US3719479A - Method of fabricating ring shapes by hot pressing - Google Patents

Method of fabricating ring shapes by hot pressing Download PDF

Info

Publication number
US3719479A
US3719479A US00114900A US3719479DA US3719479A US 3719479 A US3719479 A US 3719479A US 00114900 A US00114900 A US 00114900A US 3719479D A US3719479D A US 3719479DA US 3719479 A US3719479 A US 3719479A
Authority
US
United States
Prior art keywords
ring
mold
metal ring
refractory
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00114900A
Inventor
C Flanagan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3719479A publication Critical patent/US3719479A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/027Particular press methods or systems
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/031Pressing powder with other step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49579Watch or clock making
    • Y10T29/49584Watch or clock making having case, cover, or back
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12021All metal or with adjacent metals having metal particles having composition or density gradient or differential porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12201Width or thickness variation or marginal cuts repeating longitudinally

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

Refractory powders are hot pressed into ring shapes of approximately theoretical density by compressing the powders at a temperature of about 1,000* to 2,000*C. under a pressure of about 200 to 5,000 pounds per square inch in a mold cavity containing a metal ring. The ring is located within the cavity at the highest stress point in the ring shape created during the pressing, and during the hot-pressing the metal ring melt-diffuses into pressed refractory powder. The resulting ring shapes are strong and essentially stress free.

Description

United States Patent Flanagan 1 March 6, 1973 [54] METHOD OF FABRICATING RING 2,287,952 6/1942 Tormyn ..29/420 ux SHAPES BY HOT PRESSING 2,571,868 10 1951 Haller ..75/200 ux 2,706,693 4/1955 H ll ....29/l82.1 X lnvemorI Elman Flanagan, Hockessin, 2,753,s59 7/1956 BZnin ..29/182.1 x
[73] Assignee: E. I. du Pont de Nemours and Company, Wilmington Del Primary Examiner-Charles W. Lanham Assistant ExaminerDonald C. Reiley, Ill Flledi 1971 Att0rneyLynn N. Fisher 21 A i.N 114,900 1 pp 0 57 ABSTRACT [52] Us CL 75/226 29/192 R 29/420 5 Refractory powders are hot pressed into ring shapes of ZQ/DIG 6 approximately theoretical density by compressing the 4 l1 powders at'a temperature of about 1,000 to" 2,000C. [51] Int Cl Bzzf 3/24 under a pressure of about 200 to 5,000 pounds per [58] Field of Searchm29/420 420.5 192 R 192 square inch in a mold cavity containing a metal ring, 29/DIG 31 182 179 264/l11 75/20O The ring is located within the cavity at the highest stress point in the ring shape created during the pressing, and during the hot-pressing the metal ring References Cited melt-diffuses into pressed refractory powder. The resulting ring shapes are strong and essentially stress UNITED STATES PATENTS free 2,161,597 6/l939 Swartz ..29/420 UX 6 Claims, 2 Drawing Figures I I t I// sf "1:-"' I I, 7 7 e FIG.
FIG.2
PATENTED 6 E173 METHOD OF FABRICATING RING SHAPES BY HOT PRESSING BACKGROUND OF THE INVENTION late application of pressure and rapid cooling are disclosed in Hot-Pressing High-Density Small Grain Size Beryllia by R. E. Johnson, Ceramic Bulletin, Vol. 43, No. 12 (1964) at pages 886 to 888 and more recently in US. Pat. No. 3,413,392.
In hot pressing ring shapes there is a problem whereinif sufficient pressure is applied to the inner sur- 7 face of the powder ring during compaction, e.g., by a core mold, so that the inner surface does not appreciably deform, the pressure causes the ring shapes to crack after compaction because of the opposition of the core mold to contraction of the dense ring shape on cooling, the contraction being caused by the difference between the thermal expansion of the pressed ring shape and the core mold material, e.g., usually a graphite mold.
In assignees pending application Ser. No. 878,641, filed Nov. 21, 1969, and now abandoned a method for hot pressing ring shapes is disclosed. This method provides sufficient support pressure for the inner surface of the powder ring during compaction to prevent appreciable deformation yet allows contraction of the inner surface of the dense ring shape on cooling to prevent cracking. That method is based on the use of a thin-walled deformable liner inside an outer mold shell as a core mold, in combination with support means inside the deformable liner. The refractory powder is compressed in the space between the deformable liner and shell, with the liner defining the inner surface of the ring. The integrity of the deformable liner is maintained during compression by means of the support means such as a solid rod. After compression and before cooling, the support means can be removed to permit the deformable liner to deform under the contractive pressure of the cooling dense ring; or alternatively it can be maintained when its support pressure is low enough to permit deformation of the liner under the eontractive forces of the ring on cooling.
SUMMARY OF THE INVENTION 1 have discovered an improved method for hotpressing refractory powders into dense ring-shaped compacts at temperatures between 1,000 and 2,000C. and pressures between 200 and 5,000 pounds per square inch which comprises:
1. placing a metal ring into the hollow cavity of a mold assembly, the cavity being defined by the inner surface of an outer mold, the outer surface of an inner core mold and the surface of a piston, said metal ring being located within the cavity at the highest stress point in the ring shape created during the pressing;
2. loading a refractory powder into the remaining portion of the hollow cavity of the mold assembly,
3. inserting an opposed piston into the cavity of the mold assembly;
4. inserting the mold assembly into the heating zone of a hot press;
5. engaging the pistons of the mold assembly between the rams of the press;
6. heating and compressing the refractory powder and metal ring to diffuse the metal into the pressed ring shape and to obtain the desired density; and
7. cooling the resultant dense product.
For some reason not exactly understood, the meltdiffusion of the metal ring into the refractory powders during the hot-pressing, provides an essentially stressfree or stronger ring shaped compact. The process is useful with many types of refractory powders and results in a novel, useful product. Further the process of the invention results in a ring shape with one of its surfaces being under compression.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a vertical cross-section of an embodiment of the invention illustrating a mold assembly prior to the hot-pressing step.
FIG. 2 is the same vertical cross-section after the hot pressing step.
DETAILED DESCRIPTION OF THE INVENTION The process of this invention can be applied to a variety of refractory powders such as oxides, borides, nitrides, carbides, silicides, beryllides, sulfides, mixtures of such refractory powders, and mixtures of one or more refractory powders with one or more metals such as iron, cobalt, nickel, tungsten, molybdenum, chromium, titanium, zirconium, niobium, tantalum, hafnium, their mixtures with each other, and their mixtures and alloys with other metals. Mixtures of the refractory powders with iron, cobalt, nickel, molybdenum, tungsten or mixtures thereof are particularly preferred because of their desirable physical properties.
The process is useful in compacting tungsten carbide, silicon carbide, aluminum oxide, tantalum carbide, titanium carbide, titanium nitride, aluminum nitride, and mixtures thereof when these materials are bonded with metals, e.g., cobalt, nickel, cobalt-tungsten, nickel-molybdenum and nickel-tungsten alloys, and the like. Materials particularly useful in the process of the invention are the cobalt bonded tungsten carbides of U.S. Pat. No. 3,451,791, the metal bonded nitrides of U.S. Pat. Nos. 3,409,416 and 3,409,419 particularly nickel molybdenum or nickel tungsten bonded titanium and alumina nitrides, and the metal bonded alumina-titanium carbide material of US. Pat. No. 3,542,529, e.g., nickel-molybdenum bonded alumina and titanium carbide and the nickel-molybdenum bonded titanium nitride-titanium carbides of [1.8. Pat. No. 3,671,201.
The improvement embodied in the process of the invention is the use of a metal ring in the mold cavity. This metal ring is melted during the hot pressing operation and diffuses into the refractory powder or metalrefractory powder mixture while they are being compacted. The metal ring disappears during the hotpressing, and relieves the stress within the ring that would otherwise be caused during cooling and contraction. After the hot-pressing has been completed, part of the space originally occupied by the metal ring may remain as a void.
It is important where the metal ring is located in the mold cavity. It should be located at the highest stress point created by the hot-pressing step, i.e., the ring is located at the point in the finished ring shape which will fracture due to internal stresses. When ring shapes are made by hot pressing, as the ring shape cools down, stress is created within the shape due to contraction. Depending upon the design of the ring shape, there is usually one area that will have the greatest stress. It is this area of the ring shape that will fracture during cooling, or when the ring shape is dropped.
The area where the metal ring should be located can normally be determined by a study of the cross section of the ring shape. Or, if desired, ring shapes can be hot pressed without using the metal ring, and the highest stress point can be determined by examination of where the fracture occurs.
Generally the highest stress point will be located where there are the sharpest or smallest angles between the adjacent outer surfaces of the inner core mold. However, resistance to fracture on cooling also will often be less at those parts of the ring shape with the smallest cross section. Thus in the hot pressing of some ring shapes, the ring shape may be located adjacent the inner surface of the outer mold rather than adjacent the inner core mold.
The reason why the melt-diffusion of the metal ring alleviates fracturing problems is not fully understood. The melt-diffusion of the metal ring may help by stressrelief, or the melt-diffusion of the metal may form a new material with greater strength in the immediate area where the metal ring had been located. In any event, a stronger, essentially stress-free ring shaped body is obtained.
Further the metal ring will usually not be located such that the metal ring will diffuse into the useful or working surface of the ring shape. Usually it is desirable to keep this useful or working surface homogeneous. For example, if the ring shape is to be used for jewelry, e.g., a watch case, the ring should not be located such that it will melt-diffuse into the surface that will be visible.
The size of the metal ring inserted into the mold can vary over a wide range. Broadly the metal ring should be of sufficient thickness to provide the desired strength in the pressed ring shape. However, it should not be of such a thickness that the metal will melt-diffuse into the useful or working surface. Generally the thickness of the metal ring will vary from one-third to one-twentieth of the thickness of the area of the ring shape where it is located, and usually one-fourth to one-tenth of this thickness.
The metal used for the ring must be one that will not react significantly with the mold parts, usually graphite, at the pressing temperature and contact times involved in the process. The metal must also be one that will melt-diffuse into the refractory powders during the processing step. With the previously set forth refractory materials and their mixtures with metals, the metal can be iron, an iron based alloy, e.g., steel or stainless steel, cobalt, cobalt alloys, nickel, nickel alloys or mixtures thereof.
Optimum temperatures, pressures and times of application for the various refractory powders and their mixtures with metals will vary and should be such that there is a substantially complete diffusion of the metal ring into the compacted ring shape. The pressing temperature should exceed the lowest eutectic temperature of the metal of the ring with the refractory powders adjacent thereto.
In many embodiments it is desired during the hot pressing step to first apply a low pressure to the refractory powders. This low pressure is maintained during a heat-up and a hold period to force the material to conform to the mold. The material is then hot pressed for a short time by applying a high pressure.
When used, the initial or low pressure applied to the refractory material will range between 50 and 1,000 pounds per square inch. This pressure is applied for 1 to 10 minutes as the powder heats up to the pressing temperature and for a hold period of up to 10 minutes in .order to force the powder sample to fill the mold cavity.
The final pressures applied during the process of the invention generally range from a minimum of about 1,000 pounds per square inch to 5,000 pounds per square inch for 10 seconds to 10 minutes, but in the case of operating at lower temperatures, e.g., 1,000C. with molybdenum molds, pressures up to 30,000 pounds per square inch could be used, although these are generally not necessary. The pressure used at the required temperature must be sufficient to compact the material to a density of at least percent of theory for the refractory composition involved and preferably in excess of 99 percent. In the most preferred case, the
sample will be compressed to a density of 100 percent of theory.
The temperatures produced generally range from about 500C. to 2,500C., and under most operating conditions a temperature between 1,000C. and 2,000C. is required to fabricate true refractory materials to high density. The materials of construction of the hot press generally impose a maximum temperature of about 2,000C., since above this temperature most of the materials used lack sufficient strength.
In many embodiments of the process of this invention, depending upon the refractory powders being used and the pressing conditions, it will be desirable to perform some or all of the steps in the absence of oxygen. An oxygen free environ-ment can be obtained by methods known to the art such as locating the equipment within a sealed housing and maintaining a vacuum or an inert gas atmosphere within the housing.
The metal ring and refractory powder are located within the desired mold cavity. This cavity is formed by the inner surface of an outer mold, the outer surface of an inner mold, and two opposite pistons. As is apparent to those skilled in the art, the above description of the mold cavity could be varied without departing from the process of the invention; all that is necessary is that the mold be useful for forming ring shapes. Thus if desired, the inner core mold and one of the pistons could be an integral unit.
A useful mold assembly is set forth in the Figures and will now be described.
Referring to FIG. 1, in this embodiment of the invention, the sample of refractory powder 1 is in the space between the outer mold 2, an integral inner core mold and lower piston 3 and a hollow top piston 4. The metal ring 5 is located within mold cavity at the highest stress point created by the pressing, i.e., in this embodiment, adjacent the inner core mold. The powder can be loaded by simply pouring it into the cavity formed by the outer mold, the integral inner core mold and lower piston before the insertion of the hollow top piston. The pistons slide in the space between the outer mold and with each other. The refractory powder is compacted by the application of pressure in the direction of the arrows, transmitted through the press rams 6, which are activated by means such as pneumatic or hydraulic jacks or presses.
FIG. 2 illustrates the mold assembly after the hotpressing step has been completed. The refractory powder 1 has now been compacted and the metal ring has disappeared. Instead the metal has melt-diffused 7 into the compacted refractory powder. In this embodiment, the melt-diffusion of the metal ring is illustrated as having created a void where the ring was located.
The shape and dimensions of the mold can vary as will be apparent to those skilled in the art. Thus the outer mold can have an interior shape that is round, square, elliptical or any other practical shape, the inner core mold's outer surface may have a corresponding or different shape from that of the outer mold, but is usually round.
The mold assembly parts can be made of any suitable refractory material which has good strength at high temperatures. Representative of suitable materials are alumina, zirconia, beryllia, silicon carbide, boron nitride, boron carbide, zirconium carbide, molybdenum, tungsten, tungsten carbide, titanium carbide, tantalum carbide, titanium borid-e, various mixtures of these materials, and graphite. While the material used depends to a large extent upon the size of the operation and the pressures and temperatures that will be used in pressing the powder, it is commonly preferred to use graphite for the mold parts.
The dense compact can be cooled slowly or rapidly, such as by leaving it in the heated zone of the hot press or by immediately removing it. It is frequently preferred to cool the compact very rapidly once densification is complete.
The method and apparatus of this invention can be utilized in a single unit hot-pressing operation or they can be optimized by the rapid procedures disclosed in US. Pat. No. 3,413,392. It is similarly possible to utilize horizontal as well as vertical hot-press techniques as well as multiple molds in a single press. In the process of the invention the mold assembly is inserted into a heating susceptor or heating zone of a hot-press, if desired it can be pre-heated, or it can be heated in place by inductive heating, dielectric heating, resistance heating, plasma torch, hot vapors or any other means known to the art.
The method and apparatus of this invention are further illustrated in the following examples wherein parts and percentages are by weight unless otherwise noted.
EXAMPLE 1 Within a mold cavity designed to form a ring is loaded l,060 parts of titanium carbide, 2,400 parts of titanium nitride, 250 parts of nickel and 290 parts of molybdenum.
These powders have been prepared by charging a 2.6 gallon Sweco Vibro-Energy" mill with the indicated amount of titanium carbide in the form of a 2-4 micron powder, titanium nitride of 325 mesh size, a nickel powder (Mond No. B-287 of International Nickel Corporation) and a molybdenum powder (Grade 390/100, Sylvania Electric Products). Also charged into the mill is 160 parts of cylindrical sintered alumina grinding media. After all the ingredients have been added, the mill is operated for 24 hours.
Previously a steel ring having one-fourth the thickness of the desired ring shape has been placed within the mold adjacent the outer mold surface. The mold is gently tapped while charging the powder, to pack and distribute it evenly. An upper piston is then fitted into the mold and the entire assembly is placed in the heat zone of a hot press, the mold being held in a vertical position between the rams of the press.
Pressure is applied to the rams to compact the sample under a pressure of 500 pounds per square inch, the temperature of the furnace is brought to 1,400C., and the pressure on the sample is increased to 4,000 pounds per square inch. After twelve minutes at l,700C. and 4,000 pounds per square inch, the furnace is shut off and the rams are withdrawn. After being allowed to cool, the mold is removed from the furnace and the sample is force out of the mold.
The steel ring is no longer present and by visual observation it can be noted that the steel has melt-diffused into the ring shape. The resulting ring is accurately molded to the desired dimensions and requires very little finishing prior to use. Further it is strong, essentially stress-free, and can be used as a die.
EXAMPLE 2 A ring, suitable for polishing to give a wrist watch case, is fabricated by hot pressing a composition consisting of 3,000 parts of titanium nitride, 240 parts of aluminum nitride, 1,050 parts of nickel and 400 parts of molybdenum in a mold containing a steel ring adjacent the inner core mold. The graphite mold assembly is similar to that illustrated in FIG. 1. The ring shape to be pressed as an outside diameter of two inches, an inside diameter of one inch and an average thickness of three-eighths of an inch. The metal ring used has a thickness of one-eighth of an inch.
The powder mixture is prepared from the following materials:
-325 mesh grade titanium nitride powder having a specific surface area by nitrogen adsorption of 1.1 square meters per gram, available from Materials for Industry Inc.;
325 mesh grade aluminum nitride powder having a specific surface area by nitrogen adsorption of 2.3 square meters per gram, available from Materials for Industry Inc.;
Fine nickel powder having a specific surface area of 0.48 square meters per gram, available from International Nickel Co.; and Fine molybdenum powder sold as Grade 390/100 by Sylvania Electric Products.
These constituents are milled for 24 hours in a mill using cylindrical sintered alumina as the grinding media. The milled materials are recovered from the mill, washed with hexane and dried under vacuum. The dry powder is then passed through a mesh screen, in a nitrogen atmosphere.
The powder prepared as described above is charged to the mold and hot pressed as described in Example 1. After five minutes at 1,400C. and 4,000 pounds per square inch the mold assembly is removed from the hot zone and allowed to cool rapidly. The sample is then forced out of the mold by applying pressure and the resulting watch case then requires only surface polishing with diamond abrasive in order to develop an attractive appearance. The steel ring has disappeared and the watch case is strong and essentially stress free.
EXAMPLE 3 The procedures set forth in Example 2 are followed except that the refractory powder used has the following composition:
3,000 parts of titanium nitride 275 parts of alumina 310 parts of nickel 350 parts of molybdenum the alumina being a fine (-325 mesh) alpha alumina powder powder commercially available as Alcoa Superground Alumina XA-l6.
lclaim:
1. An improved method for hot-pressing refractory powders into dense ring-shaped compacts at a temperature of between 1,000 and 2,000C. and a pressure between 200 and 5,000 pounds per square inch comprising l. placing a metal ring into the hollow cavity of a mold assembly, the cavity being defined by the inner surface of an outer mold, the outer surface of an inner core mold and the surface of a piston, said metal ring being located within the cavity at the highest stress point in the ring shape created during the pressing;
2. loading a refractory powder into the remaining portion of the hollow cavity of the mold assembly,
3. inserting an opposed piston into the cavity of the mold assembly;
4. inserting the mold assembly into the heating zone of a hot press;
5. engaging the pistons of the mold assembly between the rams of the press;
6. heating and compressing the refractory powder and metal ring to diffuse the metal into the pressed ring shape and to obtain the desired density; and
7. cooling the resultant dense product.
2. The method of claim 1 wherein the ring-shaped compact is a watch case and the metal ring is an iron based alloy.
3. The process of claim 1 wherein the dense product is a watch case, the metal ring is an iron based alloy and the refractory powder is cobalt bonded tungsten carbide.
4. The process of claim 1 wherein the dense product is a watch case, the metal ring is an iron based alloy and the refractory powder is nickel-molybdenum or nickeltungsten bonded titanium nitride and aluminum nitride.
5. The process of claim 1 wherein the dense product is a watch case, the metal ring is an iron based alloy and the refractory powder is nickel-molybdenum bonded alumina and titanium carbide.
6. The process of claim 1 wherein the dense product is a watch case, the metal ring is an iron based alloy and the refractory powder is nickel-molybdenum bonded titanium carbide and titanium nitride.

Claims (11)

1. An improved method for hot-pressing refractory powders into dense ring-shaped compacts at a temperature of between 1,000* and 2,000*C. and a pressure between 200 and 5,000 pounds per square inch comprising
1. placing a metal ring into the hollow cavity of a mold assembly, the cavity being defined by the inner surface of an outer mold, the outer surface of an inner core mold and the surface of a piston, said metal ring being located within the cavity at the highest stress point in the ring shape created during the pressing;
2. loading a refractory powder into the remaining portion of the hollow cavity of the mold assembly,
2. The method of claim 1 wherein the ring-shaped compact is a watch case and the metal ring is an iron based alloy.
3. The process of claim 1 wherein the dense product is a watch case, the metal ring is an iron based alloy and the refractory powder is cobalt bonded tungsten carbide.
3. inserting an opposed piston into the cavity of the mold assembly;
4. inserting the mold assembly into the heating zone of a hot press;
4. The process of claim 1 wherein the dense product is a watch case, the metal ring is an iron based alloy and the refractory powder is nickel-molybdenum or nickel-tungsten bonded titanium nitride and aluminum nitride.
5. The process of claim 1 wherein the dense product is a watch case, the metal ring is an iron based alloy and the refractory powder is nickel-molybdenum bonded alumina and titanium carbide.
5. engaging the pistons of the mold assembly between the rams of the press;
7. cooling the resultant dense product.
US00114900A 1971-02-12 1971-02-12 Method of fabricating ring shapes by hot pressing Expired - Lifetime US3719479A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11490071A 1971-02-12 1971-02-12

Publications (1)

Publication Number Publication Date
US3719479A true US3719479A (en) 1973-03-06

Family

ID=22358112

Family Applications (1)

Application Number Title Priority Date Filing Date
US00114900A Expired - Lifetime US3719479A (en) 1971-02-12 1971-02-12 Method of fabricating ring shapes by hot pressing

Country Status (1)

Country Link
US (1) US3719479A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912500A (en) * 1972-12-27 1975-10-14 Leonid Fedorovich Vereschagin Process for producing diamond-metallic materials
US4087894A (en) * 1975-12-04 1978-05-09 Societe Suisse Pour L'industrie Horlogere Management Services, S.A. Method of manufacture of watch case
US4144060A (en) * 1978-02-03 1979-03-13 General Motors Corporation Method of fabricating rare earth-transition metal magnets
US4339935A (en) * 1980-04-15 1982-07-20 Ab Carbox Method for calibrating tubular articles
US4368074A (en) * 1977-12-09 1983-01-11 Aluminum Company Of America Method of producing a high temperature metal powder component
US4497873A (en) * 1983-01-06 1985-02-05 The United States Of America As Represented By The Department Of Energy Isentropic compressive wave generator impact pillow and method of making same
GB2214932A (en) * 1988-02-11 1989-09-13 Sheepbridge Sintered Products Producing cylindrical metallic friction elements by sintering powder
US5279909A (en) * 1992-05-01 1994-01-18 General Atomics Compact multilayer ceramic-to-metal seal structure
WO1999012443A1 (en) * 1997-09-08 1999-03-18 West Trent W Wear resistant jewelry apparatus and method
US6062045A (en) * 1998-09-08 2000-05-16 West; Trent W. Wear resistance jewelry
US6553667B1 (en) 1997-09-08 2003-04-29 Trent West Apparatus and method for manufacturing composite articles including wear resistant jewelry and medical and industrial devices and components thereof
US6561787B2 (en) 1999-09-29 2003-05-13 Kansas State University Research Foundation Apparatus for forming biodegradable and edible feed packaging materials
US6928734B1 (en) 1997-09-08 2005-08-16 Trent West Jewelry ring and method of manufacturing same
WO2005113464A1 (en) * 2004-05-19 2005-12-01 Ceramtec Ag Innovative Ceramic Engineering Method for producing metal ceramic composite materials
US8033805B2 (en) 2007-11-27 2011-10-11 Kennametal Inc. Method and apparatus for cross-passageway pressing to produce cutting inserts
US20120055100A1 (en) * 2009-05-29 2012-03-08 Hiroshi Yamazoe Method and apparatus for producing metal bond grind stone
US20120093675A1 (en) * 2010-10-14 2012-04-19 Stuller, Inc. Tungsten carbide ring composition
US8927107B2 (en) 2011-06-03 2015-01-06 Frederick Goldman, Inc. Multi-coated metallic products and methods of making the same
US8956510B2 (en) 2011-06-03 2015-02-17 Frederick Goldman, Inc. Coated metallic products and methods for making the same
US20160115076A1 (en) * 2013-07-15 2016-04-28 S. A. Lhoist Recherche Et Developpement Compositions Comprising One or More Calcium-Magnesium Compounds in the Form of Compacts
US9949539B2 (en) 2010-06-03 2018-04-24 Frederick Goldman, Inc. Method of making multi-coated metallic article
CN109226772A (en) * 2018-11-20 2019-01-18 深圳艾利佳材料科技有限公司 A kind of hot shaping methods of high-yield strength powder metallurgy product
CN112170833A (en) * 2020-09-27 2021-01-05 横店集团东磁股份有限公司 Core rod for powder metallurgy and processing technology thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2161597A (en) * 1936-07-22 1939-06-06 Cleveland Graphite Bronze Co Method of bonding powdered metallic material
US2287952A (en) * 1939-08-28 1942-06-30 Gen Motors Corp Brake drum and method of making same
US2571868A (en) * 1950-03-20 1951-10-16 Haller John Composite powdered metal bearing
US2706693A (en) * 1951-02-10 1955-04-19 Allied Prod Corp Process of impregnating metal bearings
US2753859A (en) * 1952-03-07 1956-07-10 Thompson Prod Inc Valve seat insert

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2161597A (en) * 1936-07-22 1939-06-06 Cleveland Graphite Bronze Co Method of bonding powdered metallic material
US2287952A (en) * 1939-08-28 1942-06-30 Gen Motors Corp Brake drum and method of making same
US2571868A (en) * 1950-03-20 1951-10-16 Haller John Composite powdered metal bearing
US2706693A (en) * 1951-02-10 1955-04-19 Allied Prod Corp Process of impregnating metal bearings
US2753859A (en) * 1952-03-07 1956-07-10 Thompson Prod Inc Valve seat insert

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912500A (en) * 1972-12-27 1975-10-14 Leonid Fedorovich Vereschagin Process for producing diamond-metallic materials
US4087894A (en) * 1975-12-04 1978-05-09 Societe Suisse Pour L'industrie Horlogere Management Services, S.A. Method of manufacture of watch case
US4368074A (en) * 1977-12-09 1983-01-11 Aluminum Company Of America Method of producing a high temperature metal powder component
US4144060A (en) * 1978-02-03 1979-03-13 General Motors Corporation Method of fabricating rare earth-transition metal magnets
US4339935A (en) * 1980-04-15 1982-07-20 Ab Carbox Method for calibrating tubular articles
US4382373A (en) * 1980-04-15 1983-05-10 Ab Carbox Apparatus for calibrating tubular articles
US4497873A (en) * 1983-01-06 1985-02-05 The United States Of America As Represented By The Department Of Energy Isentropic compressive wave generator impact pillow and method of making same
GB2214932A (en) * 1988-02-11 1989-09-13 Sheepbridge Sintered Products Producing cylindrical metallic friction elements by sintering powder
US5279909A (en) * 1992-05-01 1994-01-18 General Atomics Compact multilayer ceramic-to-metal seal structure
US20060123608A1 (en) * 1997-09-08 2006-06-15 Trent West Methods of making tungsten carbide-based annular jewelry rings
WO1999012443A1 (en) * 1997-09-08 1999-03-18 West Trent W Wear resistant jewelry apparatus and method
US6553667B1 (en) 1997-09-08 2003-04-29 Trent West Apparatus and method for manufacturing composite articles including wear resistant jewelry and medical and industrial devices and components thereof
US20100307005A1 (en) * 1997-09-08 2010-12-09 Trent West Methods Of Making Tungsten Carbide-Based Annular Jewelry Rings
US7761996B2 (en) 1997-09-08 2010-07-27 Trent West Methods of making tungsten carbide-based annular jewelry rings
US20040020242A1 (en) * 1997-09-08 2004-02-05 Trent West Tungsten carbide-based annular jewelry article
US20040025348A1 (en) * 1997-09-08 2004-02-12 Trent West Methods and jewelry articles comprising sintered tungsten carbide
US8584360B2 (en) 1997-09-08 2013-11-19 Trent West Methods of making tungsten carbide-based annular jewelry rings
US6928734B1 (en) 1997-09-08 2005-08-16 Trent West Jewelry ring and method of manufacturing same
US20060254314A1 (en) * 1997-09-08 2006-11-16 Trent West Tungsten carbide-based finger rings
US6990736B2 (en) 1997-09-08 2006-01-31 Trent West Methods for preparing jewelry articles comprising sintered tungsten carbide
US6993842B2 (en) 1997-09-08 2006-02-07 Trent West Methods and jewelry articles comprising sintered tungsten carbide
US7032314B2 (en) 1997-09-08 2006-04-25 Trent West Methods of making tungsten carbide-based annular jewelry rings
US8061033B2 (en) 1997-09-08 2011-11-22 Trent West Methods of making tungsten carbide-based annular jewelry rings
US7076972B2 (en) 1997-09-08 2006-07-18 Trent West Tungsten carbide-based annular jewelry article
US6062045A (en) * 1998-09-08 2000-05-16 West; Trent W. Wear resistance jewelry
US6716022B2 (en) 1999-09-29 2004-04-06 Kansas State University Research Foundation Biodegradable and edible feed packaging materials
US20030185928A1 (en) * 1999-09-29 2003-10-02 Sun Xiuzhi S. Biodegradable and edible feed packaging materials
US6561787B2 (en) 1999-09-29 2003-05-13 Kansas State University Research Foundation Apparatus for forming biodegradable and edible feed packaging materials
WO2005113464A1 (en) * 2004-05-19 2005-12-01 Ceramtec Ag Innovative Ceramic Engineering Method for producing metal ceramic composite materials
US20080230940A1 (en) * 2004-05-19 2008-09-25 Ceramtec Ag Innovative Ceramic Engineering Method For Producing Metal-Ceramic-Composite Materials
US8033805B2 (en) 2007-11-27 2011-10-11 Kennametal Inc. Method and apparatus for cross-passageway pressing to produce cutting inserts
US20120055100A1 (en) * 2009-05-29 2012-03-08 Hiroshi Yamazoe Method and apparatus for producing metal bond grind stone
US11503886B2 (en) 2010-06-03 2022-11-22 Frederick Goldman, Inc. Multi-coated metallic articles
US9949539B2 (en) 2010-06-03 2018-04-24 Frederick Goldman, Inc. Method of making multi-coated metallic article
US20120093675A1 (en) * 2010-10-14 2012-04-19 Stuller, Inc. Tungsten carbide ring composition
US8956510B2 (en) 2011-06-03 2015-02-17 Frederick Goldman, Inc. Coated metallic products and methods for making the same
US9034488B2 (en) 2011-06-03 2015-05-19 Frederick Goldman, Inc. Coated metallic products and methods for making the same
US11234500B2 (en) 2011-06-03 2022-02-01 Frederick Goldman, Inc. Multi-coated metallic products and methods of making the same
US9629425B2 (en) 2011-06-03 2017-04-25 Frederick Goldman, Inc. Coated metallic products and methods for making the same
US8932437B2 (en) 2011-06-03 2015-01-13 Frederick Goldman, Inc. Multi-coated metallic products and methods of making the same
US9949538B2 (en) 2011-06-03 2018-04-24 Frederick Goldman, Inc. Multi-coated metallic products and methods of making the same
US8927107B2 (en) 2011-06-03 2015-01-06 Frederick Goldman, Inc. Multi-coated metallic products and methods of making the same
US20160115076A1 (en) * 2013-07-15 2016-04-28 S. A. Lhoist Recherche Et Developpement Compositions Comprising One or More Calcium-Magnesium Compounds in the Form of Compacts
CN109226772A (en) * 2018-11-20 2019-01-18 深圳艾利佳材料科技有限公司 A kind of hot shaping methods of high-yield strength powder metallurgy product
CN112170833A (en) * 2020-09-27 2021-01-05 横店集团东磁股份有限公司 Core rod for powder metallurgy and processing technology thereof

Similar Documents

Publication Publication Date Title
US3719479A (en) Method of fabricating ring shapes by hot pressing
US3574580A (en) Process for producing sintered diamond compact and products
US3758662A (en) In carbonaceous mold forming dense carbide articles from molten refractory metal contained
US4807402A (en) Diamond and cubic boron nitride
US3455682A (en) Isostatic hot pressing of refractory bodies
US4041123A (en) Method of compacting shaped powdered objects
US3700435A (en) Method for making powder metallurgy shapes
US4167399A (en) Process for preparing a polycrystalline diamond body
US3555597A (en) Apparatus for hot pressing refractory materials
US4612162A (en) Method for producing a high density metal article
JPH0130882B2 (en)
US4248606A (en) Supported diamond
US4368074A (en) Method of producing a high temperature metal powder component
US4164527A (en) Method of making superhard articles
CN110372394A (en) A kind of high-ductility high resiliency boron nitride ceramic of compact and preparation method thereof
US4601877A (en) Press sintering process for green compacts and apparatus therefor
JPH08501022A (en) Mold parts for cans
US3816586A (en) Method of fabricating boron suboxide articles
US3258514A (en) Hot pressing of powdered refractory material
US3632708A (en) Use of expanded anisotropic graphite as multi-cavity mold for hot pressing
US4215088A (en) Method for fabricating boron carbide articles
US4564501A (en) Applying pressure while article cools
US3356495A (en) Method for producing high density tungsten ingots
US3518336A (en) Method of forming a compact article of particulate material
US3759709A (en) Method for producing porous metal products