US3737722A - Method and apparatus for forming spatial light patterns - Google Patents

Method and apparatus for forming spatial light patterns Download PDF

Info

Publication number
US3737722A
US3737722A US00141675A US3737722DA US3737722A US 3737722 A US3737722 A US 3737722A US 00141675 A US00141675 A US 00141675A US 3737722D A US3737722D A US 3737722DA US 3737722 A US3737722 A US 3737722A
Authority
US
United States
Prior art keywords
light
source
potential
emitting diode
connected electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00141675A
Inventor
M Scharlack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3737722A publication Critical patent/US3737722A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S362/00Illumination
    • Y10S362/80Light emitting diode

Definitions

  • a pulsing light emitter which is intensely bright, yet yields little or no illumination to surrounding objects; such as a lightemitting diode or neon light, through a fixed or random path.
  • the light emitter is periodically connected to a source of electric potential by an electronic oscillator, which energizes the light emitter and lights it during parts of the periods between successive ener gizations.
  • the frequency of the light pulses and the duration of these pulses can be varied, either manually or in response to an externally controlled electrical signal generated by sound, heat, mechanical motion, pressure, light or other means.
  • the invention relates to a process and a device for forming spatial light patterns in a darkened environment. It is applied principally as an amusement device, to give aesthetic pleasure to an observer, and may be manually operated or mechanically attached to another object, such as a frame in a shop window or an external display.
  • Display devices such as stroboscopic lights and movable illuminating lights that are turned on and off are known.
  • the lamp illuminates a moving or a stationary, light-reflective object, such as a rotating or reciprocating machine part.
  • the present invention is concerned with a process and device wherein essentially only the periodically lighted source of light itself is seen.
  • known display devices employing lamps with switching elements were not suitable for creating in space the illusion of various light patterns.
  • the present invention makes it possible to create in a darkened environment various geometric light patterns. These geometric light patterns may appear to remain stationary or an illusion may be created in which the entire geometric pattern appears to shift or revolve about an axis.
  • a further object is to facilitate use of the device by making the lengths of the said periods variable, either by control by an operator or in response to some other condition.
  • a specific object is to provide a hand-operated device for the purpose stated in the first object having a container which is graspable by the hand for movements and a light emitter carried by a member such as a rod which projects from the container.
  • a member such as a rod which projects from the container.
  • a light emitter which is periodically energized from a source of electrical potential by means including an electronic oscillator so as to light the emitter for durations which are parts of the periods between successive energizations, is moved through a path in a darkened environment.
  • a light emitter which is periodically energized from a source of electrical potential by means including an electronic oscillator so as to light the emitter for durations which are parts of the periods between successive energizations, is moved through a path in a darkened environment.
  • the electronic oscillator for periodically energizing the light emitter is preferably-provided with means for varying the flahsing rate and flashing duration.
  • the length of the path can be controlled by simply giving a rocking motion to the element, as by turning the wrist of the hand supporting the element or rocking the element mechanically.
  • the projecting member of flexible, preferably resilient material, the light emitter can be made to swing relatively to the supporting element, thereby facilitating still longer paths for the light emitter.
  • FIG. 1 is an isometric of a hand-operated device
  • FIG. 2 is a circuit diagram of the device of FIG. 1;
  • FIG. 3 is an isometric of an orbital path and showing one possible spatial effect produced by the device
  • FIG. 4 is an elevation of a substantially linear path and showing another possible spatial effect
  • FIG. 5 is a circuit diagram of a second embodiment.
  • the mechanical parts of the device include a container 10 having fixed thereto a projecting member 11, such as a resilient, coiled spring, extending upwards and carrying at its end a light emitter 12 which is connected to the energizing circuit within the container.
  • a projecting member 11 such as a resilient, coiled spring
  • a light emitter 12 which is connected to the energizing circuit within the container.
  • the light emitter in this embodiment is a small device, such as a light-emitting diode; a specific example is a diffused gallium arsenide phosphide diode, which emits a point source of light of ruby color having a luminous intensity so low as not to illuminate nearby light-reflective objects.
  • a lamp having a rated brightness of 750 foot candles is produced at 20 milliamperes with about5 milliamperes being used in the described example.
  • the case 10 is small and is suitable to be grasped and moved manually. It includes, further, a normally open, spring-urged on-off push button switch 14 and a rotatable knob 15 for adjustment of the flashing rate.
  • An alternate form of the invention replacing the bendable reed or spring with the light at the distal free end is to replace members 11 and 13 with a flexible fiber optic tube and to mount the light emitting diode in the case 10 at the base of the fiber optic tube. The light is then observed as emanating from the free end of the tube.
  • This circuit includes a source of electrical potential, such as an l8-v0lt dry cell battery 16 having one terminal grounded at 17 to the case and the other terminal connected via the switch 14 to a power circuit 18.
  • a source of electrical potential such as an l8-v0lt dry cell battery 16 having one terminal grounded at 17 to the case and the other terminal connected via the switch 14 to a power circuit 18.
  • the electronic oscillator includes a unijunction transistor 19 which has its first base B, connected via a circuit 20 and the wire 13 to the lightemitting diode 12; its second base B connected by a circuit 21 and a first resistor 22 to the power circuit 18; and its emitter E connected to the junction of a capacitor 23 and a second resistor which, in this embodiment, is made variable and contains sections 24a, 24b and 24c, the capacitor and resistor being serially connected between the circuit 18 and ground at 25, i.e., across the sourceof potential.
  • the light emitter has a third resistor, 26 in shunt therewith and has its second terminal connected, via the spring 11, to ground.
  • the section 240 is fixed, section 241; is a variable resistor the value of which is controlled by the knob 15, and section 24c is a trimming resistor.
  • Resistors have resistances of 220 ohms for 22, l K ohms for 24a, 100K for 24b, 10K for 240, and 470 ohms for 26 when used with the diffused gallium arsenide phosphide diode, type MVSOTM; and the unijunction transistor 19 may be of type 2N489l.
  • unijunction transistor 19 may be used for the unijunction transistor 19, to switch the light emitter on and off at variable pulse rates and durations such as flip flops.
  • the components are in most instances selected to permit the flashing rate to be varied from about 5 to 500 times per second.
  • OPERATlON The device is used in a darkened environment (either total darkness or subdued light) by holding the case in one hand, pressing the switch 14 and moving the case to cause the light emitter to follow a desired regular or random path.
  • FIG. 3 One possible path 27, orbital in shape, is shown in FIG. 3.
  • the resistor 24b By adjusting the resistor 24b by means of the knob 15, it is possible to cause only one dot of light 28 to appear, either always in the same location or apparently drifting forwards or backwards along the path 27.
  • additional dots of light such as 29 and 30, are made to appear, again, always at the same locations or apparently drifting forwards or backwards. Any number of such dots, for example a dozen or more may be made to appear.
  • a distinctive phenomenon of the circuit heretofore described is the illusion of seeing the light as a line with defined ends. This illusion is created by lengthening the on time of the moving light electronically by making the electrical pulse to the light of longer duration.
  • the pulse length from the unijunction oscillator becomes variable as well as the pulse rate and instead of short pulses longer segments of continuous current get through to the light emitting diode.
  • the clot producing pulse has a duration of about 0.0001 seconds, decreasing R 24 past a certain point begins to elongate the pulse until it is on the order of tenths of a second and lines begin to appear along the path.
  • Another visual illusion that may be seen in the'present circuit is that of an arrow with a head.”
  • This effect is the result of the waveform which is electronically produced in which the initial amplitude is greater and therefore the light output at that instant" is greater.
  • This effect is only observed when the light source is moving relatively rapidly as the duration of the pulse is only about 0.0001 seconds with the duration of the greater amplitude being in the order of about 0.000001 seconds.
  • the difference in the relative pulse amplitude causes the bright head on a relatively dim tail.
  • FIG. 4 shows an example of a path 31, forming a single line along which the light emitter is moved back and forth, this path being usually slightly convex upwardly, as shown.
  • This view shows two lines 32 and 33 with what appears to be arrow-heads at their ends. Of course, shorter illuminated locations even dots, can be attained also by following this path.
  • FIG. 6 shows an embodiment in which the flashing rate is controlled by an external signal, shown in this exemplary embodiment to be the audio level of an acoustic device.
  • This device may, save for the presence of an electrical cord, include a hand-held supporting element in the form of a case as described for the first embodiment, in which the parts lll4, 16-23 and 25-26, increased by 100, denote like parts. However, a mechanically-operated supporting element is not shown.
  • the resistor 24 is replaced by a junction transistor 46, one of type p-n-p being shown for illustration, connected to impose a variable resistance between the circuit 118 and the junction of the capacitor 123 and the emitter E of the unijunction transistor 119. While various connections are possible, it is preferred to connect the emitter E of the transistor 46 through a resistor 47 to the wire 118 and the collector to the capacitor 123 and the first-mentioned emitter. The emitter E thereby functions as the control part of the transistor.
  • the base B of transistor 46 is connected to the output of an impedance matching device, such as the secondary of a transformer 48, the other side of which is connected to the wire 118.
  • the input of the transformer 48 is connected by electrical wires 49 and 50, such as an electrical cord, to terminals 51 and 52, which are adapted to be connected to an acoustic device, such as an audio speaker 53 powered from a line 54, 55.
  • the transformer 46 may be a subminiature audio transformer having input and out impedances of 8 and 2,000 ohms, respectively, and the resistor 47 may have a value of 10 ohms.
  • the transistor 46 performs the function of the section 24 b of the first embodiment, controllably conducting a variable current there through by varying the resistance in response to the audio level (volume) of the speaker 53, to vary the flashing rate.
  • the potential between the base and emitter of the transistor 46 is varied, permitting a current to flow at a variable rate from the circuit 118 to charge the capacitor 123.
  • generators in addition to an acoustic device, may be used to produce electrical signals having various waveforms.
  • Possible input signals could be (1) sine waveforms, (2) square waveform, (3) sawtooth, (4) rectangular, (5) any mixture of the foregoing, or (6) a complex modulated waveform.
  • a device for periodically emitting from a moving location, a pulse of visible light of limited illuminating power which does not illuminate other objects in a darkened environment which comprises:
  • a light emitting diode within the visible spectrum having sharply defined junctions between illumination and darkness and situated at said location and having only said limited illuminating power;
  • c. means including an electronic oscillator for periodically energizing said light emitting diode from said source;
  • e. means for varying the duration of said visible light emissions during said periods.
  • said light emitting diode is a diffused gallium arsenide phosphide diode.
  • the light emitting diode is mounted remotely from said enclosure on a member which is fixed to and projects from the container;
  • said member is flexible and of resilient material
  • the light emitting diode can swing relatively to the container
  • the first base is connected electrically to one terminal of the light emitting diode.
  • the second base is connected electrically through a first resistor to one side of said source of potential
  • the emitter is connected electrically to the junction of a second resistor, which is variable whereby the lengths 'of said periods can be varied, and a capacitor which are connected in series with each other and across said source of po' tential, the said light emitting diode having its second terminal connected electrically to the other side of said source of potential; and
  • said light emitting diode has a third resistor in shunt therewith.
  • a device wherein said potential is direct current and the lengths of said periods are variable and determined at least in part by an external signal, said oscillator including:
  • Another base is connected electrically through a first resistor to one side of said source of poten tial, and
  • the emitter is connected electrically to the junction of a capacitor and one terminal of a circuit element for controllably conducting a variable current therethrough in accordance with an electrical signal applied to a control part thereof, said capacitor and circuit element being connected in series across said source of potential;
  • said light emitter has its second terminal connected electrically to the other side of said source of potential;
  • control circuit connected electrically to said control part and adapted to receive said external signal.
  • a device wherein said circuit element is a second transistor having a base, an emitter and a collector, and said control circuit includes an impedence-matching circuit having an input adapted to be connected to a source of acoustic power to receive energy therefrom and an output connected electrically to said second transistor.

Abstract

Spatial light patterns, such as one or several stationary or moving dots or lines are formed in a darkened environment by repeatedly moving a pulsing light emitter which is intensely bright, yet yields little or no illumination to surrounding objects; such as a light-emitting diode or neon light, through a fixed or random path. The light emitter is periodically connected to a source of electric potential by an electronic oscillator, which energizes the light emitter and lights it during parts of the periods between successive energizations. Preferably the frequency of the light pulses and the duration of these pulses can be varied, either manually or in response to an externally controlled electrical signal generated by sound, heat, mechanical motion, pressure, light or other means.

Description

United States Patent 1 Scharlack [54] METHOD AND APPARATUS FOR FORMING SPATIAL LIGHT PATTERNS Inventor: Meyer J. Scharlack, 1968 Yosemite,
Berkeley, Calif. 94707 Filed: May 7, 1971 Appl. No.: 141,675
References Cited UNITED STATES PATENTS Dorsey ..240/6.42 X Schamblin ..343/721 X 12/1955 Hughes et al.... 12/1963 Yanushka 9/1969 Meridan, Jr ..317/33 OTHER PUBLICATIONS Electonics World Oct. 1965 p. 68 Battery- 11 3,737,722 51 June 5,1973
Operated Fluorescent Lampby Mapham/GECo.
Primary ExaminerNathan Kaufman Att0rneyMilmore & Cypher ABSTRACT 'vironment by repeatedly moving a pulsing light emitter which is intensely bright, yet yields little or no illumination to surrounding objects; such as a lightemitting diode or neon light, through a fixed or random path. The light emitter is periodically connected to a source of electric potential by an electronic oscillator, which energizes the light emitter and lights it during parts of the periods between successive ener gizations. Preferably the frequency of the light pulses and the duration of these pulses can be varied, either manually or in response to an externally controlled electrical signal generated by sound, heat, mechanical motion, pressure, light or other means.
5 Claims, 5 Drawing Figures 12 me v.o.c.
PATENIEL, JUN 51915 FIG. I FIG 2 FIG. 3 FIG 4 n4 ma L In? INVENTORI FIG. 5
MEYER J. 8
C ARLACK HIS ATTORNEYS METHOD AND APPARATUS FOR FORMING SPATIAL LIGHT PATTERNS The invention relates to a process and a device for forming spatial light patterns in a darkened environment. It is applied principally as an amusement device, to give aesthetic pleasure to an observer, and may be manually operated or mechanically attached to another object, such as a frame in a shop window or an external display.
Display devices, such as stroboscopic lights and movable illuminating lights that are turned on and off are known. In these devices, however, the lamp illuminates a moving or a stationary, light-reflective object, such as a rotating or reciprocating machine part. In contrast, the present invention is concerned with a process and device wherein essentially only the periodically lighted source of light itself is seen.
Further, known display devices employing lamps with switching elements were not suitable for creating in space the illusion of various light patterns. In contrast, the present invention makes it possible to create in a darkened environment various geometric light patterns. These geometric light patterns may appear to remain stationary or an illusion may be created in which the entire geometric pattern appears to shift or revolve about an axis.
It is the principal object to provide a process and device for forming in a darkened environment spatial light patterns wherein essentially only a periodically lighted light emitter is seen, the light emitter being lighted for durations that are parts of the periods between successive energizations of the light emitter.
A further object is to facilitate use of the device by making the lengths of the said periods variable, either by control by an operator or in response to some other condition.
A specific object is to provide a hand-operated device for the purpose stated in the first object having a container which is graspable by the hand for movements and a light emitter carried by a member such as a rod which projects from the container. Ancillary thereto, it is an object to provide a device in which said projecting member is flexible and resilient, whereby the light emitter can swing relatively to the container.
In summary, according to the invention a light emitter which is periodically energized from a source of electrical potential by means including an electronic oscillator so as to light the emitter for durations which are parts of the periods between successive energizations, is moved through a path in a darkened environment. Depending upon the length of the period between energizations and the speed at which the light emitter is moved, there will appear one or several locations in space which are illuminated, and which appear to a viewer to have fixed positions in space or which appear to drift in one direction or the other along the said path. These illuminated locations may appear as dots or Since altering the flashing rate and flash duration is in most applications desirable for attaining different spatial patterns, the electronic oscillator for periodically energizing the light emitter is preferably-provided with means for varying the flahsing rate and flashing duration.
By mounting the light emitter on an elongated member which is fixed to and projects from a supporting element, such as a container housing the oscillator and other parts, the length of the path can be controlled by simply giving a rocking motion to the element, as by turning the wrist of the hand supporting the element or rocking the element mechanically. Further, by forming the projecting member of flexible, preferably resilient material, the light emitter can be made to swing relatively to the supporting element, thereby facilitating still longer paths for the light emitter.
The invention will be further described with referenceto the accompanying drawings which show certain preferred embodiments by way of illustration, wherein:
FIG. 1 is an isometric of a hand-operated device;
FIG. 2 is a circuit diagram of the device of FIG. 1;
FIG. 3 is an isometric of an orbital path and showing one possible spatial effect produced by the device;
FIG. 4 is an elevation of a substantially linear path and showing another possible spatial effect;
FIG. 5 is a circuit diagram of a second embodiment.
Referring to FIGS. 1 and 2, the mechanical parts of the device include a container 10 having fixed thereto a projecting member 11, such as a resilient, coiled spring, extending upwards and carrying at its end a light emitter 12 which is connected to the energizing circuit within the container. In this embodiment only a single insulated wire 13 is used, the member 11 being grounded to the case and serving as the second circuit element. The light emitter in this embodiment is a small device, such as a light-emitting diode; a specific example is a diffused gallium arsenide phosphide diode, which emits a point source of light of ruby color having a luminous intensity so low as not to illuminate nearby light-reflective objects. A lamp having a rated brightness of 750 foot candles is produced at 20 milliamperes with about5 milliamperes being used in the described example. In this embodiment, the case 10 is small and is suitable to be grasped and moved manually. It includes, further, a normally open, spring-urged on-off push button switch 14 and a rotatable knob 15 for adjustment of the flashing rate.
An alternate form of the invention replacing the bendable reed or spring with the light at the distal free end, is to replace members 11 and 13 with a flexible fiber optic tube and to mount the light emitting diode in the case 10 at the base of the fiber optic tube. The light is then observed as emanating from the free end of the tube.
All parts of the circuit shown in FIG. 2 except the light emitter and parts of its connecting circuits are located within the case 10. This circuit includes a source of electrical potential, such as an l8-v0lt dry cell battery 16 having one terminal grounded at 17 to the case and the other terminal connected via the switch 14 to a power circuit 18. The electronic oscillator includes a unijunction transistor 19 which has its first base B, connected via a circuit 20 and the wire 13 to the lightemitting diode 12; its second base B connected by a circuit 21 and a first resistor 22 to the power circuit 18; and its emitter E connected to the junction of a capacitor 23 and a second resistor which, in this embodiment, is made variable and contains sections 24a, 24b and 24c, the capacitor and resistor being serially connected between the circuit 18 and ground at 25, i.e., across the sourceof potential. The light emitter has a third resistor, 26 in shunt therewith and has its second terminal connected, via the spring 11, to ground. In this embodiment, the section 240 is fixed, section 241; is a variable resistor the value of which is controlled by the knob 15, and section 24c is a trimming resistor.
Without in any way restricting the invention, it may be stated that the following components are suitable: Resistors have resistances of 220 ohms for 22, l K ohms for 24a, 100K for 24b, 10K for 240, and 470 ohms for 26 when used with the diffused gallium arsenide phosphide diode, type MVSOTM; and the unijunction transistor 19 may be of type 2N489l.
It is evident that other types of electronic oscillators or electronic switches may be used for the unijunction transistor 19, to switch the light emitter on and off at variable pulse rates and durations such as flip flops.
The components are in most instances selected to permit the flashing rate to be varied from about 5 to 500 times per second.
OPERATlON The device is used in a darkened environment (either total darkness or subdued light) by holding the case in one hand, pressing the switch 14 and moving the case to cause the light emitter to follow a desired regular or random path.
One possible path 27, orbital in shape, is shown in FIG. 3. By adjusting the resistor 24b by means of the knob 15, it is possible to cause only one dot of light 28 to appear, either always in the same location or apparently drifting forwards or backwards along the path 27. By increasing the flashing rate and/or slowing the speed i of movement of the light emitter along the path, additional dots of light such as 29 and 30, are made to appear, again, always at the same locations or apparently drifting forwards or backwards. Any number of such dots, for example a dozen or more may be made to appear.
A distinctive phenomenon of the circuit heretofore described is the illusion of seeing the light as a line with defined ends. This illusion is created by lengthening the on time of the moving light electronically by making the electrical pulse to the light of longer duration. When the amount of resistance in resistor 24 is reduced to below a certain value (1,000 2,000 ohm) the pulse length from the unijunction oscillator becomes variable as well as the pulse rate and instead of short pulses longer segments of continuous current get through to the light emitting diode. Whereas the clot producing pulse has a duration of about 0.0001 seconds, decreasing R 24 past a certain point begins to elongate the pulse until it is on the order of tenths of a second and lines begin to appear along the path.
Another visual illusion that may be seen in the'present circuit is that of an arrow with a head." This effect is the result of the waveform which is electronically produced in which the initial amplitude is greater and therefore the light output at that instant" is greater. This effect, of course, is only observed when the light source is moving relatively rapidly as the duration of the pulse is only about 0.0001 seconds with the duration of the greater amplitude being in the order of about 0.000001 seconds. The difference in the relative pulse amplitude causes the bright head on a relatively dim tail.
FIG. 4 shows an example of a path 31, forming a single line along which the light emitter is moved back and forth, this path being usually slightly convex upwardly, as shown. This view shows two lines 32 and 33 with what appears to be arrow-heads at their ends. Of course, shorter illuminated locations even dots, can be attained also by following this path.
SECOND EMBODIMENT FIG. 6 shows an embodiment in which the flashing rate is controlled by an external signal, shown in this exemplary embodiment to be the audio level of an acoustic device. This device may, save for the presence of an electrical cord, include a hand-held supporting element in the form of a case as described for the first embodiment, in which the parts lll4, 16-23 and 25-26, increased by 100, denote like parts. However, a mechanically-operated supporting element is not shown.
The resistor 24 is replaced by a junction transistor 46, one of type p-n-p being shown for illustration, connected to impose a variable resistance between the circuit 118 and the junction of the capacitor 123 and the emitter E of the unijunction transistor 119. While various connections are possible, it is preferred to connect the emitter E of the transistor 46 through a resistor 47 to the wire 118 and the collector to the capacitor 123 and the first-mentioned emitter. The emitter E thereby functions as the control part of the transistor. The base B of transistor 46 is connected to the output of an impedance matching device, such as the secondary of a transformer 48, the other side of which is connected to the wire 118. The input of the transformer 48 is connected by electrical wires 49 and 50, such as an electrical cord, to terminals 51 and 52, which are adapted to be connected to an acoustic device, such as an audio speaker 53 powered from a line 54, 55.
By way of specific example, when the speaker 53 has an impedance of 8 ohms and the transistor 46 is a PNP transistor type 2N3906 connected as shown, the transformer 46 may be a subminiature audio transformer having input and out impedances of 8 and 2,000 ohms, respectively, and the resistor 47 may have a value of 10 ohms.
The transistor 46 performs the function of the section 24 b of the first embodiment, controllably conducting a variable current there through by varying the resistance in response to the audio level (volume) of the speaker 53, to vary the flashing rate. Thus, as the audio level changes, the potential between the base and emitter of the transistor 46 is varied, permitting a current to flow at a variable rate from the circuit 118 to charge the capacitor 123.
it may be understood that various generators, in addition to an acoustic device, may be used to produce electrical signals having various waveforms. Possible input signals could be (1) sine waveforms, (2) square waveform, (3) sawtooth, (4) rectangular, (5) any mixture of the foregoing, or (6) a complex modulated waveform.
1 claim:
1. A device for periodically emitting from a moving location, a pulse of visible light of limited illuminating power which does not illuminate other objects in a darkened environment which comprises:
a. a source of electrical potential;
b. a light emitting diode within the visible spectrum having sharply defined junctions between illumination and darkness and situated at said location and having only said limited illuminating power;
c. means including an electronic oscillator for periodically energizing said light emitting diode from said source;
d. means for varying the lengths of said periods; and
e. means for varying the duration of said visible light emissions during said periods.
2. A device according to claim 1, wherein said light emitting diode is a diffused gallium arsenide phosphide diode.
3. A device according to claim 1, which includes:
a. a manually graspable enclosure containing at least the electronic oscillator;
b. the light emitting diode is mounted remotely from said enclosure on a member which is fixed to and projects from the container;
c. said member is flexible and of resilient material,
whereby the light emitting diode can swing relatively to the container;
(1. said potential is direct current and the electronic oscillator includes a unijunction transistor of which:
1. the first base is connected electrically to one terminal of the light emitting diode.
2. the second base is connected electrically through a first resistor to one side of said source of potential;
3. the emitter is connected electrically to the junction of a second resistor, which is variable whereby the lengths 'of said periods can be varied, and a capacitor which are connected in series with each other and across said source of po' tential, the said light emitting diode having its second terminal connected electrically to the other side of said source of potential; and
c. said light emitting diode has a third resistor in shunt therewith.
4. A device according to claim 1 wherein said potential is direct current and the lengths of said periods are variable and determined at least in part by an external signal, said oscillator including:
a. a unijunction transistor of which 1. one base is connected electrically to a first terminal of the light emitting diode,
2. another base is connected electrically through a first resistor to one side of said source of poten tial, and
3. the emitter is connected electrically to the junction of a capacitor and one terminal of a circuit element for controllably conducting a variable current therethrough in accordance with an electrical signal applied to a control part thereof, said capacitor and circuit element being connected in series across said source of potential;
b. said light emitter has its second terminal connected electrically to the other side of said source of potential; and
c. a control circuit connected electrically to said control part and adapted to receive said external signal.
5. A device according to claim 4 wherein said circuit element is a second transistor having a base, an emitter and a collector, and said control circuit includes an impedence-matching circuit having an input adapted to be connected to a source of acoustic power to receive energy therefrom and an output connected electrically to said second transistor.

Claims (9)

1. A device for periodically emitting from a moving location, a pulse of visible light of limited illuminating power which does not illuminate other objects in a darkened environment which comprises: a. a source of electrical potential; b. a light emitting diode within the visible spectrum having sharply defined junctions between illumination and darkness and situated at said location and having only said limited illuminating power; c. means including an electronic oscillator for periodically energizing said light emitting diode from said source; d. means for varying the lengths of said periods; and e. means for varying the duration of said visible light emissions during said periods.
2. A device according to claim 1, wherein said light emitting diode is a diffused gallium arsenide phosphide diode.
2. the second base is connected electrically through a first resistor to one side of said source of potential;
2. another base is connected electrically through a first resistor to one side of said source of potential, and
3. the emitter is connected electrically to the junction of a capacitor and one terminal of a circuit element for controllably conducting a variable current therethrough in accordance with an electrical signal applied to a control part thereof, said capacitor and circuit element being connected in series across said source of potential; b. said light emitter has its second terminal connected electrically to the other side of said source of potential; and c. a control circuit connected electrically to said control part and adapted to receive said external signal.
3. the emitter is connected electrically to the junction of a second resistor, which is variable whereby the lengths of said periods can be varied, and a capacitor which are connected in series with each other and across said source of potential, the said light emitting diode having its second terminal connected electrically to the other side of said source of potential; and e. said light emitting diode has a third resistor in shunt therewith.
3. A device according to claim 1, which includes: a. a manually graspable enclosure containing at least the electronic oscillator; b. the light emitting diode is mounted remotely from said enclosure on a member which is fixed to and projects from the container; c. said member is flexible and of resilient material, whereby the light emitting diode can swing relatively to the container; d. said potential is direct current and the electronic oscillator includes a unijunction transistor of which:
4. A device according to claim 1 wherein said potential is direct current and the lengths of said periods are variable and determined at least in part by an external signal, said oscillator including: a. a unijunction transistor of which
5. A device according to claim 4 wherein said circuit element is a second transistor having a base, an emitter and a collector, and said control circuit includes an impedence-matching circuit having an input adapted to be connected to a source of acoustic power to receive energy therefrom and an output connected electrically to said second transistor.
US00141675A 1971-05-07 1971-05-07 Method and apparatus for forming spatial light patterns Expired - Lifetime US3737722A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14167571A 1971-05-07 1971-05-07

Publications (1)

Publication Number Publication Date
US3737722A true US3737722A (en) 1973-06-05

Family

ID=22496706

Family Applications (1)

Application Number Title Priority Date Filing Date
US00141675A Expired - Lifetime US3737722A (en) 1971-05-07 1971-05-07 Method and apparatus for forming spatial light patterns

Country Status (1)

Country Link
US (1) US3737722A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883730A (en) * 1973-09-13 1975-05-13 Robert A Dickson Illuminated decorative display
US4225862A (en) * 1979-03-05 1980-09-30 International Business Machines Corporation Tuning fork oscillator driven light emitting diode display unit
US4282681A (en) * 1979-11-30 1981-08-11 Mccaslin Robert E Electronic wand
US4470044A (en) * 1981-05-15 1984-09-04 Bill Bell Momentary visual image apparatus
US4628422A (en) * 1982-02-16 1986-12-09 Integrerad Teknik Hb Display comprising light-emitting diodes and a method and an installation for its manufacture
US5010412A (en) * 1988-12-27 1991-04-23 The Boeing Company High frequency, low power light source for video camera
US5136476A (en) * 1991-05-23 1992-08-04 Horn Donald E Toilet bowl illuminator
US5136477A (en) * 1991-10-28 1992-08-04 Lemmey Edgar S Miniature battery-powered lighting device
US5266063A (en) * 1993-04-02 1993-11-30 Baumgartner Jr William J Spinning light device
US5406300A (en) * 1991-12-12 1995-04-11 Avix, Inc. Swing type aerial display system
US5444456A (en) * 1991-05-23 1995-08-22 Matsushita Electric Industrial Co., Ltd. LED display apparatus
US5584571A (en) * 1994-10-03 1996-12-17 Chandler; Vinal D. Apparatus for simulating lighting effects
US6240190B1 (en) * 1994-09-01 2001-05-29 United Microelectronics Corp. Synchronized sounding/flashing circuit
US6486858B1 (en) * 1995-10-31 2002-11-26 Mitchell A. Altman Method for creating a two-dimensional image
US20030080924A1 (en) * 2001-10-31 2003-05-01 Bentley Arthur Lane Kinetic device and method for producing visual displays
US20030120129A1 (en) * 2001-12-26 2003-06-26 Pentax Corporation Excitation light illuminating probe, video endoscope system, and video endoscope for fluorescence observation
US6894663B1 (en) 1995-10-31 2005-05-17 Mitchell A. Altman Method for creating an image for an event or promotion
US7852234B1 (en) * 2007-06-14 2010-12-14 Traffic Safety Corp. Cross-walk safety lighting with multiple enhanced flash rate
US20110157896A1 (en) * 2009-12-31 2011-06-30 Chih-Ming Yu Color led lamp

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2108802A (en) * 1936-12-23 1938-02-22 Louis F Dorsey Baton
US2496601A (en) * 1948-05-28 1950-02-07 Charles H M Schamblin Vehicle signal lamp
US2726483A (en) * 1952-11-18 1955-12-13 Charles E Hughes Flashing toy construction
US3113241A (en) * 1960-04-07 1963-12-03 Daystrom Inc Electronic switch means for flashing electrical lamps
US3465207A (en) * 1966-12-29 1969-09-02 Gen Electric Protection circuit for scr pulse generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2108802A (en) * 1936-12-23 1938-02-22 Louis F Dorsey Baton
US2496601A (en) * 1948-05-28 1950-02-07 Charles H M Schamblin Vehicle signal lamp
US2726483A (en) * 1952-11-18 1955-12-13 Charles E Hughes Flashing toy construction
US3113241A (en) * 1960-04-07 1963-12-03 Daystrom Inc Electronic switch means for flashing electrical lamps
US3465207A (en) * 1966-12-29 1969-09-02 Gen Electric Protection circuit for scr pulse generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electonics World Oct. 1965 p. 68 Battery Operated Fluorescent Lamp by Mapham/G.E.Co. *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883730A (en) * 1973-09-13 1975-05-13 Robert A Dickson Illuminated decorative display
US4225862A (en) * 1979-03-05 1980-09-30 International Business Machines Corporation Tuning fork oscillator driven light emitting diode display unit
US4282681A (en) * 1979-11-30 1981-08-11 Mccaslin Robert E Electronic wand
US4470044A (en) * 1981-05-15 1984-09-04 Bill Bell Momentary visual image apparatus
US4628422A (en) * 1982-02-16 1986-12-09 Integrerad Teknik Hb Display comprising light-emitting diodes and a method and an installation for its manufacture
US4872862A (en) * 1982-02-16 1989-10-10 Ewald Rolf V T Method and apparatus for manufacturing display comprising light-emitting diodes
US5010412A (en) * 1988-12-27 1991-04-23 The Boeing Company High frequency, low power light source for video camera
US5136476A (en) * 1991-05-23 1992-08-04 Horn Donald E Toilet bowl illuminator
US5444456A (en) * 1991-05-23 1995-08-22 Matsushita Electric Industrial Co., Ltd. LED display apparatus
US5136477A (en) * 1991-10-28 1992-08-04 Lemmey Edgar S Miniature battery-powered lighting device
US5406300A (en) * 1991-12-12 1995-04-11 Avix, Inc. Swing type aerial display system
US5266063A (en) * 1993-04-02 1993-11-30 Baumgartner Jr William J Spinning light device
US6240190B1 (en) * 1994-09-01 2001-05-29 United Microelectronics Corp. Synchronized sounding/flashing circuit
US5584571A (en) * 1994-10-03 1996-12-17 Chandler; Vinal D. Apparatus for simulating lighting effects
US6486858B1 (en) * 1995-10-31 2002-11-26 Mitchell A. Altman Method for creating a two-dimensional image
US6894663B1 (en) 1995-10-31 2005-05-17 Mitchell A. Altman Method for creating an image for an event or promotion
US20030080924A1 (en) * 2001-10-31 2003-05-01 Bentley Arthur Lane Kinetic device and method for producing visual displays
US7142173B2 (en) 2001-10-31 2006-11-28 Arthur Lane Bentley Kinetic device and method for producing visual displays
US20030120129A1 (en) * 2001-12-26 2003-06-26 Pentax Corporation Excitation light illuminating probe, video endoscope system, and video endoscope for fluorescence observation
US6962565B2 (en) * 2001-12-26 2005-11-08 Pentax Corporation Excitation light illuminating probe, video endoscope system, and video endoscope for fluorescence observation
US7852234B1 (en) * 2007-06-14 2010-12-14 Traffic Safety Corp. Cross-walk safety lighting with multiple enhanced flash rate
US20110157896A1 (en) * 2009-12-31 2011-06-30 Chih-Ming Yu Color led lamp

Similar Documents

Publication Publication Date Title
US3737722A (en) Method and apparatus for forming spatial light patterns
US4510556A (en) Electronic lighting apparatus for simulating a flame
EP0614394A1 (en) An illuminating toy
US6997772B2 (en) Interactive device LED display
US4231079A (en) Article of wearing apparel
US4161018A (en) Lighted ornamental devices
US5010412A (en) High frequency, low power light source for video camera
US5989091A (en) Bathtub toy
US7828462B2 (en) Imitation candle with simulated lighted wick using external light source
US6036334A (en) Illuminating apparatus and frame to which the illuminating apparatus is attached
US20060208666A1 (en) Electronic lighting device for simulating a flame
US5233662A (en) Oral controller method and apparatus
US5190491A (en) Animated paddle
US6058634A (en) Light emitting artwork
US3816739A (en) Illuminating device
US6882117B1 (en) Apparatus and methods for continuous and/or selective production of multiple light displays
US6488494B2 (en) Candle holder
JPH09326299A (en) Light source driving system and fluctuation signal generator
KR100402353B1 (en) A lighting device and a frame on which the lighting device is mounted
US2717336A (en) Flasher circuit
GB2036470A (en) Lamp controller for a phonograph
US5959230A (en) Tactile tempo indicating device
JP2001291598A (en) Electronic candle
US5584571A (en) Apparatus for simulating lighting effects
US3736832A (en) Light display