US3713165A - Antenna for strip transmission lines - Google Patents

Antenna for strip transmission lines Download PDF

Info

Publication number
US3713165A
US3713165A US00077947A US3713165DA US3713165A US 3713165 A US3713165 A US 3713165A US 00077947 A US00077947 A US 00077947A US 3713165D A US3713165D A US 3713165DA US 3713165 A US3713165 A US 3713165A
Authority
US
United States
Prior art keywords
inner conductor
planar
slots
antenna
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00077947A
Inventor
T Svensson
R Lagerlof
L Sjoholm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Application granted granted Critical
Publication of US3713165A publication Critical patent/US3713165A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/002Specific input/output arrangements not covered by G06F3/01 - G06F3/16
    • G06F3/005Input arrangements through a video camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures

Definitions

  • the slots are situated so that they intersect the planar inner conductor and each slot is matched for transmission or reception of signals with a certain frequency by the length of the slot and the distance from the slot to the end of the planar inner conductor.
  • the end of the planar inner conductor is formed to match the distances to the individual slots.
  • the slots merge to form only one cut-out in the planar outer conductor.
  • SHEET 1 [IF 2 INVENITORS Rou 0v: Esai'onu Lacuna Limunnrs-rlc 5.16am. nouns lnnt'sutnw 3v: u :sau
  • the present invention relates to an antenna for matching signals from a transmission line to waves in the free space and vice versa and comprising one end of a strip transmission line with a planar inner conductor and one or two planar outer conductors, whereby the planar inner conductor and the planar outer conductors are insulated from each other by means of a dielectric.
  • the transmission line consists of a planar inner conductor and two planar outer conductors, one on each side and situated in parallel with the planar inner conductor.
  • An antenna according to the invention is, however, in fact also implemented when the transmission line only has one planar outer conductor.
  • the characteristic impedance of a strip transmission line is determined by the breadth of the planar inner conductor and the distance between the planar outer conductors and the dielectric constant of the dielectric insulation material.
  • a theoretically ideal strip transmission line has infinitely large planar conductors and an infinitely thin planar inner conductor.
  • the planar inner conductor consists of for example a thin copper foil.
  • the width of the planar outer conductors are chosen so that the planar inner conductor can have the same width as the planar inner conductor in an ideal transmission line.
  • the width of the planar outer conductors are also chosen so that an extension of undesired waveguide modes is made impossible. Waveguide modes exist as soon as the symmetry is interrupted, which is caused for example by a slot in the planar outer conductor.
  • a metal shell for example of aluminum.
  • Such an antenna is poorly matched to the transmission line. It has moreover low efficiency and is moreover narrowbanded. It is furthermore known to combine a number of slots of different length according to the logarithmic periodic principle in order to obtain a wide banded antenna. Such antennae become, however, proportionately large as a great number of slots are required in order to obtain a sufficient good impedance matching. This means in its turn that the use of this antenna as an elementary antenna in an antenna array with this application is either difticult if not impossible when these applications require that the distance between adjacent elementary antennae be about half a wavelength. It is an object of the invention to provide a slotted antenna which does not have the above-mentioned drawbacks. The characteristics of such an antenna are defined in the appended claims.
  • FIG. 1 shows an exploded view of an execution of an antenna according to the invention.
  • FIGS. 2 and 3 show several embodiments of a detail of an antenna according to the invention, and in particular the shape of existing slot outline.
  • FIG. 4 shows an embodiment of another detail of an antenna according to the invention, viz. the end of the planar inner conductor.
  • a planar inner conductor denoted by 1
  • This planar, inner conductor 1 is fastened on a rectangular plate 2 of a dielectric material, for example plastic.
  • This plate 2 is provided with two outgoing arms 3 which laterally extend in opposite directions.
  • a further similar plate 4 with outgoing arms 5 is produced of the same material as the plate 2.
  • These two plates are fastened to each other so that the planar inner conductor 1 is between the same.
  • the surface on each plate remote from and parallel with the planar inner conductor 1 is covered with a layer of conductive material to form planar outer conductors 6 and 11 respectively.
  • inner conductor 1 and outer conductors 6 and 11 form a strip transmission line.
  • slots 7a-7f positioned to intersect the planar inner conductor 1.
  • Each such slot, for example slot 7a is designed for transmission or reception of signals with a certain frequency by making the length of the slot 7a a multiple of half the wavelength and locating the slot at a distance from the end line 8 of the planar inner conductor which is an odd multiple of a quarter of the wavelength, the wavelength being calculated from the frequency of the signal with reference to the presenttransmission medium.
  • the distance to the end of the planar inner conductor is measured from the point where the symmetry centerline of the slot crosses the symmetry line of the conductor and in parallel with the conductor.
  • a slot made in the planar outer conductor of an antenna in the above described manner can be adjusted to a certain frequency, but it will send or receive signals also within a narrow band about this frequency.
  • an antenna with such a slot is narrow-banded.
  • FIG. 2a shows how several slots together form only one cut-out with two opposite step shaped arms.
  • the cut-out has been formed by laying a number of slots in parallel so close to each other. that there is no outer conductor material between the slots i.e., the slots merge.
  • The, different slots can clearly be interpreted as they have different lengths and their ends give a step form to two of the opposite sides of the cut-out.
  • a cut-out is shown consisting of four slots 12a, 12b, 12c and 12d, where the ends of the longest slot have been denoted reference numeral 12a and the ends of the shortest slot have been denoted reference numeral 12d.
  • FIG. 2b and 2c further show two conceivable designs of the cut-out. These executions are often suitable for mass-produced antennas when separate slots otherwise will lie very close together.
  • FIG. 3a shows a variant of a cut-out according to FIG. 2.
  • the cut-out in FIG. 3 has two sides situated just opposite each other which are symmetrically decreasing in step form from the central line and out towards the edges of the sides.
  • the cut-out can be thought to be formed by a long slot, the ends of which in FIG. 3a are denoted by 13a, and of two equilength shorter slots 13b and 130, one on each side of the long slot 13a
  • the shortest slots 13d and 13c also have the same length. Further slots can in the same manner be situated on each side of the other slots.
  • FIG. 3b, 3c and 3d show further three conceivable embodiments of the cut-out.
  • the cut-out can also be designed so that only one end agrees with any of the figures while the other end is cut, as is shown in FIG. 3d.
  • a configuration can be built up of several separated slots, where the longest slot is situated in the middle and where shorter slots are situated on each side of this longest slot. whereby several slots will with it exterior outline together remind about the cut-out in FIG. 30.
  • FIG. 4 shows an example of how the edge of the planar inner conductor 1 can be designed with a symmetrical decreasing step form.
  • the distances of the slots to the end of the conductor are determined so that the first step 9 is counted as the end of the conductor when the position of the slot is to be determined which is adapted to the longest wave length. Consequently the exterior step 10 on the planar inner conductor is the starting-point for calculation of the distance to the slot which is adapted to the shortest wavelength.
  • the figure shows a conductor with three steps, which is adapted to three slots.
  • planar inner conductor can, as is shown in FIG. 1, be squarely cut or it can have a design analogous to the one end of the cut-out in FIG. 3b, 3c and 3d.
  • planar inner conductor is increased in step form so that it gradually or continuously becomes broader towards its end.
  • An antenna according to the invention is impedance matched to the transmission line by rotating the slots with respect to the conductor or by moving them at right angle to the conductor.
  • the slots must not be displaced so much that they do not intersect the conductor and they must not be rotated to the point that they are in parallel with the conductor as the antenna then is quite choked.
  • An advantage in the construction of an antenna according to the invention is that it is possible to mass produce the same by photo engraving techniques.
  • an antenna As an example of the dimensioning of an antenna consider one built up according to FIG. 1, but provided with 11 slots.
  • the distance from the central 6 slot to the end of the planar inner conductor is about 15 millimeters, the length of the longest slot about 12.5 millimeters and the length of the shortest slot about 10.5 millimeters.
  • the width of the slots is about 0.1 millimeters and the distance between them is 0.2 millimeters.
  • Such an antenna has, at a standing wave ratio of better than 2, a frequency range covering 9.5 l2 GI-Iz.
  • a wideband antenna comprising a strip transmission line having a planar inner conductor and at least one planar outer conductor separated from but electromagnetically coupled to each other by a dielectric medium, said planar inner conductor having a terminating end and said planar outer conductor being provided with a plurality of slots whose projections intersect said planar inner conductor, each of said slots having a length which is a multiple of one half the wavelength of a different particular signal frequency and the distance from each slot to the terminating end of said inner conductor being an odd multiple of a quarter of the wavelength of the associated particular signal frequency in such a way that the slots are displaced from the terminating end of said inner conductor in the order of increasing length with the shortest slot closest to said terminating end.
  • a wideband antenna comprising a strip transmission line having a planar inner conductor and at least one planar outer conductor separated from but electromagnetically coupled to each other by a dielectric medium, said planar inner conductor having a terminating end andsaid planar outer conductor being provided with a cut out formed from a plurality of merged subslots whose projections intersect said planar inner conductor; each of said subslots having a length related to a difi'erent particular signal frequency and the distance from each subslot to the terminating end of said inner conductor being related to an odd multiple of a quarter of the wavelength of its associated particular signal frequency in such a way that the subslots are displaced from the terminating end of said inner conductor in the order of increasing length with the shortest slot closest to said terminating end.

Abstract

An antenna for strip transmission lines has slots of different lengths in the planar outer conductors. The slots are situated so that they intersect the planar inner conductor and each slot is matched for transmission or reception of signals with a certain frequency by the length of the slot and the distance from the slot to the end of the planar inner conductor. In one embodiment of the antenna the end of the planar inner conductor is formed to match the distances to the individual slots. In another embodiment of the antenna the slots merge to form only one cutout in the planar outer conductor.

Description

United States Patent 1 Lagerlof et al.
[4 1 Jan. 23, 1973 ANTENNA FOR STRIP TRANSMISSION LINES Telefonaktiebolaget LM Ericsson, Stockholm, Sweden Filed: Oct. 5, 1970 App]. No.: 77,947
[73] Assignee:
[30] Foreign Application Priority Data on. 23, 1969 Sweden ..14507/69 11.8. C1. ..343/771, 333/84 M 1m. Cl. ..H01q 13/10 Field of Search ..343/767, 768, 770, 771,854,
[5 6] References Cited UNITED STATES PATENTS 3,530,478 9/1970 Corzine et a1. ..343/792.5
3,031,666 4/1962 Butler ..343/771 2,654,842 10/1953 Engelmann.... .....343/77O 3,218,644 7 11/1965 Berry ..343/770 2,993,205 7/1961 Cooper ..343/771 2,994,083 7/1961 Wilson ..343/771 3,518,688 6/1970 Stayboldt et a]... ..343/771 3,524,189 8/1970 Jones ....343/771 3,524,190 8/1970 Killion et a1. ..343/771 Primary ExaminerE1i Lieberman Attorney-Plane, Baxley & Spiecens [5 7 ABSTRACT An antenna for strip transmission lines has slots of different lengths in the planar outer conductors. The slots are situated so that they intersect the planar inner conductor and each slot is matched for transmission or reception of signals with a certain frequency by the length of the slot and the distance from the slot to the end of the planar inner conductor. In one embodiment of the antenna the end of the planar inner conductor is formed to match the distances to the individual slots. In another embodiment of the antenna the slots merge to form only one cut-out in the planar outer conductor.
5 Claims, 9 Drawing Figures PATENTEnJAnza 1975 3.713.165
SHEET 1 [IF 2 INVENITORS Rou 0v: Esai'onu Lacuna Limunnrs-rlc 5.16am. nouns lnnt'sutnw 3v: u :sau
ATTORNEYS ANTENNA FOR STRIP TRANSMISSION LINES The present invention relates to an antenna for matching signals from a transmission line to waves in the free space and vice versa and comprising one end of a strip transmission line with a planar inner conductor and one or two planar outer conductors, whereby the planar inner conductor and the planar outer conductors are insulated from each other by means of a dielectric.
In the following description consideration will only be given to the case when the transmission line consists of a planar inner conductor and two planar outer conductors, one on each side and situated in parallel with the planar inner conductor. An antenna according to the invention is, however, in fact also implemented when the transmission line only has one planar outer conductor.
The characteristic impedance of a strip transmission line is determined by the breadth of the planar inner conductor and the distance between the planar outer conductors and the dielectric constant of the dielectric insulation material. A theoretically ideal strip transmission line has infinitely large planar conductors and an infinitely thin planar inner conductor. In practice the planar inner conductor consists of for example a thin copper foil. The width of the planar outer conductors are chosen so that the planar inner conductor can have the same width as the planar inner conductor in an ideal transmission line. The width of the planar outer conductors are also chosen so that an extension of undesired waveguide modes is made impossible. Waveguide modes exist as soon as the symmetry is interrupted, which is caused for example by a slot in the planar outer conductor. In order to simplify the dimensioning of the transmission line it can often be suitable to surround it by a metal shell, for example of aluminum.
It is known to produce an antenna by making a slot in the one planar outer conductor near the end of the planar inner conductor at right angle to the planar,
inner conductor and symmetrically thereto. Such an antenna is poorly matched to the transmission line. It has moreover low efficiency and is moreover narrowbanded. It is furthermore known to combine a number of slots of different length according to the logarithmic periodic principle in order to obtain a wide banded antenna. Such antennae become, however, proportionately large as a great number of slots are required in order to obtain a sufficient good impedance matching. This means in its turn that the use of this antenna as an elementary antenna in an antenna array with this application is either difticult if not impossible when these applications require that the distance between adjacent elementary antennae be about half a wavelength. It is an object of the invention to provide a slotted antenna which does not have the above-mentioned drawbacks. The characteristics of such an antenna are defined in the appended claims.
The invention will be described in greater detail by means of the accompanying drawing which shows different embodiments of an antenna according to the invention.
FIG. 1 shows an exploded view of an execution of an antenna according to the invention.
FIGS. 2 and 3 show several embodiments of a detail of an antenna according to the invention, and in particular the shape of existing slot outline.
FIG. 4 shows an embodiment of another detail of an antenna according to the invention, viz. the end of the planar inner conductor.
In FIG. 1 a planar inner conductor, denoted by 1, has a terminating end denoted by 8. This planar, inner conductor 1 is fastened on a rectangular plate 2 of a dielectric material, for example plastic. This plate 2 is provided with two outgoing arms 3 which laterally extend in opposite directions. A further similar plate 4 with outgoing arms 5 is produced of the same material as the plate 2. These two plates are fastened to each other so that the planar inner conductor 1 is between the same. The surface on each plate remote from and parallel with the planar inner conductor 1 is covered with a layer of conductive material to form planar outer conductors 6 and 11 respectively. Thus, inner conductor 1 and outer conductors 6 and 11 form a strip transmission line.
In the one or both of these planar outer conductors 6, 11 there are slots 7a-7f positioned to intersect the planar inner conductor 1. Each such slot, for example slot 7a is designed for transmission or reception of signals with a certain frequency by making the length of the slot 7a a multiple of half the wavelength and locating the slot at a distance from the end line 8 of the planar inner conductor which is an odd multiple of a quarter of the wavelength, the wavelength being calculated from the frequency of the signal with reference to the presenttransmission medium. The distance to the end of the planar inner conductor is measured from the point where the symmetry centerline of the slot crosses the symmetry line of the conductor and in parallel with the conductor.
A slot made in the planar outer conductor of an antenna in the above described manner can be adjusted to a certain frequency, but it will send or receive signals also within a narrow band about this frequency. Thus an antenna with such a slot is narrow-banded. By making several slots in the planar outer conductor, each adjusted -to a certain frequency, and if the frequencies to which the slots are adjusted, are so close to each other that the band width of the slots in part overlap each other, a wide banded antenna is obtained. This case is shown in FIG. 1 with further slots 7b-7 f.
FIG. 2a shows how several slots together form only one cut-out with two opposite step shaped arms. The cut-out has been formed by laying a number of slots in parallel so close to each other. that there is no outer conductor material between the slots i.e., the slots merge. The, different slots can clearly be interpreted as they have different lengths and their ends give a step form to two of the opposite sides of the cut-out. In FIG. 2a a cut-out is shown consisting of four slots 12a, 12b, 12c and 12d, where the ends of the longest slot have been denoted reference numeral 12a and the ends of the shortest slot have been denoted reference numeral 12d. FIG. 2b and 2c further show two conceivable designs of the cut-out. These executions are often suitable for mass-produced antennas when separate slots otherwise will lie very close together.
FIG. 3a shows a variant of a cut-out according to FIG. 2. The cut-out in FIG. 3 has two sides situated just opposite each other which are symmetrically decreasing in step form from the central line and out towards the edges of the sides. In this case the cut-out can be thought to be formed by a long slot, the ends of which in FIG. 3a are denoted by 13a, and of two equilength shorter slots 13b and 130, one on each side of the long slot 13a There are furthermore two even shorter slots 13d and 1312, one on each side of the other slots. The shortest slots 13d and 13c also have the same length. Further slots can in the same manner be situated on each side of the other slots. FIG. 3b, 3c and 3d show further three conceivable embodiments of the cut-out. The cut-out can also be designed so that only one end agrees with any of the figures while the other end is cut, as is shown in FIG. 3d.
In connection with FIG. 3a it can be pointed out that starting from this point of the form of the cut out a configuration can be built up of several separated slots, where the longest slot is situated in the middle and where shorter slots are situated on each side of this longest slot. whereby several slots will with it exterior outline together remind about the cut-out in FIG. 30.
FIG. 4 shows an example of how the edge of the planar inner conductor 1 can be designed with a symmetrical decreasing step form. With such a conductor the distances of the slots to the end of the conductor are determined so that the first step 9 is counted as the end of the conductor when the position of the slot is to be determined which is adapted to the longest wave length. Consequently the exterior step 10 on the planar inner conductor is the starting-point for calculation of the distance to the slot which is adapted to the shortest wavelength. By designing the end of the conductor in this manner a longer distance is obtained between the slots with maintained band width. The figure shows a conductor with three steps, which is adapted to three slots.
Besides the design shown in FIG. 4 the planar inner conductor can, as is shown in FIG. 1, be squarely cut or it can have a design analogous to the one end of the cut-out in FIG. 3b, 3c and 3d. A further alternative is that the planar inner conductor is increased in step form so that it gradually or continuously becomes broader towards its end.
An antenna according to the invention is impedance matched to the transmission line by rotating the slots with respect to the conductor or by moving them at right angle to the conductor. However, the slots must not be displaced so much that they do not intersect the conductor and they must not be rotated to the point that they are in parallel with the conductor as the antenna then is quite choked. By combining the methods of rotation and displacement of the slots a good match between the antenna and the transmission line is obtained in an easy manner.
An advantage in the construction of an antenna according to the invention is that it is possible to mass produce the same by photo engraving techniques. One
' can start with two plates of a dielectric material, which plates on both sides are covered with a thin copper foil. The copper is removed from one side of one plate while on one side of the other plate the planar inner conductor is engraved. The plates are put together, so that the sides which are still completely covered by copper will be directed outwards. These outer sides constitute the planar outer conductors and in the one or both of ese planar outer conductors the slots are engraved. Of course one can start with one plate with both sides covered with copper and one plate with only one side covered with copper.
As an example of the dimensioning of an antenna consider one built up according to FIG. 1, but provided with 11 slots. In such an antenna the distance from the central 6 slot to the end of the planar inner conductor is about 15 millimeters, the length of the longest slot about 12.5 millimeters and the length of the shortest slot about 10.5 millimeters. The width of the slots is about 0.1 millimeters and the distance between them is 0.2 millimeters. Such an antenna has, at a standing wave ratio of better than 2, a frequency range covering 9.5 l2 GI-Iz.
We claim:
1. A wideband antenna comprising a strip transmission line having a planar inner conductor and at least one planar outer conductor separated from but electromagnetically coupled to each other by a dielectric medium, said planar inner conductor having a terminating end and said planar outer conductor being provided with a plurality of slots whose projections intersect said planar inner conductor, each of said slots having a length which is a multiple of one half the wavelength of a different particular signal frequency and the distance from each slot to the terminating end of said inner conductor being an odd multiple of a quarter of the wavelength of the associated particular signal frequency in such a way that the slots are displaced from the terminating end of said inner conductor in the order of increasing length with the shortest slot closest to said terminating end.
2. The antenna according to claim 1 wherein the width of the exterior part of said planar inner conductor decreases symmetrically with respect to its central line.
3. A wideband antenna comprising a strip transmission line having a planar inner conductor and at least one planar outer conductor separated from but electromagnetically coupled to each other by a dielectric medium, said planar inner conductor having a terminating end andsaid planar outer conductor being provided with a cut out formed from a plurality of merged subslots whose projections intersect said planar inner conductor; each of said subslots having a length related to a difi'erent particular signal frequency and the distance from each subslot to the terminating end of said inner conductor being related to an odd multiple of a quarter of the wavelength of its associated particular signal frequency in such a way that the subslots are displaced from the terminating end of said inner conductor in the order of increasing length with the shortest slot closest to said terminating end.
4. The antenna according to claim 3 in which the ends of adjacent subslots merge smoothly intothe next to form at each end a continuum of subslot ends.
5. The antenna according to claim 3 in which the adjacent sides of adjacent slots are of different lengths to give at each end of the subslots a stepped profile of slot ends.

Claims (5)

1. A wideband antenna comprising a strip transmission line having a planar inner conductor and at least one planar outer conductor separated from but electromagnetically coupled to each other by a dielectric medium, said planar inner conductor having a terminating end and said planar outer conductor being provided with a plurality of slots whose projections intersect said planar inner conductor, each of said slots having a length which is a multiple of one half the wavelength of a different particular signal frequency and the distance from each slot to the terminating end of said inner conductor being an odd multiple of a quarter of the wavelength of the associated particular signal frequency in such a way that the slots are displaced from the terminating end of said inner conductor in the order of increasing length with the shortest slot closest to said terminating end.
2. The antenna according to claim 1 wherein the width of the exterior part of said planar inner conductor decreases symmetrically with respect to its central line.
3. A wideband antenna comprising a strip transmission line having a planar inner conductor and at least one planar outer conductor separated from but electro-magnetically coupled to each other by a dielectric medium, said planar inner conductor having a terminating end and said planar outer conductor being provided with a cut out formed from a plurality of merged subslots whose projections intersect said planar inner conductor; each of said subslots having a length related to a different particular signal frequency and the distance from each subslot to the terminating end of said inner conductor being related to an odd multiple of a quarter of the wavelength of its associated particular signal frequency in such a way that the subslots are displaced from the terminating end of said inner conductor in the order of increasing length with the shortest slot closest to said terminating end.
4. The antenna according to claim 3 in which the ends of adjacent subslots merge smoothly into the next to form at each end a continuum of subslot ends.
5. The antenna according to claim 3 in which the adjacent sides of adjacent slots are of different lengths to give at each end of the subslots a stepped profile of slot ends.
US00077947A 2013-01-22 1970-10-05 Antenna for strip transmission lines Expired - Lifetime US3713165A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1450769A SE538451C2 (en) 2013-01-22 2013-01-22 Improved tracking of an object for controlling a non-touch user interface

Publications (1)

Publication Number Publication Date
US3713165A true US3713165A (en) 1973-01-23

Family

ID=20299216

Family Applications (1)

Application Number Title Priority Date Filing Date
US00077947A Expired - Lifetime US3713165A (en) 2013-01-22 1970-10-05 Antenna for strip transmission lines

Country Status (5)

Country Link
US (1) US3713165A (en)
FR (1) FR2073314A1 (en)
GB (1) GB1285289A (en)
NO (1) NO127999B (en)
SE (1) SE538451C2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2350706A1 (en) * 1976-05-03 1977-12-02 Raytheon Co IDENTIFIER RADAR ANTENNA KIT
US4070676A (en) * 1975-10-06 1978-01-24 Ball Corporation Multiple resonance radio frequency microstrip antenna structure
US4518967A (en) * 1982-03-05 1985-05-21 Ford Aerospace & Communications Corporation Tapered-width leaky-waveguide antenna
US5075647A (en) * 1990-05-16 1991-12-24 Universities Research Association, Inc. Planar slot coupled microwave hybrid
FR2680283A1 (en) * 1991-08-07 1993-02-12 Alcatel Espace MINIATURIZED ELEMENTARY RADIOELECTRIC ANTENNA.
FR2705167A1 (en) * 1993-05-11 1994-11-18 France Telecom Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
JP2010050700A (en) * 2008-08-21 2010-03-04 Advanced Telecommunication Research Institute International Antenna device, and array antenna device with the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2481526A1 (en) * 1980-04-23 1981-10-30 Trt Telecom Radio Electr ANTENNA WITH THIN STRUCTURE
GB2212665B (en) * 1987-11-23 1991-09-04 Gen Electric Co Plc A slot antenna
DE3808401A1 (en) * 1988-03-12 1989-09-21 Blaupunkt Werke Gmbh VEHICLE WINDOW WASHER
US6043786A (en) * 1997-05-09 2000-03-28 Motorola, Inc. Multi-band slot antenna structure and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654842A (en) * 1951-07-21 1953-10-06 Fed Telecomm Lab Inc Radio frequency antenna
US2993205A (en) * 1955-08-19 1961-07-18 Litton Ind Of Maryland Inc Surface wave antenna array with radiators for coupling surface wave to free space wave
US2994083A (en) * 1960-05-24 1961-07-25 Sanders Associates Inc High frequency transmission line coupling device
US3031666A (en) * 1955-06-06 1962-04-24 Sanders Associates Inc Three conductor planar antenna
US3218644A (en) * 1963-06-19 1965-11-16 Collins Radio Co Frequency independent slot antenna
US3518688A (en) * 1965-11-22 1970-06-30 Itt Microwave strip transmission line adapted for integral slot antenna
US3524190A (en) * 1967-11-20 1970-08-11 Ryan Aeronautical Co Extendable radio frequency transmission line and antenna structure
US3524189A (en) * 1966-11-09 1970-08-11 Us Army Slotted waveguide antenna array providing dual frequency operation
US3530478A (en) * 1968-03-27 1970-09-22 Us Navy Frequency independent log periodic slot multi-mode antenna array

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654842A (en) * 1951-07-21 1953-10-06 Fed Telecomm Lab Inc Radio frequency antenna
US3031666A (en) * 1955-06-06 1962-04-24 Sanders Associates Inc Three conductor planar antenna
US2993205A (en) * 1955-08-19 1961-07-18 Litton Ind Of Maryland Inc Surface wave antenna array with radiators for coupling surface wave to free space wave
US2994083A (en) * 1960-05-24 1961-07-25 Sanders Associates Inc High frequency transmission line coupling device
US3218644A (en) * 1963-06-19 1965-11-16 Collins Radio Co Frequency independent slot antenna
US3518688A (en) * 1965-11-22 1970-06-30 Itt Microwave strip transmission line adapted for integral slot antenna
US3524189A (en) * 1966-11-09 1970-08-11 Us Army Slotted waveguide antenna array providing dual frequency operation
US3524190A (en) * 1967-11-20 1970-08-11 Ryan Aeronautical Co Extendable radio frequency transmission line and antenna structure
US3530478A (en) * 1968-03-27 1970-09-22 Us Navy Frequency independent log periodic slot multi-mode antenna array

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070676A (en) * 1975-10-06 1978-01-24 Ball Corporation Multiple resonance radio frequency microstrip antenna structure
FR2350706A1 (en) * 1976-05-03 1977-12-02 Raytheon Co IDENTIFIER RADAR ANTENNA KIT
US4518967A (en) * 1982-03-05 1985-05-21 Ford Aerospace & Communications Corporation Tapered-width leaky-waveguide antenna
US5075647A (en) * 1990-05-16 1991-12-24 Universities Research Association, Inc. Planar slot coupled microwave hybrid
FR2680283A1 (en) * 1991-08-07 1993-02-12 Alcatel Espace MINIATURIZED ELEMENTARY RADIOELECTRIC ANTENNA.
EP0527417A1 (en) * 1991-08-07 1993-02-17 Alcatel Espace Miniaturized radio frequency antenna element
US5489913A (en) * 1991-08-07 1996-02-06 Alcatel Espace Miniaturized radio antenna element
FR2705167A1 (en) * 1993-05-11 1994-11-18 France Telecom Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
JP2010050700A (en) * 2008-08-21 2010-03-04 Advanced Telecommunication Research Institute International Antenna device, and array antenna device with the same

Also Published As

Publication number Publication date
GB1285289A (en) 1972-08-16
SE1450769A1 (en) 2014-07-23
SE538451C2 (en) 2016-07-05
NO127999B (en) 1973-09-10
FR2073314A1 (en) 1971-10-01

Similar Documents

Publication Publication Date Title
US10978783B2 (en) Antenna system and mobile terminal
US6043785A (en) Broadband fixed-radius slot antenna arrangement
US4843403A (en) Broadband notch antenna
US6037911A (en) Wide bank printed phase array antenna for microwave and mm-wave applications
US5278569A (en) Plane antenna with high gain and antenna efficiency
CN107134653B (en) Planar compact slot antenna array based on substrate integrated waveguide resonant cavity
US2749545A (en) Electromagnetic horn
US4125837A (en) Dual notch fed electric microstrip dipole antennas
US4395685A (en) Waveguide junction for producing circularly polarized signal
JP2001094340A (en) Slot array antenna with cavity
US3713165A (en) Antenna for strip transmission lines
US6940470B2 (en) Dipole feed arrangement for corner reflector antenna
US3577196A (en) Rollable slot antenna
GB709351A (en) Radio frequency antennae
CN109616766B (en) Antenna system and communication terminal
CN109786938B (en) Mobile terminal
EP0468413A2 (en) Plane antenna with high gain and antenna efficiency
US3164790A (en) Sinuously folded quarter wave stripline directional coupler
US4443805A (en) Plate-type antenna with double circular loops
US2794185A (en) Antenna systems
US3332039A (en) Three conductor coplanar serpentineline directional coupler
US20200411966A1 (en) Radiator, antenna and base station
US2895134A (en) Directional antenna systems
US3541564A (en) Multiple channel zig-zag antenna array
US11264704B2 (en) Base station antenna