercial vehicles, are constantly in danger of inadvertent damage.
  • active antenna Also presently known in the art, is a so-called active antenna, as disclosed in Belgian Patent No. 725,370, issued Feb. 14, 1969. It is disclosed in this patent that broadband matching may be achieved between the parts of the antenna receiving the electromagnetic energy and the receiver, or the receiver cable, by use of controllable, three-terminal active elements. These three-terminal, controllable active elements, preferably transistors, are used to make the signal to noise ratio an optimum. This type of matching is hereinafter called noise matching. Since active elements are used in these antenna arrangements with such noise matching, these antenna arrangements will hereinafter be called active antennas.
  • the active antennas described above, as disclosed in the Belgian patent, have a single signal transmission path between the antenna parts receiving the radiant energy and the antenna output, for all frequencies and frequency ranges to be received.
  • the active antennas disclosed in the Belgian patent still do not constitute an arrangement which eliminates all of the following drawbacks:
  • the present invention is an antenna arrangement for receiving radiant energy in a plurality of frequency ranges at an antenna input and furnishing corresponding antenna output signals to an antenna output. It comprises a plurality of passive impedance elements for receiving said radiant energy..lt further comprises active impedance means, and connecting means connecting said passive impedance elements and said active impedance means in such a manner that a signal transmission path having transmission characteristics independent of the transmission characteristics of all other signal transmission paths, is formed between said antenna input and said antenna output for each of said frequency ranges.
  • the active impedance means may be independently matched to the passive impedance elements.
  • the active impedance means may comprise a plurality of active impedance elements, each associated with one transmission path, and the operating point of each active impedance element may be adjusted independently. In this way, an optimum coupling to the electromagnetic field may be combined with an optimum coupling to a cable interconnecting antenna output to the receiver input, and, further, very small antennas may be used, thus decreasing the probability of damage.
  • Each signal transmission path with its associated active elements can be matched and adjusted to the corresponding frequency range, so that, in spite of large differences in the frequency ranges, a single antenna may be used for optimum reception in all of these different frequency ranges.
  • the frequency band to be received is divided into two frequency ranges and two signal transmission paths are provided between the antenna input and the antenna output.
  • Each path may have its appropriate matching and/or amplification.
  • the two frequency ranges to be received in a commercial vehicle namely the long, intermediate and shortwave region on the one hand, and the ultra shortwave region on the other hand, may each be received in an optimum manner.
  • each of the signal transmission paths may lead to a separate antenna output, thus permitting signals within the two separate frequency ranges to be separately transmitted to, for example, a separate receiver.
  • only the active element for the upper, for example the ultra shortwave frequency range, is matched to the passive impedance element on a noise-matching basis.
  • This embodiment is particularly suitable for commercial vehicle antennas functioning in widely-separated frequency regions. Very little equipment is required, and the mismatching in the lower frequency range is acceptable.
  • the active element for the upper frequency range is capacitively coupled to the passive impedance elements, which, in this embodiment, are part of both the first and second signal transmission path.
  • the capacitive coupling may be achieved via the shield of a coaxial conductor.
  • the above-mentioned coaxial conductor is a printed pseudo coaxial cable comprising a first, second and third conducting strip, the first and third conducting strip consisting outer conductors and the shield for the second, or inner conducting strip.
  • control electrode of each active element is connected to a choke.
  • the chokes are so designed that all frequencies not within the frequency range of the signal path with which the particular active element is associated, are blocked from said signal path. This type of connection will substantially eliminate coupling between the different signal paths and resulting noise.
  • an additional active element is connected in series with the active element associated with the signal transmission .path in the lower frequency range. This reduces the danger of non-linear distortion and results in signal amplification without corresponding noise amplification, thus improving the sensitivity of the antenna.
  • FIG. 1 is a diagrammatic view of the active antenna of this invention.
  • FIG. 2 is a schematic circuit diagram showing the active elements of an antenna in accordance with the present invention.
  • the embodiment shown in the drawing is a printed circuit, which is particularly suitable for placement into the mounting of a rear-view mirror in a commercial vehicle.
  • conducting strips 1 and 2 are printed as printed circuits on an insulating plate P. These strips serve as inductors.
  • These conducting strips in conjunction with a top-loading capacity 3, which may be embodied in a rear-view mirror and with the car body or other metallic ground plane, constitute the passive or receiving part of the antenna.
  • the capacity 3 may be varied within predetermined limits, that is as long as the mathematical product of the effective antenna height multiplied by this capacity remains unchanged.
  • Conducting strips 1 and 2 constitute the means for transforming the impedance of the parts of the antenna which receive the electromagnetic energy to a value which allows an optimum noise matching to the active impedance elements.
  • These active elements of the active antenna comprise, as will be described in more detail below, the transistors 4 and 5 in the circuit shown in FIG. 2.
  • the capacity 3 has a definite function both in the upper frequency range, for example the ultra shortwave region, as well as in the lower frequency range, for example the longwave region.
  • the capacity 3 together with the conducting strips 1 and 2 constitute the capacity of an oscillator circuit serving as input circuits; in the upper frequency region, that is in the longwave region, the capacity 3 constitutes the main antenna capacity.
  • the printed conducting strip 1 is continued as the printed inner conductor 7 of a pseudo coaxial cable, which consists of three substantially parallel conducting strips, 2 and 7.
  • the conducting strip 1 and the inner conductor 7 of the pseudo coaxial cable also serves as a connection between the capacity 3 and the active element used in the signal transmission path for the lower frequency range, namely transistor 4.
  • the outer conductor of the pseudo coaxial cable, that is the conducting strip 2 serves as partial inductivity of the input circuit for coupling the active element for the upper frequency region, that is transistor 5, to the receiving,
  • passive part of the antenna It further constitutes, together with the input impedance of transistor 4, a part of the transformation circuit for matching the receiving part of the antenna on a noise matching basis to the input impedance of the active impedance element for the upper frequency region, that is transistor 5.
  • connection from the conducting strip 2 of the pseudo "coaxial cable to transistor 5, is made via terminal 8 to the printed surface of a coupling capacitor 9 (FIG. 1) and then to terminal 10 (FIG. 1 and FIG. 2) over an additional capacitor 11 to the base of transistor 5.
  • the resistances 12 and 13 shown in FIG. 2 serve to set the operating point of transistor 5.
  • transistor 4 the active impedance element for the lower frequency range, with the receiving part of the antenna is made via terminal 14 connected to the inner conductor 7 to the terminal 15 (FIG. 2) and via a choke l6 and a resistance 17 to the base of transistor 4.
  • a diode 18, shown in FIG. 2 protects transistor 4, namely the transistor for the lower frequency range, from static charges.
  • an additional active element, or amplifier, such as transistor 6 may be connected in series to the active impedance element for the lower frequency range.
  • the cascade circuit of transistors 4 and 6 increases the amplification without a corresponding increase in noise, thus effectively improving the sensitivity of the antenna arrangement.
  • the resistance 30 in the emitter circuit of transistor 6 serves as a feedback resistance and serves to submerge interference resulting from intermodulation into the noise level.
  • the resistance 17 serves to flatten any possibly existing resonance curves.
  • the choke 16, in conjunction with the resistance 17, serves to decrease interference which may result from electrical equipment associated with the engine of a commercial vehicle, when the active antenna of this invention is used in such a vehicle.
  • Such electrical interference, generated by the abovementioned associated electrical equipment, is radiated into the receiving parts of the antenna and produced by mixing with higher frequencies.
  • Choke 20 together with capacitor 21 serve as a general filter for the input to transistor 4, while resistance 22 together with capacitor 23 blocks high frequency interference from the input to transistor 4.
  • This high frequency interference may, for example,-
  • Choke 25 and capacitor 26 serve to de-couple the output voltage of the lower frequency range from the output of transistor 5, which serves to amplify the voltages of the upper frequency range, that is the ultra shortwave region.
  • the output of transistor'6 for the lower frequency range, and the output of transistor 5 for the upper frequency range are both connected to the antenna output.
  • the connection between the antenna output and the receiving means may then be made, for example by a coaxial cable 29.
  • Capacitor 26 serves this function as well as the function mentioned above.
  • Capacitors 27 and 28 serve to supply bias voltages.
  • An integrated active antenna combination comprising a plurality of interconnected passive impedance elements jointly receiving energy in a first and second frequency band; first noise-matched amplifier means having a control electrode and an output circuit; second noise matched amplifier means having a control electrode and an output circuit; first coupling circuit means capacitively connected to said plurality of interconnected passive impedance elements for passing only frequencies in said first frequency band to said control electrode of said first amplifier means, while rejecting frequencies in said second frequency band; second coupling circuit means inductively connected to said interconnected passive impedance elements for passing only frequencies in said second frequency band to said control electrode of said second amplifier means, while rejecting said frequencies in said first frequency band; antenna output terminal means; and means connecting the output circuit of said first and second amplifier means to said antenna output terminal means, whereby said first coupling circuit means and first amplifier means constitute a first signal transmission path transmitting signals in said first frequency band only, and said second coupling circuit means and second amplifier means constitute a second signal transmission path passing frequencies in said second frequency band only.
  • Active antenna as set forth in claim 1, wherein said upper frequency range is in the ultra shortwave region.
  • said first amplifier means has a first and second output electrode and a control electrode further comprising means determining the operating point of said first amplifier means.
  • said means determining the operating point comprise a voltage source, voltage divider means having a voltage divider tap connected across said voltage source, and means connecting said control electrode to said voltage divider tap; and wherein the voltage at said voltage divider tap is a function of the frequencies in said first frequency band.
  • said antenna output terminal means comprise a first and second terminal respectively furnishing frequencies in said first and second frequency band.
  • said passive impedance elements comprise printed conducting strips; wherein said passive circuit means further comprise top-loading capacitor means; and wherein said first coupling circuit means comprise printed circuit capacitor means.
  • said passive impedance elements comprise pseudo-coaxial cable means having a first, second and third conducting strip, said first and third conducting strip being situated on either side of said second conducting strip; and wherein a printed circuit capacitor means is connected to said third conducting strip.
  • said second coupling circuit means comprise inductor means; and means connecting said inductor means to said second conducting strip.
  • Active antenna as set forth in claim 10, wherein said second amplifier means comprise emitter follower amplifier means.
  • Active antenna as set forth in claim 11, further comprising third amplifier means cascade-connected to said emitter-follower amplifier means.

Abstract

For each frequency range, a different signal path is provided between the antenna input and the antenna output. Each path has passive impedance elements which receive the radiant energy and a transistor. Each path may have independent noise matching between the transistor and the passive impedance elements, and/or the operating point of each transistor may be independently adjusted for each path.

Description

United States Patent Lindenmeier et al.
154] ACTIVE ANTENNA ARRANGEMENT FOR A PLURALITY OF FREQUENCY RANGES Inventors: Heinz Lindenmeier, Munich; Hans- Heinrich Meinke, Gauting, both of Germany Assignee: Hans Kolbe 8: Co., KG, Bad Salzdetfurth, Germany Filed: Feb. 16, 1970 Appl. No.: 11,569
Foreign Application Priority Data April 18, 1969 Germany ..P 19 19 749.0
US. Cl. ..325/367, 325/373, 325/386, 343/701, 343/752, 343/895 Int. Cl. ..H0lq 1/26, H04b 1/18 Field of Search ..343/701, 860, 895, 752; 325/366, 371, 373,105, 369, 367, 378, 381,
lllllllllllllllllll [451 Oct. 17,1972
References Cit-ed Mayes, Tiny Antennas Push StateofArt Electronics World; March, 1968; pp. 49- 51 Primary Examiner' -Eli Lieberman Attorney-Michael S. Striker [57] ABSTRACT For each frequency range, a different signal path is provided between the antenna input and the antenna output. Each path has passive impedance elements which receive the radiant energy and a transistor. Each path may have independent noise matching between the transistor and the passive impedance elements, and/or the operating point of each transistor may be independently adjusted for each path.
13 Claims, 2 Drawing Figures PATENTEUMI n ma SHEET 1 or z mum 5 mum I 1 ACTIVE ANTENNA ARRANGEMENT FOR A PLURALITY or FREQUENCY RANGES BACKGROUND OF THE INVENTION the antenna parts receiving the high frequency radiant energy.
In almost every radio network, the necessity exists, to
- receive and/or to transmit in two completely separate frequency ranges. That is, only in very isolated cases, is radio transmission carried on in a limited frequency range which is not readily subdivided. As an example of such radio transmission and reception, and by no means as an exclusive example, may be taken the radio broadcasting and reception in the entertainment field. Here the frequency ranges lie within the longwave, intermediate wave, shortwave and ultra shortwave regions, that is, between frequencies of 0.15 and H MHz a number of frequency ranges, with large gaps therebetween, exist.
Antennas which operate with equal efficiency over the whole frequency region are not economically practical to manufacture. Thus it has been the practice when antennas, herein designated as passive antennas, were used, to interconnect over high frequency combining filters a number of such passive antennas, each of which was particularly effective within a particular range of the overall range. Alternatively, it has been the practice, for example in radial equipment for commercial vehicles, to utilize passive antennas whose tuning and matching to the receiver were only substantially correct in the higher frequency range.
However, such short antennas, tuned for the ultra shortwave region, represent only a small capacitive coupling to the electromagnetic field in the longwave, intermediate wave and shortwave regions. Such antennas are almost exclusively energized by the electrical component of the electromagnetic field.
For such antennas, cables must be used interconnecting the antenna and the receiver, which represent a very small capacitive component, that is, cables, which do not have a well-defined characteristic impedance. This results in the great disadvantage, that in no case, neither in the upper, nor in the lower frequency range, may the antenna output impedance be matched to the characteristic impedance of the cable. Furthermore, rod-like antennas, which are generally employed in a telescopic arrangement in commercial vehicles, are constantly in danger of inadvertent damage.
Similar problems exist in community antennas. The conditions there are somewhat different, in that the overall frequency range is subdivided into a first and second frequency range, so that at least for the ultra high frequency region, a relatively good matching to the connecting cable (lately amost exclusively 60 ohms) may be achieved. However, for the lower frequency region, the same mismatches exist between antenna impedance and cable impedance as is the case in radial equipment for commercial vehicles. In addition, the unavoidable transformation between the relatively high ohmic impedance of the rod-like antennas to the characteristic impedance of the cable (60 ohms) results in undesired resonances, which may in part eliminate the reception in certain frequency ranges.
Also presently known in the art, is a so-called active antenna, as disclosed in Belgian Patent No. 725,370, issued Feb. 14, 1969. It is disclosed in this patent that broadband matching may be achieved between the parts of the antenna receiving the electromagnetic energy and the receiver, or the receiver cable, by use of controllable, three-terminal active elements. These three-terminal, controllable active elements, preferably transistors, are used to make the signal to noise ratio an optimum. This type of matching is hereinafter called noise matching. Since active elements are used in these antenna arrangements with such noise matching, these antenna arrangements will hereinafter be called active antennas. The active antennas described above, as disclosed in the Belgian patent, have a single signal transmission path between the antenna parts receiving the radiant energy and the antenna output, for all frequencies and frequency ranges to be received. Thus, the active antennas disclosed in the Belgian patent still do not constitute an arrangement which eliminates all of the following drawbacks:
1. poor coupling to the electromagnetic field;
2. poor coupling between the antenna and the cable leading to the receiver; and
3. in spite of the relatively poor coupling to the electromagnetic field, relatively large geometric size, and thus a correspondingly large probability of inadvertent destruction.
SUMMARY OF THE INVENTION It is an object of the invention to furnish an antenna arrangement wherein the above-described drawbacks are minimized.
The present invention is an antenna arrangement for receiving radiant energy in a plurality of frequency ranges at an antenna input and furnishing corresponding antenna output signals to an antenna output. It comprises a plurality of passive impedance elements for receiving said radiant energy..lt further comprises active impedance means, and connecting means connecting said passive impedance elements and said active impedance means in such a manner that a signal transmission path having transmission characteristics independent of the transmission characteristics of all other signal transmission paths, is formed between said antenna input and said antenna output for each of said frequency ranges. Thus it is possible that, for each frequency range, the active impedance means may be independently matched to the passive impedance elements. Alternatively, or in addition, the active impedance means may comprise a plurality of active impedance elements, each associated with one transmission path, and the operating point of each active impedance element may be adjusted independently. In this way, an optimum coupling to the electromagnetic field may be combined with an optimum coupling to a cable interconnecting antenna output to the receiver input, and, further, very small antennas may be used, thus decreasing the probability of damage. These advantages are realized within the overall circuit of the active antenna, thus obviating the need for additional outside elements or matching circuits for different frequency ranges. Each signal transmission path with its associated active elements can be matched and adjusted to the corresponding frequency range, so that, in spite of large differences in the frequency ranges, a single antenna may be used for optimum reception in all of these different frequency ranges. These advantages are particularly useful when an active antenna, in accordance with this invention, is used as an antenna in a commercial vehicle. However, such antennas may, of course, be used in any type of antenna arrangement wherein the above-described advantages are useful.
In a particular embodimentof the present invention which is particularly suitable for commercial vehicles, the frequency band to be received is divided into two frequency ranges and two signal transmission paths are provided between the antenna input and the antenna output. Each path may have its appropriate matching and/or amplification. In this way, the two frequency ranges to be received in a commercial vehicle, namely the long, intermediate and shortwave region on the one hand, and the ultra shortwave region on the other hand, may each be received in an optimum manner.
In a modification of the present invention, each of the signal transmission paths may lead to a separate antenna output, thus permitting signals within the two separate frequency ranges to be separately transmitted to, for example, a separate receiver.
In a further embodiment of the present invention, only the active element for the upper, for example the ultra shortwave frequency range, is matched to the passive impedance element on a noise-matching basis. This embodiment is particularly suitable for commercial vehicle antennas functioning in widely-separated frequency regions. Very little equipment is required, and the mismatching in the lower frequency range is acceptable.
In a further embodiment of the present invention, the active element for the upper frequency range is capacitively coupled to the passive impedance elements, which, in this embodiment, are part of both the first and second signal transmission path. The capacitive coupling may be achieved via the shield of a coaxial conductor.
In another embodiment of the present invention, the above-mentioned coaxial conductor is a printed pseudo coaxial cable comprising a first, second and third conducting strip, the first and third conducting strip consisting outer conductors and the shield for the second, or inner conducting strip.
In another embodiment of the present invention, the control electrode of each active element is connected to a choke. The chokes are so designed that all frequencies not within the frequency range of the signal path with which the particular active element is associated, are blocked from said signal path. This type of connection will substantially eliminate coupling between the different signal paths and resulting noise.
In a further embodiment of the present invention, an additional active element is connected in series with the active element associated with the signal transmission .path in the lower frequency range. This reduces the danger of non-linear distortion and results in signal amplification without corresponding noise amplification, thus improving the sensitivity of the antenna.
The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims.
The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a diagrammatic view of the active antenna of this invention; and
FIG. 2 is a schematic circuit diagram showing the active elements of an antenna in accordance with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will now be described with reference to the drawing.
The embodiment shown in the drawing is a printed circuit, which is particularly suitable for placement into the mounting of a rear-view mirror in a commercial vehicle. As shown in FIG. 1, conducting strips 1 and 2 are printed as printed circuits on an insulating plate P. These strips serve as inductors. These conducting strips, in conjunction with a top-loading capacity 3, which may be embodied in a rear-view mirror and with the car body or other metallic ground plane, constitute the passive or receiving part of the antenna. The capacity 3 may be varied within predetermined limits, that is as long as the mathematical product of the effective antenna height multiplied by this capacity remains unchanged.
The transformation of the characteristic impedance for optimum noise matching in the lower frequency range, and in particular in the long and intermediate wave region, is difficult for two reasons. First, the characteristic impedance is very low and, secondly, the bandwidth within which this transformation must take place is relatively large. Conducting strips 1 and 2, in particular, constitute the means for transforming the impedance of the parts of the antenna which receive the electromagnetic energy to a value which allows an optimum noise matching to the active impedance elements. These active elements of the active antenna comprise, as will be described in more detail below, the transistors 4 and 5 in the circuit shown in FIG. 2.
The capacity 3 has a definite function both in the upper frequency range, for example the ultra shortwave region, as well as in the lower frequency range, for example the longwave region. In the ultra shortwave region, the capacity 3 together with the conducting strips 1 and 2, constitute the capacity of an oscillator circuit serving as input circuits; in the upper frequency region, that is in the longwave region, the capacity 3 constitutes the main antenna capacity.
The printed conducting strip 1 is continued as the printed inner conductor 7 of a pseudo coaxial cable, which consists of three substantially parallel conducting strips, 2 and 7. The conducting strip 1 and the inner conductor 7 of the pseudo coaxial cable also serves as a connection between the capacity 3 and the active element used in the signal transmission path for the lower frequency range, namely transistor 4. The outer conductor of the pseudo coaxial cable, that is the conducting strip 2, serves as partial inductivity of the input circuit for coupling the active element for the upper frequency region, that is transistor 5, to the receiving,
passive part of the antenna. It further constitutes, together with the input impedance of transistor 4, a part of the transformation circuit for matching the receiving part of the antenna on a noise matching basis to the input impedance of the active impedance element for the upper frequency region, that is transistor 5.
The connection from the conducting strip 2 of the pseudo "coaxial cable to transistor 5, is made via terminal 8 to the printed surface of a coupling capacitor 9 (FIG. 1) and then to terminal 10 (FIG. 1 and FIG. 2) over an additional capacitor 11 to the base of transistor 5. The resistances 12 and 13 shown in FIG. 2 serve to set the operating point of transistor 5.
The connection of transistor 4, the active impedance element for the lower frequency range, with the receiving part of the antenna is made via terminal 14 connected to the inner conductor 7 to the terminal 15 (FIG. 2) and via a choke l6 and a resistance 17 to the base of transistor 4. A diode 18, shown in FIG. 2, protects transistor 4, namely the transistor for the lower frequency range, from static charges.
Reference to the drawing and to the above description thus shows that the overall circuitry comprising the receiving element 1,2 and 3, and the active impedance elements, namely transistors 4 and 5, is divided into two independent signal transmission paths, each for a different frequency range. Both of these signal paths lead to the antenna output 29 which will be described in more detail below. Further, the division into two signal transmission paths is done in such a manner that independent matching conditions between the receiving antenna parts 1,2, and 3 and the active elements, namely transistors 4 and 5, may exist in each frequency region. In addition to which, the operating points of transistors 4 and 5 may also be adjusted independently to result in the optimum signal transmission along each path.
As is further shown in FIG. 2, an additional active element, or amplifier, such as transistor 6, may be connected in series to the active impedance element for the lower frequency range. Two advantages are thus obtained:
l. The danger of non-linear distortion and mixing effects are decreased because of the division of the volt age existing between terminal 15 and ground, 19, between two transistor base circuits.
2. The cascade circuit of transistors 4 and 6 increases the amplification without a corresponding increase in noise, thus effectively improving the sensitivity of the antenna arrangement.
The resistance 30 in the emitter circuit of transistor 6 serves as a feedback resistance and serves to submerge interference resulting from intermodulation into the noise level.
The resistance 17 serves to flatten any possibly existing resonance curves. The choke 16, in conjunction with the resistance 17, serves to decrease interference which may result from electrical equipment associated with the engine of a commercial vehicle, when the active antenna of this invention is used in such a vehicle. Such electrical interference, generated by the abovementioned associated electrical equipment, is radiated into the receiving parts of the antenna and produced by mixing with higher frequencies.
Choke 20 together with capacitor 21 serve as a general filter for the input to transistor 4, while resistance 22 together with capacitor 23 blocks high frequency interference from the input to transistor 4.
This high frequency interference may, for example,-
originate at terminal 24, where the operating voltage for transistor 4 is supplied.
Choke 25 and capacitor 26 serve to de-couple the output voltage of the lower frequency range from the output of transistor 5, which serves to amplify the voltages of the upper frequency range, that is the ultra shortwave region. The output of transistor'6 for the lower frequency range, and the output of transistor 5 for the upper frequency range are both connected to the antenna output. The connection between the antenna output and the receiving means may then be made, for example by a coaxial cable 29.
The other resistors and capacitors shown in FIG. 2 serve, respectively, to supply the correct current to the transistor and to separate points of differing DC. potential. Capacitor 26 serves this function as well as the function mentioned above. Capacitors 27 and 28 serve to supply bias voltages.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.
What is claimed as new and desired to be protected by Letters Patent is:
1. An integrated active antenna combination comprising a plurality of interconnected passive impedance elements jointly receiving energy in a first and second frequency band; first noise-matched amplifier means having a control electrode and an output circuit; second noise matched amplifier means having a control electrode and an output circuit; first coupling circuit means capacitively connected to said plurality of interconnected passive impedance elements for passing only frequencies in said first frequency band to said control electrode of said first amplifier means, while rejecting frequencies in said second frequency band; second coupling circuit means inductively connected to said interconnected passive impedance elements for passing only frequencies in said second frequency band to said control electrode of said second amplifier means, while rejecting said frequencies in said first frequency band; antenna output terminal means; and means connecting the output circuit of said first and second amplifier means to said antenna output terminal means, whereby said first coupling circuit means and first amplifier means constitute a first signal transmission path transmitting signals in said first frequency band only, and said second coupling circuit means and second amplifier means constitute a second signal transmission path passing frequencies in said second frequency band only.
2. An integrated active antenna combination as set forth in claim 1, wherein said first and second frequency bands are respectively an upper and a lower frequency band.
3. Active antenna as set forth in claim 1, wherein said upper frequency range is in the ultra shortwave region.
4. Active antenna as set forth in claim 1, wherein said first amplifier means has a first and second output electrode and a control electrode further comprising means determining the operating point of said first amplifier means.
5. Active antenna as set forth in claim 1, wherein said means determining the operating point comprise a voltage source, voltage divider means having a voltage divider tap connected across said voltage source, and means connecting said control electrode to said voltage divider tap; and wherein the voltage at said voltage divider tap is a function of the frequencies in said first frequency band.
6. Active antenna as set forth in claim 1, wherein said antenna output terminal means comprise a first and second terminal respectively furnishing frequencies in said first and second frequency band.
7. Active antenna as set forth in claim 1, wherein said passive impedance elements and said first coupling impedance means comprise printed circuit means.
8. Active antenna as set forth in claim 1, wherein said passive impedance elements comprise printed conducting strips; wherein said passive circuit means further comprise top-loading capacitor means; and wherein said first coupling circuit means comprise printed circuit capacitor means.
9. Active antenna as set forth in claim 1, wherein said passive impedance elements comprise pseudo-coaxial cable means having a first, second and third conducting strip, said first and third conducting strip being situated on either side of said second conducting strip; and wherein a printed circuit capacitor means is connected to said third conducting strip.
10. Active antenna as set forth in claim 9, wherein said second coupling circuit means comprise inductor means; and means connecting said inductor means to said second conducting strip.
11. Active antenna as set forth in claim 10, wherein said second amplifier means comprise emitter follower amplifier means.
12. Active antenna as set forth in claim 11, further comprising third amplifier means cascade-connected to said emitter-follower amplifier means.
13. Active antenna as set forth in claim 12, further comprising decoupling means decoupling the output of said third amplifier means from the output of said first amplifier means.

Claims (13)

1. An integrated active antenna combination comprising a plurality of interconnected passive impedance elements jointly receiving energy in a first and second frequency band; first noise-matched amplifier means having a control electrode and an output circuit; second noise matched amplifier means having a control electrode and an output circuit; first coupling circuit means capacitively connected to said plurality of interconnected passive impedance elements for passing only frequencies in said first frequency band to said control electrode of said first amplifier means, while rejecting freqUencies in said second frequency band; second coupling circuit means inductively connected to said interconnected passive impedance elements for passing only frequencies in said second frequency band to said control electrode of said second amplifier means, while rejecting said frequencies in said first frequency band; antenna output terminal means; and means connecting the output circuit of said first and second amplifier means to said antenna output terminal means, whereby said first coupling circuit means and first amplifier means constitute a first signal transmission path transmitting signals in said first frequency band only, and said second coupling circuit means and second amplifier means constitute a second signal transmission path passing frequencies in said second frequency band only.
2. An integrated active antenna combination as set forth in claim 1, wherein said first and second frequency bands are respectively an upper and a lower frequency band.
3. Active antenna as set forth in claim 1, wherein said upper frequency range is in the ultra shortwave region.
4. Active antenna as set forth in claim 1, wherein said first amplifier means has a first and second output electrode and a control electrode further comprising means determining the operating point of said first amplifier means.
5. Active antenna as set forth in claim 1, wherein said means determining the operating point comprise a voltage source, voltage divider means having a voltage divider tap connected across said voltage source, and means connecting said control electrode to said voltage divider tap; and wherein the voltage at said voltage divider tap is a function of the frequencies in said first frequency band.
6. Active antenna as set forth in claim 1, wherein said antenna output terminal means comprise a first and second terminal respectively furnishing frequencies in said first and second frequency band.
7. Active antenna as set forth in claim 1, wherein said passive impedance elements and said first coupling impedance means comprise printed circuit means.
8. Active antenna as set forth in claim 1, wherein said passive impedance elements comprise printed conducting strips; wherein said passive circuit means further comprise top-loading capacitor means; and wherein said first coupling circuit means comprise printed circuit capacitor means.
9. Active antenna as set forth in claim 1, wherein said passive impedance elements comprise pseudo-coaxial cable means having a first, second and third conducting strip, said first and third conducting strip being situated on either side of said second conducting strip; and wherein a printed circuit capacitor means is connected to said third conducting strip.
10. Active antenna as set forth in claim 9, wherein said second coupling circuit means comprise inductor means; and means connecting said inductor means to said second conducting strip.
11. Active antenna as set forth in claim 10, wherein said second amplifier means comprise emitter follower amplifier means.
12. Active antenna as set forth in claim 11, further comprising third amplifier means cascade-connected to said emitter-follower amplifier means.
13. Active antenna as set forth in claim 12, further comprising decoupling means decoupling the output of said third amplifier means from the output of said first amplifier means.
US11569A 1969-04-18 1970-02-16 Active antenna arrangement for a plurality of frequency ranges Expired - Lifetime US3699452A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1919749A DE1919749C3 (en) 1969-04-18 1969-04-18 Active receiving antenna with dipole character

Publications (1)

Publication Number Publication Date
US3699452A true US3699452A (en) 1972-10-17

Family

ID=5731603

Family Applications (1)

Application Number Title Priority Date Filing Date
US11569A Expired - Lifetime US3699452A (en) 1969-04-18 1970-02-16 Active antenna arrangement for a plurality of frequency ranges

Country Status (14)

Country Link
US (1) US3699452A (en)
JP (1) JPS5549444B1 (en)
AT (1) AT354521B (en)
BE (1) BE743971A (en)
CH (1) CH519253A (en)
DE (1) DE1919749C3 (en)
DK (1) DK137909B (en)
ES (1) ES375206A1 (en)
FR (1) FR2039253B1 (en)
GB (1) GB1296535A (en)
LU (1) LU60028A1 (en)
NL (1) NL173116C (en)
NO (1) NO134074C (en)
SE (1) SE351529B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827053A (en) * 1970-07-23 1974-07-30 E Willie Antenna with large capacitive termination and low noise input circuit
FR2425736A1 (en) * 1978-05-09 1979-12-07 Communications Patents Ltd ANTENNA ARRANGEMENT
US4201988A (en) * 1979-03-05 1980-05-06 The United States Of America As Represented By The Secretary Of The Navy Wideband VHF antenna
US4243992A (en) * 1979-04-16 1981-01-06 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for fabricating a wideband whip antenna
US4559539A (en) * 1983-07-18 1985-12-17 American Electronic Laboratories, Inc. Spiral antenna deformed to receive another antenna
WO1991000626A1 (en) * 1989-06-27 1991-01-10 Crowe, Brian, John Rear view mirrors including radio aerials
EP1191557A2 (en) * 2000-09-12 2002-03-27 Robert Bosch Gmbh Integrated adjustable capacitor
US6393264B1 (en) * 1995-09-15 2002-05-21 Siemens Aktiengesellschaft Radio terminal apparatus
US20040113854A1 (en) * 2002-10-01 2004-06-17 Heinz Lindenmeier Active broad-band reception antenna with reception level regulation
US20060267138A1 (en) * 2005-05-30 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2122341B1 (en) * 1971-01-21 1974-04-26 Radiotechnique Compelec
DE2115657C3 (en) * 1971-03-31 1983-12-22 Flachenecker, Gerhard, Prof. Dr.-Ing., 8012 Ottobrunn Active Unipol receiving antenna
NL7901901A (en) * 1978-03-10 1979-09-12 Blankenburg Antennen MULTIPLE RECEPTION AREA ANTENNA WITH ELECTRONIC AMPLIFIER.
DE2952793C2 (en) * 1979-12-31 1983-04-28 Flachenecker, Gerhard, Prof. Dr.-Ing., 8012 Ottobrunn Tunable receiver input circuit
DE3315458A1 (en) * 1983-04-28 1984-11-08 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker ACTIVE WINDSHIELD ANTENNA FOR ALL POLARIZATION TYPES
GB9114720D0 (en) * 1991-07-08 1991-08-28 Electronic Advanced Research L Radio receiving circuits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1647474A (en) * 1923-10-25 1927-11-01 Frederick W Seymour Variable pathway
US2531438A (en) * 1947-03-21 1950-11-28 William J Jones Multiple distribution radio receiving system
US2578973A (en) * 1946-12-11 1951-12-18 Belmont Radio Corp Antenna array
US3465344A (en) * 1967-01-26 1969-09-02 Sylvania Electric Prod Single antenna dual frequency band signal coupling system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT157792B (en) * 1934-11-15 1940-01-25 Hazeltine Corp Circuit for coupling two electrical circuits.
US2169358A (en) * 1936-07-18 1939-08-15 Telefunken Gmbh Receiver for ultra-short waves
DE975147C (en) * 1950-02-22 1961-09-07 Siemens Elektrogeraete Gmbh Coupling device for the simultaneous connection of a VHF antenna and a short-medium-long wave antenna to high-frequency receivers for several wave ranges
US3424984A (en) * 1964-02-28 1969-01-28 Antenna Res Ass Directional broad band antenna array
NL6517121A (en) * 1965-12-30 1967-07-03
DE1272391B (en) * 1967-04-28 1968-07-11 Hirschmann Radiotechnik Arrangement for connecting several selective antenna amplifiers to a common consumer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1647474A (en) * 1923-10-25 1927-11-01 Frederick W Seymour Variable pathway
US2578973A (en) * 1946-12-11 1951-12-18 Belmont Radio Corp Antenna array
US2531438A (en) * 1947-03-21 1950-11-28 William J Jones Multiple distribution radio receiving system
US3465344A (en) * 1967-01-26 1969-09-02 Sylvania Electric Prod Single antenna dual frequency band signal coupling system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mayes, Tiny Antennas Push State of Art , Electronics World; March, 1968; pp. 49 51 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827053A (en) * 1970-07-23 1974-07-30 E Willie Antenna with large capacitive termination and low noise input circuit
FR2425736A1 (en) * 1978-05-09 1979-12-07 Communications Patents Ltd ANTENNA ARRANGEMENT
US4201988A (en) * 1979-03-05 1980-05-06 The United States Of America As Represented By The Secretary Of The Navy Wideband VHF antenna
US4243992A (en) * 1979-04-16 1981-01-06 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for fabricating a wideband whip antenna
US4559539A (en) * 1983-07-18 1985-12-17 American Electronic Laboratories, Inc. Spiral antenna deformed to receive another antenna
WO1991000626A1 (en) * 1989-06-27 1991-01-10 Crowe, Brian, John Rear view mirrors including radio aerials
US6393264B1 (en) * 1995-09-15 2002-05-21 Siemens Aktiengesellschaft Radio terminal apparatus
EP1191557A2 (en) * 2000-09-12 2002-03-27 Robert Bosch Gmbh Integrated adjustable capacitor
EP1191557A3 (en) * 2000-09-12 2007-04-04 Robert Bosch Gmbh Integrated adjustable capacitor
US20040113854A1 (en) * 2002-10-01 2004-06-17 Heinz Lindenmeier Active broad-band reception antenna with reception level regulation
US6888508B2 (en) 2002-10-01 2005-05-03 Fuba Automotive Gmbh & Co. Kg Active broad-band reception antenna with reception level regulation
US20060267138A1 (en) * 2005-05-30 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7688272B2 (en) * 2005-05-30 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
NL6919443A (en) 1970-10-20
NL173116B (en) 1983-07-01
DE1919749C3 (en) 1982-05-13
GB1296535A (en) 1972-11-15
FR2039253A1 (en) 1971-01-15
DK137909B (en) 1978-05-29
DE1919749B2 (en) 1973-07-19
AT354521B (en) 1979-01-10
LU60028A1 (en) 1970-02-16
CH519253A (en) 1972-02-15
NO134074C (en) 1976-08-11
ATA1206869A (en) 1977-10-15
DE1919749A1 (en) 1970-10-08
JPS5549444B1 (en) 1980-12-12
BE743971A (en) 1970-05-28
SE351529B (en) 1972-11-27
FR2039253B1 (en) 1977-01-14
ES375206A1 (en) 1972-03-01
NL173116C (en) 1983-12-01
NO134074B (en) 1976-05-03

Similar Documents

Publication Publication Date Title
US3699452A (en) Active antenna arrangement for a plurality of frequency ranges
GB1476138A (en) Tuner circuit arrangement
US5285179A (en) Double tuned circuit with balanced output and image trap
KR100769549B1 (en) Matching apparatus
US3611198A (en) Frequency-selective coupling circuit for all-channel television antenna having uhf/vhf crossover network within uhf tuner
CA1205901A (en) Wideband if amplifier with complementary gaas fet- bipolar transistor combination
US2581983A (en) Line-cord antenna
CA1237480A (en) Tracking image frequency trap
US4510500A (en) Aircraft shorted loop antenna with impedance matching and amplification at feed point
US4023106A (en) Input circuit of VHF television set tuner
US3942120A (en) SWD FM receiver circuit
EP0145076A2 (en) Television receiver input circuit
US2594167A (en) Ultrahigh-frequency bridge circuits
US2921189A (en) Reduction of local oscillator radiation from an ultra-high frequency converter
US3693096A (en) Antenna coupling and r.f. tuning circuit
US2310323A (en) Antenna coupling and tuning system for communication or broadcast receivers
US2692919A (en) Stabilized driven grounded grid amplifier circuits
US6583685B1 (en) Antenna arrangement
US4267604A (en) UHF electronic tuner
US5151708A (en) Shortened mast antenna with compensating circuits
US3576495A (en) Tuning circuit having means for compensating for the coupling of the local oscillator signal to the antenna winding
US2962586A (en) High frequency mixer stage
EP0387003B1 (en) A shortened mast antenna with compensated circuits
GB514778A (en) Improvements in radio signalling systems
US3332020A (en) Transistor input stage for a receiver