US3706173A - Flexible molding strip and method of making same - Google Patents

Flexible molding strip and method of making same Download PDF

Info

Publication number
US3706173A
US3706173A US216409A US3706173DA US3706173A US 3706173 A US3706173 A US 3706173A US 216409 A US216409 A US 216409A US 3706173D A US3706173D A US 3706173DA US 3706173 A US3706173 A US 3706173A
Authority
US
United States
Prior art keywords
core
cover
slots
molding
molding strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US216409A
Inventor
Alfred E Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3706173A publication Critical patent/US3706173A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J10/00Sealing arrangements
    • B60J10/20Sealing arrangements characterised by the shape
    • B60J10/26Sealing arrangements characterised by the shape characterised by the surface shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J10/00Sealing arrangements
    • B60J10/15Sealing arrangements characterised by the material
    • B60J10/18Sealing arrangements characterised by the material provided with reinforcements or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J10/00Sealing arrangements
    • B60J10/20Sealing arrangements characterised by the shape
    • B60J10/21Sealing arrangements characterised by the shape having corner parts or bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J10/00Sealing arrangements
    • B60J10/30Sealing arrangements characterised by the fastening means
    • B60J10/32Sealing arrangements characterised by the fastening means using integral U-shaped retainers
    • B60J10/33Sealing arrangements characterised by the fastening means using integral U-shaped retainers characterised by the configuration of the retaining lips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1064Partial cutting [e.g., grooving or incising]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/2419Fold at edge
    • Y10T428/24198Channel-shaped edge component [e.g., binding, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/2419Fold at edge
    • Y10T428/24215Acute or reverse fold of exterior component
    • Y10T428/24231At opposed marginal edges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface

Definitions

  • ABSTRACT A flexible molding strip including a non-metal channel-shaped core member having a plurality of transverse slots providing the requisitemolding flexibility, and a stretchablecover enclosing the core member and concealing the slots.
  • the core member includes opposed gripping flanges within the channel adapted to secure' the molding, and the cover may be stretched over the core to prevent buckling when the molding is secured over a relatively sharp radius.
  • the cover may also include a laterally extending flange or wing to conceal a joint or the like.
  • FIGJE is a diagrammatic representation of FIG. 1
  • This invention relates to flexible molding strips, such as utilized to conceal exposed edges, joints, cracks, etc. in automotive applications, appliances, furniture, construction or the like.
  • the molding strip of this invention may be utilized as a wind seal around the door panel, trim around the interior windows and other exposed metal edges for appearance and safety.
  • the automotive applications are considered typical of the field or use in other areas, and therefore the invention will primarily be described in regard to automotive applications.
  • the conventional interior molding presently utilized in the automotive industry is generally one of two types: The first type is merely a rigid channel-shaped plastic extrusion which is preformed to the desired shape; the second type is also channel-shaped, but includes a wire mesh backbone and a vinyl cover, making the molding flexible.
  • the first described molding is extruded in the straight form, but is reheated and shaped to fit the intended curvature, because of the rigidity of the molding.
  • An automotive window application for example, generally includes two L-shaped parts which extend from the upper center of the window, sideways and down. A third part is provided across the bottom of the window. Because of the rigidity of the parts, however, each automotive model may require different molding configurations, and as many as twenty different color combinations.
  • the relative flexibility of the wire reinforced molding permits forming or bending of the molding around the window opening, and generally only requires one joint.
  • the extruded plastic molding is, however, considerably less expensive to manufacture than the wire reinforced molding, but the cost of stocking the large number of parts necessary for production and the greater installation cost nearly compensates for the greater initial cost of the wire reinforced molding. A need therefore remains for a relatively inexpensive flexible molding such as described in the instant application.
  • the prior art discloses a number of reinforced molding strips, some of which are flexible, however the majority of the devices are either as expensive as the wire reinforced molding described hereinabove, or are not suitable for the application intended for the flexible molding strip of this invention. Further, the applicant has found that a molding utilizing encapsulated metal segments, or a slitted metal strip is not as flexible as the molding of this invention, and is considerably more expensive to manufacture.
  • the following United States Patents are cited as examples of moldings shown by the prior art U .8. Pat. Nos.
  • the flexible molding strip of this invention includes a non-metal channel-shaped core member and a stretchable cover.
  • the core member is formed of a relatively rigid material, and includes a plurality of transverse slots extending through one or both edges generally-perpendicular to the axis of the molding to provide the requisite flexibility to receive the molding on a curved surface, such as the interior window opening of an automobile.
  • Internal gripping flanges are provided within the channel of the core member to secure the molding on a member received therein.
  • the channel is provided with a pair of opposed gripping flanges which extend from adjacent the open side of thechannel inwardly, at an acute angle, to grip dimples or the like provided on the exposed projecting metal edge of the window opening.
  • the location of the. transverse slots will depend upon the particular application of the molding strip of this invention. In one of the preferred embodiments of the invention, the slots are provided through the bight portion of the channel-shaped core member when the molding is to be received over a convex curvature.
  • the slots may be provided through the open side of the channel-shaped core, when the molding is to be received on a concave curvature.
  • a universally flexible core member and molding strip is also disclosed, wherein the slots extend through both the bight portion and the open side of the core member.
  • the slots may extend alternatively through the bight portion and the open side of the channel to provide universal flexibility throughout, however the slots may also be positioned to accommodate a specific curvature.
  • the transverse slots are substantially evenly spaced, dividing the core member into segments having a length equal to less than the width of the core member, and the depth of the slots is preferably greater than the width of the core member to provide sufficient resiliency or flexibility for relatively sharp radii.
  • the cover member is received over and encloses the bight portion of the core member and extends to adjacent the open side.
  • the cover member may be secured to the core by any suitable means, and serves to conceal the slots and permit the molding to be used as a seal or the like around the automotive door panel, for example.
  • the cover member may be stretched over the core member, prior to its securement to the core member, to prevent buckling when the molding is received over a sharp bend.
  • the cover is a thin sheet of resilient plastic, which is preferably opaque to conceal the slots.
  • the cover member includes a laterally extending flange or wing which may be utilized to conceal or seal a joint, such as the adhesive utilized around an automotive window.
  • the core member may be identical to the core member in the other embodiments disclosed, or the core member may also include a flange reinforcing the cover member. It will be understood that in automotive applications, for example, the core member may therefore be formed from a neutral color, such as white or gray, and the cover member may be formed from the distinctive color of the automotive interior or trim.
  • the molding strip of this invention is sufficiently flexible to utilize a single strip around the automotive window openings, for example, and is considerably less expensive than the wire reinforced moldings presently utilized. Further, the molding of this invention is sufficiently flexible to compensate for irregularities in the member receiving the molding, and is suitable for compound curvatures.
  • the flexible molding of this invention therefore combines the advantages of the molding strips presently utilized in automotive applications, without their disadvantages.
  • FIG. 1 is a top elevation of an L-shaped panel utilizing the flexible molding strip of this invention
  • FIG. 2 is a side elevation of one embodiment os the core extrusion utilized in the molding strip of this invention. 1
  • FIG. 3 is a side elevation of one embodiment of the core member utilized in the molding strip of this invention.
  • FIG. 4 is another embodiment of the core member utilized in the molding strip of this invention.
  • FIG. 5 is a side elevation of one embodiment of the molding strip of this invention.
  • FIG. 6 is a cross-sectional end view of the molding strip shown in FIG. 5, in the direction of view arrows 66;
  • FIG. 7 is an end cross-sectional view of the molding strip shown in FIG. 1, in the direction of view arrows 77;
  • FIG. 8 is a side elevation of another embodiment of the molding strip of this invention.
  • FIG. 9 is an enlarged view of the embodiment of the molding strip in FIG. 8, partially cut away to show the core member
  • FIG. 10 is a cross-sectional view of the molding strip shown in FlG. 9, in the direction of view arrows l0-
  • FIG. 11 is a perspective view of another embodiment of the molding strip of this invention.
  • FIG. 12 illustrates bending of the core to close the slots during adhering of the cover
  • FIG. 13 illustrates a flexible molding strip having fissures rather than the wider slots shown in FIGS. 3-5;
  • FIG. 14 schematically illustrates the method of making the trim strip of FIG. 13.
  • FIG. 15 is a cross-sectional view taken along the line 15-15 of FIG. 14.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS eludes a flexible non-metal core member, which may be formed from the extrusion 24 shown in FIG. 2.
  • the extrusion is preferably formed from a relatively rigid non-metal to provide the requisite rigidity for securement and avoid the metal-to-metal contact provided by many of the metal reinforced molding strips disclosed in the prior art.
  • the core extrusion is preferably formed from an extrudable plastic, such as polypropylene, ABS or acrylonitrile-butadiene-styrene, Tenite' polyallomer available from Eastman Chemical Products, Inc., linear polyethylene, nylon, Delrin etcetera, or the core member may be molded or otherwise formed from other materials including hard rubber, all of which materials are herein generically referred to as plastic.
  • an extrudable plastic such as polypropylene, ABS or acrylonitrile-butadiene-styrene, Tenite' polyallomer available from Eastman Chemical Products, Inc., linear polyethylene, nylon, Delrin etcetera, or the core member may be molded or otherwise formed from other materials including hard rubber, all of which materials are herein generically referred to as plastic.
  • the core member 24 is preferably channel-shaped, as shown in FIGS. 6 and 7, to receive the panel or the like 28 in the channel 26, as shown in FIGS. 1 and 7.
  • the core member includes a pair of opposed integral gripping flanges 30 which extend from adjacent the open end 32 of the channel-shaped extrusion, inwardly at an acute angle to the axis, and abut or nearly abut as shown in FIGS. 6 and 7.
  • the flanges 30 are also relatively rigid as they are integral with the channel portion, and extend at an acute angle to provide a secure lock with the dimples 34 provided on the panel 28.
  • the core member is then provided with a plurality of transverse slots generally perpendicular to the axis of the linear extrusion, as shown in FIGS. 3 and 4.
  • the slots 36 in FIG. 3 extend through the bight portion 38 of the channel-shaped core member and the slots 40 extend through the open edge 32 of the channel, as shown in FIG. 4.
  • the slots provide the flexibility in the core member required to secure the molding on a curved edge, such as. the concave edge 44 and the convex edge 46 in FIG. 1.
  • the panel 28 shown in FIG. 1 represents a typical application of the flexible molding or trim strip of this invention.
  • the concave edge 44 is similar to the interior edge around an automotive window, and the convex edge 46 would be similar to the interior molding application or wind seal around an automotive door panel.
  • the flexible molding of this invention can be applied in a single strip, without preforming or metal securement means.
  • the panel which is normally sheet metal, may be provided with a plurality of substantially evenly spaced dimples 34 adjacent the edge receiving the molding. Alternate dimples normally project in opposite directions from the opposed faces of the panel, as shown in FIG. 7, to provide opposed gripping surfacesConventional tools are available for this purpose.
  • the slots 36 extend through the bight portion 38 of the channel, as shown in FIG. 3, such that the linear segments 42 are spread at the areas of curvature.
  • Con- The molding assembly shown in FIG. 1 includes two embodiments of the flexible molding strip of this invention.
  • the convex molding strip embodiment 20 is also shown in FIGS. 5 and 6, and the concave molding strip embodiment 22 is shown in FIG. 7.
  • Each of these embodimen'ts of the molding strip of this invention inversely, the slots 40 in the concave molding strip 22 extend through the open edge 32 of the channel, as shown in FIG. 4, such that the segments also spread in the con cave curve.
  • the slots open to accommodate the curvature of the panel, and provide the flexibility required to secure the molding over a curved edge. It'will be understood, however, that either embodiment may be utilized over a relatively straight edge, or an edge having a relatively large radius.
  • the slots may also be widened or V-shaped to accommodate various curvatures.
  • the width and depth of the slots will normally depend upon the width and rigidity of the core extrusion 24.
  • a slot 0.060 to 0.080 inches wide and approximately 0.375 inches deep has been found suitable for an extrusion approximately 0.50 inches wide, which is the size molding presently utilized in interior automotive applications.
  • the slots preferably have a depth greater than one-half the width of the core.
  • the spacing of the slots will also depend upon the particular application.
  • the slots are required at the area of curvature, but may be spaced further apart or omitted at the straight portions of the panel.
  • the linear length of the segments 42 is preferably less than the width of the core member, at least at the areas of curvature.
  • the slots may be formed by a number of conventional methods, or a special tool may be utilized.
  • the slots may be formed by a series of parallel saw blades mounted for rotation on a common axis.
  • the saw blade unit could be mounted on any axis, and would be in the nature of a flying cut-of travelling at the same rate as the extrusion.
  • the saw blade unit could also be fixed in position, and simply moved fast enough through the extrusion such that the slots are not cut to an excessive width.
  • a hot wire system consisting of a series of parallel hot wires could also perform the cutting operation, however, this would be a slower operation.
  • a stretchable cover 50 is received over and secured to the core member, as shown in FIGS. 5 to 7.
  • the cover member is preferably formed of a relatively elastic material, which is stretchable over the core member to conform to the shape thereof before and after securement of the molding to the panel.
  • the cover in the flexible molding strip'of this invention performs a number of functions.
  • the cover is preferably opaque to cover and conceal the slots, as shown in FIGS. 1 and 5, and may be colored to compliment the interior of an automobile, chair upholstery or the like. It is important to note that the core member may then be formed of a neutral color, reducing the cost of the molding assembly as described hereinabove.
  • the cover may also be embossed to better conceal the slots.
  • the cover also functions as a seal, where the molding is to be utilized as a seal, such as the wind seal secured around an automotive door panel. Further, the material of the cover may be chosen to cause the molding to retain the shape of the panel edge receiving the molding, inhibiting return of the molding to its original straight configuration. This aids the retention of the molding on the panel.
  • the cover may be formed from a variety of materials, including a relatively thin sheet of plastic, such as soft vinyl, natural or synthetic rubber, a woven elastic material, or a variety of foam materials.
  • the cover 50 is folded over the bight portion 38 of the core member and extends to the open edge 32 of the channel;
  • the cover may also be folded over the open end of the channel, but is spaced from the abutting edges of the flanges 30 to provide direct locking contact between the relatively rigid flanges and the dimples 34 in the panel.
  • the cover thereby covers and conceals the slots in the core member, but does not interfere'withthe locking action of the flanges.
  • the cover is preferably secured to each of the linear segments 42 of the core member, such that the cover will conceal the slots, without buckling when the molding is bent over the curved panel edge.
  • the cover may be secured to the core member by any method adapted to provide fullsecurement and prevent buckling. Heat may be applied to the surface of the core member, after slotting, and the cover may be fed directly over the core from the extruder. Conversely, the cover member may be stored on a roll, and heated prior to receipt on the core member, or the members may be extruded and jointed simultaneously from a cross head extr'uder. A sonic welding system may also be utilized to secure the cover, or the .cover may be adhesive or solvent bonded to the core.
  • the cover may be caused to fill the slots or the slots may be fllledwith adhesive or solvent.
  • the core may be fed over a fixed mandril having a cross section similar to the inside of the core, which would support the core against the pressure of the rolls.
  • the mandril may have an external cross section similar to the inside of the core, in cluding external ribs which fit into the slots. Such a mandril would move with the extrusion as it is processed and prevent filling of the slots.
  • Another method which would at least partially prevent slot filling, includes a wheel which receives the core prior to securement of the cover. The wheel would tend to close the slots during securement of the cover and the cover would be stretched in tension when returned to the normal straight configuration. This would provide a considerable advantage in certain applications as described hereinbelow.
  • FIG. 12 l have depicted a length of thecore 24 bent into a curved configuration with the open edge 32 of the U-shaped channel lying on the. inside of the curve.
  • the slots 40 are essentially closed, except for a small portion at the inner end 41 of each slot.
  • Such bending of the core before applying the adhesive and holding it in such position during application of the cover 50 substantially prevents the adhesive or cover from entering the slots, and upon releasing the strip the cover is tensioned. Bending the strip along the same radius as that shown or a greater radius, or along reverse bendwill fully conceal the slots as the cover is in a stretched condition covering and concealing them. While the core 24 is shown bent in FIG. 12 it is to be understood that the core shown in FIG. 13 may be similarly bent to close its slots during application of the core.
  • portion of the cover is placed in compression and a porrelatively straight.
  • the portion of the cover closest the center of curvature is placed in compression, and the portion farthest from the center is in tension.
  • the concave moldingstrip 22 for example, the outer edge away from the panel is in compression, and the inner edge overlying the panel is in tension.
  • the problem of buckling has been solved in the flexible molding strip of this invention by stretching the cover over the core member prior to securement of the cover. The requisite degree of stretching will depend upon the radius of curvature of the panel, but should be sufficient to compensate for the compression of the cover described hereinabove.
  • the cover may be stretched by conventional methods, including the method described above.
  • the embodiment of the molding strip 120 shown in FIGS. 8 to 10 may be characterized as universally flexible, and is specifically adapted for molding applications having a multiple curvature, such as the S-shaped panel edge 146 shown in FIG. 8.
  • An S-shaped curvature is presently utilized'on the lower-rear edge of the rear door panel of several automobile models, such as the rear door panel 128 shown in phantom in FIG. 8. It will be understood, however, that almost any curvature may be accommodated by this embodiment of the molding strip.
  • the core member 124 in this embodiment, is slotted.
  • the core extrusion and the cover 150 may be otherwise identical to the molding strip embodiments described hereinabove, and have been numbered in sequence accordingly.
  • the embodiment of the molding strip 220 shown in FIG. 11 may also be identical to any of the embodiments disclosed hereinabove, except that the cover portion 250 includes a laterally extending flange or wing" 260 which may be utilized to conceal or seal a joint or the like.
  • the wing may be utilized to conceal the adhesive used around the windows.
  • the core member 224 may also be provided with a lateral flange, preferably concealed within the cover member flange 260.
  • the slots, not shown, are preferably provided through the open side of the channel-shaped core member, such that the flange does not interfere with the flexibility of the molding, as shown in FIG, 4.
  • the slots in the core member may, however, be provided through either edge, as shown above.
  • FIG. 11 is otherwise numberedsimilar to the embodiments described hereinabove.
  • the flexible'molding strip of this invention is sufficiently flexible to be secured over a wide variety of panel curvatures, perpendicular to the axis of the core member, and can also flex to compensate for irregularities in the panel edge, including a compound curvature.
  • the molding or trim strip of this invention is considerably less expensive than the commercially available wire reinforced trim strips or the metal clip reinforced strips shown by the prior art.
  • the trim generally may be attached in a single strip, reducing the labor cost, and may be made available in a wide variety of colors, although a common color is'utilized for the core member which represents the bulk of material.
  • FIG. 13 A further modification of the flexible molding strip is shown in FIG. 13 wherein the cover 250 is shown removed, for purposes of illustration only, at the lefthand end of the strip to expose the core 224.
  • This embodiment is similar to that shown in FIG. 1 at 22 and in FIG. 7 except that the slots 240 are very narrow and may be more properly termed fissures or slits which should be as narrow as possible. They may be formed by a slittingapparatus which rather than removing any substantial, if any, portion of the core, in contradistinction to the slots 40, slices-or cleaves through the core to form the fissures or slits 240.
  • Such slits are held closed during adhering of the cover 250 to the core preventing any appreciable, if any at all,penetration by the cover or by adhesive (by which the cover may be secured to the core) into the slits.
  • Such slits simplify adhering the cover to the core as the slits are essentially closed when the core is in a rectilinear posture and consequently the cover and/or adhesive can be applied to the core without either bending the core to close theslots or resorting to other expedients heretofore suggested.
  • handling of the trim strips thereafter may be simplified because they will be essentially straight rather than bowed as would result from the FIG. 12 method of applying the cover.
  • FIG. 14 schematically illustrates apparatus for producing the flexible trim strip of FIG. 13.
  • An extruder 260 produces the U-shaped core224.
  • the strip moves away from the extruder and cools to below its fusion temperature it is slit as by suitable slitting apparatus 241 which may include one or more thin slitting blades243.
  • the slitter may comprise a laser beam cutting apparatus, or any other apparatus suitable for producing successive thin slits, fissures or clefts in the core as the core passes in front of the apparatus, and a succession of such slits are shown at 240 in FIG. 13 to the right-hand side of the slitter.
  • the cover 250 is supported in such fashion as to insure that the slits 240 are held closed.
  • the core is maintained in an essentially rectilinear posture by passing it between vertically spaced apart parallel core holders 262 and 264.
  • the cover is secured to the exterior of the core by any of the fastening techniques heretofore mentioned including specifically heat bonding, adhesive bonding and sonic welding.
  • Adhesive bonding is illustrated in FIG. 14 wherein an adhesive may be applied to the exterior of the core by any suitable applicator means 266 such as a spray system or brush or roller applicator.
  • cover is led to the core and folded about its bight portion 238 and up along its sides as by pressure rollers arranged around the core as at 268 and 270, or by any other suitable apparatus.
  • a mandril 272 may be placed within the U-section of the core to provide support against the pressure rollers 270 as shown in FIG. 15.
  • the slitting neednot immediately precede application of the cover but may be carried out at some time prior thereto.
  • the essential requirements of the method of making the trim strip of FIG. 13 include slitting the core to provide the very thin slits or fissures and then maintaining such slits closed during application of the cover to prevent the adhesive and/or cover from entering the slits, and holding the slits closed until the adhesive sets sufficiently so that neither it nor the cover penetrates the slits, and so that the finished trim strip is rectilinear and the slits are not visible.
  • slots is used in a generic sense to include both the construction shown in FIGS. 3-5 as well as that of FIG; 13, though when the structure of FIG. 13 is specifically intended the term fissure or slit is used.
  • a flexible molding strip for the edge of a structural member consisting of a continuous extruded stiffly resilient U-shaped non-metallic plastic core and an opaque elastic cover overlying and adhered only to the exterior of the core for concealing the same, said core having a plurality of transverse slots opening through at least one edge thereof for enabling bending of the core to conform to a curved edge of the structural member over which its U-shape may be received,
  • said opaque elastic cover bridging said slots and elastically stretching upon opening of the slots for concealing the same, and said core shaped to include integral internal non-metal plastic gripping means for directly grippingly engaging and retaining the core on the edge of the structural member over which the molding strip may be received.
  • said gripping means comprises a flange projecting transversely of the interior of the U-shaped core adjacent the open edge of the U-shape.

Abstract

A flexible molding strip including a non-metal channel-shaped core member having a plurality of transverse slots providing the requisite molding flexibility, and a stretchable cover enclosing the core member and concealing the slots. The core member includes opposed gripping flanges within the channel adapted to secure the molding, and the cover may be stretched over the core to prevent buckling when the molding is secured over a relatively sharp radius. The cover may also include a laterally extending flange or wing to conceal a joint or the like.

Description

United States Patent Taylor [451 Dec. 197 2 154] FLEXIBLE MOLDING STRIP AND METHOD OF MAKING SAME [72] Inventor: Alfred E. Taylor, 686 Rivard Bou levard, Grosse Pointe, Mich. 48230 [22] Filed: Jan. 10, 1972 [21] Appl. No.: 216,409
Related US. Application Data [63] Continuation-impart of Ser. No. 850,434, Aug. 15,
1969, abandoned.
[52] US. Cl. ..52/716, 49/462, 49/490, 52/627, 52/631, 156/244, 156/257, l6l/l00, 161/104, 161/119 [51] Int. Cl. ..E06b 7/16 [58] Field of Search ..161/104, 108, 100, 117, 118, 161/149, 119, 120; 52/85, 631, 716, 627,
717, 718; 49/462, 490; 24/81 R, 259 FS, 259
PW, 259 TF; 156/244, 257
[56] g References Cited UNITED STATES PATENTS 3,527,013 9/1970 Kruschwitz ..52/716 3,310,928 3/1967 Weimar ..52/716 3,392,498 7/1968 Rogers ..52/395 3,197,821 8/1965 Bright ..20/69 2,954,310 9/1960 Truesdell et al... .....l6l/l00 3,451,169 6/1969 Arnold et al. ..49/462 3,545,157 Cziptschirsch et al. ..52/717 2,292,777 8/1942 Smith ..156/257 3,436,297 4/1969 Brooks et al. ..156/244 1,903,541 4/1933 Bailey ..161/108 FOREIGN PATENTS OR APPLICATIONS 1,457,531 9/1966 France 524,171 ll/1953 Belgium 622,586 6/1961 Canada 1,044,475 9/1966 Great Britain 779,868 7/1957 Great Britain Primary ExaminerRobert F. Burnett Assistant Examiner-George W. Moxon, ll Attorney-Burton and Parker 5 7] ABSTRACT A flexible molding strip including a non-metal channel-shaped core member having a plurality of transverse slots providing the requisitemolding flexibility, and a stretchablecover enclosing the core member and concealing the slots. The core member includes opposed gripping flanges within the channel adapted to secure' the molding, and the cover may be stretched over the core to prevent buckling when the molding is secured over a relatively sharp radius. The cover may also include a laterally extending flange or wing to conceal a joint or the like.
9 Claims, 15 Drawing Figures PATENTED DEC 19 I972 SHEET 1 OF 3 F'lC5.5
INVENTOR AZ/Xffl 1.. 74m 0,
amznw ATTORNEYS PATENTEIJ EB 3.706.173
sum a nr 3 INVENTOR AZ/fiffi 15 747104 ATTORNEYS PATENTED nu: 19 1912 sum 3 or 3 F'IG.I4
co VIA APPZ/CA 70c 4 em M a m W H z a w FIC5.I3
FIGJE:
FLEXIBLE MOLDING STRIP AND METHOD OF MAKING SAME CROSS-REFERENCE TO RELATED APPLICATIONS I This application is a Continuation-in-Part of applica tion Ser. No. 850,434, filed Aug. 15, 1969 and now abandoned.
FIELD OF THE INVENTION This invention relates to flexible molding strips, such as utilized to conceal exposed edges, joints, cracks, etc. in automotive applications, appliances, furniture, construction or the like. In the automotive field, for example, the molding strip of this invention may be utilized as a wind seal around the door panel, trim around the interior windows and other exposed metal edges for appearance and safety. The automotive applications are considered typical of the field or use in other areas, and therefore the invention will primarily be described in regard to automotive applications.
DESCRIPTION OF THE PRIOR ART The conventional interior molding presently utilized in the automotive industry is generally one of two types: The first type is merely a rigid channel-shaped plastic extrusion which is preformed to the desired shape; the second type is also channel-shaped, but includes a wire mesh backbone and a vinyl cover, making the molding flexible. The first described molding is extruded in the straight form, but is reheated and shaped to fit the intended curvature, because of the rigidity of the molding. An automotive window application, for example, generally includes two L-shaped parts which extend from the upper center of the window, sideways and down. A third part is provided across the bottom of the window. Because of the rigidity of the parts, however, each automotive model may require different molding configurations, and as many as twenty different color combinations.
The relative flexibility of the wire reinforced molding permits forming or bending of the molding around the window opening, and generally only requires one joint. The extruded plastic molding is, however, considerably less expensive to manufacture than the wire reinforced molding, but the cost of stocking the large number of parts necessary for production and the greater installation cost nearly compensates for the greater initial cost of the wire reinforced molding. A need therefore remains for a relatively inexpensive flexible molding such as described in the instant application.
The prior art discloses a number of reinforced molding strips, some of which are flexible, however the majority of the devices are either as expensive as the wire reinforced molding described hereinabove, or are not suitable for the application intended for the flexible molding strip of this invention. Further, the applicant has found that a molding utilizing encapsulated metal segments, or a slitted metal strip is not as flexible as the molding of this invention, and is considerably more expensive to manufacture. The following United States Patents are cited as examples of moldings shown by the prior art U .8. Pat. Nos.
SUMMARY OF THE INVENTION The flexible molding strip of this invention includes a non-metal channel-shaped core member and a stretchable cover. The core member is formed of a relatively rigid material, and includes a plurality of transverse slots extending through one or both edges generally-perpendicular to the axis of the molding to provide the requisite flexibility to receive the molding on a curved surface, such as the interior window opening of an automobile. Internal gripping flanges are provided within the channel of the core member to secure the molding on a member received therein. In the disclosed embodiment, the channel is provided with a pair of opposed gripping flanges which extend from adjacent the open side of thechannel inwardly, at an acute angle, to grip dimples or the like provided on the exposed projecting metal edge of the window opening. The location of the. transverse slots will depend upon the particular application of the molding strip of this invention. In one of the preferred embodiments of the invention, the slots are provided through the bight portion of the channel-shaped core member when the molding is to be received over a convex curvature.
Conversely, the slots may be provided through the open side of the channel-shaped core, when the molding is to be received on a concave curvature. A universally flexible core member and molding strip is also disclosed, wherein the slots extend through both the bight portion and the open side of the core member. In this embodiment, the slots may extend alternatively through the bight portion and the open side of the channel to provide universal flexibility throughout, however the slots may also be positioned to accommodate a specific curvature. In the disclosed embodiments, the transverse slots are substantially evenly spaced, dividing the core member into segments having a length equal to less than the width of the core member, and the depth of the slots is preferably greater than the width of the core member to provide sufficient resiliency or flexibility for relatively sharp radii.
In the preferred embodiment of the flexible molding strip of this invention, the cover member is received over and encloses the bight portion of the core member and extends to adjacent the open side. The cover member may be secured to the core by any suitable means, and serves to conceal the slots and permit the molding to be used as a seal or the like around the automotive door panel, for example. The cover member may be stretched over the core member, prior to its securement to the core member, to prevent buckling when the molding is received over a sharp bend. in the disclosed embodiments, the cover is a thin sheet of resilient plastic, which is preferably opaque to conceal the slots.
In one of the disclosed embodiments of the invention, the cover member includes a laterally extending flange or wing which may be utilized to conceal or seal a joint, such as the adhesive utilized around an automotive window. The core member may be identical to the core member in the other embodiments disclosed, or the core member may also include a flange reinforcing the cover member. It will be understood that in automotive applications, for example, the core member may therefore be formed from a neutral color, such as white or gray, and the cover member may be formed from the distinctive color of the automotive interior or trim.
The molding strip of this invention is sufficiently flexible to utilize a single strip around the automotive window openings, for example, and is considerably less expensive than the wire reinforced moldings presently utilized. Further, the molding of this invention is sufficiently flexible to compensate for irregularities in the member receiving the molding, and is suitable for compound curvatures. The flexible molding of this invention therefore combines the advantages of the molding strips presently utilized in automotive applications, without their disadvantages.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top elevation of an L-shaped panel utilizing the flexible molding strip of this invention;
FIG. 2 is a side elevation of one embodiment os the core extrusion utilized in the molding strip of this invention; 1
' FIG. 3 is a side elevation of one embodiment of the core member utilized in the molding strip of this invention;
FIG. 4 is another embodiment of the core member utilized in the molding strip of this invention;
FIG. 5 is a side elevation of one embodiment of the molding strip of this invention;
FIG. 6 is a cross-sectional end view of the molding strip shown in FIG. 5, in the direction of view arrows 66;
FIG. 7 is an end cross-sectional view of the molding strip shown in FIG. 1, in the direction of view arrows 77;
FIG. 8 is a side elevation of another embodiment of the molding strip of this invention;
FIG. 9 is an enlarged view of the embodiment of the molding strip in FIG. 8, partially cut away to show the core member;
FIG. 10 is a cross-sectional view of the molding strip shown in FlG. 9, in the direction of view arrows l0- FIG. 11 is a perspective view of another embodiment of the molding strip of this invention;
FIG. 12 illustrates bending of the core to close the slots during adhering of the cover;
FIG. 13 illustrates a flexible molding strip having fissures rather than the wider slots shown in FIGS. 3-5;
FIG. 14 schematically illustrates the method of making the trim strip of FIG. 13; and
FIG. 15 is a cross-sectional view taken along the line 15-15 of FIG. 14.
DESCRIPTION OF THE PREFERRED EMBODIMENTS eludes a flexible non-metal core member, which may be formed from the extrusion 24 shown in FIG. 2. The extrusion is preferably formed from a relatively rigid non-metal to provide the requisite rigidity for securement and avoid the metal-to-metal contact provided by many of the metal reinforced molding strips disclosed in the prior art. The core extrusion is preferably formed from an extrudable plastic, such as polypropylene, ABS or acrylonitrile-butadiene-styrene, Tenite' polyallomer available from Eastman Chemical Products, Inc., linear polyethylene, nylon, Delrin etcetera, or the core member may be molded or otherwise formed from other materials including hard rubber, all of which materials are herein generically referred to as plastic.
The core member 24 is preferably channel-shaped, as shown in FIGS. 6 and 7, to receive the panel or the like 28 in the channel 26, as shown in FIGS. 1 and 7. In this embodiment, the core member includes a pair of opposed integral gripping flanges 30 which extend from adjacent the open end 32 of the channel-shaped extrusion, inwardly at an acute angle to the axis, and abut or nearly abut as shown in FIGS. 6 and 7. The flanges 30 are also relatively rigid as they are integral with the channel portion, and extend at an acute angle to provide a secure lock with the dimples 34 provided on the panel 28.
The core member is then provided with a plurality of transverse slots generally perpendicular to the axis of the linear extrusion, as shown in FIGS. 3 and 4. The slots 36 in FIG. 3 extend through the bight portion 38 of the channel-shaped core member and the slots 40 extend through the open edge 32 of the channel, as shown in FIG. 4. The slots'divide the core extrusion 24 into a plurality of segments 42 which are jointed along the longitudinal edge of the channel. The slots provide the flexibility in the core member required to secure the molding on a curved edge, such as. the concave edge 44 and the convex edge 46 in FIG. 1.
The panel 28 shown in FIG. 1 represents a typical application of the flexible molding or trim strip of this invention. The concave edge 44 is similar to the interior edge around an automotive window, and the convex edge 46 would be similar to the interior molding application or wind seal around an automotive door panel. In either application, the flexible molding of this invention can be applied in a single strip, without preforming or metal securement means. The panel, which is normally sheet metal, may be provided with a plurality of substantially evenly spaced dimples 34 adjacent the edge receiving the molding. Alternate dimples normally project in opposite directions from the opposed faces of the panel, as shown in FIG. 7, to provide opposed gripping surfacesConventional tools are available for this purpose.
The location and shape of the slots will depend upon the particular application. In the convex molding strip 20, the slots 36 extend through the bight portion 38 of the channel, as shown in FIG. 3, such that the linear segments 42 are spread at the areas of curvature. Con- The molding assembly shown in FIG. 1 includes two embodiments of the flexible molding strip of this invention. The convex molding strip embodiment 20 is also shown in FIGS. 5 and 6, and the concave molding strip embodiment 22 is shown in FIG. 7. Each of these embodimen'ts of the molding strip of this invention inversely, the slots 40 in the concave molding strip 22 extend through the open edge 32 of the channel, as shown in FIG. 4, such that the segments also spread in the con cave curve. In either embodiment, therefore, the slots open to accommodate the curvature of the panel, and provide the flexibility required to secure the molding over a curved edge. It'will be understood, however, that either embodiment may be utilized over a relatively straight edge, or an edge having a relatively large radius. The slots may also be widened or V-shaped to accommodate various curvatures.
The width and depth of the slots will normally depend upon the width and rigidity of the core extrusion 24. A slot 0.060 to 0.080 inches wide and approximately 0.375 inches deep has been found suitable for an extrusion approximately 0.50 inches wide, which is the size molding presently utilized in interior automotive applications. The slots preferably have a depth greater than one-half the width of the core. The spacing of the slots will also depend upon the particular application. The slots are required at the area of curvature, but may be spaced further apart or omitted at the straight portions of the panel. In this embodiment, the linear length of the segments 42 is preferably less than the width of the core member, at least at the areas of curvature. The slots may be formed by a number of conventional methods, or a special tool may be utilized. For example, the slots may be formed by a series of parallel saw blades mounted for rotation on a common axis. The saw blade unit could be mounted on any axis, and would be in the nature of a flying cut-of travelling at the same rate as the extrusion. The saw blade unit could also be fixed in position, and simply moved fast enough through the extrusion such that the slots are not cut to an excessive width. A hot wire system consisting of a series of parallel hot wires could also perform the cutting operation, however, this would be a slower operation.
Finally, a stretchable cover 50 is received over and secured to the core member, as shown in FIGS. 5 to 7. The cover member is preferably formed of a relatively elastic material, which is stretchable over the core member to conform to the shape thereof before and after securement of the molding to the panel. The cover in the flexible molding strip'of this invention performs a number of functions. The cover is preferably opaque to cover and conceal the slots, as shown in FIGS. 1 and 5, and may be colored to compliment the interior of an automobile, chair upholstery or the like. It is important to note that the core member may then be formed of a neutral color, reducing the cost of the molding assembly as described hereinabove. The cover may also be embossed to better conceal the slots. The cover also functions as a seal, where the molding is to be utilized as a seal, such as the wind seal secured around an automotive door panel. Further, the material of the cover may be chosen to cause the molding to retain the shape of the panel edge receiving the molding, inhibiting return of the molding to its original straight configuration. This aids the retention of the molding on the panel. The cover may be formed from a variety of materials, including a relatively thin sheet of plastic, such as soft vinyl, natural or synthetic rubber, a woven elastic material, or a variety of foam materials.
In the disclosed embodiment, the cover 50 is folded over the bight portion 38 of the core member and extends to the open edge 32 of the channel; The cover may also be folded over the open end of the channel, but is spaced from the abutting edges of the flanges 30 to provide direct locking contact between the relatively rigid flanges and the dimples 34 in the panel. The cover thereby covers and conceals the slots in the core member, but does not interfere'withthe locking action of the flanges. The cover is preferably secured to each of the linear segments 42 of the core member, such that the cover will conceal the slots, without buckling when the molding is bent over the curved panel edge.
The cover may be secured to the core member by any method adapted to provide fullsecurement and prevent buckling. Heat may be applied to the surface of the core member, after slotting, and the cover may be fed directly over the core from the extruder. Conversely, the cover member may be stored on a roll, and heated prior to receipt on the core member, or the members may be extruded and jointed simultaneously from a cross head extr'uder. A sonic welding system may also be utilized to secure the cover, or the .cover may be adhesive or solvent bonded to the core.
- In certain applications of heat and pressure, or bonding, the cover may be caused to fill the slots or the slots may be fllledwith adhesive or solvent. Normally, this may not present a problem, and has certain advantages in specific applications. In the applications where this is considered a disadvantage, the core may be fed over a fixed mandril having a cross section similar to the inside of the core, which would support the core against the pressure of the rolls. The mandril may have an external cross section similar to the inside of the core, in cluding external ribs which fit into the slots. Such a mandril would move with the extrusion as it is processed and prevent filling of the slots. Another method, which would at least partially prevent slot filling, includes a wheel which receives the core prior to securement of the cover. The wheel would tend to close the slots during securement of the cover and the cover would be stretched in tension when returned to the normal straight configuration. This would provide a considerable advantage in certain applications as described hereinbelow.
In FIG. 12 l have depicted a length of thecore 24 bent into a curved configuration with the open edge 32 of the U-shaped channel lying on the. inside of the curve. By sobending the core, the slots 40 are essentially closed, except for a small portion at the inner end 41 of each slot. Such bending of the core before applying the adhesive and holding it in such position during application of the cover 50, substantially prevents the adhesive or cover from entering the slots, and upon releasing the strip the cover is tensioned. Bending the strip along the same radius as that shown or a greater radius, or along reverse bendwill fully conceal the slots as the cover is in a stretched condition covering and concealing them. While the core 24 is shown bent in FIG. 12 it is to be understood that the core shown in FIG. 13 may be similarly bent to close its slots during application of the core.
It will be noted from FIG. 1 that when the flexible molding strip of this invention, either molding strip 20 or 22, is bent over the curved edge of the panel 23, a
portion of the cover is placed in compression and a porrelatively straight. In the disclosed embodiment, the portion of the cover closest the center of curvature is placed in compression, and the portion farthest from the center is in tension. In the concave moldingstrip 22, for example, the outer edge away from the panel is in compression, and the inner edge overlying the panel is in tension. The problem of buckling has been solved in the flexible molding strip of this invention by stretching the cover over the core member prior to securement of the cover. The requisite degree of stretching will depend upon the radius of curvature of the panel, but should be sufficient to compensate for the compression of the cover described hereinabove. The cover may be stretched by conventional methods, including the method described above.
The embodiment of the molding strip 120 shown in FIGS. 8 to 10 may be characterized as universally flexible, and is specifically adapted for molding applications having a multiple curvature, such as the S-shaped panel edge 146 shown in FIG. 8. An S-shaped curvature is presently utilized'on the lower-rear edge of the rear door panel of several automobile models, such as the rear door panel 128 shown in phantom in FIG. 8. It will be understood, however, that almost any curvature may be accommodated by this embodiment of the molding strip.
The core member 124, in this embodiment, is slotted.
through both the bight portion 138 and the open side 132,- providing flexibility in both directions. The slots 1 36 through the bight portion provide concave flexibility, and the slots 140 through the open side 132 provide convex flexibility, as shown in FIG. 9. The core extrusion and the cover 150 may be otherwise identical to the molding strip embodiments described hereinabove, and have been numbered in sequence accordingly. t
The embodiment of the molding strip 220 shown in FIG. 11 may also be identical to any of the embodiments disclosed hereinabove, except that the cover portion 250 includes a laterally extending flange or wing" 260 which may be utilized to conceal or seal a joint or the like. In'an automotive application, for example, the wing may be utilized to conceal the adhesive used around the windows. Where additional rigidity is required, such as in sealing applications, the core member 224 may also be provided with a lateral flange, preferably concealed within the cover member flange 260. The slots, not shown, are preferably provided through the open side of the channel-shaped core member, such that the flange does not interfere with the flexibility of the molding, as shown in FIG, 4. The slots in the core member may, however, be provided through either edge, as shown above. FIG. 11 is otherwise numberedsimilar to the embodiments described hereinabove.
The flexible'molding strip of this invention 'is sufficiently flexible to be secured over a wide variety of panel curvatures, perpendicular to the axis of the core member, and can also flex to compensate for irregularities in the panel edge, including a compound curvature. Further, the molding or trim strip of this invention is considerably less expensive than the commercially available wire reinforced trim strips or the metal clip reinforced strips shown by the prior art. The trim generally may be attached in a single strip, reducing the labor cost, and may be made available in a wide variety of colors, although a common color is'utilized for the core member which represents the bulk of material.
. A further modification of the flexible molding strip is shown in FIG. 13 wherein the cover 250 is shown removed, for purposes of illustration only, at the lefthand end of the strip to expose the core 224. This embodiment is similar to that shown in FIG. 1 at 22 and in FIG. 7 except that the slots 240 are very narrow and may be more properly termed fissures or slits which should be as narrow as possible. They may be formed by a slittingapparatus which rather than removing any substantial, if any, portion of the core, in contradistinction to the slots 40, slices-or cleaves through the core to form the fissures or slits 240. Such slits are held closed during adhering of the cover 250 to the core preventing any appreciable, if any at all,penetration by the cover or by adhesive (by which the cover may be secured to the core) into the slits. Such slits simplify adhering the cover to the core as the slits are essentially closed when the core is in a rectilinear posture and consequently the cover and/or adhesive can be applied to the core without either bending the core to close theslots or resorting to other expedients heretofore suggested. With the core being in a rectilinear posture when the cover is applied, handling of the trim strips thereafter may be simplified because they will be essentially straight rather than bowed as would result from the FIG. 12 method of applying the cover.
FIG. 14 schematically illustrates apparatus for producing the flexible trim strip of FIG. 13. An extruder 260 produces the U-shaped core224. Asthe strip moves away from the extruder and cools to below its fusion temperature it is slit as by suitable slitting apparatus 241 which may include one or more thin slitting blades243. Alternatively the slitter may comprise a laser beam cutting apparatus, or any other apparatus suitable for producing successive thin slits, fissures or clefts in the core as the core passes in front of the apparatus, and a succession of such slits are shown at 240 in FIG. 13 to the right-hand side of the slitter.
Following slitting, the cover 250 is supported in such fashion as to insure that the slits 240 are held closed. In the schematic illustration of FIG. 14 the core is maintained in an essentially rectilinear posture by passing it between vertically spaced apart parallel core holders 262 and 264. With the core slits thus held closed the cover is secured to the exterior of the core by any of the fastening techniques heretofore mentioned including specifically heat bonding, adhesive bonding and sonic welding. Adhesive bonding is illustrated in FIG. 14 wherein an adhesive may be applied to the exterior of the core by any suitable applicator means 266 such as a spray system or brush or roller applicator. Thereafter the cover is led to the core and folded about its bight portion 238 and up along its sides as by pressure rollers arranged around the core as at 268 and 270, or by any other suitable apparatus. A mandril 272 may be placed within the U-section of the core to provide support against the pressure rollers 270 as shown in FIG. 15.
While I have shown the slitting operation being carried out in conjunction with the extruder, it 'is to be understood that the slitting may be accomplished later, a quantity of the core material being first extruded and laid aside for subsequent slitting operations. Similarly,
the slitting neednot immediately precede application of the cover but may be carried out at some time prior thereto.
The essential requirements of the method of making the trim strip of FIG. 13 include slitting the core to provide the very thin slits or fissures and then maintaining such slits closed during application of the cover to prevent the adhesive and/or cover from entering the slits, and holding the slits closed until the adhesive sets sufficiently so that neither it nor the cover penetrates the slits, and so that the finished trim strip is rectilinear and the slits are not visible.
In the following claims the term slots is used in a generic sense to include both the construction shown in FIGS. 3-5 as well as that of FIG; 13, though when the structure of FIG. 13 is specifically intended the term fissure or slit is used.
What is claimed is:
1. A flexible molding strip for the edge of a structural member, such strip consisting of a continuous extruded stiffly resilient U-shaped non-metallic plastic core and an opaque elastic cover overlying and adhered only to the exterior of the core for concealing the same, said core having a plurality of transverse slots opening through at least one edge thereof for enabling bending of the core to conform to a curved edge of the structural member over which its U-shape may be received,
- said opaque elastic cover bridging said slots and elastically stretching upon opening of the slots for concealing the same, and said core shaped to include integral internal non-metal plastic gripping means for directly grippingly engaging and retaining the core on the edge of the structural member over which the molding strip may be received.
2. The flexible molding strip defined in claim 1 characterized in that said cover is in elastically tensioned condition, to prevent buckling thereof when the molding strip is received over a sharp radius and the slots tend to close.
3. The invention defined in claim 1 characterized in that said cover is stretched over said core, prior to securement, to prevent buckling of the cover member when the molding strip is received over a sharp radius and the slots tend to close.
4. The invention defined in claim 1 characterizedin that said cover is a relatively thin sheet of plastic.
5. The invention defined in claim 1 characterized in that said cover comprises an elastic foam-like layer. 7
6. The invention defined in claim 1 characterized in that said gripping means comprises a flange projecting transversely of the interior of the U-shaped core adjacent the open edge of the U-shape.
7. The invention defined in claim 1 characterized in core to permit conformity of the molding strip to reversely curved edges of a structural member.
8. The invention defined in claim 7 characterized in that said slots extend alternately through opposite edges of the core.
9. The invention defined by claim 1 characterized in that said slots comprise a succession of fissures spaced apart along the core which are closed when the core is in a rectilinear condition.

Claims (9)

1. A flexible molding strip for the edge of a structural member, such strip consisting of a continuous extruded stiffly resilient U-shaped non-metallic plastic core and an opaque elastic cover overlying and adhered only to the exterior of the core for concealing the same, said core having a plurality of transverse slots opening through at least one edge thereof for enabling bending of the core to conform to a curved edge of the structural member over which its U-shape may be received, said opaque elastic cover bridging said slots and elastically stretching upon opening of the slots for concealing the same, and said core shaped to include integral internal non-metal plastic gripping means for directly grippingly engaging and retaining the core on the edge of the structural member over which the molding strip may be received.
2. The flexible molding strip defined in claim 1 characterized in that said cover is in elastically tensioned condition, to prevent buckling thereof when the molding strip is received over a sharp radius and the slots tend to close.
3. The invention defined in claim 1 characterized in that said cover is stretched over said core, prior to securement, to prevent buckling of the cover member when the molding strip is received over a sharp radius and the slots tend to close.
4. The invention defined in claim 1 characterized in that said cover is a relatively thin sheet of plastic.
5. The invention defined in claim 1 characterized in that said cover comprises an elastic foam-like layer.
6. The invention defined in claim 1 characterized in that said gripping means comprises a flange projecting transversely of the interior of the U-shaped core adjacent the open edge of the U-shape.
7. The invention defined in claim 1 characterized in that said slots extend through opposite edges of the core to permit conformity of the molding strip to reversely curved edges of a structural member.
8. The invention defined in claim 7 characterized in that said slots extend alternately through opposite edges of the core.
9. The invention defined by claim 1 characterized in that said slots comprise a succession of fissures spaced apart along the core which are closed when the core is in a rectilinear condition.
US216409A 1969-08-15 1972-01-10 Flexible molding strip and method of making same Expired - Lifetime US3706173A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85043469A 1969-08-15 1969-08-15
US21640972A 1972-01-10 1972-01-10

Publications (1)

Publication Number Publication Date
US3706173A true US3706173A (en) 1972-12-19

Family

ID=26910987

Family Applications (1)

Application Number Title Priority Date Filing Date
US216409A Expired - Lifetime US3706173A (en) 1969-08-15 1972-01-10 Flexible molding strip and method of making same

Country Status (1)

Country Link
US (1) US3706173A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851765A (en) * 1972-10-06 1974-12-03 D Cox Article retainer for a refrigerator
US3934385A (en) * 1974-04-22 1976-01-27 The Standard Products Co. Edge trim
US3971176A (en) * 1975-02-05 1976-07-27 Lynn Lee Rannels Stud-truss and method of making same
US4015398A (en) * 1975-09-10 1977-04-05 Bright Robert G Channel-shaped sealing, finishing and guiding strips
FR2334536A1 (en) * 1975-12-10 1977-07-08 Happich Gmbh Gebr EDGE PROTECTION PROFILE, IN PARTICULAR FOR AUTOMOTIVE BODYWORK
US4093761A (en) * 1972-03-08 1978-06-06 Taylor Industries, Inc. Sheet with breakaway line
DE2834877A1 (en) * 1977-08-15 1979-03-01 Lof Plastics Inc METHOD FOR THE PRODUCTION OF AN ANGLE BEND IN THE LEVEL OF ONE ON A PAD, PREFERABLY THE BODY OF A MOTOR VEHICLE, TOOLS AND PROTECTIVE STRIP TO BE FASTENED AND THE TRIM AND PROTECTIVE STRIP TRAINED BY THE METHOD
US4188765A (en) * 1978-06-12 1980-02-19 The Standard Products Company Dual durometer flange cover
US4214036A (en) * 1978-09-05 1980-07-22 Draftex Development Ag Channel-shaped sealing, trimming and guiding strips
US4263750A (en) * 1979-04-04 1981-04-28 The General Tire & Rubber Co. Frame edge flange and sealing strip therefor
US4334700A (en) * 1980-02-04 1982-06-15 U.S. Product Development Co. Door edge guard
US4372083A (en) * 1979-03-26 1983-02-08 Christopher Hatzikelis Pliable edge protector
US4489519A (en) * 1983-09-19 1984-12-25 U.S. Product Development Company Edge guard
US4520594A (en) * 1983-09-19 1985-06-04 U.S. Product Development Company Door edge guard and method of manufacture
US4570383A (en) * 1983-09-19 1986-02-18 U.S. Product Development Company Door edge guard
US4641475A (en) * 1983-11-07 1987-02-10 Berridge Manufacturing Co. Moisture resistant seam assembly
GB2181698A (en) * 1985-10-17 1987-04-29 Draftex Ind Ltd Reinforcing carriers for trimming and sealing strips and the like
US4730415A (en) * 1987-01-20 1988-03-15 U.S. Product Development Company Non-metallic door edge guard
US4768320A (en) * 1986-10-10 1988-09-06 Weller Rick W Door frame guard
US4769966A (en) * 1986-04-10 1988-09-13 Petri Hector D Grommet strip
US4773184A (en) * 1987-06-03 1988-09-27 Robert Adell Non-metallic door edge guard having different appearances of each side
US4787175A (en) * 1987-01-20 1988-11-29 U.S. Product Development Company Non-metallic door edge guard
US4943335A (en) * 1987-03-19 1990-07-24 Gebr. Happich Gmbh Method of manufacturing a profiled strip with smooth reinforcing insert
US4971849A (en) * 1989-08-14 1990-11-20 Extrusions Division Readily bendable extruded elastomeric trim strip
US5013379A (en) * 1988-01-25 1991-05-07 Gencorp Inc. Cohesive bonding process for forming a laminate of a wear resistant thermoplastic and a weather resistant rubber
US5032437A (en) * 1989-08-10 1991-07-16 Tourlentes Elizabeth A Jewelry and methods for making jewelry and other decorative devices
US5134819A (en) * 1991-04-04 1992-08-04 Boyack John D Bendable swimming pool coping
US5137675A (en) * 1991-05-13 1992-08-11 Gencorp Inc. Apparatus and method for coextruding materials having different temperature dependent properties
US5183613A (en) * 1990-08-22 1993-02-02 Gencorp Inc. Process for the preparation of solventless, low friction, abrasion-resistant coatings for elastomeric substrates
US5207027A (en) * 1991-09-09 1993-05-04 Standard Products Company Belt weatherstrip with expandable width and method
WO1993013962A1 (en) * 1992-01-21 1993-07-22 Hutchinson Reinforced profiled member
US5306537A (en) * 1991-12-20 1994-04-26 The Standard Products Company Wear resistant coating for glass run channel
US5358580A (en) * 1993-02-02 1994-10-25 Toyox Co., Ltd. Process for manufacturing hose having reinforcement incorporated therein and apparatus therefor
US5415822A (en) * 1988-11-21 1995-05-16 Schlegel U.K. Holdings Ltd. Manufacture of composite extrusions
US5440857A (en) * 1994-06-27 1995-08-15 Silvatrim Associates Endless edge trim fabricated from an extruded profile
GB2310879A (en) * 1996-03-06 1997-09-10 Standard Products Co Recyclable vehicle pinch flange welt or door seal and method of making same
US5693174A (en) * 1993-12-24 1997-12-02 Toyoda Koki Kabushiki Kaisha Apparatus for attaching a molding
US5816013A (en) * 1996-10-09 1998-10-06 Bush Industries, Inc. Curved hollow panel and method for manufacture
US5967788A (en) * 1997-07-02 1999-10-19 Udoh; Justin P. Toy device for illustrating mathematics
US5975177A (en) * 1997-02-26 1999-11-02 Petri; Hector D. Grommet strip manufacturing method and apparatus
US6115984A (en) * 1997-09-12 2000-09-12 Paradis; Yvon Flexible runner
US6164036A (en) * 1999-01-12 2000-12-26 Atwood Mobile Products, Inc. Flexible radiused corner key for insulated glass assemblies
US6237301B1 (en) 1997-10-01 2001-05-29 Yvon Paradis Flexible runner
US6277319B2 (en) * 1999-02-19 2001-08-21 Green Tokai Co., Ltd. Method for trimming shaped plastic workpieces
US6447928B2 (en) 1998-10-01 2002-09-10 Gem City Engineering Company Process of manufacturing a core metal insert
US20030205341A1 (en) * 2002-05-03 2003-11-06 Maviflex S.A. Protective cover for guidance device for a flexible-curtain goods-handling door
US20050072111A1 (en) * 2003-09-19 2005-04-07 Gamma Due S.R.L. Process for modelling tiles and slabs
US20060121241A1 (en) * 2004-12-02 2006-06-08 Scovil Hanna Corporation Core metal insert with stress relief and method of making same
US20060213846A1 (en) * 2005-03-22 2006-09-28 Guardian Industries Corp. Storage rack for glass sheets
US20060260031A1 (en) * 2005-05-20 2006-11-23 Conrad Joseph M Iii Potty training device
US20090243142A1 (en) * 2008-03-26 2009-10-01 Jyco Sealing Technologies, Inc. Coextruded polymer molding having selectively notched carrier
EP2133617A1 (en) * 2006-06-27 2009-12-16 J. van Walraven Holding B.V. Pipe clip with vibration-isolating insert
US20110043002A1 (en) * 2007-09-21 2011-02-24 Martin Laflamme Cut and rigidified construction component and method of manufacturing the same
GB2487528A (en) * 2011-01-18 2012-08-01 Armored Uk Ltd Curved Edge Protector
WO2014101960A1 (en) * 2012-12-28 2014-07-03 Arcelik Anonim Sirketi A cooking appliance comprising a handling means
US9073422B2 (en) 2012-08-02 2015-07-07 Fca Us Llc Weatherstrip assembly and method of manufacturing the same
US20190031007A1 (en) * 2016-01-27 2019-01-31 Kabushiki Kaisha Toyota Jidoshokki Weather strip
US11014346B2 (en) * 2018-08-07 2021-05-25 Iso-Chemie Gmbh Method for producing a sealing tape roll
US11220863B1 (en) * 2018-04-26 2022-01-11 Ladder Carry, Llc Shoulder protector device for carrying a ladder

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE524171A (en) * 1952-11-12 1900-01-01
US1903541A (en) * 1932-06-07 1933-04-11 Bailey Company Inc Window glass channel
US2292777A (en) * 1940-02-03 1942-08-11 Us Rubber Co Method of and apparatus for making tire treads
GB779868A (en) * 1952-11-12 1957-07-24 Thomas John Robert Bright Improvements in beadings, mouldings or the like
US2954310A (en) * 1959-06-16 1960-09-27 T & J Corp Finishing beading or molding
CA622586A (en) * 1961-06-27 J. R. Bright Thomas Moulding clip
US3197821A (en) * 1961-10-13 1965-08-03 Bright Mfg Co Ltd Sealing strips, beadings or mouldings
FR1457531A (en) * 1964-11-14 1966-01-24 Happich Gmbh Gebr Profile intended to be placed on the edge of plates or ribs
GB1044475A (en) * 1964-06-04 1966-09-28 Draftex Ltd Improvements in trimming and sealing strips
US3310928A (en) * 1964-11-27 1967-03-28 Bright Mfg Co Ltd Trimming member
US3392498A (en) * 1965-09-20 1968-07-16 Gen Tire & Rubber Co Self-locking sealing strip
US3436297A (en) * 1964-01-02 1969-04-01 Charles Brooks Reinforced vinyl plastic stripping
US3451169A (en) * 1967-03-20 1969-06-24 Flex O Lators Edge protector
US3527013A (en) * 1968-01-15 1970-09-08 Draftex Gmbh Sealing strip for the edges of openings of luggage compartments,doors or windows of automobiles
US3545157A (en) * 1964-11-14 1970-12-08 Kurt Cziptschirsch Section bar

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA622586A (en) * 1961-06-27 J. R. Bright Thomas Moulding clip
US1903541A (en) * 1932-06-07 1933-04-11 Bailey Company Inc Window glass channel
US2292777A (en) * 1940-02-03 1942-08-11 Us Rubber Co Method of and apparatus for making tire treads
BE524171A (en) * 1952-11-12 1900-01-01
GB779868A (en) * 1952-11-12 1957-07-24 Thomas John Robert Bright Improvements in beadings, mouldings or the like
US2954310A (en) * 1959-06-16 1960-09-27 T & J Corp Finishing beading or molding
US3197821A (en) * 1961-10-13 1965-08-03 Bright Mfg Co Ltd Sealing strips, beadings or mouldings
US3436297A (en) * 1964-01-02 1969-04-01 Charles Brooks Reinforced vinyl plastic stripping
GB1044475A (en) * 1964-06-04 1966-09-28 Draftex Ltd Improvements in trimming and sealing strips
FR1457531A (en) * 1964-11-14 1966-01-24 Happich Gmbh Gebr Profile intended to be placed on the edge of plates or ribs
US3545157A (en) * 1964-11-14 1970-12-08 Kurt Cziptschirsch Section bar
US3310928A (en) * 1964-11-27 1967-03-28 Bright Mfg Co Ltd Trimming member
US3392498A (en) * 1965-09-20 1968-07-16 Gen Tire & Rubber Co Self-locking sealing strip
US3451169A (en) * 1967-03-20 1969-06-24 Flex O Lators Edge protector
US3527013A (en) * 1968-01-15 1970-09-08 Draftex Gmbh Sealing strip for the edges of openings of luggage compartments,doors or windows of automobiles

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093761A (en) * 1972-03-08 1978-06-06 Taylor Industries, Inc. Sheet with breakaway line
US3851765A (en) * 1972-10-06 1974-12-03 D Cox Article retainer for a refrigerator
US3934385A (en) * 1974-04-22 1976-01-27 The Standard Products Co. Edge trim
US3971176A (en) * 1975-02-05 1976-07-27 Lynn Lee Rannels Stud-truss and method of making same
US4015398A (en) * 1975-09-10 1977-04-05 Bright Robert G Channel-shaped sealing, finishing and guiding strips
FR2334536A1 (en) * 1975-12-10 1977-07-08 Happich Gmbh Gebr EDGE PROTECTION PROFILE, IN PARTICULAR FOR AUTOMOTIVE BODYWORK
DE2834877A1 (en) * 1977-08-15 1979-03-01 Lof Plastics Inc METHOD FOR THE PRODUCTION OF AN ANGLE BEND IN THE LEVEL OF ONE ON A PAD, PREFERABLY THE BODY OF A MOTOR VEHICLE, TOOLS AND PROTECTIVE STRIP TO BE FASTENED AND THE TRIM AND PROTECTIVE STRIP TRAINED BY THE METHOD
US4160052A (en) * 1977-08-15 1979-07-03 Lof Plastics Inc. Corner for decorative and protective molding strip
US4188765A (en) * 1978-06-12 1980-02-19 The Standard Products Company Dual durometer flange cover
US4214036A (en) * 1978-09-05 1980-07-22 Draftex Development Ag Channel-shaped sealing, trimming and guiding strips
US4372083A (en) * 1979-03-26 1983-02-08 Christopher Hatzikelis Pliable edge protector
US4263750A (en) * 1979-04-04 1981-04-28 The General Tire & Rubber Co. Frame edge flange and sealing strip therefor
US4334700A (en) * 1980-02-04 1982-06-15 U.S. Product Development Co. Door edge guard
US4489519A (en) * 1983-09-19 1984-12-25 U.S. Product Development Company Edge guard
US4520594A (en) * 1983-09-19 1985-06-04 U.S. Product Development Company Door edge guard and method of manufacture
US4570383A (en) * 1983-09-19 1986-02-18 U.S. Product Development Company Door edge guard
US4641475A (en) * 1983-11-07 1987-02-10 Berridge Manufacturing Co. Moisture resistant seam assembly
GB2181698B (en) * 1985-10-17 1990-01-24 Draftex Ind Ltd Reinforcing carriers for trimming and sealing strips and the like
US4749203A (en) * 1985-10-17 1988-06-07 Draftex Industries Limited Reinforcing carriers for trimming and sealing strips and the like
GB2181698A (en) * 1985-10-17 1987-04-29 Draftex Ind Ltd Reinforcing carriers for trimming and sealing strips and the like
US4769966A (en) * 1986-04-10 1988-09-13 Petri Hector D Grommet strip
US4768320A (en) * 1986-10-10 1988-09-06 Weller Rick W Door frame guard
US4730415A (en) * 1987-01-20 1988-03-15 U.S. Product Development Company Non-metallic door edge guard
US4787175A (en) * 1987-01-20 1988-11-29 U.S. Product Development Company Non-metallic door edge guard
US4943335A (en) * 1987-03-19 1990-07-24 Gebr. Happich Gmbh Method of manufacturing a profiled strip with smooth reinforcing insert
US4773184A (en) * 1987-06-03 1988-09-27 Robert Adell Non-metallic door edge guard having different appearances of each side
US5013379A (en) * 1988-01-25 1991-05-07 Gencorp Inc. Cohesive bonding process for forming a laminate of a wear resistant thermoplastic and a weather resistant rubber
US5415822A (en) * 1988-11-21 1995-05-16 Schlegel U.K. Holdings Ltd. Manufacture of composite extrusions
US5032437A (en) * 1989-08-10 1991-07-16 Tourlentes Elizabeth A Jewelry and methods for making jewelry and other decorative devices
US4971849A (en) * 1989-08-14 1990-11-20 Extrusions Division Readily bendable extruded elastomeric trim strip
US5183613A (en) * 1990-08-22 1993-02-02 Gencorp Inc. Process for the preparation of solventless, low friction, abrasion-resistant coatings for elastomeric substrates
US5134819A (en) * 1991-04-04 1992-08-04 Boyack John D Bendable swimming pool coping
US5137675A (en) * 1991-05-13 1992-08-11 Gencorp Inc. Apparatus and method for coextruding materials having different temperature dependent properties
US5207027A (en) * 1991-09-09 1993-05-04 Standard Products Company Belt weatherstrip with expandable width and method
US5306537A (en) * 1991-12-20 1994-04-26 The Standard Products Company Wear resistant coating for glass run channel
EP0553018A1 (en) * 1992-01-21 1993-07-28 Hutchinson Profiled reinforced element
WO1993013962A1 (en) * 1992-01-21 1993-07-22 Hutchinson Reinforced profiled member
FR2686295A1 (en) * 1992-01-21 1993-07-23 Hutchinson ELEMENT PROFILE ARME.
US5358580A (en) * 1993-02-02 1994-10-25 Toyox Co., Ltd. Process for manufacturing hose having reinforcement incorporated therein and apparatus therefor
US5693174A (en) * 1993-12-24 1997-12-02 Toyoda Koki Kabushiki Kaisha Apparatus for attaching a molding
US5440857A (en) * 1994-06-27 1995-08-15 Silvatrim Associates Endless edge trim fabricated from an extruded profile
GB2310879A (en) * 1996-03-06 1997-09-10 Standard Products Co Recyclable vehicle pinch flange welt or door seal and method of making same
US5741573A (en) * 1996-03-06 1998-04-21 The Standard Products Company Recyclable pinch flange welt and method of making same
US5816013A (en) * 1996-10-09 1998-10-06 Bush Industries, Inc. Curved hollow panel and method for manufacture
US5975177A (en) * 1997-02-26 1999-11-02 Petri; Hector D. Grommet strip manufacturing method and apparatus
US5967788A (en) * 1997-07-02 1999-10-19 Udoh; Justin P. Toy device for illustrating mathematics
US6115984A (en) * 1997-09-12 2000-09-12 Paradis; Yvon Flexible runner
US6237301B1 (en) 1997-10-01 2001-05-29 Yvon Paradis Flexible runner
US6447928B2 (en) 1998-10-01 2002-09-10 Gem City Engineering Company Process of manufacturing a core metal insert
US6532787B2 (en) 1998-10-01 2003-03-18 The Gem City Engineering Co. Process of manufacturing a core metal insert
US6164036A (en) * 1999-01-12 2000-12-26 Atwood Mobile Products, Inc. Flexible radiused corner key for insulated glass assemblies
US6277319B2 (en) * 1999-02-19 2001-08-21 Green Tokai Co., Ltd. Method for trimming shaped plastic workpieces
US20030205341A1 (en) * 2002-05-03 2003-11-06 Maviflex S.A. Protective cover for guidance device for a flexible-curtain goods-handling door
US6874199B2 (en) * 2002-05-03 2005-04-05 Maviflex Sa Protective cover for guidance device for a flexible-curtain goods-handling door
US20050072111A1 (en) * 2003-09-19 2005-04-07 Gamma Due S.R.L. Process for modelling tiles and slabs
US20060121241A1 (en) * 2004-12-02 2006-06-08 Scovil Hanna Corporation Core metal insert with stress relief and method of making same
US7604766B2 (en) 2004-12-02 2009-10-20 Scovil Hanna Corporation Core metal insert with stress relief and method of making same
US7648035B2 (en) * 2005-03-22 2010-01-19 Guardian Industries Corp. Storage rack for glass sheets
US20060213846A1 (en) * 2005-03-22 2006-09-28 Guardian Industries Corp. Storage rack for glass sheets
US20060260031A1 (en) * 2005-05-20 2006-11-23 Conrad Joseph M Iii Potty training device
US8215593B2 (en) 2006-06-27 2012-07-10 J. Van Walraven Holding B.V. Pipe clip with vibration-isolating insert
US20090314904A1 (en) * 2006-06-27 2009-12-24 Jan Van Walraven Holdings B.V. Pipe clip with vibration-isolating insert
EP2133617A1 (en) * 2006-06-27 2009-12-16 J. van Walraven Holding B.V. Pipe clip with vibration-isolating insert
US20110043002A1 (en) * 2007-09-21 2011-02-24 Martin Laflamme Cut and rigidified construction component and method of manufacturing the same
US8915025B2 (en) * 2007-09-21 2014-12-23 Bombardier Transportation Gmbh Cut and rigidified construction component and method of manufacturing the same
US20100283175A1 (en) * 2008-03-26 2010-11-11 Jyco Sealing Technologies, Inc. Coextruded polymer molding having selectively notched carrier
US20090243142A1 (en) * 2008-03-26 2009-10-01 Jyco Sealing Technologies, Inc. Coextruded polymer molding having selectively notched carrier
GB2487528B (en) * 2011-01-18 2014-01-08 Armored Uk Ltd Curved edge protector
GB2487528A (en) * 2011-01-18 2012-08-01 Armored Uk Ltd Curved Edge Protector
US9073422B2 (en) 2012-08-02 2015-07-07 Fca Us Llc Weatherstrip assembly and method of manufacturing the same
WO2014101960A1 (en) * 2012-12-28 2014-07-03 Arcelik Anonim Sirketi A cooking appliance comprising a handling means
US20190031007A1 (en) * 2016-01-27 2019-01-31 Kabushiki Kaisha Toyota Jidoshokki Weather strip
US10737564B2 (en) * 2016-01-27 2020-08-11 Kabushiki Kaisha Toyota Jidoshokki Weather strip
US11220863B1 (en) * 2018-04-26 2022-01-11 Ladder Carry, Llc Shoulder protector device for carrying a ladder
US11014346B2 (en) * 2018-08-07 2021-05-25 Iso-Chemie Gmbh Method for producing a sealing tape roll

Similar Documents

Publication Publication Date Title
US3706173A (en) Flexible molding strip and method of making same
US3825459A (en) Method of making flexible molding strip
CA1290371C (en) Extruded vinyl molding incorporating a stiffener
US3167856A (en) Methods of making strip structures
US2746103A (en) Draught excluding strips, beadings, mouldings, and the like
US5358764A (en) Integrally molded T-shaped decorative trim
US3843475A (en) Plastics trim strips
US4160052A (en) Corner for decorative and protective molding strip
US4304816A (en) Channel-shaped strip structures
DE4425036C2 (en) Fixed back reinforcement for extruded sealing profile
US3448550A (en) Cover molding,particularly for motor vehicle bodies
US3745056A (en) Trim strip structure
US3068136A (en) Method of making a channel-shaped structure
JPS5920495B2 (en) flange cover
KR102455191B1 (en) Window having a profiled joint, cap and core, and method for manufacturing said window
JP2986528B2 (en) Molding and weather strip for vehicles
US2704867A (en) Draught excluders or edge trimming
CA2196949A1 (en) Recyclable pinch flange welt and method of making same
EP0627341B1 (en) Plastics profile
CA2656010C (en) Weatherstrip adapted to be captured in t-slots
GB2078620A (en) Protective trim strip
US3200448A (en) Sealing strips, beadings or mouldings
JPS5920496B2 (en) channel weatherstrip
US2635915A (en) Window guide strip construction
EP1535782B1 (en) A flexible strip and a method of manufacturing same