US3728428A - Process for producing hollow filaments - Google Patents

Process for producing hollow filaments Download PDF

Info

Publication number
US3728428A
US3728428A US00151749A US3728428DA US3728428A US 3728428 A US3728428 A US 3728428A US 00151749 A US00151749 A US 00151749A US 3728428D A US3728428D A US 3728428DA US 3728428 A US3728428 A US 3728428A
Authority
US
United States
Prior art keywords
slots
filaments
spinnerette
hollow
dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00151749A
Inventor
G Turner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Chemical Corp filed Critical Allied Chemical Corp
Application granted granted Critical
Publication of US3728428A publication Critical patent/US3728428A/en
Anticipated expiration legal-status Critical
Assigned to MULTIPRESS, INC. reassignment MULTIPRESS, INC. TERMINATION Assignors: PROVIDENT BANK, THE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Definitions

  • ABSTRACT [22] Filed: June 10, 1971 Appl. No.: 151,749
  • polymer occluding area defined by the arrangement of the slots forms substantially an equilateral triangle.
  • the round openings are arranged near or at the ends of the slots, but not in communication with the slots. Filaments melt spun from the nested embodiment of this spinnerette consistently have above 35 percent hollow space. The spinnerette is much less subject to breakage than similar designs. Specific parameters for spinning with such as orifice configuration are set forth.
  • This invention is related to a spinnerette hole configuration for producing shaped hollow filaments from synthetic fiber-forming compositions.
  • hollow filaments have certain advantages over solid filaments having the same outer diameters. Some of the advantages which hollow filaments have over solid filaments include: improved insulation properties, increased bouyancy, reduced pilling, special optical effects, and greater covering power per unit weight. Hollow filaments also have less tendency to fibrillate under flexing conditions than corresponding solid filaments.
  • spinnerette commonly used to produce hollow filaments employs orifices containing an internal obstructing member which causes the orifice to function as an annulus.
  • the obstructive members are usually joined to the spinnerette body by internal support members upstream from the extrusion face of the spinnerette. This type of spinnerette is difficult to make and presents a major problem in repair and cleanliness.
  • spinnerettes available that employ a multitude of unobstructed orifices grouped in a perimeter.
  • the orifices exist in various cross-sectional shapes such as tri-slot modified triangular, circular, rectangular, crescent shape or other curvi-linear or polygonal shapes spaced in close proximity to essentially circumscribe an area of the spinnerette plate. The circumscribed area blocks the flow of extrudate as the molten polymer streams emerging from the closely spaced orifices coalesce to form hollow filaments.
  • spinnerettes require very close spacing between adjacent orifices to permit proper coalescence of the extrudate streams with the result that the thickness of the web of intervening metal between orifices is so small as to cause structural weakness and difficulties with fabrication.
  • the weakened nature of these spinnerettes is particularly significant in the melt spinning of synthetic fibers because the extrusion pressures required will often cause distortion or actual rupture of spinnerettes which are not properly designed.
  • Another serious problem encountered with orifices spaced too closely is that polymer coalescence may occur too close to the spinnerette face thus preventing the entrance of air into the hollow cavity of the filament. Therefore, the resultant vacuum within the filament causes internal coalescence of the molten polymer which minimizes or completely eliminates the central cavity.
  • the principal objective of the present invention is to provide a spinnerette for producing hollow filaments having the maximum internal cavity obtainable within a given filament. It has been found that these objects among others can be achieved through the use of a spinnerette having at least one group of at least three slots, and a corresponding equal number of round openings or dots arranged so that a substantially equilateral polygonal area is circumscribed by the slots which produce an orifice.
  • the round openings or dots are spaced from the slots at or near the apex of each angle.
  • the preferred configuration is three slots and three dots used to form a triangle. Because the orifice configuration of this invention permits entry of air from at least six points, this invention also overcomes the problem of vacuum within the cavity of the filament.
  • the round opening or dot portion serves several functions. Because the round openings or dots relieve pressure at corner stress points, the spin head holes of this invention very seldom explode, implode or sink at one corner portion. Another important function is the fact that the proper amount of air enters the cavity of the hollow filament while maintaining superior fusing or coalescing of filament sides and proper polymer flow. Also using the preferred embodiment as an example, a substantially equilateral triangular polymer occluding area is formed which contributes to the maximum amount of open or hollow space within the filarnent cross-section. Another important result achieved by this particular arrangement and configuration of slots and openings is the fact that the walls of the hollow filaments are quite uniform. Because of the round openings at or near the apex of each angle there are no large areas formed at the apices or points where coalescence occurs.
  • the product obtained from the practice of this invention is a synthetic filament consisting of a polygonalshaped sheath and an internal, longitudinally extending polygonal cavity centrally disposed with respect to the filament axis and the peripheral contour of the crosssection of the cavity being the shape of the area 0c cluded at the die face.
  • both the cavity and sheath will be essentially constant along the length of the filament.
  • the cavity may occupy up to about 60 percent of the entire cross-sectional area of the filament depending upon the width and length of the slots. Even with low viscosity polymers a high percent hollow filament can be formed. 7
  • the slot-dot configuration of this invention can provide a filament having a cross-sectional variance in polymer crystal orientation due to the different attenuations through the slots as compared to the dots. This makes an easily crimpable fiber by merely stretching the filament.
  • the filaments produced by the slot-dot configuration have potentially desirable optical properties for uses in apparel and carpeting.
  • Thermoplastic polymers suitable for use in the present invention include most of the fiber-forming melt-spinnable compositions. , These compositions which are preferred include polyesters, such as polyethylene terephthalate and polyhexahydro p-xylylene terephthalate; polyamides such as a polyhexamethylene adipamide and polycaproamides; polyolefins, such as polyethylene and polypropylene, polyurethanes; polyesteramides; polyethers; and other synthetic polymers and mixtures thereof.
  • polyesters such as polyethylene terephthalate and polyhexahydro p-xylylene terephthalate
  • polyamides such as a polyhexamethylene adipamide and polycaproamides
  • polyolefins such as polyethylene and polypropylene, polyurethanes
  • polyesteramides such as polyethylene and polypropylene, polyurethanes
  • polyesteramides such as polyethylene and polypropylene, polyurethanes
  • Filaments produced by the spinnerette of the present invention have been found to be extremely useful for floatation materials because of their low density crosssection. They may be used in the form of monofilament and multifilament yarn, tow, cords,'and staple spun yarns. The filaments may be blended with other fibrous materials, and may be employed in crimped or uncrimped conditions. 7
  • filaments of this invention are further useful in textile applications such as sewing thread, tire cord, fiber-reinforced laminates, upholstery, carpeting, drapery, curtains, ducks, parachutes, reinforced belts and hoses, marine lines, ropes and netting, and other applications.
  • the filaments may be admixed with solid core filamentary structures of various modified cross-section of the same or different denier and the same or different chemical composition to produce various special effects.
  • FIG. 1 is a fragmentary section of a spinnerette plate illustrating the preferred arrangement and configurations of a group of slots and nested round openings or dots forming an orifice in accordance with this invention.
  • FIG. 2 is another fragmentary section of a spinnerette plate illustrating another embodiment with the dots in an end-on configuration with the slots.
  • Hole An opening or set of openings which are common to a single counterbore and produce a monofil.
  • Web A narrowed solid portion of a spinnerette hole area which lies between adjacent openings. For example, the narrowest dimension between a slot and a dot shown as tin FIG. 1 and FIG. 2.
  • Configuration Spinnerette holes of this invention are formed by combinations of slots and capillaries or dotsQand preferably take the form of an equilateral triangle, See FIGS. 1 and 2.
  • the capillaries (dots) may be end-on to the slots (FIG. 2) or nested between slots (FIG. 1).
  • the slots are labelled 1, and dots 2 in both figures. The dimensions are shown as:
  • Length-Width Ratio Wlthin the limits of slot length and width discussed, it has been found that probable operating ranges of the ratio of slot length to width are between 10 to for a slot-dot configuration (6 webs). For ratios below 10 the resulting filament becomes rounded with a reduced hollow area. Above the upper limit mentioned, an inward collapse of the walls may occur, again resulting in a reduced hollow area and loss of cross-section identity.
  • the radius (D/2) of the dots is preferred to be substantially equal to the slot width (h); but can vary between 2 and 12 mils., preferably 2 and 8 mils.
  • the centers of the dots 2 are aligned directly with the inside edge of the slot 1.
  • the dots 2 could be arranged in any end-on configuration, such as aligned with the slot 1 center line, or the outside edge or beyond.
  • the preferred configuration is the nested arrangement shown in FIG. 1. Typical dimensions would be:
  • the dots are preferably arranged with each circumference within the sides of the angle described by the inside edges of adjacent slots. Particularly preferred is the configuration shown inFIG. l, i. e., the circumference of each dot is tangent to an imaginary line between the nearest adjacent comers of the slots, and equidistant therefrom.
  • the arrangement of slots in relation to dots is essential to proper operation. For example, by extending the slots beyond the nested dots it was found that good closure (coalescence or fusing sides to each other) is assured but that the cavity collapses because insufficient air is drawn into the hollow Width Limits for width (h) fall between 3 mils.
  • melt temperature can be varied to produce closure and exhibit some control over the targeted void area.
  • a low melt temperature may help in closure, in increasing void area, and to produce a better defined cross-section; but one must not go so low as to affect the drawability of the product.
  • the melt temperature As the melt temperature is increased the melt becomes more mobile producing some smoothing of the cross-section and reduction in void area, which in many cases is desirable.
  • a temperature of from about 240 C to about 290C, preferably 255C to 275C is used.
  • Additives cause effects that tend to affect the melt viscosity and surface tension of the melt. Drawing As the amount of void area increases the amount of filament deformation increases. This is not a really serious problem at void areas less than 30-35 percent.
  • Process conditions During the spinning of hollow cross-section filaments, process conditions must be set on the basis of their rheological effect on the filament.
  • subsequent treatments such as drawing lclaim: 1.
  • Process for extruding molten fiber-forming polycaproamide to provide triangular hollow shaped filaments comprising and texturizing possible mechanical efi'ects must be extruding said .polycaproamide at a rate of from considered. about 0.4 to about 0.6 lb./hr./hole at a temperature of about 240 to about 290C. through a plate
  • Process conditions determined are applicable to containing at least one group of three slots and polycaproamides.
  • the conditions three dots arranged with said slots being spaced in can be determined according to melt characteristics close proximity to form a triangle, each of said during spinning.
  • nylon 6,6 polyhexdots spaced in close proximity to the ends of said amethylene adipamide
  • spinnerette temperature would slots near the apex of said triangle, said slots and range from about 280 to 310C. dots being spaced so that air is admitted to the in- EXAMPLES Slot Dot Q slot/ V (1011/ Web Hollow, Design number Lengthf Width" diam. Qtlnt V slot width Remarks percent 0 (End on). 71 5 8 7.

Abstract

A spinnerette for spinning hollow filaments having a maximum amount of hollow space in relation to the outer dimensions of said filaments. The filaments are extruded from a group of preferably three slots and corresponding three round openings or dots. The polymer occluding area defined by the arrangement of the slots forms substantially an equilateral triangle. The round openings are arranged near or at the ends of the slots, but not in communication with the slots. Filaments melt spun from the nested embodiment of this spinnerette consistently have above 35 percent hollow space. The spinnerette is much less subject to breakage than similar designs. Specific parameters for spinning with such as orifice configuration are set forth.

Description

llnited States Patent 11 1 Turner 5] Apr. 17, 1973 [541 PROCESS FOR PRODUCING HOLLOW 3,323,168 6 1967 Drunen et a1 ..425/461 FILAMENTS 3,555,600 l/l97l Moore ...2l4/l77 F 3,558,420 l/l97l Orfell ..214/l77 F [75] Inventor: Garland L. Turner, Chesterfield County, Primary Examiner-Jay H. W00 [73] Assignee: Allied Chemical Corporation, New Atmmey R'chard Anderson et York, NY.
[57] ABSTRACT [22] Filed: June 10, 1971 Appl. No.: 151,749
Related US. Application Data Division of Sen No. 881,806, Dec. 3, 1969, Patv No. 3,635,641.
References Cited UNITED STATES PATENTS Krummeck ..425/461 A spinnerette for spinning hollow filaments having a maximum amount of hollow space in relation to the outer dimensions of said filaments. The filaments are extruded from a group of preferably three slots and corresponding three round openings or dots. The
polymer occluding area defined by the arrangement of the slots forms substantially an equilateral triangle. The round openings are arranged near or at the ends of the slots, but not in communication with the slots. Filaments melt spun from the nested embodiment of this spinnerette consistently have above 35 percent hollow space. The spinnerette is much less subject to breakage than similar designs. Specific parameters for spinning with such as orifice configuration are set forth.
1 Claim, 2 Drawing Figures PAIENIEBA RH 1 3,728,428
j INVENTOR.
Gar/and L. Turner FIG.2
ATTORNEY I PROCESS FOR PRODUCING HOLLOW FILAMENTS This is a division of application Ser. No. 88l,806 filed Dec. 3, 1969 and now U.S. Pat. No. 3,635,641.
BACKGROUND OF THE INVENTION This invention is related to a spinnerette hole configuration for producing shaped hollow filaments from synthetic fiber-forming compositions.
The textile industry has long been interested in hollow filaments because of the special attributes of such fibers and the several novel effects which may obtained with them. It is well recognized that hollow filaments have certain advantages over solid filaments having the same outer diameters. Some of the advantages which hollow filaments have over solid filaments include: improved insulation properties, increased bouyancy, reduced pilling, special optical effects, and greater covering power per unit weight. Hollow filaments also have less tendency to fibrillate under flexing conditions than corresponding solid filaments.
While hollow filaments are highly desirable by the textile industry, it has proved to be extremely difficult to manufacture these filaments in a commercially feasible manner by melt-spinning. Considerable time and'effort have been spent on attempts to adapt existing methods to the production of hollow filaments on a commercial scale. Processes which have been devised for this purpose have necessitated the use of special and often expensive processing conditions and equipment.
Most of the problems involved with the spinning of hollow filaments are related to the spinnerette. Unfortunately, the spinnerettes that have been designed thus far are difficult to construct and are subject to frequent break-downs which may be attributed at least in part to their complex construction.
One type of spinnerette commonly used to produce hollow filaments employs orifices containing an internal obstructing member which causes the orifice to function as an annulus. The obstructive members are usually joined to the spinnerette body by internal support members upstream from the extrusion face of the spinnerette. This type of spinnerette is difficult to make and presents a major problem in repair and cleanliness.
There are other spinnerettes available that employ a multitude of unobstructed orifices grouped in a perimeter. For example see British Pat. No. 1,009,625. See also copending U. S. application Ser. No. 687,710, filed Dec. 1, 1967. The orifices exist in various cross-sectional shapes such as tri-slot modified triangular, circular, rectangular, crescent shape or other curvi-linear or polygonal shapes spaced in close proximity to essentially circumscribe an area of the spinnerette plate. The circumscribed area blocks the flow of extrudate as the molten polymer streams emerging from the closely spaced orifices coalesce to form hollow filaments. These spinnerettes require very close spacing between adjacent orifices to permit proper coalescence of the extrudate streams with the result that the thickness of the web of intervening metal between orifices is so small as to cause structural weakness and difficulties with fabrication. Thus, the weakened nature of these spinnerettes is particularly significant in the melt spinning of synthetic fibers because the extrusion pressures required will often cause distortion or actual rupture of spinnerettes which are not properly designed. Another serious problem encountered with orifices spaced too closely is that polymer coalescence may occur too close to the spinnerette face thus preventing the entrance of air into the hollow cavity of the filament. Therefore, the resultant vacuum within the filament causes internal coalescence of the molten polymer which minimizes or completely eliminates the central cavity.
SUMMARY OF THE INVENTION The principal objective of the present invention is to provide a spinnerette for producing hollow filaments having the maximum internal cavity obtainable within a given filament. It has been found that these objects among others can be achieved through the use of a spinnerette having at least one group of at least three slots, and a corresponding equal number of round openings or dots arranged so that a substantially equilateral polygonal area is circumscribed by the slots which produce an orifice. The round openings or dots are spaced from the slots at or near the apex of each angle. The preferred configuration is three slots and three dots used to form a triangle. Because the orifice configuration of this invention permits entry of air from at least six points, this invention also overcomes the problem of vacuum within the cavity of the filament. Spinnerette capillaries made from combinations of slots and round holes offer a more simple geometrical form which are easier to manufacture than intricate designs which are now used. This combination can be fitted to any design to give better flow and fusing of the individual parts than the tri-slot type due to the minimizing of the end effects which are present in long, narrow slots.
The round opening or dot portion serves several functions. Because the round openings or dots relieve pressure at corner stress points, the spin head holes of this invention very seldom explode, implode or sink at one corner portion. Another important function is the fact that the proper amount of air enters the cavity of the hollow filament while maintaining superior fusing or coalescing of filament sides and proper polymer flow. Also using the preferred embodiment as an example, a substantially equilateral triangular polymer occluding area is formed which contributes to the maximum amount of open or hollow space within the filarnent cross-section. Another important result achieved by this particular arrangement and configuration of slots and openings is the fact that the walls of the hollow filaments are quite uniform. Because of the round openings at or near the apex of each angle there are no large areas formed at the apices or points where coalescence occurs.
The product obtained from the practice of this invention is a synthetic filament consisting of a polygonalshaped sheath and an internal, longitudinally extending polygonal cavity centrally disposed with respect to the filament axis and the peripheral contour of the crosssection of the cavity being the shape of the area 0c cluded at the die face.
The shapes of both the cavity and sheath will be essentially constant along the length of the filament. The cavity may occupy up to about 60 percent of the entire cross-sectional area of the filament depending upon the width and length of the slots. Even with low viscosity polymers a high percent hollow filament can be formed. 7
The slot-dot configuration of this invention can provide a filament having a cross-sectional variance in polymer crystal orientation due to the different attenuations through the slots as compared to the dots. This makes an easily crimpable fiber by merely stretching the filament.
The filaments produced by the slot-dot configuration have potentially desirable optical properties for uses in apparel and carpeting. v
Thermoplastic polymers suitable for use in the present invention include most of the fiber-forming melt-spinnable compositions. ,These compositions which are preferred include polyesters, such as polyethylene terephthalate and polyhexahydro p-xylylene terephthalate; polyamides such as a polyhexamethylene adipamide and polycaproamides; polyolefins, such as polyethylene and polypropylene, polyurethanes; polyesteramides; polyethers; and other synthetic polymers and mixtures thereof.
Filaments produced by the spinnerette of the present invention have been found to be extremely useful for floatation materials because of their low density crosssection. They may be used in the form of monofilament and multifilament yarn, tow, cords,'and staple spun yarns. The filaments may be blended with other fibrous materials, and may be employed in crimped or uncrimped conditions. 7
Other typical textile applications include apparel products such as woven suitings, shirtings, sheeting and lingerie, tricot, circular knitted fabrics, broadcloths, satins, and the like. In view of their relatively high stiffness, strength, and low weight, the filaments of this invention are further useful in textile applications such as sewing thread, tire cord, fiber-reinforced laminates, upholstery, carpeting, drapery, curtains, ducks, parachutes, reinforced belts and hoses, marine lines, ropes and netting, and other applications. The filaments may be admixed with solid core filamentary structures of various modified cross-section of the same or different denier and the same or different chemical composition to produce various special effects.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a fragmentary section of a spinnerette plate illustrating the preferred arrangement and configurations of a group of slots and nested round openings or dots forming an orifice in accordance with this invention.
FIG. 2 is another fragmentary section of a spinnerette plate illustrating another embodiment with the dots in an end-on configuration with the slots.
TERMINOLOGY Following are some terms which will be used here in slightly different form than in common usage.
Hole An opening or set of openings which are common to a single counterbore and produce a monofil.
Web A. narrowed solid portion of a spinnerette hole area which lies between adjacent openings. For example, the narrowest dimension between a slot and a dot shown as tin FIG. 1 and FIG. 2.
Slot A part of a spinnerette hole which has a greater length than width. Capillary or Dot A part of a spinnerette hole which is round.
Configuration Spinnerette holes of this invention are formed by combinations of slots and capillaries or dotsQand preferably take the form of an equilateral triangle, See FIGS. 1 and 2. The capillaries (dots) may be end-on to the slots (FIG. 2) or nested between slots (FIG. 1). The slots are labelled 1, and dots 2 in both figures. The dimensions are shown as:
h width of slot t= width of web at narrowest portion D= diameter of dot C distance between centers of dots W= length of slot The nested dots type hole (FIG. 1) has consistently produced filaments of greaterthan 35 percent void area. Ease of fabrication of these holes has been very good.
Flow and velocity ratios of hole components have been found to be fairly critical. The following equations have been used in defining these ratios.
Q dot= (1rR"8L) (P/u); Q slot= (Wh l2L) (P/p.) 1 When determining the ratios of dot/slot it is assumed that P/p. is a constant.
V slot (h P/l 2L V dot R P/8Lp. (2)
Q mass flow V Velocity K constant P I pressure drop R radius of dot D/2 W Length h width of slot L depth of slot: dot p.= viscosity of melt SPINNERETTE HOLE PARAMETERS FOR POLYCAPROAMIDE Webs Width It has been found that the web width (t) i. e., narrowest dimension between slots and dots, must be between I and 10 mils. and preferably between 2 and 4 mils. The low end has two determining factors: (1) enough spinnerette web material has to remain to provide support for the center section against the extrusion pressure, and (2) enough space has to be provided for the passage of sufficient air to prevent collapse of the center cavity. As the upper limit is approached problems of closure become more acute. About 3 mils. thickness has been found tobe the optimum.
Number While it has been seen that the more webs there are, the larger hollow area one may obtain; it can be said that probably not more than six are desirable or needed. First of all in the slot-dot" spinnerette where there are six webs, there was a gain of 7 percent to 10 percent in hollow area when the sides are in a similar position (dots end-on as in FIG. 1) to a spinnerette which has only three webs. Then if the dots are placed in a nested position relative to the dots, an additional percent hollow is obtained (consistently 35-37 percent). A hollow area of more than 35 percent may not be very useful; since the walls of the filament become very thin, and the filaments are subject to deformation in subsequent operations of drawing and texturizing. An additional reason for not exceeding six webs is that manufacturing costs would increase and uniformity decrease due to the increasing complexity of the spinnerette hole. In determining web thickness (t), it is necessary to balance l amount of air passing to the hollow cavity of the filament across the web, (2) ability of the sides of the filament to close by coalescence or continuous fusing to each other, and. (3) strength of the die face. It has been found that the web thickness (t) should be about one-half of the slo width (h).
Length The limits of length (W) in practice have been between 30 and 100 mils. At the low end of this range a very rounded filament with a very low amount of void area resulted Above 100 mils. the possibility of collapse increases and the stack draw down to standard filament dimensions would become prohibitive due to increased orientation with a resultant loss of drawabiliand 10 mils. Slots which are less than 3 mils. wide are very difficult to fabricate and also present spinning problemsdue to potential blockage by contaminants or other particulate matter which is often present in an extrudate. Slot widths of between 4 and 7 mils. are preferred.
Length-Width Ratio Wlthin the limits of slot length and width discussed, it has been found that probable operating ranges of the ratio of slot length to width are between 10 to for a slot-dot configuration (6 webs). For ratios below 10 the resulting filament becomes rounded with a reduced hollow area. Above the upper limit mentioned, an inward collapse of the walls may occur, again resulting in a reduced hollow area and loss of cross-section identity.
Dots It has been determined empirically that the radius (D/2) of the dots is preferred to be substantially equal to the slot width (h); but can vary between 2 and 12 mils., preferably 2 and 8 mils.
Summary of Spinnerette Hole Parameters h 0.005 in.
D 0.013 in. W=0.070 in.
In the configuration of FIG. 2 the centers of the dots 2 are aligned directly with the inside edge of the slot 1. The dots 2 could be arranged in any end-on configuration, such as aligned with the slot 1 center line, or the outside edge or beyond.
The preferred configuration is the nested arrangement shown in FIG. 1. Typical dimensions would be:
t=0.0028 in.
h=0.006 in.
D=0.0l3 in.
W=0.095 in.
C=0.090 in. In FIG. 1 the dots are preferably arranged with each circumference within the sides of the angle described by the inside edges of adjacent slots. Particularly preferred is the configuration shown inFIG. l, i. e., the circumference of each dot is tangent to an imaginary line between the nearest adjacent comers of the slots, and equidistant therefrom. The arrangement of slots in relation to dots is essential to proper operation. For example, by extending the slots beyond the nested dots it was found that good closure (coalescence or fusing sides to each other) is assured but that the cavity collapses because insufficient air is drawn into the hollow Width Limits for width (h) fall between 3 mils.
PROCESS CONDITION EFFECTS Melt Temperature/Melt Viscosity Within the practical process boundaries of a given polymer/spinnerette system, melt temperature can be varied to produce closure and exhibit some control over the targeted void area. A low melt temperature may help in closure, in increasing void area, and to produce a better defined cross-section; but one must not go so low as to affect the drawability of the product. As the melt temperature is increased the melt becomes more mobile producing some smoothing of the cross-section and reduction in void area, which in many cases is desirable. For polycaproamide, a temperature of from about 240 C to about 290C, preferably 255C to 275C is used.
Quench The quenching medium can be utilized in conjunction with the melt temperature effect as a process control of apparent melt viscosity to control void area. In order to be effective in this respect for polyamide the quench medium must be introduced near the spinnerette face. Quench medium temperatures of 0 to 40C are used.
Throughput The major effect of throughput is that an increased flow has the same effect as a temperature increase. This is evidenced by a rounding of the crosssection and a decrease in void area. Therefore quench becomes more difficult, but more necessary if the desired hollow area is to be obtained. With certain designs of spinnerettcs the increased jet velocity may lead to doglegging of the melt stream as the throughput is increased. Thus at high throughput rates it is mandatory that spinnerette quality be rigidly maintained. For polyamide a throughput of 0.l lb./hr./hole to 0.75 lb./hr./hole and preferably 0.4 to 0.6 lb./hr./hole is used.
Additives Additives cause effects that tend to affect the melt viscosity and surface tension of the melt. Drawing As the amount of void area increases the amount of filament deformation increases. This is not a really serious problem at void areas less than 30-35 percent.
Summary of Process Conditions During the spinning of hollow cross-section filaments, process conditions must be set on the basis of their rheological effect on the filament. In subsequent treatments such as drawing lclaim: 1. Process for extruding molten fiber-forming polycaproamide to provide triangular hollow shaped filaments comprising and texturizing possible mechanical efi'ects must be extruding said .polycaproamide at a rate of from considered. about 0.4 to about 0.6 lb./hr./hole at a temperature of about 240 to about 290C. through a plate Process conditions determined are applicable to containing at least one group of three slots and polycaproamides. For other polymers, the conditions three dots arranged with said slots being spaced in can be determined according to melt characteristics close proximity to form a triangle, each of said during spinning. For example, nylon 6,6 (polyhexdots spaced in close proximity to the ends of said amethylene adipamide) spinnerette temperature would slots near the apex of said triangle, said slots and range from about 280 to 310C. dots being spaced so that air is admitted to the in- EXAMPLES Slot Dot Q slot/ V (1011/ Web Hollow, Design number Lengthf Width" diam. Qtlnt V slot width Remarks percent 0 (End on). 71 5 8 7. 5 1 3 Not upvrablv I (End on 7n 5 13 l 2.54 3 Very intermittent. IT (End on) 70 5 13 1 2.54 3 ....do .1 .25 III (Nested). n0 5 1a 1.33 2.54 s Operable 1v (Nested) 100 5.5 13 1.07 2.10 2.5 ..do.. 35 1V(a) (Nested). 100 11.0 13 2.54 1.77 2.5 .....do 35 IV(b) (Nested). 100 6.5 13 3.25 1.50 2.5 Not operable. IV( (Nested). J5 5.5 13 1.77 2.10 2.5 Operable... 35 V (Nested)... (13 4 n 2.08 1.91 2.5 ....do 35 VI (Nested) 63 0 13 2.29 1.77 3 d0 35 Mils. Narrowest dimension of web urea.
Examples The following table shows examples of side of said triangle during extrusion and this invention. Conditions were conventional for melt coalescence occurs between the streams of spinning nylon, at conventional extrusion rates, polymer exiting said slots and dots to form triangu- 250- 290C head temperature, 70F 65% RH co-cur- 3O lar shaped hollow filaments rent quench air. and cooling the extruded polymer.
US00151749A 1969-12-03 1971-06-10 Process for producing hollow filaments Expired - Lifetime US3728428A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88180669A 1969-12-03 1969-12-03
US15174971A 1971-06-10 1971-06-10

Publications (1)

Publication Number Publication Date
US3728428A true US3728428A (en) 1973-04-17

Family

ID=26848934

Family Applications (1)

Application Number Title Priority Date Filing Date
US00151749A Expired - Lifetime US3728428A (en) 1969-12-03 1971-06-10 Process for producing hollow filaments

Country Status (1)

Country Link
US (1) US3728428A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981948A (en) * 1975-01-02 1976-09-21 Eastman Kodak Company Arrangements in spinnerets of spinning orifices having significant kneeing potential
US4305983A (en) * 1978-09-21 1981-12-15 Akzo Nv Thin walled tubing formed of a melt spinnable synthetic polymer and process for the manufacturing thereof
US4376746A (en) * 1980-04-01 1983-03-15 Ametek, Inc. Formation of hollow tapered brush bristles
US4548866A (en) * 1983-10-18 1985-10-22 Allied Corporation High strength hollow filament yarn
EP0254334A2 (en) * 1986-06-20 1988-01-27 ENIRICERCHE S.p.A. Hollow fibre of polyester-amide and process for preparing it
US5439626A (en) * 1994-03-14 1995-08-08 E. I. Du Pont De Nemours And Company Process for making hollow nylon filaments
US20050147788A1 (en) * 2003-11-19 2005-07-07 Invista North America S.A R.L. Spinneret plate for producing a bulked continuous filament having a three-sided exterior cross-section and a convex six-sided central void
US20050249950A1 (en) * 2002-11-19 2005-11-10 Industrial Technology Research Institute Functional composite fiber and preparation thereof and spinneret for preparing the same
US20060012072A1 (en) * 2004-07-16 2006-01-19 Hagewood John F Forming shaped fiber fabrics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187607A (en) * 1962-07-24 1965-06-08 Du Pont Spinneret production
US3323168A (en) * 1962-05-24 1967-06-06 American Enka Corp Spinneret for spinning hollow filaments
US3555600A (en) * 1967-12-01 1971-01-19 Maurice S Moore Spinneret for producing hollow filaments
US3558420A (en) * 1967-08-17 1971-01-26 Allied Chem Hollow filaments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3323168A (en) * 1962-05-24 1967-06-06 American Enka Corp Spinneret for spinning hollow filaments
US3187607A (en) * 1962-07-24 1965-06-08 Du Pont Spinneret production
US3558420A (en) * 1967-08-17 1971-01-26 Allied Chem Hollow filaments
US3555600A (en) * 1967-12-01 1971-01-19 Maurice S Moore Spinneret for producing hollow filaments

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981948A (en) * 1975-01-02 1976-09-21 Eastman Kodak Company Arrangements in spinnerets of spinning orifices having significant kneeing potential
US4305983A (en) * 1978-09-21 1981-12-15 Akzo Nv Thin walled tubing formed of a melt spinnable synthetic polymer and process for the manufacturing thereof
US4376746A (en) * 1980-04-01 1983-03-15 Ametek, Inc. Formation of hollow tapered brush bristles
US4548866A (en) * 1983-10-18 1985-10-22 Allied Corporation High strength hollow filament yarn
EP0254334A2 (en) * 1986-06-20 1988-01-27 ENIRICERCHE S.p.A. Hollow fibre of polyester-amide and process for preparing it
EP0254334A3 (en) * 1986-06-20 1989-02-01 Eniricerche S.P.A. Hollow fibre of polyester-amide and process for preparing it
US5439626A (en) * 1994-03-14 1995-08-08 E. I. Du Pont De Nemours And Company Process for making hollow nylon filaments
US5604036A (en) * 1994-03-14 1997-02-18 E. I. Du Pont De Nemours And Company Hollow nylon filaments
US5643660A (en) * 1994-03-14 1997-07-01 E. I. Du Pont De Nemours And Company Hollow nylon filaments and yarns
US20050249950A1 (en) * 2002-11-19 2005-11-10 Industrial Technology Research Institute Functional composite fiber and preparation thereof and spinneret for preparing the same
US20050147788A1 (en) * 2003-11-19 2005-07-07 Invista North America S.A R.L. Spinneret plate for producing a bulked continuous filament having a three-sided exterior cross-section and a convex six-sided central void
US20060012072A1 (en) * 2004-07-16 2006-01-19 Hagewood John F Forming shaped fiber fabrics
WO2006020109A3 (en) * 2004-07-16 2006-12-21 Hills Inc Forming shaped fiber fabrics

Similar Documents

Publication Publication Date Title
EP0607174B1 (en) Oriented profiled fibers
US3558420A (en) Hollow filaments
US3531368A (en) Synthetic filaments and the like
US2945739A (en) Process of melt spinning
US3117362A (en) Composite filament
US4001369A (en) Process for cospinning trilobal filaments
US3924988A (en) Hollow filament spinneret
US3109195A (en) Spinneret plate
US3728428A (en) Process for producing hollow filaments
EP1049822A1 (en) Filament having a trilobal cross section and a trilobal void
US3635641A (en) Spinnerette for producing hollow filaments
US5597646A (en) Polymeric cable and fabric made therefrom
US3640670A (en) Spinnerette for extruding t-shaped filaments
US3555600A (en) Spinneret for producing hollow filaments
US3579625A (en) Process for forming trilobal yarns
JPS61119704A (en) Cooling of collected filaments
GB1207408A (en) A process for melt spinning hollow filaments and spinnerets for use therewith
KR0162550B1 (en) The spinning nozzle for manufacturing hollow fiber
EP0505617B1 (en) Single counterbore for multiple profile filaments
JPS63159511A (en) Modified cross-section yarn and spinneret thereof
US3413683A (en) Annular bi-component spinerette assembly
US3734993A (en) Method for extruding t-shaped filaments
JP2711169B2 (en) Production method of ultrafine fiber
US3266087A (en) Spinneret plate for melt-spinning
JP2734700B2 (en) Multifilament spinneret and melt spinning method

Legal Events

Date Code Title Description
AS Assignment

Owner name: MULTIPRESS, INC., OHIO

Free format text: TERMINATION;ASSIGNOR:PROVIDENT BANK, THE;REEL/FRAME:008975/0284

Effective date: 19971125