US3701216A - Wheel apparatus and rack and pinion launcher enabling repeated strokes and having automatic ejector - Google Patents

Wheel apparatus and rack and pinion launcher enabling repeated strokes and having automatic ejector Download PDF

Info

Publication number
US3701216A
US3701216A US210730A US3701216DA US3701216A US 3701216 A US3701216 A US 3701216A US 210730 A US210730 A US 210730A US 3701216D A US3701216D A US 3701216DA US 3701216 A US3701216 A US 3701216A
Authority
US
United States
Prior art keywords
shaft
rotatable member
gear rack
gear
extension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US210730A
Inventor
Jay Smith
Gerald W Schmidt
Lawrence T Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California R&D Center
Original Assignee
California R&D Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California R&D Center filed Critical California R&D Center
Application granted granted Critical
Publication of US3701216A publication Critical patent/US3701216A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F7/00Indoor games using small moving playing bodies, e.g. balls, discs or blocks
    • A63F7/22Accessories; Details
    • A63F7/24Devices controlled by the player to project or roll-off the playing bodies
    • A63F7/2409Apparatus for projecting the balls
    • A63F7/2472Projecting devices with actuating mechanisms, e.g. triggers, not being connected to the playfield
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/16Spinning-top games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H29/00Drive mechanisms for toys in general
    • A63H29/24Details or accessories for drive mechanisms, e.g. means for winding-up or starting toy engines

Definitions

  • ABSTRACT A toy apparatus in which a launcher is utilized to propel a wheel.
  • the launcher comprises an output shaft upon which the wheel is mounted.
  • the shaft is rotatably driven by a gear train with the input gear thereof being connected to a slidable gear rack.
  • the gear rack is hand manipulated to slide within a guideway formed in the launcher.
  • the input gear is floatingly mounted within the launcher to positively drive the gear train in the forward direction, when the gear rack travels in one direction along the guideway, and to move out of engagement with the gear train when the gear rack moves in the other direction along the guideway. This uncoupling movement enables the gear rack to repeat its drive cycle while the gear train is still moving in the forward direction.
  • a wheel ejector is pivotally mounted adjacent the output shaft and is slidingly coupled to the gear rack to pivot and force the wheel off of the shaft when the gear rack is finally withdrawn completely from the guideway.
  • the present invention relates to toys and more particularly to amusement devices for launching a toy vehicle.
  • top One of the oldest toys of this type is the top.
  • the conventional top is given its rotary impetus by means of a helically threaded shaft acting on a cammed bore located on the main body of the top.
  • Another method of applying a rotary impetus to a top besides merely twirling ones fingers upon a small shaft portion of the top, is to wind a string around the shaft of the top and quickly pull it away.
  • a rack and pinion drive mechanism Another method of applying a rotary impetus to a toy top or other rotary toys is to utilize a rack and pinion drive mechanism.
  • an elongated rack is slidingly positioned within a slotted guideway, with the teeth of the rack engaging a pinion mounted within the guideway.
  • the rack is quickly pulled out of the slotted guideway to rotate the pinion at a high rate of speed.
  • the pinion is integral with the top and the rotary motion of the pinion is transferred to the top.
  • the pinion is rotatively mounted in the vehicle to be drivingly connected to the wheels of the vehicle. After the pinion is rotatably driven up to speed, the vehicle is placed by hand onto a flat surface to be driven by the drive wheels.
  • a major shortcoming with such an apparatus is that the gear rack can only travel through the guideway a single time for each drive cycle. No means are provided to uncouple the pinion gear from its drive mechanism to enable the gear rack to reverse its direction in the guideway to get back to the starting position to repeat the drive cycle. Quite often the speed of the pinion is not sufficiently high enough to drive the vehicle an appreciable distance. Because the drive cycle cannot be repeated once the pinion is rotating, the drive mechanism must be completely stopped to enable the rack to be inserted within the guideway to repeat the entire procedure.
  • the present invention obviates the above-mentioned shortcomings by providing a launching apparatus having a gear rack and pinion drive in which the gear rack can repeat its drive cycle to greatly increase its rotary speed.
  • the apparatus also includes an ejector which automatically launches the vehicle from the apparatus when the vehicle reaches its desired speed.
  • the apparatus comprises a launcher having an output shaft adapted to receive a wheel.
  • the shaft is rotatably driven by a gear train with the input gear opening into a guideway.
  • a hand manipulated gear rack is adapted to be slidably inserted within the guideway to drivingly engage the input gear.
  • the input gear is floatingly mounted within the launcher to positively drive the gear train in the forward direction when the gear rack travels in the one direction, and to move out of engagement with the gear train when the gear rack moves in the other direction.
  • the ejector comprises a spring biased fork pivotally mounted on the launcher adjacent the output shaft and is slidingly coupled to the gear rack to pivot and force the wheel off of the output shaft when the gear rack is finally withdrawn completely from the guideway.
  • An advantage of the present invention is that the gear rack can repeat its drive cycle without withdrawing from the apparatus and while the gear train is still moving in the forward direction these repeated drive cycles greatly increase the rotational speed of the output shaft before actual launching. Moreover, this repeated drive cycle operation is akin to revving up" a motor while waiting to start a race. Such an operation is highly amusing to children.
  • Another advantage of the present invention is that the wheel remains secured during this revving cycle and is only released upon complete withdrawal of the gear rack from the guideway.
  • FIG. 1 is a perspective view of a toy launcher and wheel apparatus of the present invention
  • FIG. 2 is an exploded perspective viewof the toy launcher
  • FIG. 3 is a cross sectional view of the toy launcher taken along lines 33 of FIG. 2;
  • FIG. 4 is a cross sectional view of the toy launcher taken along lines 44 of FIG. 3;
  • FIG. 5 is a similar cross sectional view of the toy launcher with the input pinion out of engagement with the driven gear
  • FIG. 6 is a cross sectional view of the toy launcher taken along lines 6-6 of FIG. 4;
  • FIG. 7 is a similar cross sectional view of the toy launcher with the wheel ejector partially actuated.
  • FIG. 1 shows a toy launcher apparatus 10 in the process of being actuated to launch a wheel 20.
  • the toy launcher apparatus 10 comprises a rear housing 11 and a front housing 12 united to form a compartment 13.
  • a handle 14 is integrally formed with the rear housing 11 and is dimensioned to receive the hand grip of the operator. (See FIG. 1).
  • a shaft is journaled within the side walls forming the rear and front housing 11 and '12.
  • a hexagonal portion of the shaft extends through the front housing wall 12 to receive and support the wheel 20.
  • An output gear 16 is integrally mounted on the portion of the shaft 15 located within the compartment 13.
  • the gear 16 is adapted to engage with an intermediate gear 17 mounted on a shaft 18 which, in turn, is journaled within a pair of elongated slots 21 formed in the housing walls 11 and 12.
  • the shaft 18 further includes an input pinion 22 integrally mounted thereon for rotation with the intermediate gear 12.
  • the input pinion 22 is positioned to partially extend into a slot or guideway formed within the compartment 13. As shown in FIG. 4, the guideway is formed by two windows 24 and 25 formed on the mating peripheral edges of the housing members 11 and 12.
  • the guideway functions to slidably receive a gear rack which is adapted to engage the input pinion 22 for imparting a rotary motion thereto.
  • the one end of the gear rack 30 includes a handle 31 which is adapted to be gripped by an operator (see FIG. I) for pulling the gear rack 30 out of the guideway.
  • the wheel 20 is preferably fashioned in the form of a miniature automobile tire which includes a pair of hubs 32 and 33 integrally joined within the wheel 20 to form a unitary wheel assembly.
  • the hub 33 includes a cylindrical center portion 34 having a hexagonal aperture formed therein for receiving the hexagonal portion of the shaft 15.
  • An annular flange 35 is formed on the extremity of the center portion 34. The function of the flange 35 will be described hereinafter.
  • a spring biased wheel ejector is adapted to be pivotally mounted on the front housing 12 for urging the wheel 20 off of the shaft 15.
  • the wheel ejector 40 comprises a fork 41 mounted on the outside of the housing 12 and extending through a slot 42 formed on the housing 12.
  • the interior end of the fork 41 is in tegrally connected to a pivot pin 43 which is journale'd within a pair of bearing mounts 44 formed on the interior side of the front housing wall 12.
  • the outer end of the fork 41 extends across the shaft 15 and further includes a transverse hook 45 which extends perpendicularly therefrom for engagement with the flange 35 of the wheel 20.
  • a spring 46 is mounted on the pivot pin 43 with one end thereof biasingagainst the housing wall 12 while the other end is biased against the interior side of the fork 41.
  • An arm 47 is also integrally formed with the pivot pin 43 and is adapted to extend into the compartment 13 across the guideway to slidingly engage the gear rack 30.
  • the gear rack 30 is inserted through the window 21 and moved entirely through the guideway to extend out of the rear window 25. As the gear rack 30 moves through the guideway, it engages the input pinion 22 to impart a rotary motion thereto in the clockwise direction as shown in FIG. 5. Because the input pinion 22 is supported in the elongated slots 21, the force of the gear rack 30 on the input pinion 22 forces the shaft 18 forwardly to carry the intermediate gear 17 out of engagement with the output gear 16. (See FIG. 5). As a result, no rotary motion is transmitted to the gear train when the gear rack 30 is moved through the guideway in the forward direction.
  • the gear rack 30 As the gear rack 30 is inserted and moved forwardly through the guideway, it also contacts the arm 47 to pivot it and the fork 41 in a clockwise direction as shown in FIG. 6 against the bias of the spring 46. At the end of this movement, the hook 45 is positioned to engage the flange 35 of the wheel 20 to secure the wheel 20 against axial movement as it is mounted on the hexagonal shaft 15.
  • the gear rack 30 is in the ready position to impart a rotary movement to the wheel 20. This is accomplished by simply pulling the gear rack 30 rearwardly to rotate the input pinion 22 in the counterclockwise direction as shown in FIG. 4. This movement also creates a rearward force on the input pinion 22 to cause the shaft 18 to move rearwardly to enable the intermediate gear 17 to engage the output gear 16. (See FIG. 4). As a result, the rotary motion of the input pinion 22, caused by the rearward movement of the gear rack 30 transmits a rotary movement through the gear train to rotate the hexagonal shaft 15 and the wheel 20 mounted thereon.
  • the drive cycle of the gear rack 30 can be repeated as often as desired to increase the rotational speed of the wheel 20.
  • the operator pulls the gear rack 30 completely out of the guideway to enable the fork 41 to force the wheel 20 off the shaft 15.
  • the wheel 20 remains secured to the shaft 15 and cannot become accidentally disengaged or launched until the operator desires to do so.
  • noise making devices can be connected to the moving parts of the apparatus to enhance and simulate the roaring sound of a motor.
  • any standard toy vehicle can be modified to be launched by the launcher of the present invention.
  • a toy launching apparatus comprising:
  • an output shaft rotatably mounted within and extending partially out of said housing, the portion of the shaft extending out of the housing having means adapted to support a rotatable member in driving relation therewith;
  • said means comprising a gear train, including an input pinion on a shaft, rotatably mounted within said housing coupled to said output shaft, and a gear rack movably mounted in a guideway in said housing and drivingly connected to the input pinion of said gear train, said gear rack being movable in one direction of the guideway to impart a rotary motion to the input pinion and the rest of the gear train, said means further comprising means for uncoupling said input pinion from the rest of said gear train during the movement of said gear rack in the opposite direction of the guideway to enable the gear rack to repeat its driving cycle while said output shaft continues the rotary movement imparted by the previous driving cycle, in order to increase the rotational speed of the gear train and said output shaft; and
  • ejector means mounted on said housing responsive to appropriate movement of the gear rack at the end of the driving cycle for automatically forcing the rotatable member off of the output shaft to launch the rotatable member in motion.
  • said uncoupling means comprises mounting means for floatingly mounting said input pinion within said housing.
  • said mounting means comprises a pair of elongated slots formed in said housing for receiving the extremities of said input pinion shaft, said slots being oriented to enable the input pinion to move away from the rest of said gear tram.
  • said ejector means comprises a spring biased extension pivotally mounted on said housing.
  • extension extends adjacent said output shaft, said extension being spring biased to pivot outwardly from said housing to engage said rotatable member and move it axially off the output shaft.
  • said ejector means further comprises an arm for slidingly engaging said gear rack, said arm being connected to said extension for keeping said extension adjacent said housing against the bias of said spring while the arm is engaging said gear rack.
  • said extension further comprises means for securing the rotatable member against axial movement on said shaft while the shaft is being rotatably driven.
  • said rotatable member securing means comprises a hook formed on said extension, said hook adapted to extend over and slidingly engage an annular flange formed on said rotatable member.
  • a toy apparatus comprising:
  • a launcher having an output shaft for supporting a rotatable member
  • a rotatable member removably supported on said output shaft with means forming a drive connection between said rotatable member and said shaft;
  • said drive means comprises a gear train rotatably mounted on said launcher and coupled to said output shaft.
  • gear train comprises:
  • said uncoupling means comprises mounting means for floatingly mounting said input pinion within said housmg.
  • said mounting means comprises a pair of elongated slots formed in said housing for receiving the extremities of said input pinion shaft, said slots being oriented to enable the input pinion to move away from the rest of the gear train.
  • said drive means further comprises a gear rack movably mounted in a guideway and drivingly connected to the input pinion of said gear train, said gear rack being movable in one direction to impart a rotary motion to said input pinion and said gear train.
  • said ejector means comprises a spring biased extension pivotally mounted on said launcher.
  • extension extends adjacent said shaft, said extension being spring biased to pivot outwardly from said launcher to engage said rotatable member and move it axially off the shaft.
  • said ejector means further comprises an arm for slidingly engaging said gear rack, said arm being connected to said extension for keeping said extension adjacent said launcher 7 against the bias of said spring while the arm is engaging said gear rack.
  • said extension further comprises means for securing the rotatable member to said shaft while the shaft is being rotatably driven.

Abstract

A toy apparatus is disclosed in which a launcher is utilized to propel a wheel. The launcher comprises an output shaft upon which the wheel is mounted. The shaft is rotatably driven by a gear train with the input gear thereof being connected to a slidable gear rack. The gear rack is hand manipulated to slide within a guideway formed in the launcher. The input gear is floatingly mounted within the launcher to positively drive the gear train in the forward direction, when the gear rack travels in one direction along the guideway, and to move out of engagement with the gear train when the gear rack moves in the other direction along the guideway. This uncoupling movement enables the gear rack to repeat its drive cycle while the gear train is still moving in the forward direction. In this manner, the gear rack need not be completely withdrawn from the guideway to repeat its drive cycles. These repeated drive cycles greatly increase the rotational speed of the output shaft before actual launching. A wheel ejector is pivotally mounted adjacent the output shaft and is slidingly coupled to the gear rack to pivot and force the wheel off of the shaft when the gear rack is finally withdrawn completely from the guideway.

Description

United States Patent Smith, III et a1.
[54] WHEEL APPARATUS AND RACK AND PINION LAUNCHER ENABLING REPEATED STROKES AND HAVING AUTOMATIC EJECTOR [72] Inventors: Jay Smith, III, Pacific Palisades; Gerald W. Schmidt, Woodland Hills; Lawrence T. Jones, Pacific Palisades, all of Calif.
[73] Assignee: California R & D Center, Palisades,
Calif.
[22] Filed: Dec. 22, 1971 21 Appl. No.: 210,730
[52] US. Cl. ..46/206, 46/62, 46/209, 185/39 [51 Int. Cl. ..A63h l/04 [58] Field of Search ....46/206, 202, 209, 72; 185/39, 185/10 [56] References Cited UNITED STATES PATENTS 2,937,472 5/1960 Cunningham ..46/72 3,216,529 ll/1965 Lohr ..185/39 3,621,607 11/1971 Morrison et al. ..46/206 3,621,939 ll/1971 Hughes ..185/39 FOREIGN PATENTS OR APPLICATIONS 165,966 7/1921 Great Britain ..l85lDlG. l
[451 Oct. 31, 1972 Primary ExaminerF. Barry Shay AttorneyHarold L. Jackson et a1.
[57] ABSTRACT A toy apparatus is disclosed in which a launcher is utilized to propel a wheel. The launcher comprises an output shaft upon which the wheel is mounted. The shaft is rotatably driven by a gear train with the input gear thereof being connected to a slidable gear rack. The gear rack is hand manipulated to slide within a guideway formed in the launcher. The input gear is floatingly mounted within the launcher to positively drive the gear train in the forward direction, when the gear rack travels in one direction along the guideway, and to move out of engagement with the gear train when the gear rack moves in the other direction along the guideway. This uncoupling movement enables the gear rack to repeat its drive cycle while the gear train is still moving in the forward direction. ln this manner, the gear rack need not be completely withdrawn from the guideway to repeat its drive cycles. These repeated drive cycles greatly increase the rotational speed of the output shaft before actual launching. A wheel ejector is pivotally mounted adjacent the output shaft and is slidingly coupled to the gear rack to pivot and force the wheel off of the shaft when the gear rack is finally withdrawn completely from the guideway.
22 Cla 7 aw nsF mres.
PATENTED BET 31 I972 3.701.216
sum 3 OF 4 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to toys and more particularly to amusement devices for launching a toy vehicle.
2. Description of the Prior Art Toys which are adapted to be launched into movement have long been popular with children of all ages.
One of the oldest toys of this type is the top. The conventional top is given its rotary impetus by means of a helically threaded shaft acting on a cammed bore located on the main body of the top. Another method of applying a rotary impetus to a top, besides merely twirling ones fingers upon a small shaft portion of the top, is to wind a string around the shaft of the top and quickly pull it away.
Another method of applying a rotary impetus to a toy top or other rotary toys is to utilize a rack and pinion drive mechanism. In this type of device, an elongated rack is slidingly positioned within a slotted guideway, with the teeth of the rack engaging a pinion mounted within the guideway. To operate the apparatus, the rack is quickly pulled out of the slotted guideway to rotate the pinion at a high rate of speed. If the toy is a top, the pinion is integral with the top and the rotary motion of the pinion is transferred to the top. If the toy is a small vehicle, such as a toy racer, the pinion is rotatively mounted in the vehicle to be drivingly connected to the wheels of the vehicle. After the pinion is rotatably driven up to speed, the vehicle is placed by hand onto a flat surface to be driven by the drive wheels.
A major shortcoming with such an apparatus is that the gear rack can only travel through the guideway a single time for each drive cycle. No means are provided to uncouple the pinion gear from its drive mechanism to enable the gear rack to reverse its direction in the guideway to get back to the starting position to repeat the drive cycle. Quite often the speed of the pinion is not sufficiently high enough to drive the vehicle an appreciable distance. Because the drive cycle cannot be repeated once the pinion is rotating, the drive mechanism must be completely stopped to enable the rack to be inserted within the guideway to repeat the entire procedure.
Another shortcoming with such an apparatus is that the vehicle must be placed on the ground by hand, rather than being automatically launched by the launching device. Any automatic launching combined with the gear and rack drive has never been accomplished before, particularly with any type of repeatable gear and rack drive.
SUMMARY OF THE INVENTION The present invention obviates the above-mentioned shortcomings by providing a launching apparatus having a gear rack and pinion drive in which the gear rack can repeat its drive cycle to greatly increase its rotary speed. The apparatus also includes an ejector which automatically launches the vehicle from the apparatus when the vehicle reaches its desired speed.
The apparatus comprises a launcher having an output shaft adapted to receive a wheel. The shaft is rotatably driven by a gear train with the input gear opening into a guideway. A hand manipulated gear rack is adapted to be slidably inserted within the guideway to drivingly engage the input gear. The input gear is floatingly mounted within the launcher to positively drive the gear train in the forward direction when the gear rack travels in the one direction, and to move out of engagement with the gear train when the gear rack moves in the other direction. The ejector comprises a spring biased fork pivotally mounted on the launcher adjacent the output shaft and is slidingly coupled to the gear rack to pivot and force the wheel off of the output shaft when the gear rack is finally withdrawn completely from the guideway.
An advantage of the present invention is that the gear rack can repeat its drive cycle without withdrawing from the apparatus and while the gear train is still moving in the forward direction these repeated drive cycles greatly increase the rotational speed of the output shaft before actual launching. Moreover, this repeated drive cycle operation is akin to revving up" a motor while waiting to start a race. Such an operation is highly amusing to children.
Another advantage of the present invention is that the wheel remains secured during this revving cycle and is only released upon complete withdrawal of the gear rack from the guideway.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The present invention, both as to its organization and manner of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a toy launcher and wheel apparatus of the present invention;
FIG. 2 is an exploded perspective viewof the toy launcher;
FIG. 3 is a cross sectional view of the toy launcher taken along lines 33 of FIG. 2;
FIG. 4 is a cross sectional view of the toy launcher taken along lines 44 of FIG. 3;
FIG. 5 is a similar cross sectional view of the toy launcher with the input pinion out of engagement with the driven gear;
FIG. 6 is a cross sectional view of the toy launcher taken along lines 6-6 of FIG. 4; and
FIG. 7 is a similar cross sectional view of the toy launcher with the wheel ejector partially actuated.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, FIG. 1 shows a toy launcher apparatus 10 in the process of being actuated to launch a wheel 20.
The toy launcher apparatus 10, more clearly illustrated in FIGS. 2-7 comprises a rear housing 11 and a front housing 12 united to form a compartment 13. A handle 14 is integrally formed with the rear housing 11 and is dimensioned to receive the hand grip of the operator. (See FIG. 1).
A shaft is journaled within the side walls forming the rear and front housing 11 and '12. A hexagonal portion of the shaft extends through the front housing wall 12 to receive and support the wheel 20. An output gear 16 is integrally mounted on the portion of the shaft 15 located within the compartment 13. The gear 16 is adapted to engage with an intermediate gear 17 mounted on a shaft 18 which, in turn, is journaled within a pair of elongated slots 21 formed in the housing walls 11 and 12. The shaft 18 further includes an input pinion 22 integrally mounted thereon for rotation with the intermediate gear 12.
The input pinion 22 is positioned to partially extend into a slot or guideway formed within the compartment 13. As shown in FIG. 4, the guideway is formed by two windows 24 and 25 formed on the mating peripheral edges of the housing members 11 and 12. The guideway functions to slidably receive a gear rack which is adapted to engage the input pinion 22 for imparting a rotary motion thereto. The one end of the gear rack 30 includes a handle 31 which is adapted to be gripped by an operator (see FIG. I) for pulling the gear rack 30 out of the guideway.
The wheel 20 is preferably fashioned in the form of a miniature automobile tire which includes a pair of hubs 32 and 33 integrally joined within the wheel 20 to form a unitary wheel assembly. The hub 33 includes a cylindrical center portion 34 having a hexagonal aperture formed therein for receiving the hexagonal portion of the shaft 15. An annular flange 35 is formed on the extremity of the center portion 34. The function of the flange 35 will be described hereinafter.
A spring biased wheel ejector is adapted to be pivotally mounted on the front housing 12 for urging the wheel 20 off of the shaft 15. The wheel ejector 40 comprises a fork 41 mounted on the outside of the housing 12 and extending through a slot 42 formed on the housing 12. The interior end of the fork 41 is in tegrally connected to a pivot pin 43 which is journale'd within a pair of bearing mounts 44 formed on the interior side of the front housing wall 12. The outer end of the fork 41 extends across the shaft 15 and further includes a transverse hook 45 which extends perpendicularly therefrom for engagement with the flange 35 of the wheel 20. A spring 46 is mounted on the pivot pin 43 with one end thereof biasingagainst the housing wall 12 while the other end is biased against the interior side of the fork 41. An arm 47 is also integrally formed with the pivot pin 43 and is adapted to extend into the compartment 13 across the guideway to slidingly engage the gear rack 30.
OPERATION To operate the launcher apparatus 10, the gear rack 30 is inserted through the window 21 and moved entirely through the guideway to extend out of the rear window 25. As the gear rack 30 moves through the guideway, it engages the input pinion 22 to impart a rotary motion thereto in the clockwise direction as shown in FIG. 5. Because the input pinion 22 is supported in the elongated slots 21, the force of the gear rack 30 on the input pinion 22 forces the shaft 18 forwardly to carry the intermediate gear 17 out of engagement with the output gear 16. (See FIG. 5). As a result, no rotary motion is transmitted to the gear train when the gear rack 30 is moved through the guideway in the forward direction.
As the gear rack 30 is inserted and moved forwardly through the guideway, it also contacts the arm 47 to pivot it and the fork 41 in a clockwise direction as shown in FIG. 6 against the bias of the spring 46. At the end of this movement, the hook 45 is positioned to engage the flange 35 of the wheel 20 to secure the wheel 20 against axial movement as it is mounted on the hexagonal shaft 15.
At this point, the gear rack 30 is in the ready position to impart a rotary movement to the wheel 20. This is accomplished by simply pulling the gear rack 30 rearwardly to rotate the input pinion 22 in the counterclockwise direction as shown in FIG. 4. This movement also creates a rearward force on the input pinion 22 to cause the shaft 18 to move rearwardly to enable the intermediate gear 17 to engage the output gear 16. (See FIG. 4). As a result, the rotary motion of the input pinion 22, caused by the rearward movement of the gear rack 30 transmits a rotary movement through the gear train to rotate the hexagonal shaft 15 and the wheel 20 mounted thereon.
As the end of the gear rack 30 moves past the arm 47, the retaining force on the arm 47 is released and the spring bias of the spring 46 causes the arm 46 and the fork 41 to pivot in the counter-clockwise direction as shown in FIG. 7. This movement causes the hook 45 to be disengaged from the wheel flange 35 and the fork 41 to force the freed wheel 20 off the shaft 15. Once the wheel 20 is moved off the shaft 15, it drops to the ground and its rotary momentum enables it to travel in the forward direction.
This operation was described for only one pull of the gear rack 30. However, if it were desired to impart a faster rotational speed to the wheel 20 before ejection, the operator would not withdraw the gear rack 30 completely out of the guideway past the arm 47. Instead, after partially pulling the gear rack 30 through the guideway to start the wheel moving, the operator moves the gear rack 30 forward again to the initial position. This forward force on the input pinion 22 causes the shaft 18 to again move forward to disengage the gear 17 from the gear 16 as shown in FIG. 5. This uncoupling of the gear train enables the shaft 15 and wheel 20 to continue rotating in the forward direction while the gear rack 30 is returning to the start of its drive position.
After reaching this position, the operator then pulls on the gear rack 30 to again move it rearwardly. As before, this rearward force on the input pinion 22 causes the gear train to again be coupled to transmit a rotary movement to the wheel 20.
As can be seen, the drive cycle of the gear rack 30 can be repeated as often as desired to increase the rotational speed of the wheel 20. When the desired speed is reached, the operator pulls the gear rack 30 completely out of the guideway to enable the fork 41 to force the wheel 20 off the shaft 15. As can be seen, the wheel 20 remains secured to the shaft 15 and cannot become accidentally disengaged or launched until the operator desires to do so.
It should be noted that various modifications can be made to the apparatus while still remaining within the purview of the following claims. For example, noise making devices can be connected to the moving parts of the apparatus to enhance and simulate the roaring sound of a motor. Moreover, any standard toy vehicle can be modified to be launched by the launcher of the present invention.
What is claimed is:
1. A toy launching apparatus comprising:
a housing;
an output shaft rotatably mounted within and extending partially out of said housing, the portion of the shaft extending out of the housing having means adapted to support a rotatable member in driving relation therewith;
means for rotatably driving said output shaft, said means comprising a gear train, including an input pinion on a shaft, rotatably mounted within said housing coupled to said output shaft, and a gear rack movably mounted in a guideway in said housing and drivingly connected to the input pinion of said gear train, said gear rack being movable in one direction of the guideway to impart a rotary motion to the input pinion and the rest of the gear train, said means further comprising means for uncoupling said input pinion from the rest of said gear train during the movement of said gear rack in the opposite direction of the guideway to enable the gear rack to repeat its driving cycle while said output shaft continues the rotary movement imparted by the previous driving cycle, in order to increase the rotational speed of the gear train and said output shaft; and
ejector means mounted on said housing responsive to appropriate movement of the gear rack at the end of the driving cycle for automatically forcing the rotatable member off of the output shaft to launch the rotatable member in motion.
2. The invention of claim 1 wherein said uncoupling means comprises mounting means for floatingly mounting said input pinion within said housing.
3. The invention of claim 2 wherein said mounting means comprises a pair of elongated slots formed in said housing for receiving the extremities of said input pinion shaft, said slots being oriented to enable the input pinion to move away from the rest of said gear tram.
4. The invention of claim 1 wherein said ejector means comprises a spring biased extension pivotally mounted on said housing.
5. The invention of claim 4 wherein said extension extends adjacent said output shaft, said extension being spring biased to pivot outwardly from said housing to engage said rotatable member and move it axially off the output shaft.
6. The invention of claim 5 wherein said ejector means further comprises an arm for slidingly engaging said gear rack, said arm being connected to said extension for keeping said extension adjacent said housing against the bias of said spring while the arm is engaging said gear rack.
7. The invention of claim 6 wherein said extension further comprises means for securing the rotatable member against axial movement on said shaft while the shaft is being rotatably driven.
8. The invention of claim 7 wherein said rotatable member securing means comprises a hook formed on said extension, said hook adapted to extend over and slidingly engage an annular flange formed on said rotatable member.
9. The invention of claim 8 wherein said hook is oriented to pull away from said flange as the extension is pivoted outwardly to urge the rotatable member off of said output shaft.
10. A toy apparatus comprising:
a launcher having an output shaft for supporting a rotatable member;
a rotatable member removably supported on said output shaft with means forming a drive connection between said rotatable member and said shaft;
drive means on said launcher operable in one direction for imparting a rotary movement to said shaft and said rotatable member;
means on said launcher for uncoupling said drive means from said shaft to enable said drive means to return in the opposite direction in order to repeat its driving cycle while said rotatable member and shaft continue the rotary movement imparted by the previous driving cycle; and
means mounted on said launcher responsive to appropriate movement of said drive means at the end of the drive cycle for automatically forcing the rotatable member off of the output shaft to launch the rotatable member in motion.
11. The invention of claim 10 wherein said drive means comprises a gear train rotatably mounted on said launcher and coupled to said output shaft.
12. The invention of claim 11 wherein said gear train comprises:
an input pinion rotatably mounted on a shaft and drivingly coupled to the rest of said gear train.
13. The invention of claim 12 wherein said uncoupling means comprises mounting means for floatingly mounting said input pinion within said housmg.
14. The invention of claim 13 wherein said mounting means comprises a pair of elongated slots formed in said housing for receiving the extremities of said input pinion shaft, said slots being oriented to enable the input pinion to move away from the rest of the gear train.
.15. The invention of claim 14 wherein said drive means further comprises a gear rack movably mounted in a guideway and drivingly connected to the input pinion of said gear train, said gear rack being movable in one direction to impart a rotary motion to said input pinion and said gear train.
16. The invention of claim 15 wherein said gear rack is movable along the guideway in the opposite direction to force said input pinion away and out of engagement with the rest of said gear train.
17. The invention of claim 15 wherein said ejector means comprises a spring biased extension pivotally mounted on said launcher.
18. The invention of claim 17 wherein said extension extends adjacent said shaft, said extension being spring biased to pivot outwardly from said launcher to engage said rotatable member and move it axially off the shaft.
19. The invention of claim 18 wherein said ejector means further comprises an arm for slidingly engaging said gear rack, said arm being connected to said extension for keeping said extension adjacent said launcher 7 against the bias of said spring while the arm is engaging said gear rack.
20. The invention of claim 19 wherein said extension further comprises means for securing the rotatable member to said shaft while the shaft is being rotatably driven.
21. The invention of claim 20 wherein said rotatable member securing means comprises a hook formed on

Claims (22)

1. A toy launching apparatus comprising: a housing; an output shaft rotatably mounted within and extending partially out of said housing, the portion of the shaft extending out of the housing having means adapted to support a rotatable member in driving relation therewith; means for rotatably driving said output shaft, said means comprising a gear train, including an input pinion on a shaft, rotatably mounted within said housing coupled to said output shaft, and a gear rack movably mounted in a guideway in said housing and drivingly connected to the input pinion of said gear train, said gear rack being movable in one direction of the guideway to impart a rotary motion to the input pinion and the rest of the gear train, said means further comprising means for uncoupling said input pinion from the rest of said gear train during the movement of said gear rack in the opposite direction of the guideway to enable the gear rack to repeat its driving cycle while said output shaft continues the rotary movement imparted by the previous driving cycle, in order to increase the rotational sPeed of the gear train and said output shaft; and ejector means mounted on said housing responsive to appropriate movement of the gear rack at the end of the driving cycle for automatically forcing the rotatable member off of the output shaft to launch the rotatable member in motion.
2. The invention of claim 1 wherein said uncoupling means comprises mounting means for floatingly mounting said input pinion within said housing.
3. The invention of claim 2 wherein said mounting means comprises a pair of elongated slots formed in said housing for receiving the extremities of said input pinion shaft, said slots being oriented to enable the input pinion to move away from the rest of said gear train.
4. The invention of claim 1 wherein said ejector means comprises a spring biased extension pivotally mounted on said housing.
5. The invention of claim 4 wherein said extension extends adjacent said output shaft, said extension being spring biased to pivot outwardly from said housing to engage said rotatable member and move it axially off the output shaft.
6. The invention of claim 5 wherein said ejector means further comprises an arm for slidingly engaging said gear rack, said arm being connected to said extension for keeping said extension adjacent said housing against the bias of said spring while the arm is engaging said gear rack.
7. The invention of claim 6 wherein said extension further comprises means for securing the rotatable member against axial movement on said shaft while the shaft is being rotatably driven.
8. The invention of claim 7 wherein said rotatable member securing means comprises a hook formed on said extension, said hook adapted to extend over and slidingly engage an annular flange formed on said rotatable member.
9. The invention of claim 8 wherein said hook is oriented to pull away from said flange as the extension is pivoted outwardly to urge the rotatable member off of said output shaft.
10. A toy apparatus comprising: a launcher having an output shaft for supporting a rotatable member; a rotatable member removably supported on said output shaft with means forming a drive connection between said rotatable member and said shaft; drive means on said launcher operable in one direction for imparting a rotary movement to said shaft and said rotatable member; means on said launcher for uncoupling said drive means from said shaft to enable said drive means to return in the opposite direction in order to repeat its driving cycle while said rotatable member and shaft continue the rotary movement imparted by the previous driving cycle; and means mounted on said launcher responsive to appropriate movement of said drive means at the end of the drive cycle for automatically forcing the rotatable member off of the output shaft to launch the rotatable member in motion.
11. The invention of claim 10 wherein said drive means comprises a gear train rotatably mounted on said launcher and coupled to said output shaft.
12. The invention of claim 11 wherein said gear train comprises: an input pinion rotatably mounted on a shaft and drivingly coupled to the rest of said gear train.
13. The invention of claim 12 wherein said uncoupling means comprises mounting means for floatingly mounting said input pinion within said housing.
14. The invention of claim 13 wherein said mounting means comprises a pair of elongated slots formed in said housing for receiving the extremities of said input pinion shaft, said slots being oriented to enable the input pinion to move away from the rest of the gear train.
15. The invention of claim 14 wherein said drive means further comprises a gear rack movably mounted in a guideway and drivingly connected to the input pinion of said gear train, said gear rack being movable in one direction to impart a rotary motion to said input pinion and said gear train.
16. The invention of claim 15 wherein said gear rack is movable along the guideway in the opposite directiOn to force said input pinion away and out of engagement with the rest of said gear train.
17. The invention of claim 15 wherein said ejector means comprises a spring biased extension pivotally mounted on said launcher.
18. The invention of claim 17 wherein said extension extends adjacent said shaft, said extension being spring biased to pivot outwardly from said launcher to engage said rotatable member and move it axially off the shaft.
19. The invention of claim 18 wherein said ejector means further comprises an arm for slidingly engaging said gear rack, said arm being connected to said extension for keeping said extension adjacent said launcher against the bias of said spring while the arm is engaging said gear rack.
20. The invention of claim 19 wherein said extension further comprises means for securing the rotatable member to said shaft while the shaft is being rotatably driven.
21. The invention of claim 20 wherein said rotatable member securing means comprises a hook formed on said extension, said hook adapted to extend over and engage an annular flange formed on said rotatable member.
22. The invention of claim 21 wherein said hook is oriented to pull away from said flange as the extension is pivoted outwardly to urge the rotatable member off of said shaft.
US210730A 1971-12-22 1971-12-22 Wheel apparatus and rack and pinion launcher enabling repeated strokes and having automatic ejector Expired - Lifetime US3701216A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21073071A 1971-12-22 1971-12-22

Publications (1)

Publication Number Publication Date
US3701216A true US3701216A (en) 1972-10-31

Family

ID=22784051

Family Applications (1)

Application Number Title Priority Date Filing Date
US210730A Expired - Lifetime US3701216A (en) 1971-12-22 1971-12-22 Wheel apparatus and rack and pinion launcher enabling repeated strokes and having automatic ejector

Country Status (1)

Country Link
US (1) US3701216A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895458A (en) * 1973-03-07 1975-07-22 Jerome H Lemelson Toy mechanism
US3919804A (en) * 1974-04-22 1975-11-18 Tonka Corp Traveling toy
US3984939A (en) * 1975-09-11 1976-10-12 General Mills Fun Group, Inc. Toy automobile
US4043556A (en) * 1976-03-22 1977-08-23 Lappa Cleto L Wheel rolling game
US4501567A (en) * 1983-05-03 1985-02-26 Cathell Philip W Elongated wand-type wind-up and trigger-released separable actuator for motorized toy
US4659320A (en) * 1985-09-27 1987-04-21 Mattel, Inc. Toy vehicle with disc launching apparatus and disks
US4732569A (en) * 1986-07-07 1988-03-22 Mattel, Inc. Toy vehicle launcher
EP0332407A1 (en) * 1988-03-10 1989-09-13 Sega Enterprises, Ltd. Toy unit
GB2252055A (en) * 1991-01-24 1992-07-29 Kiddicraft Limited A mechanism for winding up a toy
US20050158184A1 (en) * 2004-01-15 2005-07-21 Tah Shan Lin Pressure reservoir structure for use in water
US20060046610A1 (en) * 2004-08-25 2006-03-02 Dominic Laurienzo Toy for rotating and launching an object
US20060046609A1 (en) * 2004-08-25 2006-03-02 Dominio Laurienzo Motorized toy wheel launcher for launching a toy wheel
WO2006049649A1 (en) * 2004-11-01 2006-05-11 Jakks Pacific, Inc. Wheel spinning toy vehicle in blister package with clutch mechanism
US20060099880A1 (en) * 2004-08-25 2006-05-11 Jakks Pacific, Inc. Arm attachable toy for rotating and launching an object
US20060148373A1 (en) * 2004-08-25 2006-07-06 Jakks Pacific, Inc. Integrated carrying case and toy object launcher
US20060211333A1 (en) * 2004-08-25 2006-09-21 Jakks Pacific, Inc. Toy vehicle with a detachably attachable wheel
US20060211331A1 (en) * 2005-03-16 2006-09-21 Mattel, Inc. Toy wheel launcher
US20080176483A1 (en) * 2005-07-14 2008-07-24 Brian Rosenblum Toy for rotating and launching an object
US20090227178A1 (en) * 2005-07-14 2009-09-10 Jakks Pacific, Inc. Toy for rotating and launching an object
US20090253345A1 (en) * 2008-04-04 2009-10-08 Tomy Company, Ltd. Spinner for toy top
US20110104981A1 (en) * 2009-10-30 2011-05-05 Nash Desent Toy launcher and dual powered toy
US20110177750A1 (en) * 2010-01-15 2011-07-21 Tomy Company, Ltd. Spinner for toy top
US8715032B2 (en) 2010-10-06 2014-05-06 Tomy Company, Ltd. Spinner for toy top
US20140239591A1 (en) * 2013-02-25 2014-08-28 Rehco, Llc System to Launch A Toy Entity And Methods of Play
US20140329436A1 (en) * 2013-05-03 2014-11-06 Mattel, Inc. Toy vehicle, launching apparatus therefor and methods of using the same
US20140378024A1 (en) * 2012-05-08 2014-12-25 Shin-Kyu Choi Top
US20150072588A1 (en) * 2012-04-18 2015-03-12 Lego A/S Toy building set
US9427671B2 (en) 2014-05-30 2016-08-30 Mattel, Inc. Toy vehicle launcher and toy track for use therewith
CN107405528A (en) * 2015-01-21 2017-11-28 乐高公司 Include the toy of rotor, actuation mechanism and emitter
US20180008899A1 (en) * 2015-01-21 2018-01-11 Lego A/S A toy comprising a rotor
US9968860B2 (en) * 2015-12-16 2018-05-15 Tomy Company, Ltd. Combined launching device for launching spinning tops
USD825674S1 (en) * 2017-02-07 2018-08-14 Tomy Company, Ltd. Winder for launching apparatus for spinning top toy
USD825675S1 (en) * 2017-02-28 2018-08-14 Tomy Company, Ltd. Winder for launching apparatus for spinning top toy
WO2020034767A1 (en) * 2018-08-17 2020-02-20 广州奥飞文化传播有限公司 Multi-directional launcher
US10758833B2 (en) 2017-08-29 2020-09-01 Hasbro, Inc. Toy car launcher apparatus
CN114832396A (en) * 2022-05-10 2022-08-02 奥飞娱乐股份有限公司 Rotary drive assembly, launcher and launching toy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB165966A (en) * 1920-04-10 1921-07-11 Frank Allen Mitchell Improvements in and relating to driving mechanism for toys
US2937472A (en) * 1958-09-16 1960-05-24 John H Cunningham Spinning top and holder
US3216529A (en) * 1963-09-23 1965-11-09 John H Hartman Jr Spring motor drive
US3621939A (en) * 1970-01-02 1971-11-23 Child Guidance Toys Inc Impulse-actuated spring motor
US3621607A (en) * 1969-12-15 1971-11-23 Marvin Glass & Associates Self-propelled toy vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB165966A (en) * 1920-04-10 1921-07-11 Frank Allen Mitchell Improvements in and relating to driving mechanism for toys
US2937472A (en) * 1958-09-16 1960-05-24 John H Cunningham Spinning top and holder
US3216529A (en) * 1963-09-23 1965-11-09 John H Hartman Jr Spring motor drive
US3621607A (en) * 1969-12-15 1971-11-23 Marvin Glass & Associates Self-propelled toy vehicle
US3621939A (en) * 1970-01-02 1971-11-23 Child Guidance Toys Inc Impulse-actuated spring motor

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895458A (en) * 1973-03-07 1975-07-22 Jerome H Lemelson Toy mechanism
US3919804A (en) * 1974-04-22 1975-11-18 Tonka Corp Traveling toy
US3984939A (en) * 1975-09-11 1976-10-12 General Mills Fun Group, Inc. Toy automobile
US4043556A (en) * 1976-03-22 1977-08-23 Lappa Cleto L Wheel rolling game
US4501567A (en) * 1983-05-03 1985-02-26 Cathell Philip W Elongated wand-type wind-up and trigger-released separable actuator for motorized toy
US4659320A (en) * 1985-09-27 1987-04-21 Mattel, Inc. Toy vehicle with disc launching apparatus and disks
US4732569A (en) * 1986-07-07 1988-03-22 Mattel, Inc. Toy vehicle launcher
EP0332407A1 (en) * 1988-03-10 1989-09-13 Sega Enterprises, Ltd. Toy unit
GB2252055A (en) * 1991-01-24 1992-07-29 Kiddicraft Limited A mechanism for winding up a toy
US20050158184A1 (en) * 2004-01-15 2005-07-21 Tah Shan Lin Pressure reservoir structure for use in water
US20060046610A1 (en) * 2004-08-25 2006-03-02 Dominic Laurienzo Toy for rotating and launching an object
US20060046609A1 (en) * 2004-08-25 2006-03-02 Dominio Laurienzo Motorized toy wheel launcher for launching a toy wheel
WO2006025837A1 (en) * 2004-08-25 2006-03-09 Jakks Pacific, Inc. Wheel spinning launcher and wheel toy
US20060099880A1 (en) * 2004-08-25 2006-05-11 Jakks Pacific, Inc. Arm attachable toy for rotating and launching an object
US20060148373A1 (en) * 2004-08-25 2006-07-06 Jakks Pacific, Inc. Integrated carrying case and toy object launcher
US20060211333A1 (en) * 2004-08-25 2006-09-21 Jakks Pacific, Inc. Toy vehicle with a detachably attachable wheel
US7445539B2 (en) * 2004-08-25 2008-11-04 Jakks Pacific, Incorporated Toy vehicle with a detachably attachable wheel
US7500898B2 (en) 2004-08-25 2009-03-10 Jakks Pacific, Incorporation Toy for rotating and launching an object
WO2006049649A1 (en) * 2004-11-01 2006-05-11 Jakks Pacific, Inc. Wheel spinning toy vehicle in blister package with clutch mechanism
US20060211331A1 (en) * 2005-03-16 2006-09-21 Mattel, Inc. Toy wheel launcher
WO2006101980A2 (en) * 2005-03-16 2006-09-28 Mattel, Inc. Toy wheel launcher
WO2006101980A3 (en) * 2005-03-16 2007-12-13 Mattel Inc Toy wheel launcher
US8128454B2 (en) * 2005-07-14 2012-03-06 Jakks Pacific, Inc. Toy for rotating and launching an object
WO2007011528A1 (en) * 2005-07-14 2007-01-25 Jakks Pacific, Inc. Toy for rotating and launching an object
US20090227178A1 (en) * 2005-07-14 2009-09-10 Jakks Pacific, Inc. Toy for rotating and launching an object
US20080176483A1 (en) * 2005-07-14 2008-07-24 Brian Rosenblum Toy for rotating and launching an object
US7950976B2 (en) 2005-07-14 2011-05-31 Jakks Pacific, Inc. Toy for rotating and launching an object
CN1895714B (en) * 2005-07-14 2012-05-30 Jakks太平洋有限公司 Toy for rotating and transmitting article
US20090253345A1 (en) * 2008-04-04 2009-10-08 Tomy Company, Ltd. Spinner for toy top
US20110104981A1 (en) * 2009-10-30 2011-05-05 Nash Desent Toy launcher and dual powered toy
US8388405B2 (en) 2009-10-30 2013-03-05 Hasbro, Inc. Toy launcher and dual powered toy
US20110177750A1 (en) * 2010-01-15 2011-07-21 Tomy Company, Ltd. Spinner for toy top
US8715032B2 (en) 2010-10-06 2014-05-06 Tomy Company, Ltd. Spinner for toy top
US9821245B2 (en) * 2012-04-18 2017-11-21 Lego A/S Toy building set
US20150072588A1 (en) * 2012-04-18 2015-03-12 Lego A/S Toy building set
US10137380B2 (en) 2012-05-08 2018-11-27 Shin-Kyu Choi Top
US9616351B2 (en) * 2012-05-08 2017-04-11 Shin-Kyu Choi Top
US20140378024A1 (en) * 2012-05-08 2014-12-25 Shin-Kyu Choi Top
US9610515B2 (en) * 2013-02-25 2017-04-04 Rehco, Llc System to launch a toy entity and methods of play
US20140239591A1 (en) * 2013-02-25 2014-08-28 Rehco, Llc System to Launch A Toy Entity And Methods of Play
DE102014106160A1 (en) 2013-05-03 2014-11-06 Mattel, Inc. Toy vehicle, launching device and method of using the same
US9707488B2 (en) * 2013-05-03 2017-07-18 Mattel, Inc. Toy vehicle, launching apparatus therefor and methods of using the same
US20140329436A1 (en) * 2013-05-03 2014-11-06 Mattel, Inc. Toy vehicle, launching apparatus therefor and methods of using the same
US9427671B2 (en) 2014-05-30 2016-08-30 Mattel, Inc. Toy vehicle launcher and toy track for use therewith
US10137381B2 (en) * 2015-01-21 2018-11-27 Lego A/S Toy comprising a rotor
CN107405528B (en) * 2015-01-21 2020-05-19 乐高公司 Toy comprising a rotor, an actuator mechanism and a launching device
US20180008899A1 (en) * 2015-01-21 2018-01-11 Lego A/S A toy comprising a rotor
US10080976B2 (en) * 2015-01-21 2018-09-25 Lego A/S Toy comprising a rotor, an activation mechanism and a launching device
US20170361238A1 (en) * 2015-01-21 2017-12-21 Lego A/S A toy comprising a rotor, an activation mechanism and a launching device
CN107405528A (en) * 2015-01-21 2017-11-28 乐高公司 Include the toy of rotor, actuation mechanism and emitter
US9968860B2 (en) * 2015-12-16 2018-05-15 Tomy Company, Ltd. Combined launching device for launching spinning tops
USD825674S1 (en) * 2017-02-07 2018-08-14 Tomy Company, Ltd. Winder for launching apparatus for spinning top toy
USD825675S1 (en) * 2017-02-28 2018-08-14 Tomy Company, Ltd. Winder for launching apparatus for spinning top toy
US10758833B2 (en) 2017-08-29 2020-09-01 Hasbro, Inc. Toy car launcher apparatus
WO2020034767A1 (en) * 2018-08-17 2020-02-20 广州奥飞文化传播有限公司 Multi-directional launcher
RU2757700C1 (en) * 2018-08-17 2021-10-20 Гуанджоу Альфа Калчер Коммьюникейшнз Ко., Лтд. Multidirectional launcher
CN114832396A (en) * 2022-05-10 2022-08-02 奥飞娱乐股份有限公司 Rotary drive assembly, launcher and launching toy
CN114832396B (en) * 2022-05-10 2023-08-25 奥飞娱乐股份有限公司 Rotary driving assembly, launcher and launching toy

Similar Documents

Publication Publication Date Title
US3701216A (en) Wheel apparatus and rack and pinion launcher enabling repeated strokes and having automatic ejector
US3886682A (en) Toy vehicle and launcher
US3789540A (en) Compressed air propelled toy vehicle and launching system
US5460560A (en) Sparking toy vehicle and launcher therefor
US20060099880A1 (en) Arm attachable toy for rotating and launching an object
US8696401B2 (en) Backspin toy
US5611321A (en) Ball launching device
CN215505465U (en) Gyro emitter with simple structure
US20060099879A1 (en) Toy for rotating and launching an object and spraying water proximate the object
WO2021073014A1 (en) Ejection toy
US4556396A (en) Stunt-performing toy vehicle
US3229413A (en) Toys and rack actuating means therefor
CN101837196B (en) Inertia walking toy car and emitter for transmitting same
US3392484A (en) Toy rocket launching vehicle
CN110230947A (en) A kind of projectile toy
WO2021073012A1 (en) Whirling-back toy
US3769746A (en) Rubber band drive for toy vehicle
WO2023216924A1 (en) Rotary drive assembly, launcher and launch toy
CN109364497B (en) Gyro toy car
CN212369565U (en) Toy device capable of launching missile and toy vehicle
CN208059683U (en) A kind of projectile toy
CN215310191U (en) Toy gyroscope
US3229415A (en) Rack actuated toy having rack return means
CN210145481U (en) Emitter and toy
US3733742A (en) Inertia toy