US3742939A - Method and apparatus for determining respiratory airway resistance - Google Patents

Method and apparatus for determining respiratory airway resistance Download PDF

Info

Publication number
US3742939A
US3742939A US00118280A US3742939DA US3742939A US 3742939 A US3742939 A US 3742939A US 00118280 A US00118280 A US 00118280A US 3742939D A US3742939D A US 3742939DA US 3742939 A US3742939 A US 3742939A
Authority
US
United States
Prior art keywords
measuring
breath
volume
pressure
person
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00118280A
Inventor
W Sayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3742939A publication Critical patent/US3742939A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/091Measuring volume of inspired or expired gases, e.g. to determine lung capacity
    • A61B5/093Measuring volume of inspired or expired gases, e.g. to determine lung capacity the gases being exhaled into, or inhaled from, an expansible chamber, e.g. bellows or expansible bag
    • A61B5/0935Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/085Measuring impedance of respiratory organs or lung elasticity

Definitions

  • FIG 5 ATTORNEYS PATENIEDJULB' 1975 saw a RF 4' mvsmoa WILLIAM -J. SAYER BYW Mfm
  • FIG 8 ATTORNEYS PATENTEI] JUL 3 I975 SHEEFMBFQ INVENTOR. WILLIAM J. S Em,
  • Atmospheric pressurepressure in the oropharynx/ flow has been a difficult task, particularly because the pharyngeal pressure (pressure in the nasopharynx) varies substantially during the inspirationrespiration cycle. Also, the simple linear relationship between pressure and flow to yield the airway resistance has been proven invalid as hysteresis occurs at very low and very high pressures.
  • a mask with selected inlet members measures pharyngeal pressure and pressure at the inlet to the nostrils during breathing, but without measuring volume.
  • Patent provides a rather complex instrument for measuring nasal airway resistance. Air flow is indirectly measured by looking at a pressure differential. The device appears to be an elaborate successor to the 1939 method, and because it tests over a wide pressure range it suffers from the same inaccuracies.
  • the pharyngeal pressure is monitored during a patients expiratory or inspiratory phase and when the pressure fits within prescribed limits the nasal or tracheobronchial air flow is measured and recorded.
  • the nasal or tracheobronchial airway resistance may then be calculated by dividing the difference between atmospheric pressure and the selected pharyngeal pressure by the air flow.
  • FIG. 1 is a schematic side view of the apparatus of the present invention as used with a patient.
  • FIG. 2 is a perspective view of a two-way valve forming a portion of the apparatus of the present invention.
  • FIG. 3 is a schematic end view of a portion of the apparatus of the present invention.
  • FIG. 4 is a perspective view of a three-way stop-cock valve forming a portion of the apparatus of the invention.
  • FIG. 5 is a graph of air volume per unit of time (air flow) generated by the kymograph and pen that forms a portion of the apparatus of the invention.
  • FIG. 6 is a schematic view'of a portion of the apparatus having a modified face mask as used with a patient.
  • FIG. 7 is a side elevation view of a mouthpiece adapted for use in measuring tracheobronchial airway resistance.
  • FIG. 8 is a schematic end view of a portion of the apparatus of FIG. 3 modified for measurement of tracheobronchial airway resistance.
  • FIG. 9 is a schematic view of the mouthpiece of FIG. 7 as used with a patient to measure tracheobronchial airway resistance.
  • FIG. 10 is a schematic end view of the apparatus of FIG. 8 modified to include a pair of gauge switches.
  • FIGS. 1 and 3 of the drawings a conventional spirometer 2 and kymograph 4 is shown supported on suitable base means 6.
  • a suitable spirometer and kymograph is the Warren E. Collins, Inc., Respirometer" No. P-9OO described in that companys 1966 catalog.
  • the Collins Respirometer may be used virtually as provided or if less resistance to air flow is desired it is modified by removing the inner soda lime cannister and rubber flutter valve.
  • Either device, for which any suitable equivalent means may be substituted, is essentially a source of air, the volume of which can be accurately measured with respect to time.
  • the bell 8 is filled with air when it is raised by the chain and counterbalance 10.
  • the three-way stop-cock valve 12 is rotated to permit room air to be drawn through tube 14 to fill the bell 8.
  • Tube 16 is in parallel to tube 14 and could be eliminated if desired. Tubes 14 and 16 are supported by a pair of flexible goose-neck supports 18 and 20.
  • the kymograph 4 has a removable paper chart 22 mounted on a motor-driven cylinder 26 and a moving pen 24 for marking thereon. As described hereinafter, the cylinder 26 is driven only when the patients pharyngeal pressure is within the prescribed limits, thus creating a chart record only during those time periods.
  • Tubes I4 and 16 are joined in a two-way valve 28, shown in greater detail in FIG. 2.
  • openings 32, 24 and 36 are connected in a closed system, thus connecting tubes 14 and 16 together to tube 40.
  • tubes 14 and 16 are connected together in a closed system and tube 40 at opening 36 is open to the room air via slot 42.
  • Tube 40 is attached via a coupling 42 to a scuba-type face mask 44 that fits over the patients nose in an air-tight manner.
  • a disposable mouthpiece 46 is placed into the patients mouth, over his tongue, and is connected to a tube 48 that may be of relatively small diameter because its purpose is to conduct the pharyngeal pressure, as present in the mouth, to a combination meter and switching device 50.
  • Device 50 has a pressure reading needle 52 and a pair of adjustable needles 54 for setting the desired pressure range. When the patients pharyngeal pressure read by needle 52 is within the limits as set by needles 54, then device 50 closes a switch to activate the kymograph motor. As the motor turns cylinder 26, the volume of air present in spirometer 2 is recorded by pen 24. As will be explained below, the record on chart 22 will provide the data necessary to calculate the nasal airway resistance of the patient.
  • Device 50 is a commercially available product marketed as a photohelic gauge switch by Dwyer Instruments, Inc., of Michigan City, Ind., as described in U.S. Pat. No. 3,397,319 to JP. Locke.
  • the device 50 has both positive and negative pressure inputs.
  • valve 28 In inspiratory nasal airway measurement operation, valve 28 is rotated to connect tubes 14 and 16 together and to open tube 40 to the room air. Mask 44 may be placed on the patient at this time since room air is available at the mask. Valve 12 is rotated to open tube 12 to the room air. Bell 8 is raised to fill the spirometer 2 with room air and then valve 12 is rotated to provide a closed path between the spirometer 2 and valve 28.
  • the patient is instructed to breath in through his nostrils while at the same time holding mouthpiece 46 in his mouth with his mouth closed around it. He is instructed to exhale through his mouth around the mouthpiece, holding the mouthpiece in place with his teeth. The patient is allowed to practice this before the actual recording procedure is begun.
  • the patient is also instructed to practice inhaling so as to provide a pharyngeal pressure falling within the limits set on device 50. Since the meter face of device 50 is visible to the patient he may watch it until he achieves the desired pressure. In actual practice it has been found that patients can achieve the desired pressure after a relatively brief period of practice.
  • the linear relation-ship be tween pressure and flow expressed in the equation.
  • R P Pp/ V/t where R is the nasal airway resistance, P0 is the atmospheric pressure, Pp is the pharyngeal pressure, and V]: is the volume of air per unit of time, is most valid in the range of about to 35 mm I-I,0.
  • valve 28 may be rotated to connect the spirometer air supply to the patients face mask via tubes 14, I6 and 40. As the patient inhales a chart of the spirometer volume level will be recorded whenever the pharyngeal pressure measured by device through tube 48 and mouthpiece 46 is within the prescribed range.
  • expiratory nasal airway measurements may be made, although most patients find the inspiratory measurements to be more comfortable. Also, there is less air leakage around the face mask during inspiratory measurements. Expiratory nasal airway measurements are made in a manner identical to the taking of inspiratory measurements except that the patient breathes out through his nostrils while holding mouthpiece 46 in his mouth with his mouth closed around it. The patient breathes in by holding the mouthpiece between his teeth and inhaling through his mouth around the mouthpiece. Tube 48 must be connected to the positive pressure input of pressure gauge 50 during expiratory measurements. A
  • FIG. 5 An actual reproduction of a patients chart of spirometer air volume versus time is shown in FIG. 5.
  • the iongest straight lines indicate periods in which the patient achieved continuous inhalation within the prescribed pharyngeal pressure limits for the longest times.
  • the longest straight line is chosen, preferably lasting 1% seconds or more, and the angle to the horizontal is measured to derive the slope of the line from which the volume per unit time can be calculated.
  • the nasal resistance is then the average pressure between the two limits set on device 50 divided by the volume per unit time taken from the chart.
  • the practitioner need only deal with the volume per unit time since it will be related to nasal resistance by a constant.
  • each nostril in turn to provide resistance data for the nasal airway with both nostrils uncovered, the left covered, and the right covered.
  • the nostrils may be covered by using cellophane tape or the like, being careful not to deform the nostril.
  • a clock in conjunction with the apparatus so that the operator may record the times at which the data was taken. It will be apparent that in a computerized version of the invention that time could be included along with the data taken.
  • FIG. 6 shows a modified face mask that may be used with the apparatus of FIGS. 1 and 3.
  • Mask 60 is hand-held by the patient and is advantageously used with patients who wear glasses or who feel uneasy with the mask strapped to their head.
  • Tube 40 as in FIG. 1 is connected via a coupling 62 to the mask 60.
  • Tube 48 as in FIG. 1 is connected to a mouthpiece 66 that passes through an air-tight fitting 64 in the mask 66.
  • the mask 60 is held firmly by the patient over his nose and mouth with mouthpiece 66 in his mouth.
  • the assembly functions in like manner to mask 44 and mouthpiece 46 of FIG. 1.
  • Tube 40 carries air to or from the nose just as it does with mask 44.
  • a relief valve (not shown) could be incorporated in the mask so that the patient could continually hold the mask against his face.
  • FIGS. 7-10 relate to an embodiment of the invention adapted for measuring tracheobronchial airway resistance.
  • FIG. 7 shows a side elevation view of a mouthpiece 68 adapted for measuring tracheobronchial airway resistance.
  • An air hose such as tube 40 (in FIG. 8) is connected to the right end of the mouthpiece.
  • a tube 72 (see also FIG. 8) for measuring pressure is connected to a tap 70 in the periphery of the mouthpiece.
  • FIG. 8 shows a modification of FIGS. 1 and 3 adapted for tracheobronchial measurements.
  • the mouthpiece 68 of FIG. 7 is employed with the apparatus of FIG. 8.
  • Pressure gauge 50 has two inputs: for measuring negative and positive pressures.
  • Tube 78 connects to one input and tube 76 connects to the other input.
  • a solenoid operated electric switch 73 connects the pressure measuring line 72 to one of the tubes 76 or 78 depending on whether or not electric leads 74 are energized.
  • the apparatus can measure pressure during expiration (positive pressure) or inspiration (negative pressure).
  • FIG. 9 shows a patient using the mouthpiece of FIG. 7 as it is used for tracheobronchial airway measurements.
  • a nose clamp 80 is placed over the patients nose to prevent any nasal airflow.
  • the switch 73 is selected to connect tube 72 to the negative input of gauge 50.
  • the patient breathes in through his mouth and attempts to maintain a pressure within the preselected range on gauge 50 in a manner analogous to the taking of nasal measurements.
  • the pressure measured by tube 72 is the pharyngeal pressure as in the nasal measurements and the measurement is still a differential pressure; the other pressure being the atmospheric pressure that surrounds the lungs, against which the lungs must work.
  • the same equations and computations are used to calculate the tracheobronchial airway resistance.
  • the switch 73 is changed to connect pressure tube 72 to the positive pressure input of gauge 50 and the patient attempts to maintain the preset pressure on gauge 50 when he breathes out.
  • the patient breathes around the mouthpiece while holding it in place with his teeth when a measurement is not being taken.
  • FIG. 10 shows a further modification of the embodiment of FIG. 8.
  • a pair of photohelic pressure gauge switches 50 and 51 are used in conjunction with a Y connection 75 and tubes 76 and 78.
  • Gauge 50 has tube 76 connected to its negative input and gauge 51 has tube 78 connected to its positive input.
  • This arrangement is desirable in taking tracheobronchial measurements when the pressures achievable by the typical patient are different for expiration and inspiration. By using two gauges, the pressure range need not be reset when changing from expiration to inspiration measurements. It has been found that when using two photohelic gauge switches, a simple Y connection may be used in lieu of a manual or solenoid switch in the pressure measuring line. When a single photohelic gauge switch is used, the pressure lines must be switched from the negative to positive input.
  • any means providing a measurable source of air supply such as a pneumotachograph may be substituted for the spirometer 2.
  • the recordation of the air supply volume with respect to time can be achieved by devices other than the kymograph 4.
  • such recordation could be done on an X-Y plotter, a storage-type oscilloscope, or the data could be stored in an analog or digital memory device.
  • the photohelic switch could be replaced by another pressure measuring arrangement and apparatus wherein a selected pressure range provides a control signal.
  • the computation of the nasal resistance may be carried out by a programmed machine such as an analog or digital computer. Therefore, the invention is to be limited only by the scope of the appended claims.
  • a method of deriving data for use in calculating nasal or tracheobronchial airway resistance of a person 1 comprising the simultaneous steps of measuring and recording the volume of air freely inspired or expired during a breath through either the mouth or nasal passages of a person,
  • Apparatus for deriving data for use in calculating nasal or tracheobronchial airway resistance of a person comprising means for measuring and recording the volume of air freely inspired or expired during a breath through either the mouth or nasal passages of a person,
  • means for measuring and recording the time during said breath means responsive to said means for measuring the pharyngeal pressure to actuate said means for measuring and recording the volume of air and said means for measuring and recording time only when the volume of air per unit time is substantially constant.
  • Apparatus according to claim 3 wherein the means for measuring and recording the volume of air includes:
  • substantially air-tight mask means adapted to fit over the nostrils or mouth of the person
  • Apparatus according to claim 4 wherein the means for measuring pharyngeal pressure comprises:
  • tube means for connecting said mouthpiece to said pressure measuring means.
  • Apparatus according to claim 5 wherein the means for measuring and recording time during the breath comprises a kymograph pen and ink chart recorder.
  • a method of determining the nasal or tracheobronchial airway resistance of a person comprising the simultaneous steps of measuring and recording the volume of air freely inspired or expired during a breath through either the R P Pp] V/t mouth or nasal passages of a person, where R is the nasal airway resistance, P0 is the atmomeasuring and recording time during the breath, spheric pressure, Pp is the average pharyngeal pressure measuring the pharyngeal pressure of the person durduring the breath and V]: is the volume of air per unit ing the breath, selecting the measured volume and time in ired during the breath, time where the volume o ai per Unit t is 8.

Abstract

A method and apparatus for determining nasal or tracheobronchial respiratory airway resistance in a person. The volume of freely breathed air, pharyngeal pressure, and time duration of a breath are measured or recorded. Preferably, a narrow pharyngeal pressure range is chosen to optimize the validity of the data. Further, the choice of data in which the volume of air breathed per unit time is substantially constant enhances the validity of the data.

Description

United States Patent [191 Sayer 1 1 METHOD AND APPARATUS FOR DETERMINING RESPIRATORY AIRWAY RESISTANCE [76] Inventor: William J. Sayer, 1618 Willow Road, Palo Alto, Calif. 94304 22 Filed: Feb. 24, 1971 21 Appl. No.: 118,280
[52] US. Cl. l28/2.08
[51] Int. Cl A6lb 5/08 [58] Field of Search 128/208, 2.07, 2 C, 128/2 R, 2.08
[56] References Cited UNITED STATES PATENTS 3,410,264 11/1968 Frederik 128/208 X 3,516,401 6/1970 Dell'Aira 128/208 3,621,833 11/1971 Crane 128/208 3,036,569 5/1962 Clements et a1. 128/208 FOREIGN PATENTS OR APPLICATIONS 1,508,303 11/1967. France 128/208 [451 July 3,1973
1,915,959 10/1970 Germany .,128/2C OTHER PUBLICATIONS Gulesian, P.J., IEEE Trans on Bio-Med Engineering. Sept., 1971,pp.378-382, (copy in GR.335. 128/208) Jaeger, J..l., et a1, .lourn. of Applied Physiology, Vol. 19, No. 4, .luly,1964, pp.813820, (Copy in GR.335,128/2.08)
Primary Examiner-Kyle L. Howell Attorney-Limbach, Limbach & Sutton [57] ABSTRACT 8 Claims, 10 Drawing Figures 1 l s, 1, 20 I" 4 4 ll 1'; t I I I l8 22 l l 1, 5O 1 1 26 PATENTEDJULB 197s sum 1 nr I NVENTOR.
WILLIAM J. SAYER BYZW W film ATTORN EYS PATENTEDJULB ms- SHEEY M Q INVENTOR. WILLIAM J. SAYER WM, w 4
TIME
FIG 5 ATTORNEYS PATENIEDJULB' 1975 saw a RF 4' mvsmoa WILLIAM -J. SAYER BYW Mfm FIG 8 ATTORNEYS PATENTEI] JUL 3 I975 SHEEFMBFQ INVENTOR. WILLIAM J. S Em,
AYER Wfm ATTORNEYS METHOD AND APPARATUS FOR DETERMINING RESPIRATORY AIRWAY RESISTANCE BACKGROUND OF THE INVENTION Medical attempts to evaluate nasal airway capacity or nasal congestion date back at least to 1889 when Zwaardemeker wrote about his cold mirror test. It is accepted that a patients own observations about his nose are not determinative and looking in the nose also fails to yield the complete picture. Therefore, an accurate measurement of nasal and/or tracheobrochial airway capacity is important to both the clinical practitioner and medical researchers.
The condition of the nasal passages affects the resistance to air flow through the nostrils in the same way that air flow in any tube depends on its structure (length, diameter, shape) according to Poiseuilles Law. In his text Physiology of Respiration by Julius H. Comroe, Jr., MD. Year Book Medical Publishers, Inc., 1965, air flow in patients is compared to air flow in tubes. Dr. Comroe points out that air flow resistance is a calculated dimension and that resistance across the nasal o'r tracheobronchial airways is equal to:
Atmospheric pressurepressure in the oropharynx/ flow. The determination of nasal or tracheobronchial airway resistance has been a difficult task, particularly because the pharyngeal pressure (pressure in the nasopharynx) varies substantially during the inspirationrespiration cycle. Also, the simple linear relationship between pressure and flow to yield the airway resistance has been proven invalid as hysteresis occurs at very low and very high pressures.
One prior art method was originally presented in 1939. In that approach a transducer is used to measure the difference in pressure between the nasopharynx and a nasal mask. The air flow is measured and plotted opposite the pressure at each instant of time to obtain a plot of resistance. This method provides results of questionable validity because it attempts to apply the simple first order relationship of pressure divided by flow values for all pressure encountered, whereas this relationship holds true only for a common pipe having a laminar flow therein.
Another prior art approach, recognizing the diminished significance of testing over a wide pressure range, eliminates completing the pressure measurement and relies solely on a measurement of air flow through the nasal airway. This method is described in an article Nasal Spirometry" by Murray D. Morrison, M.D., in Arch Otolaryng, Vol. 90, Nov. 1969.
In a further prior art approach, a mask with selected inlet members measures pharyngeal pressure and pressure at the inlet to the nostrils during breathing, but without measuring volume.
One prior art US. Patent provides a rather complex instrument for measuring nasal airway resistance. Air flow is indirectly measured by looking at a pressure differential. The device appears to be an elaborate successor to the 1939 method, and because it tests over a wide pressure range it suffers from the same inaccuracies.
overcome the shortcomings of the prior art by measuring parameters from which nasal or tracheobronchial airway resistance may be calculated in a narrow pharyngeal pressure range, allowing selection of that range in which the linear relationship between pressure and air flow volume is most nearly valid. In one embodiment of the invention, the pharyngeal pressure is monitored during a patients expiratory or inspiratory phase and when the pressure fits within prescribed limits the nasal or tracheobronchial air flow is measured and recorded. The nasal or tracheobronchial airway resistance may then be calculated by dividing the difference between atmospheric pressure and the selected pharyngeal pressure by the air flow. The details of the apparatus and method of the present invention along with further advantages thereof will become evident as the de tailed description of the preferred embodiment is read and understood.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side view of the apparatus of the present invention as used with a patient.
FIG. 2 is a perspective view of a two-way valve forming a portion of the apparatus of the present invention.
FIG. 3 is a schematic end view of a portion of the apparatus of the present invention.
FIG. 4 is a perspective view of a three-way stop-cock valve forming a portion of the apparatus of the invention.
FIG. 5 is a graph of air volume per unit of time (air flow) generated by the kymograph and pen that forms a portion of the apparatus of the invention.
FIG. 6 is a schematic view'of a portion of the apparatus having a modified face mask as used with a patient.
FIG. 7 is a side elevation view of a mouthpiece adapted for use in measuring tracheobronchial airway resistance.
FIG. 8 is a schematic end view of a portion of the apparatus of FIG. 3 modified for measurement of tracheobronchial airway resistance.
FIG. 9 is a schematic view of the mouthpiece of FIG. 7 as used with a patient to measure tracheobronchial airway resistance.
FIG. 10 is a schematic end view of the apparatus of FIG. 8 modified to include a pair of gauge switches.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now particularly to FIGS. 1 and 3 of the drawings, a conventional spirometer 2 and kymograph 4 is shown supported on suitable base means 6. A suitable spirometer and kymograph is the Warren E. Collins, Inc., Respirometer" No. P-9OO described in that companys 1966 catalog. For use in this invention the Collins Respirometer" may be used virtually as provided or if less resistance to air flow is desired it is modified by removing the inner soda lime cannister and rubber flutter valve. Either device, for which any suitable equivalent means may be substituted, is essentially a source of air, the volume of which can be accurately measured with respect to time. Thus, the bell 8 is filled with air when it is raised by the chain and counterbalance 10. The three-way stop-cock valve 12 is rotated to permit room air to be drawn through tube 14 to fill the bell 8. Tube 16 is in parallel to tube 14 and could be eliminated if desired. Tubes 14 and 16 are supported by a pair of flexible goose-neck supports 18 and 20.
The kymograph 4 has a removable paper chart 22 mounted on a motor-driven cylinder 26 and a moving pen 24 for marking thereon. As described hereinafter, the cylinder 26 is driven only when the patients pharyngeal pressure is within the prescribed limits, thus creating a chart record only during those time periods.
Tubes I4 and 16 are joined in a two-way valve 28, shown in greater detail in FIG. 2. When the lever 30 is in the position shown, openings 32, 24 and 36 are connected in a closed system, thus connecting tubes 14 and 16 together to tube 40. When the lever is rotated 90, tubes 14 and 16 are connected together in a closed system and tube 40 at opening 36 is open to the room air via slot 42. Tube 40 is attached via a coupling 42 to a scuba-type face mask 44 that fits over the patients nose in an air-tight manner. A disposable mouthpiece 46 is placed into the patients mouth, over his tongue, and is connected to a tube 48 that may be of relatively small diameter because its purpose is to conduct the pharyngeal pressure, as present in the mouth, to a combination meter and switching device 50. Device 50 has a pressure reading needle 52 and a pair of adjustable needles 54 for setting the desired pressure range. When the patients pharyngeal pressure read by needle 52 is within the limits as set by needles 54, then device 50 closes a switch to activate the kymograph motor. As the motor turns cylinder 26, the volume of air present in spirometer 2 is recorded by pen 24. As will be explained below, the record on chart 22 will provide the data necessary to calculate the nasal airway resistance of the patient. Device 50 is a commercially available product marketed as a photohelic gauge switch by Dwyer Instruments, Inc., of Michigan City, Ind., as described in U.S. Pat. No. 3,397,319 to JP. Locke. The device 50 has both positive and negative pressure inputs.
In inspiratory nasal airway measurement operation, valve 28 is rotated to connect tubes 14 and 16 together and to open tube 40 to the room air. Mask 44 may be placed on the patient at this time since room air is available at the mask. Valve 12 is rotated to open tube 12 to the room air. Bell 8 is raised to fill the spirometer 2 with room air and then valve 12 is rotated to provide a closed path between the spirometer 2 and valve 28. The patient is instructed to breath in through his nostrils while at the same time holding mouthpiece 46 in his mouth with his mouth closed around it. He is instructed to exhale through his mouth around the mouthpiece, holding the mouthpiece in place with his teeth. The patient is allowed to practice this before the actual recording procedure is begun. The patient is also instructed to practice inhaling so as to provide a pharyngeal pressure falling within the limits set on device 50. Since the meter face of device 50 is visible to the patient he may watch it until he achieves the desired pressure. In actual practice it has been found that patients can achieve the desired pressure after a relatively brief period of practice. The linear relation-ship be tween pressure and flow expressed in the equation. R P Pp/ V/t, where R is the nasal airway resistance, P0 is the atmospheric pressure, Pp is the pharyngeal pressure, and V]: is the volume of air per unit of time, is most valid in the range of about to 35 mm I-I,0. It has been found that substantially all of the patients tested can achieve a pressure in this range for a duration of 1% seconds or more. A typical pressure achievable by patients is on the order of 25 mm H,O. After the patient has succeeded in achieving the desired pressure after practice, the valve 28 may be rotated to connect the spirometer air supply to the patients face mask via tubes 14, I6 and 40. As the patient inhales a chart of the spirometer volume level will be recorded whenever the pharyngeal pressure measured by device through tube 48 and mouthpiece 46 is within the prescribed range.
Alternatively, expiratory nasal airway measurements may be made, although most patients find the inspiratory measurements to be more comfortable. Also, there is less air leakage around the face mask during inspiratory measurements. Expiratory nasal airway measurements are made in a manner identical to the taking of inspiratory measurements except that the patient breathes out through his nostrils while holding mouthpiece 46 in his mouth with his mouth closed around it. The patient breathes in by holding the mouthpiece between his teeth and inhaling through his mouth around the mouthpiece. Tube 48 must be connected to the positive pressure input of pressure gauge 50 during expiratory measurements. A
An actual reproduction of a patients chart of spirometer air volume versus time is shown in FIG. 5. The iongest straight lines indicate periods in which the patient achieved continuous inhalation within the prescribed pharyngeal pressure limits for the longest times. To convert the chart data to nasal airway resistance, the longest straight line is chosen, preferably lasting 1% seconds or more, and the angle to the horizontal is measured to derive the slope of the line from which the volume per unit time can be calculated. The nasal resistance is then the average pressure between the two limits set on device 50 divided by the volume per unit time taken from the chart. Thus, for constant settings of pressure limits on device 50, the practitioner need only deal with the volume per unit time since it will be related to nasal resistance by a constant.
Further techniques employed with the invention include plugging each nostril in turn to provide resistance data for the nasal airway with both nostrils uncovered, the left covered, and the right covered. The nostrils may be covered by using cellophane tape or the like, being careful not to deform the nostril. In addition, it is convenient to employ a clock in conjunction with the apparatus so that the operator may record the times at which the data was taken. It will be apparent that in a computerized version of the invention that time could be included along with the data taken.
FIG. 6 shows a modified face mask that may be used with the apparatus of FIGS. 1 and 3. Mask 60 is hand-held by the patient and is advantageously used with patients who wear glasses or who feel uneasy with the mask strapped to their head. Tube 40 as in FIG. 1 is connected via a coupling 62 to the mask 60. Tube 48 as in FIG. 1 is connected to a mouthpiece 66 that passes through an air-tight fitting 64 in the mask 66. In operation, the mask 60 is held firmly by the patient over his nose and mouth with mouthpiece 66 in his mouth. The assembly functions in like manner to mask 44 and mouthpiece 46 of FIG. 1. Tube 40 carries air to or from the nose just as it does with mask 44. In order to breath out through the mouth during inspiratory nasal airway measurements or to breath in through the month during expiratory nasal airway measurements the patient simply moves the mask away from his face. Alternatively, a relief valve (not shown) could be incorporated in the mask so that the patient could continually hold the mask against his face.
FIGS. 7-10 relate to an embodiment of the invention adapted for measuring tracheobronchial airway resistance.
FIG. 7 shows a side elevation view of a mouthpiece 68 adapted for measuring tracheobronchial airway resistance. An air hose such as tube 40 (in FIG. 8) is connected to the right end of the mouthpiece. A tube 72 (see also FIG. 8) for measuring pressure is connected to a tap 70 in the periphery of the mouthpiece.
FIG. 8 shows a modification of FIGS. 1 and 3 adapted for tracheobronchial measurements. The mouthpiece 68 of FIG. 7 is employed with the apparatus of FIG. 8. Pressure gauge 50 has two inputs: for measuring negative and positive pressures. Tube 78 connects to one input and tube 76 connects to the other input. A solenoid operated electric switch 73 connects the pressure measuring line 72 to one of the tubes 76 or 78 depending on whether or not electric leads 74 are energized. Thus the apparatus can measure pressure during expiration (positive pressure) or inspiration (negative pressure).
FIG. 9 shows a patient using the mouthpiece of FIG. 7 as it is used for tracheobronchial airway measurements. A nose clamp 80 is placed over the patients nose to prevent any nasal airflow. For inspiratory measurements, the switch 73 is selected to connect tube 72 to the negative input of gauge 50. The patient breathes in through his mouth and attempts to maintain a pressure within the preselected range on gauge 50 in a manner analogous to the taking of nasal measurements. The pressure measured by tube 72 is the pharyngeal pressure as in the nasal measurements and the measurement is still a differential pressure; the other pressure being the atmospheric pressure that surrounds the lungs, against which the lungs must work. Thus the same equations and computations are used to calculate the tracheobronchial airway resistance.
If it is desired to measure the expiratory airway resistance, the switch 73 is changed to connect pressure tube 72 to the positive pressure input of gauge 50 and the patient attempts to maintain the preset pressure on gauge 50 when he breathes out.
As in the nasal measurements, the patient breathes around the mouthpiece while holding it in place with his teeth when a measurement is not being taken.
FIG. 10 shows a further modification of the embodiment of FIG. 8. A pair of photohelic pressure gauge switches 50 and 51 are used in conjunction with a Y connection 75 and tubes 76 and 78. Gauge 50 has tube 76 connected to its negative input and gauge 51 has tube 78 connected to its positive input. This arrangement is desirable in taking tracheobronchial measurements when the pressures achievable by the typical patient are different for expiration and inspiration. By using two gauges, the pressure range need not be reset when changing from expiration to inspiration measurements. It has been found that when using two photohelic gauge switches, a simple Y connection may be used in lieu of a manual or solenoid switch in the pressure measuring line. When a single photohelic gauge switch is used, the pressure lines must be switched from the negative to positive input.
lt will be recognized by those of ordinary skill in the art that the apparatus of the present invention may be substantially modified and yet provide thersame function and results provided the teachings of the invention are followed. For example, any means providing a measurable source of air supply such as a pneumotachograph may be substituted for the spirometer 2. Also, the recordation of the air supply volume with respect to time can be achieved by devices other than the kymograph 4. For example, such recordation could be done on an X-Y plotter, a storage-type oscilloscope, or the data could be stored in an analog or digital memory device. Likewise, the photohelic switch could be replaced by another pressure measuring arrangement and apparatus wherein a selected pressure range provides a control signal. In addition, it will be apparent that the computation of the nasal resistance may be carried out by a programmed machine such as an analog or digital computer. Therefore, the invention is to be limited only by the scope of the appended claims.
I claim:
1. A method of deriving data for use in calculating nasal or tracheobronchial airway resistance of a person 1 comprising the simultaneous steps of measuring and recording the volume of air freely inspired or expired during a breath through either the mouth or nasal passages of a person,
measuring and recording time during the breath,
measuring the pharyngeal pressure of the person during the breath, and selecting the data for calculation only when the volume of air per unit time is substantially constant during the breath. 2. The method of claim 1 wherein said volume of air and time duration are measured only when the pharyngeal pressure of the person is within a limited pressure range where the volume of air per unit time is substantially constant during the breath.
3. Apparatus for deriving data for use in calculating nasal or tracheobronchial airway resistance of a person comprising means for measuring and recording the volume of air freely inspired or expired during a breath through either the mouth or nasal passages of a person,
means for measuring and recording the time during said breath, means responsive to said means for measuring the pharyngeal pressure to actuate said means for measuring and recording the volume of air and said means for measuring and recording time only when the volume of air per unit time is substantially constant.
means for measuring the pharyngeal pressure of the person during said breath.
4. Apparatus according to claim 3 wherein the means for measuring and recording the volume of air includes:
substantially air-tight mask means adapted to fit over the nostrils or mouth of the person,
spirometer means, and
tube means connecting said spirometer means to said mask means.
5. Apparatus according to claim 4 wherein the means for measuring pharyngeal pressure comprises:
a hollow mouthpiece insertable into the mouth of the person,
pressure measuring means, and
tube means for connecting said mouthpiece to said pressure measuring means.
6. Apparatus according to claim 5 wherein the means for measuring and recording time during the breath comprises a kymograph pen and ink chart recorder.
7. A method of determining the nasal or tracheobronchial airway resistance of a person comprising the simultaneous steps of measuring and recording the volume of air freely inspired or expired during a breath through either the R P Pp] V/t mouth or nasal passages of a person, where R is the nasal airway resistance, P0 is the atmomeasuring and recording time during the breath, spheric pressure, Pp is the average pharyngeal pressure measuring the pharyngeal pressure of the person durduring the breath and V]: is the volume of air per unit ing the breath, selecting the measured volume and time in ired during the breath, time where the volume o ai per Unit t is 8. The method of claim 7 wherein said volume of air stantially constant, followed by the step of calculatd tim du tion re m asured and recorded only ing the nasal airway resistance of the patient using h h h e l pressure of the person is within a only the data where the volume of air per unit time 10 li it d ssur ran e during the breath. is substantially constant according to the relationship :0 =0:

Claims (8)

1. A method of deriving data for use in calculating nasal or tracheobronchial airway resistance of a person comprising the simultaneous steps of measuring and recording the volume of air freely inspired or expired during a breath through either the mouth or nasal passages of a person, measuring and recording time during the breath, measuring the pharyngeal pressure of the person during the breath, and selecting the data for calculation only when the volume of air per unit time is substantially constant during the breath.
2. The mEthod of claim 1 wherein said volume of air and time duration are measured only when the pharyngeal pressure of the person is within a limited pressure range where the volume of air per unit time is substantially constant during the breath.
3. Apparatus for deriving data for use in calculating nasal or tracheobronchial airway resistance of a person comprising means for measuring and recording the volume of air freely inspired or expired during a breath through either the mouth or nasal passages of a person, means for measuring and recording the time during said breath, means responsive to said means for measuring the pharyngeal pressure to actuate said means for measuring and recording the volume of air and said means for measuring and recording time only when the volume of air per unit time is substantially constant. means for measuring the pharyngeal pressure of the person during said breath.
4. Apparatus according to claim 3 wherein the means for measuring and recording the volume of air includes: substantially air-tight mask means adapted to fit over the nostrils or mouth of the person, spirometer means, and tube means connecting said spirometer means to said mask means.
5. Apparatus according to claim 4 wherein the means for measuring pharyngeal pressure comprises: a hollow mouthpiece insertable into the mouth of the person, pressure measuring means, and tube means for connecting said mouthpiece to said pressure measuring means.
6. Apparatus according to claim 5 wherein the means for measuring and recording time during the breath comprises a kymograph pen and ink chart recorder.
7. A method of determining the nasal or tracheobronchial airway resistance of a person comprising the simultaneous steps of measuring and recording the volume of air freely inspired or expired during a breath through either the mouth or nasal passages of a person, measuring and recording time during the breath, measuring the pharyngeal pressure of the person during the breath, selecting the measured volume and time where the volume of air per unit time is substantially constant, followed by the step of calculating the nasal airway resistance of the patient using only the data where the volume of air per unit time is substantially constant according to the relationship R Po -Pp/V/t , where R is the nasal airway resistance, Po is the atmospheric pressure, Pp is the average pharyngeal pressure during the breath and V/t is the volume of air per unit time inspired during the breath.
8. The method of claim 7 wherein said volume of air and time duration are measured and recorded only when the pharyngeal pressure of the person is within a limited pressure range during the breath.
US00118280A 1971-02-24 1971-02-24 Method and apparatus for determining respiratory airway resistance Expired - Lifetime US3742939A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11828071A 1971-02-24 1971-02-24

Publications (1)

Publication Number Publication Date
US3742939A true US3742939A (en) 1973-07-03

Family

ID=22377612

Family Applications (1)

Application Number Title Priority Date Filing Date
US00118280A Expired - Lifetime US3742939A (en) 1971-02-24 1971-02-24 Method and apparatus for determining respiratory airway resistance

Country Status (7)

Country Link
US (1) US3742939A (en)
JP (1) JPS5638219B1 (en)
CA (1) CA949771A (en)
DE (1) DE2208524A1 (en)
FR (1) FR2127745A5 (en)
GB (1) GB1379857A (en)
NL (1) NL7202428A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD246599S (en) * 1975-07-28 1977-12-06 Puritan-Bennett Corporation Pulmonary diagnostic instrument unit
US6210345B1 (en) * 1999-10-04 2001-04-03 American Biosystems, Inc. Outcome measuring airway resistance diagnostic system
US6379316B1 (en) 1999-08-31 2002-04-30 Advanced Respiratory, Inc. Method and apparatus for inducing sputum samples for diagnostic evaluation
US20050166928A1 (en) * 2004-01-30 2005-08-04 Yandong Jiang Methods and devices for maintaining an open airway
US20070125380A1 (en) * 2005-11-22 2007-06-07 General Electric Company Respiratory monitoring with differential pressure transducer
US20070239087A1 (en) * 2005-10-14 2007-10-11 Hill-Rom Services, Inc. Variable stroke air pulse generator
US20080216843A1 (en) * 2004-01-30 2008-09-11 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods and devices for relieving upper airway obstructions
US7621267B1 (en) * 2004-08-30 2009-11-24 Adams Phillip M Scuba mask purging apparatus and method
US8460223B2 (en) 2006-03-15 2013-06-11 Hill-Rom Services Pte. Ltd. High frequency chest wall oscillation system
US20170039872A1 (en) * 2015-08-04 2017-02-09 Benjamin Grabber Incentive Spirometer and Musical Instrument
US9795752B2 (en) 2012-12-03 2017-10-24 Mhs Care-Innovation, Llc Combination respiratory therapy device, system, and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107399A (en) * 1982-12-13 1984-06-21 リオン株式会社 Measurement of nasalization level

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036569A (en) * 1959-08-04 1962-05-29 John A Clements Lung-airway resistance meter
FR1508303A (en) * 1966-11-23 1968-01-05 Measuring device for studying pulmonary ventilatory mechanics
US3410264A (en) * 1966-06-02 1968-11-12 Frederik Willem Steven Instrument for measuring total respiratory and nasal air resistance
US3516401A (en) * 1966-05-10 1970-06-23 Michele Dell Aira Multiple-spirometer respiration measuring device
DE1915959A1 (en) * 1969-03-28 1970-10-08 Siemens Ag Device for analyzing the gas mixture exhaled by a patient
US3621833A (en) * 1969-06-26 1971-11-23 Robert Crane Method and apparatus for automatically determining physiological parameters related to human breathing airway resistance and functional residual capacity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036569A (en) * 1959-08-04 1962-05-29 John A Clements Lung-airway resistance meter
US3516401A (en) * 1966-05-10 1970-06-23 Michele Dell Aira Multiple-spirometer respiration measuring device
US3410264A (en) * 1966-06-02 1968-11-12 Frederik Willem Steven Instrument for measuring total respiratory and nasal air resistance
FR1508303A (en) * 1966-11-23 1968-01-05 Measuring device for studying pulmonary ventilatory mechanics
DE1915959A1 (en) * 1969-03-28 1970-10-08 Siemens Ag Device for analyzing the gas mixture exhaled by a patient
US3621833A (en) * 1969-06-26 1971-11-23 Robert Crane Method and apparatus for automatically determining physiological parameters related to human breathing airway resistance and functional residual capacity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gulesian, P.J., IEEE Trans on Bio-Med Engineering, Sept., 1971,pp.378 382, (copy in GR.335, 128/2.08) *
Jaeger, J.J., et al, Journ. of Applied Physiology, Vol. 19, No. 4, July,1964, pp.813 820, (Copy in GR.335,128/2.08) *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD246599S (en) * 1975-07-28 1977-12-06 Puritan-Bennett Corporation Pulmonary diagnostic instrument unit
US6379316B1 (en) 1999-08-31 2002-04-30 Advanced Respiratory, Inc. Method and apparatus for inducing sputum samples for diagnostic evaluation
US7018348B2 (en) 1999-08-31 2006-03-28 Hill-Rom Services, Inc. Method and apparatus for inducing sputum samples for diagnostic evaluation
US20020087097A1 (en) * 1999-08-31 2002-07-04 American Biosystems, Inc. Method and apparatus for inducing sputum samples for diagnostic evaluation
US6415791B1 (en) 1999-10-04 2002-07-09 American Biosystems, Inc. Airway treatment apparatus with cough inducement
US6340025B1 (en) 1999-10-04 2002-01-22 American Biosystems, Inc. Airway treatment apparatus with airflow enhancement
US6910479B1 (en) 1999-10-04 2005-06-28 Advanced Respiratory, Inc. Airway treatment apparatus with bias line cancellation
WO2001024698A1 (en) * 1999-10-04 2001-04-12 Advanced Respiratory, Inc. Airway treatment apparatus
US6210345B1 (en) * 1999-10-04 2001-04-03 American Biosystems, Inc. Outcome measuring airway resistance diagnostic system
US20050166928A1 (en) * 2004-01-30 2005-08-04 Yandong Jiang Methods and devices for maintaining an open airway
US20050166929A1 (en) * 2004-01-30 2005-08-04 Massachusetts General Hospital Methods and devices for relieving upper airway obstructions
US8091554B2 (en) 2004-01-30 2012-01-10 The General Hospital Corporation Methods and devices for relieving upper airway obstructions
US20080216843A1 (en) * 2004-01-30 2008-09-11 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods and devices for relieving upper airway obstructions
US7621267B1 (en) * 2004-08-30 2009-11-24 Adams Phillip M Scuba mask purging apparatus and method
US20070239087A1 (en) * 2005-10-14 2007-10-11 Hill-Rom Services, Inc. Variable stroke air pulse generator
US7785280B2 (en) 2005-10-14 2010-08-31 Hill-Rom Services, Inc. Variable stroke air pulse generator
US20070125380A1 (en) * 2005-11-22 2007-06-07 General Electric Company Respiratory monitoring with differential pressure transducer
US9259542B2 (en) * 2005-11-22 2016-02-16 General Electric Company Respiratory monitoring with differential pressure transducer
US8460223B2 (en) 2006-03-15 2013-06-11 Hill-Rom Services Pte. Ltd. High frequency chest wall oscillation system
US9968511B2 (en) 2006-03-15 2018-05-15 Hill-Rom Services Pte. Ltd. High frequency chest wall oscillation system
US11110028B2 (en) 2006-03-15 2021-09-07 Hill-Rom Services Pte. Ltd. High frequency chest wall oscillation system
US9795752B2 (en) 2012-12-03 2017-10-24 Mhs Care-Innovation, Llc Combination respiratory therapy device, system, and method
US10814082B2 (en) 2012-12-03 2020-10-27 Mhs Care-Innovation, Llc Combination respiratory therapy device, system and method
US20170039872A1 (en) * 2015-08-04 2017-02-09 Benjamin Grabber Incentive Spirometer and Musical Instrument
US9792831B2 (en) * 2015-08-04 2017-10-17 Benjamin Grabber Incentive spirometer and musical instrument

Also Published As

Publication number Publication date
GB1379857A (en) 1975-01-08
FR2127745A5 (en) 1972-10-13
JPS5638219B1 (en) 1981-09-04
NL7202428A (en) 1972-08-28
DE2208524A1 (en) 1972-09-28
CA949771A (en) 1974-06-25

Similar Documents

Publication Publication Date Title
DuBois et al. A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease
US5357975A (en) Device for measuring the flow-volume of pulmonary air
US6067983A (en) Method and apparatus for controlled flow sampling from the airway
US3742939A (en) Method and apparatus for determining respiratory airway resistance
JP3553160B2 (en) Method of controlling a ventilator for determining functional residual capacity of a lung and a ventilator for determining functional residual capacity
Stocks et al. A new apparatus for the accurate measurement of airway resistance in infancy
US5795787A (en) Method and apparatus for the measurement of exhaled nitric oxide in humans
Solomon et al. Measurement of nasal airway resistance
US5720709A (en) Apparatus and method for measuring respiratory airway resistance and airway collapsibility in patients
Shepard et al. Factors affecting the pulmonary dead space as determined by single breath analysis
US3659590A (en) Respiration testing system
Koulouris et al. The measurement of inspiratory muscle strength by sniff esophageal, nasopharyngeal, and mouth pressures
US20130190640A1 (en) Methods and apparatus for the measurement of pulmonary parameters
JPH0294511U (en)
US20110201958A1 (en) System and methods for the measurement of lung volumes
US3643652A (en) Medical breathing measuring system
CN113520369A (en) Method and apparatus for measuring airway resistance and lung compliance
JP2007083033A (en) DEVICE FOR SINGLE-BREATH MEASUREMENT OF DIFFUSING CAPACITY (DLco) OF LUNG
Frölund et al. Comparison between different techniques for measuring nasal patency in a group of unselected patients
Swann Jr et al. Pulmonary resistance measurements of guinea pigs
Yung et al. Respiratory resistance of tracheostomy tubes
Murphy et al. Multi-animal test system for measuring effects of irritant gases and vapors on respiratory function of guinea pigs
Shelton et al. Comparison of oscillation with three other methods for measuring nasal airways resistance
Shephard Pneumotachographic measurement of breathing capacity
Anderson Jr et al. An improved nasal mask pneumotachometer for measuring ventilation in neonates