US3756472A - Micro-emitter - Google Patents

Micro-emitter Download PDF

Info

Publication number
US3756472A
US3756472A US00190154A US3756472DA US3756472A US 3756472 A US3756472 A US 3756472A US 00190154 A US00190154 A US 00190154A US 3756472D A US3756472D A US 3756472DA US 3756472 A US3756472 A US 3756472A
Authority
US
United States
Prior art keywords
apertured member
dip tube
vapor
valve
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00190154A
Inventor
K Vos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOHNSOM AND SON Inc S
Original Assignee
HOHNSOM AND SON Inc S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOHNSOM AND SON Inc S filed Critical HOHNSOM AND SON Inc S
Application granted granted Critical
Publication of US3756472A publication Critical patent/US3756472A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/20Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operated by manual action, e.g. button-type actuator or actuator caps
    • B65D83/205Actuator caps, or peripheral actuator skirts, attachable to the aerosol container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/24Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means with means to hold the valve open, e.g. for continuous delivery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/75Aerosol containers not provided for in groups B65D83/16 - B65D83/74
    • B65D83/754Aerosol containers not provided for in groups B65D83/16 - B65D83/74 comprising filters in the fluid flow path

Definitions

  • a micro-emitter for pressure packages comprises an apertured member disposed across the nozzle opening 52 us. c1. 222/189, 222/402.14 through which a fluid Product in the P Package 151 1 Int. Cl B65d 83/14 is eXPellmi
  • the apertured member has at least one p- [58] Field of Search 222/189, 402.14; mm which is from l0 l5 1 diameter- In one 239/575, 5903 stance, propellant pressure is used to force the fluid through the aperture and break it into small drops.
  • the present invention relates to aerosol containers and more particularly to a device for controlling discharge of a fluid product from a pressure package.
  • US. Pat. No. 2,826,453 relates to a seeper valve assembly utilizing a filter material pad in conjunction with a pressure package.
  • the filter material in this case, absorbs the liquid in the package and evaporates the liquid into the atmosphere.
  • the product therefore, goes from a liquid to a vapor state on the surface of the filter.
  • the product to be discharged must have a high vapor pressure to evaporate, e.g., perfume. If the product has a low vapor pressure, it would simply pool on the surface of the filter. Moreover, any nonvolatile solids dissolved in the product would tend to leave a crust on the filter. Accordingly, the device is severely limited as to products which may be used therewith.
  • a microemitter which controls the flow of the fluid from the pressure package and influences the size of the drops exiting therefrom.
  • the term microemitter designates the device of the present invention which controls and influences the discharge of a fluid product from a pressurized package. The above is accomplished by positioning an apertured substrate upstream from the exit orifice of an aerosol container.
  • the apertured member may be filter or membrane material depending on the desired particle size of the expelled product.
  • polycarbonate, glass, sintered silver, sintered stainless steel, sintered high density polyethylene, cellulose acetate, cellulose nitrate, etched stainless steel, etched copper and electrodeposited nickel, tin-lead alloy, rhodium, gold, copper, silver or iron are appropriate.
  • the particle size is controlled from very small drops, e.g., less than 5 p. to large drops in the order of 30 p. simply by changing the diameter of the aperture in the substrate.
  • the flow rate through the aperture is influenced by pressure; viscosity, density and aperture diameter, tortuosity and length and the surface properties of the substrate.
  • the filter or membrane of the present invention does not serve its usual known function, i.e., to remove or separate different sized material from a fluid stream or to absorb and permit evaporation of a fluid.
  • the aperture or apertures in the filter or membrane serve to control the flow of the fluid and to assist drop formation.
  • the present invention operates on the principle ofatomization.
  • the principle is discussed in a publication by W. R. Marshall Jr., Atomization and Spray Drying, Chemical Engineering Progress Monograph Series No. 2, 50, 1950, published by the American Institute of Chemical Engineers.
  • atomization is accomplished either hydraulically or pneumatically.
  • the pressure exerted on the fluid by the propellant forces the fluid from the apertures and breaks the fluid into small drops such as like a garden hose.
  • a high velocity vapor stream is used to assist the break-up of the fluid.
  • the vapor stream is preferably derived from the propellant in the pressure package and impacts the fluid either before or after the aperture and breaks it into small drops.
  • the vapor should come from a second liquid layer.
  • the propellant should be largely concentrated in one of two liquid layers.
  • the number thereof may also be controlled to give a desired discharge.
  • the number of apertures may vary from 1 aperture to 3 X 10" apertures depending on the specific application.
  • the present invention may be constructed integrally as a complete valve assembly or it may be constructed separately as a "top hat which is readily affixed to the valve stem of a standard aerosol valve.
  • FIG. 1 is an elevational view of a pressure package provided with a micro-emitter of the present invention
  • FIG. 2 is an enlarged vertical cross-sectional view of the pressure package and micro-emitter of FIG. 1 with the valve in closed position;
  • FIG. 3 is a cross-sectional view similar to FIG. 2 with the valve open;
  • FIG. 4 is an enlarged vertical cross-sectional view of the micro-emitter of FIG. 1;
  • FIG. 5 is an enlarged vertical cross-sectional view of an alternative top hat for the valve of FIG. 1;
  • FIGS. 6-8 are enlarged vertical cross-sectional views of alternate embodiments of hydraulic type microemitters of the present invention.
  • FIG. 9 is an enlarged vertical cross-sectional view of a pneumatic type micro-emitter of the present invention.
  • FIG. 10 is an enlarged vertical cross-sectional view of the apertured substrate of the micro-emitter of FIG. 9.
  • FIGS. l1-16 are enlarged vertical cross-sectional views of alternate embodiments of pneumatic type micro-emitters of the present invention.
  • FIG. 1 there is shown a typical pressurized aerosol container 10 well known in the art.
  • the container is normally filled with a fluid product (not shown) which is to be discharged by opening a valve.
  • Discharge pressure is obtained by a propellant which may be mixed with a product in a single or dual liquid phase system, or may be physically separated from the product in any well known manner.
  • a dip tube 12 and standard valve assembly 14 depend from the top of the container 10 and are mounted thereto by means of a cap 16.
  • the micro-emitter is adaptable to a standard depress actuated aerosol valve and comprises a top hat l8 and locking device generally indicated by the numeral 20.
  • the conventional valve is of the type wherein downward pressure exerted on the valve stem 22 opens the valve (not shown) to allow the discharge of the fluid product.
  • a pre-filter 24 Secured between the dip tube 12 and the valve body 14 is a pre-filter 24 through which the product is filtered prior to entering the valve body.
  • the prefilter material may be any well known filtering material which will separate solid particles which would tend to clog the valve parts.
  • top hat 18 Positioned on top of the valve stem 22 is a top hat 18 including a micro-emitter of the invention.
  • the top hat 18 may be constructed of any suitable material and plastic is preferred.
  • the top hat 18 is constructed so that its base will readily slide over the top of the valve stem and give a secure fit. Since valve stems are generally tubular, the top hat would also be tubular with an inside diameter approximately the same as the outside diameter of the valve stem.
  • the top hat upwardly terminates in an exit orifice 26; andbetween the orifice 26 and top of the valve stem there is mounted an apertured member 28, seal 30, filter 32 and seal 34 in descending order.
  • the apertured member 28 may be selected from any of the aforementioned materials depending on the number and size of apertures needed for the desired product and result.
  • the apertured member 28 is preferably in the form of a thin sheet tightly secured between lip 36 and a first annular seal 30.
  • the seal 30 may be any material which would not be degraded by the product or propellant; and flat rubber gaskets or plastic washers are preferred.
  • a second filter 32 is secured immediately preceding the apertured member 28 in relation to fluid flow. As is shown in the drawings a filter sheet 32 is securely positioned between the first seal 30 and a second similar seal 34. In general, any filtering material which has the ability to remove material larger than the diameter of the apertures would be appropriate.
  • the second seal 34 also serves to provide a seal between the top hat and the top of the valve stem 22 to ensure that no fluid can leak therebetween.
  • the top hat also has an exterior annular flange 40 which is preferably moulded integrally therewith.
  • the flange 40 coaets with an on-off feature, more fully described hereinafter, to actuate the valve.
  • the on-ofl' feature or locking device 20 allows the operator to use the pressure package when he desires for the length of time that he desires. It is constructed so that it may be readily affixed to a standard valve cap 16. It comprises a cylinder shaped upstanding member 42 having exterior threads 44, an interior annular flange 46 positioned upwardly of the bottom of the cylinder and detent means such as annular bead 48 disposed inwardly at the bottom edge of the cylinder. The annular flange 46 engages the top of the valve cap 16 and the detent means 48 engages the lower lip of the valve cap 16 so that the cylinder 42 may be snapped onto the cap 16 and securely held thereto.
  • Rotatably threaded onto the upstanding cylinder 42 is a cap 50 having a concave top 52.
  • a central orifice 54 in the concave top 52 permits the top hat 18 to extend therethrough; and the edge of the orifice defines a shoulder 56 engageable with the annular flange 40 of the top hat 18.
  • the shoulder 56 engages the annular flange 40 and depresses the top hat 18 and valve stem 22 to open the valve.
  • the valve may then be left open for as long as needed and may thereafter be closed by simply unscrewing the locking cap 50 to release the pressure on the valve stem 22 to close the valve 14. It is to be noted that the continuous dispensing of the pressurized product is maintained as long as the locking cap is screwed downwardly as is shown in FIG. 3.
  • the top hat 18 includes an apertured sheet 28 having a plurality of apertures 58, although it will be understood that a single aperture could be used. Among other names for the apertures 58 would be micro-orifice, pore or pin hole.
  • the valve is opened, the product fluid is forced up the dip tube 12 by the propellant, through a pre-filter 24 and through the depress type valve 14. The fluid product then is forced through the filter sheet 32 and then through the apertures 58 in the apertured sheet 28. As the fluid is forced out of the apertures 58, it is broken into small drops and expelled into the surrounding air as shown by the arrows.
  • FIG. I 5 An alternative top hat construction is shown in FIG. I 5.
  • an interior shoulder 60 is formed to abut the top of a valve stem upon which the top hat is placed.
  • An expanded chamber 62 houses a horizontally disposed filter sheet 32.
  • the top hat then restricts into a nozzle canal 64 wherein the apertured member 28 is positioned immediately before the exit orifice 26.
  • the apertured member 28 is secured within the canal 64 between lip 36 and seal 68.
  • a spider 70 is positioned at the entrance to the canal 64.
  • FIG. 6 a further embodiment of an hydraulic microemitter, according to the invention is shown which eliminates the depress type standard valve.
  • a dip tube 12 forms part of the valve and is equipped with a filter 32 suitably secured therein such as by seals 30 and 34. Between the filter 32 and the end of the tube 72, the interior thereof is restricted.
  • An elongate cap 74 is positioned over the dip tube 12 and tightly secures an apertured member 28 therebetween so that the apertured member 28 covers the dip tube exit 76.
  • the portion thereof overlying the dip tube exit 76 may be slightly bowed as at 78.
  • the clip tube 12 and cap 74 may be secured together in any well known fashion such as by gluing.
  • the cap 74 has a centrally disposed conical exit orifice 26 which overlies the dip tube exit 76. As shown in FIG. 6, the conical exit orifice 26 may have its widest diameter at the base; however, as shown in FIG. 7, the opposite may also be the case.
  • the nozzle cap 74 has an annular flange 92 for securing same to a standard valve cap of a pressure package, such as by gluing.
  • FIG. 8 A further embodiment of a hydraulic type microemitter is depicted in FIG. 8 wherein the dip tube 12 terminates as an annular flange 80 approximately the size of a standard valve cap 16.
  • the disc 82 having a central exit orifice 26 is positioned over the flange 80 and apertured member 28 is secured therebetween.
  • the disc 82, apertured member 28 and flange 80 are secured to the valve cap in any well known manner such as by a ring of glue 84.
  • a gasket 86 is secured between the disc 82 and valve cap 16 to ensure against any leakage of propellant or product.
  • micro-emitter is the valving member of the pressure package and the standard depress type valve 14 is eliminated.
  • any means may be used to close the nozzle and prevent discharge; typical would be a tape or plug.
  • Pneumatic atomization is accomplished by directing a stream of vapor to impact on the drops of fluid from the apertured member to further break-up the drops.
  • the dip tube 12 having a restrict end 88 abuts against an apertured member 28 suitably mounted to a nozzle cap 74.
  • the apertured member 28 is secured to the interior of the nozzle cap 74 by means of a ring seal 30.
  • the nozzle cap 74 and ring seal 30 have interior diameters larger than the external diameter of the dip tube 12 so that an annular vapor chamber 90 is formed therebetween.
  • a centrally disposed exit orifice 26 communicates with the dip tube exit 76.
  • the nozzle cap 74 has an external annular flange 92 for mounting same to a pressure package in any well known manner.
  • propellant vapor enters the vapor chamber 90 and passes through the apertured member 28 as shown in FIG. 10.
  • fluid product is forced through the apertured member 28 by means of propellant force and exits same as small drops.
  • the exit orifice 26 may be blocked in any well known manner to prevent discharge.
  • FIG. 11 A modification of a pneumatic micro-emitter is shown in FIG. 11 wherein the dip tube 12 is expanded at its upper end to form an enlarged chamber 96.
  • the upper edge of the chamber forms a ledge 98 upon which is deposited an apertured member 28.
  • This assembly is secured to a standard valve cap 16 which has an inwardly directed flange 100 defining an exit orifice 26.
  • a floating disc 102 is positioned within the chamber 96 and is maintained in position by an annular shoulder 104 on the inside of the chamber 96.
  • a lateral port 106 forms a vapor entrance in the chamber wall 108.
  • the pressure from the vapor and product fluid causes the disc 102 to float off the shoulder 104 and approach the apertured member 28.
  • the disc 102 is maintained approximately 0.005 inch from the apertures by surface deformaties on the apertured member 28.
  • the vapor and fluid are in intimate contact before they exit, i.e., within the chamber, around the floating disc and through the apertures. The product fluid then exits through the exit orifice 26 as fine drops.
  • the vapor stream and fluid product may also approach the apertured member 28 at angles as is shown in FIG. 12.
  • the dip tube 12 has a vapor channel 110 and a product channel 112 formed therein to respectively meet the apertured member at different angles.
  • the vapor impacts the fluid drops after exiting from the apertured member 28 to cause further break-up of the drops.
  • FIG. 13 A further modification of this arrangement is shown in FIG. 13 wherein two vapor channels 110 are formed in a block 1 l4 surrounding the dip tube 12; and the apertured member 28 only covers the drip tube exit 76.
  • the vapor channels 110 are positioned so that the angle at which .the vapor contacts the drops above the apertured member 28 is 60 from the plane of the apertures.
  • the vapor may also be directed to the fluid drops at angles after exiting the apertured member 28 as is shown in FIGS. 14 and 15.
  • two vapor channels 110 direct the vapor to the apertured member 28 so that the vapor exits same at an angle of approximately 45.
  • the vapor channel 110 terminates in a conical chamber 116 concentric with the exit orifice 26.
  • the vapor channel 110 may also be parallel to the dip tube exit 76 as is shown in FIG. 16. In this case, the vapor passes through the apertured member 28 and is then directed to the exit orifice 26 by means of a raised flange 118 on the valve cap 16.
  • liquid propellant may also be carried with the fluid product through the apertures. This results in flashing of the propellant which also enhances the break-up of the drops.
  • micro-emitter valve of this invention allows for discharge of the specific product for greatly extended periods. Since the valve has no moving parts, it is relatively inexpensive to produce, easy to construct and has minimal breakage. Moreover, the valve is readily adaptable to standard pressure packages.
  • a device for continuously dispensing fluid from a pressurized container which has a discharge conduit defining a channel extending from the liquid reservoir to the atmosphere, said conduit comprising:
  • a dip tube having one end positioned to be in said fluid
  • a nozzle means having its innermost end attached to the other end of said dip tube, said nozzle means having an apertured member positioned therein to be the last element for forming droplets of the discharged spray, said apertured member defining at least one aperture of diameter of from 0.5 to 15p.
  • said apertured member is selected from the group consisting of polycarbonate, glass, sintered silver, sintered stainless steel, sintered high density polyethylene, cellulose acetate, cellulose nitrate, etched stainless steel, etched copper and electrodeposited nickel, tin-lead alloy, rhodium, gold, copper, silver or iron.
  • a continuous dispensing device which comprises:
  • top hat positioned over the end of said valve stem and defining a discharge channel and having an outermost discharge exit;
  • an apertured member mounted within said channel and interposed between said valve stem and said discharge exit, said apertured member having at least one aperture having a diameter of from 0.5 to ISasaid apertured member being the last element for forming droplets of the'discharged spray;
  • filter means mounted within said top hat between said apertured member and said valve stem, said 5.
  • pre-filtering means is interposed between said dip tube and said depress valve.
  • a device for continuously dispensing fluid from a pressurized container which comprises:
  • nozzle means positioned over one end of said dip tube; an apertured member secured within said nozzle means positioned to be the last element for forming droplets of the discharged spray, said apertured member defining at least one aperture having a diameter of from 0.5 to 15p;
  • said means defining at least one vapor channel is a solid member surrounding said dip tube having at least one vapor channel communicating said nozzle with the interior of said container.
  • said apertured member defines a multiplicity of apertures and wherein said apertured member extends across said vapor channel whereby said vapor passes therethrough at a position adjacent to that portion of said apertured member through which a liquid is passing.
  • said dip tube includes an expanded chamber preceding said apertured member, said chamber having an annular shoulder, said means defining at least one vapor channel comprises a lateral port through the side of said chamber, and said device further includes a floating disc positioned between said shoulder and said apertured member.
  • a device for continuously dispensing a fluid from a pressurized container which comprises:
  • an elongate tubular member positioned over an end of said dip tube, said member having a centrally disposed orifice communicating with said dip tube, said nozzle member and said central orifice having an interior diameter greater than the exterior diameler of said dip tube to form an annular vapor canal ity of apertures having diameters of from 0.5 to therebetween; y, some of said apertures being within said vapor an apertured member positioned between said cencanal and at least one being over said dip tube; and
  • said apertured member defining a multiplic- UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,-756, 472' Dated v Se gtember 4, 1973 lnventofls) Kohneth Vos It is certified that error appears the abov-i'defifiifid potent and that said Letters Patent are hereby corrected as shown below:-

Abstract

A micro-emitter for pressure packages comprises an apertured member disposed across the nozzle opening through which a fluid product in the pressure package is expelled. The apertured member has at least one aperture which is from 0.5 to 15 Mu in diameter. In one instance, propellant pressure is used to force the fluid through the aperture and break it into small drops. In a second instance a high velocity stream of vapor is used to assist the break up of the liquid either before the apertured member or after the fluid is forced through the apertures.

Description

United States Patent V08 Sept. 4, 1973 [54] EM|TTER 2,774,628 12/1956 Engstrum 222/189 2,757,964 8 1956 2 2. [75] Inventor: Kenneth D. Vos, Racine, W1s. Both et M 22/40 H X [73] Assignee: S. C. Hohnsom & Son, Inc., Racine, Primary Examiner-Stanley H. Tollberg wi Attorney.loseph T. Kivlin, Jr. et al.
[22] lllfidl Oct. 18, 1971 ABSTRACT PP N05 190,154 A micro-emitter for pressure packages comprises an apertured member disposed across the nozzle opening 52 us. c1. 222/189, 222/402.14 through which a fluid Product in the P Package 151 1 Int. Cl B65d 83/14 is eXPellmi The apertured member has at least one p- [58] Field of Search 222/189, 402.14; mm which is from l0 l5 1 diameter- In one 239/575, 5903 stance, propellant pressure is used to force the fluid through the aperture and break it into small drops. In [56' References Cited a second instance a high velocity stream of vapor is UNITED STATES PATENTS used to assist the break up of the liquid either before 1 262 640 H1968 F 222/18 X the apertured member or after the fluid is forced ainman 2.815.889 12 1957 Stetz et al. 222/189 through the apertures 2.594.539 4/1952 Brown 239/575 X 15 Claims, 16 Drawing Figures 32 I 34 4@ 1 I282 44.. l l I l I Ill W 11111 I 1 L l lllW 1 4ai l I 4 I z E 1 I z 4 24 1 r 5 a i I i j I i PATENIEDSEP 4 m I SHEEI 1 [1f 4 INVENTOR. KEN/V627, O /05 HHIIH MlCRO-EMITTER BACKGROUND OF THE INVENTION The present invention relates to aerosol containers and more particularly to a device for controlling discharge of a fluid product from a pressure package.
Numerous products which are normally marketed in pressurized containers could be more advantageously used if the product could be continuously expelled over a long period of time. For example, air sanitizers and fresheners, insecticides and medicinal products could be expelled into the atmosphere for extended periods thereby negating the necessity of concentrated exposures heretofore associated with aerosol sprays. An additional advantage obtained by controlled flow of the pressurized product is that the pressure package may be left unattended for long periods while maintaining a continuous discharge of the product.
Heretofore, devices have been used for allowing slow discharge of products by means of evaporation. For example, US. Pat. No. 2,826,453 relates to a seeper valve assembly utilizing a filter material pad in conjunction with a pressure package. The filter material, in this case, absorbs the liquid in the package and evaporates the liquid into the atmosphere. The product, therefore, goes from a liquid to a vapor state on the surface of the filter. In such case, the product to be discharged must have a high vapor pressure to evaporate, e.g., perfume. If the product has a low vapor pressure, it would simply pool on the surface of the filter. Moreover, any nonvolatile solids dissolved in the product would tend to leave a crust on the filter. Accordingly, the device is severely limited as to products which may be used therewith.
SUMMARY OF THE INVENTION In accordance with the present invention, a microemitter is provided which controls the flow of the fluid from the pressure package and influences the size of the drops exiting therefrom. The term microemitter, as used herein, designates the device of the present invention which controls and influences the discharge of a fluid product from a pressurized package. The above is accomplished by positioning an apertured substrate upstream from the exit orifice of an aerosol container. The apertured member may be filter or membrane material depending on the desired particle size of the expelled product. For example, extremely small drops, i.e., less than 5 microns, are required if the product is to remain airborne for long-periods of time such as air fresheners and sanitizers and airborne residual insecticides and repellants. In such instances, a filter or membrane having pores or apertures of 5 microns would be appropriate. On the other hand, somewhat larger particles are required for insecticides which kill upon direct impaction; and the filter or membrane is chosen accordingly. The invention contemplates the use of a member having an aperture size between 0.5 to l5 microns. Any material having pores. or apertures within the above-mentioned range are suitable for the present invention. For example, polycarbonate, glass, sintered silver, sintered stainless steel, sintered high density polyethylene, cellulose acetate, cellulose nitrate, etched stainless steel, etched copper and electrodeposited nickel, tin-lead alloy, rhodium, gold, copper, silver or iron are appropriate.
It is possible, then, to control the particle size from very small drops, e.g., less than 5 p. to large drops in the order of 30 p. simply by changing the diameter of the aperture in the substrate. In selecting the appropriate substrate, it should be noted that the flow rate through the aperture is influenced by pressure; viscosity, density and aperture diameter, tortuosity and length and the surface properties of the substrate.
It is to be noted that the filter or membrane of the present invention does not serve its usual known function, i.e., to remove or separate different sized material from a fluid stream or to absorb and permit evaporation of a fluid. On the contrary, the aperture or apertures in the filter or membrane serve to control the flow of the fluid and to assist drop formation. By controlling flow of the fluid, the discharge time for the product is significantly increased and continuous discharge may be obtained over a long period of time. Continuous discharge is also feasibly accomplished by drop formation of the product. By forming small drops, the product may be maintained in airborne condition for considerable time.
Basically, the present invention operates on the principle ofatomization. The principle is discussed in a publication by W. R. Marshall Jr., Atomization and Spray Drying, Chemical Engineering Progress Monograph Series No. 2, 50, 1950, published by the American Institute of Chemical Engineers. As applied to the present invention, atomization is accomplished either hydraulically or pneumatically. In the hydraulic application, the pressure exerted on the fluid by the propellant forces the fluid from the apertures and breaks the fluid into small drops such as like a garden hose. In
pneumatic atomization, a high velocity vapor stream is used to assist the break-up of the fluid. The vapor stream is preferably derived from the propellant in the pressure package and impacts the fluid either before or after the aperture and breaks it into small drops. To avoid any change in the composition of the liquid layer containing the actives within the pressure package, the vapor should come from a second liquid layer. The propellant, then, should be largely concentrated in one of two liquid layers.
In addition to the size of the apertures in the membrane or filter, the number thereof may also be controlled to give a desired discharge. The number of apertures may vary from 1 aperture to 3 X 10" apertures depending on the specific application.
The present invention may be constructed integrally as a complete valve assembly or it may be constructed separately as a "top hat which is readily affixed to the valve stem of a standard aerosol valve.
There has thus been outlined rather broadly the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject of the claims appended hereto. Those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures for carrying out the several purposes of the invention.
Specific embodiments of the invention have been chosen for purposes of illustration and description, and are shown in the accompanying drawings, forming a part of the specification, in which like reference numerals designate like parts with like function, wherein;
FIG. 1 is an elevational view of a pressure package provided with a micro-emitter of the present invention;
FIG. 2 is an enlarged vertical cross-sectional view of the pressure package and micro-emitter of FIG. 1 with the valve in closed position;
FIG. 3 is a cross-sectional view similar to FIG. 2 with the valve open;
FIG. 4 is an enlarged vertical cross-sectional view of the micro-emitter of FIG. 1;
FIG. 5 is an enlarged vertical cross-sectional view of an alternative top hat for the valve of FIG. 1;
FIGS. 6-8 are enlarged vertical cross-sectional views of alternate embodiments of hydraulic type microemitters of the present invention;
FIG. 9 is an enlarged vertical cross-sectional view of a pneumatic type micro-emitter of the present invention;
FIG. 10 is an enlarged vertical cross-sectional view of the apertured substrate of the micro-emitter of FIG. 9; and
FIGS. l1-16 are enlarged vertical cross-sectional views of alternate embodiments of pneumatic type micro-emitters of the present invention.
With reference to FIG. 1, there is shown a typical pressurized aerosol container 10 well known in the art. The container is normally filled with a fluid product (not shown) which is to be discharged by opening a valve. Discharge pressure is obtained by a propellant which may be mixed with a product in a single or dual liquid phase system, or may be physically separated from the product in any well known manner. As shown in FIG. 2, a dip tube 12 and standard valve assembly 14 depend from the top of the container 10 and are mounted thereto by means of a cap 16. In this embodiment, the micro-emitter is adaptable to a standard depress actuated aerosol valve and comprises a top hat l8 and locking device generally indicated by the numeral 20. The conventional valve is of the type wherein downward pressure exerted on the valve stem 22 opens the valve (not shown) to allow the discharge of the fluid product. Secured between the dip tube 12 and the valve body 14 is a pre-filter 24 through which the product is filtered prior to entering the valve body. The prefilter material may be any well known filtering material which will separate solid particles which would tend to clog the valve parts.
Positioned on top of the valve stem 22 is a top hat 18 including a micro-emitter of the invention. The top hat 18 may be constructed of any suitable material and plastic is preferred. The top hat 18 is constructed so that its base will readily slide over the top of the valve stem and give a secure fit. Since valve stems are generally tubular, the top hat would also be tubular with an inside diameter approximately the same as the outside diameter of the valve stem. The top hat upwardly terminates in an exit orifice 26; andbetween the orifice 26 and top of the valve stem there is mounted an apertured member 28, seal 30, filter 32 and seal 34 in descending order. The apertured member 28 may be selected from any of the aforementioned materials depending on the number and size of apertures needed for the desired product and result. The apertured member 28 is preferably in the form of a thin sheet tightly secured between lip 36 and a first annular seal 30. The seal 30 may be any material which would not be degraded by the product or propellant; and flat rubber gaskets or plastic washers are preferred.
Since the apertures are very small, it is easy for foreign material to get into same causing them to be partly or completely plugged. It is necessary, then, to filter the fluid product before it reaches the apertures to remove all material that might occlude the apertures. Therefore, in addition to the pre-filter 24, a second filter 32 is secured immediately preceding the apertured member 28 in relation to fluid flow. As is shown in the drawings a filter sheet 32 is securely positioned between the first seal 30 and a second similar seal 34. In general, any filtering material which has the ability to remove material larger than the diameter of the apertures would be appropriate.
The second seal 34 also serves to provide a seal between the top hat and the top of the valve stem 22 to ensure that no fluid can leak therebetween.
The top hat also has an exterior annular flange 40 which is preferably moulded integrally therewith. The flange 40 coaets with an on-off feature, more fully described hereinafter, to actuate the valve.
The on-ofl' feature or locking device 20 allows the operator to use the pressure package when he desires for the length of time that he desires. It is constructed so that it may be readily affixed to a standard valve cap 16. It comprises a cylinder shaped upstanding member 42 having exterior threads 44, an interior annular flange 46 positioned upwardly of the bottom of the cylinder and detent means such as annular bead 48 disposed inwardly at the bottom edge of the cylinder. The annular flange 46 engages the top of the valve cap 16 and the detent means 48 engages the lower lip of the valve cap 16 so that the cylinder 42 may be snapped onto the cap 16 and securely held thereto. Rotatably threaded onto the upstanding cylinder 42 is a cap 50 having a concave top 52. A central orifice 54 in the concave top 52 permits the top hat 18 to extend therethrough; and the edge of the orifice defines a shoulder 56 engageable with the annular flange 40 of the top hat 18.
When the locking device cap 50 is rotated, for example, in a clockwise direction to screw same in a downwardly direction, the shoulder 56 engages the annular flange 40 and depresses the top hat 18 and valve stem 22 to open the valve. The valve may then be left open for as long as needed and may thereafter be closed by simply unscrewing the locking cap 50 to release the pressure on the valve stem 22 to close the valve 14. It is to be noted that the continuous dispensing of the pressurized product is maintained as long as the locking cap is screwed downwardly as is shown in FIG. 3.
As shown in FIG. 4, the top hat 18 includes an apertured sheet 28 having a plurality of apertures 58, although it will be understood that a single aperture could be used. Among other names for the apertures 58 would be micro-orifice, pore or pin hole. When the valve is. opened, the product fluid is forced up the dip tube 12 by the propellant, through a pre-filter 24 and through the depress type valve 14. The fluid product then is forced through the filter sheet 32 and then through the apertures 58 in the apertured sheet 28. As the fluid is forced out of the apertures 58, it is broken into small drops and expelled into the surrounding air as shown by the arrows.
An alternative top hat construction is shown in FIG. I 5. In this construction, an interior shoulder 60 is formed to abut the top of a valve stem upon which the top hat is placed. An expanded chamber 62 houses a horizontally disposed filter sheet 32. The top hat then restricts into a nozzle canal 64 wherein the apertured member 28 is positioned immediately before the exit orifice 26. The apertured member 28 is secured within the canal 64 between lip 36 and seal 68. To prevent the filter sheet 32 from plugging the nozzle canal 64 under pressure from the product fluid, a spider 70 is positioned at the entrance to the canal 64.
In FIG. 6, a further embodiment of an hydraulic microemitter, according to the invention is shown which eliminates the depress type standard valve. In this embodiment, a dip tube 12 forms part of the valve and is equipped with a filter 32 suitably secured therein such as by seals 30 and 34. Between the filter 32 and the end of the tube 72, the interior thereof is restricted. An elongate cap 74 is positioned over the dip tube 12 and tightly secures an apertured member 28 therebetween so that the apertured member 28 covers the dip tube exit 76. In order to increase the surface area of the apertured member 28 through which the fluid product may pass, the portion thereof overlying the dip tube exit 76 may be slightly bowed as at 78. The clip tube 12 and cap 74 may be secured together in any well known fashion such as by gluing. The cap 74 has a centrally disposed conical exit orifice 26 which overlies the dip tube exit 76. As shown in FIG. 6, the conical exit orifice 26 may have its widest diameter at the base; however, as shown in FIG. 7, the opposite may also be the case. With respect to FIG. 6 and 7, the nozzle cap 74 has an annular flange 92 for securing same to a standard valve cap of a pressure package, such as by gluing.
A further embodiment of a hydraulic type microemitter is depicted in FIG. 8 wherein the dip tube 12 terminates as an annular flange 80 approximately the size of a standard valve cap 16. The disc 82 having a central exit orifice 26 is positioned over the flange 80 and apertured member 28 is secured therebetween. The disc 82, apertured member 28 and flange 80 are secured to the valve cap in any well known manner such as by a ring of glue 84. Additionally, a gasket 86 is secured between the disc 82 and valve cap 16 to ensure against any leakage of propellant or product.
In the embodiments depicted in FIG. 6, 7 and 8, it is to be noted that the micro-emitter is the valving member of the pressure package and the standard depress type valve 14 is eliminated. Thus, any means (not shown) may be used to close the nozzle and prevent discharge; typical would be a tape or plug.
Pneumatic atomization is accomplished by directing a stream of vapor to impact on the drops of fluid from the apertured member to further break-up the drops. As shown in FIG. 9, the dip tube 12 having a restrict end 88 abuts against an apertured member 28 suitably mounted to a nozzle cap 74. The apertured member 28 is secured to the interior of the nozzle cap 74 by means of a ring seal 30. The nozzle cap 74 and ring seal 30 have interior diameters larger than the external diameter of the dip tube 12 so that an annular vapor chamber 90 is formed therebetween. A centrally disposed exit orifice 26 communicates with the dip tube exit 76. The nozzle cap 74 has an external annular flange 92 for mounting same to a pressure package in any well known manner. In operation, propellant vapor enters the vapor chamber 90 and passes through the apertured member 28 as shown in FIG. 10. At the same time, fluid product is forced through the apertured member 28 by means of propellant force and exits same as small drops. As the vapor impacts the fluid drops it causes further break-up of the drops and enhances atomization. The very small drops then are discharged into the atmosphere. During storage, the exit orifice 26 may be blocked in any well known manner to prevent discharge.
A modification of a pneumatic micro-emitter is shown in FIG. 11 wherein the dip tube 12 is expanded at its upper end to form an enlarged chamber 96. The upper edge of the chamber forms a ledge 98 upon which is deposited an apertured member 28. This assembly is secured to a standard valve cap 16 which has an inwardly directed flange 100 defining an exit orifice 26. A floating disc 102 is positioned within the chamber 96 and is maintained in position by an annular shoulder 104 on the inside of the chamber 96. A lateral port 106 forms a vapor entrance in the chamber wall 108. When the valve is actuated such as by removing a blocking member from the exit orifice 26, the pressure from the vapor and product fluid causes the disc 102 to float off the shoulder 104 and approach the apertured member 28. Preferably, the disc 102 is maintained approximately 0.005 inch from the apertures by surface deformaties on the apertured member 28. In this embodiment, the vapor and fluid are in intimate contact before they exit, i.e., within the chamber, around the floating disc and through the apertures. The product fluid then exits through the exit orifice 26 as fine drops.
The vapor stream and fluid product may also approach the apertured member 28 at angles as is shown in FIG. 12. In this case, the dip tube 12 has a vapor channel 110 and a product channel 112 formed therein to respectively meet the apertured member at different angles. In such manner, the vapor impacts the fluid drops after exiting from the apertured member 28 to cause further break-up of the drops. A further modification of this arrangement is shown in FIG. 13 wherein two vapor channels 110 are formed in a block 1 l4 surrounding the dip tube 12; and the apertured member 28 only covers the drip tube exit 76. Thus, as the product drops are forced out of the apertures, they are directly hit by two streams of vapor. It is preferredthat the vapor channels 110 are positioned so that the angle at which .the vapor contacts the drops above the apertured member 28 is 60 from the plane of the apertures.
The vapor may also be directed to the fluid drops at angles after exiting the apertured member 28 as is shown in FIGS. 14 and 15. In FIG. 14, two vapor channels 110 direct the vapor to the apertured member 28 so that the vapor exits same at an angle of approximately 45. In FIG. 15, the vapor channel 110 terminates in a conical chamber 116 concentric with the exit orifice 26.
The vapor channel 110 may also be parallel to the dip tube exit 76 as is shown in FIG. 16. In this case, the vapor passes through the apertured member 28 and is then directed to the exit orifice 26 by means of a raised flange 118 on the valve cap 16.
In the above typical embodiments, liquid propellant may also be carried with the fluid product through the apertures. This results in flashing of the propellant which also enhances the break-up of the drops.
In the table I presented below are listed typical flow rates for conventional valves and for that achieved by the micro-emitter of this invention. Also listed is the length of time a 7 oz. can would operate if used continuously at the indicated flow rate.
Expulsion Operating VALVE Rate (glmin) Time for 7 02. Conventional 240 0.83 min. Conventional 60 3.3 min. Conventional 20 IO min. Micro-emitter 100 2 min. Microemitter min. Micro-emitter l 200 min. Micro-emitter 0.1 L4 days Micro-emitter 0.02 7 days As is evident from the above, the micro-emitter valve of this invention allows for discharge of the specific product for greatly extended periods. Since the valve has no moving parts, it is relatively inexpensive to produce, easy to construct and has minimal breakage. Moreover, the valve is readily adaptable to standard pressure packages.
What is claimed is:
l. A device for continuously dispensing fluid from a pressurized container which has a discharge conduit defining a channel extending from the liquid reservoir to the atmosphere, said conduit comprising:
a dip tube having one end positioned to be in said fluid; and
a nozzle means having its innermost end attached to the other end of said dip tube, said nozzle means having an apertured member positioned therein to be the last element for forming droplets of the discharged spray, said apertured member defining at least one aperture of diameter of from 0.5 to 15p.
2. The device of claim 1 wherein said apertured member is selected from the group consisting of polycarbonate, glass, sintered silver, sintered stainless steel, sintered high density polyethylene, cellulose acetate, cellulose nitrate, etched stainless steel, etched copper and electrodeposited nickel, tin-lead alloy, rhodium, gold, copper, silver or iron.
3. The device of claim 1 which further includes filtering means secured within said channel.
4. In an aerosol container having a depress type valve, a dip tube depending from said valve into said container and a valve stem extending upwardly from said valve, a continuous dispensing device which comprises:
a top hat positioned over the end of said valve stem and defining a discharge channel and having an outermost discharge exit;
an apertured member mounted within said channel and interposed between said valve stem and said discharge exit, said apertured member having at least one aperture having a diameter of from 0.5 to ISasaid apertured member being the last element for forming droplets of the'discharged spray;
filter means mounted within said top hat between said apertured member and said valve stem, said 5. The device of claim 4, wherein pre-filtering means is interposed between said dip tube and said depress valve.
6. The device of claim 4, wherein said locking means 5 comprises:
an upstanding cylinder shaped member mountable to said valve cap; and a rotatable cap threadably engaging said cylinder member and defining a central orifice through which said discharge exit extends, the rim of said orifice being engageable with said top hat whereby, rotation of said cap downward depresses said top hat and actuates said depress valve. 7. The device of claim 4, wherein a spider is inter- 15 posed between said filter means and said apertured member to prevent said filter from stopping fluid flow. 8. A device for continuously dispensing fluid from a pressurized container which comprises:
a dip tube; nozzle means positioned over one end of said dip tube; an apertured member secured within said nozzle means positioned to be the last element for forming droplets of the discharged spray, said apertured member defining at least one aperture having a diameter of from 0.5 to 15p; and
means defining at least one vapor channel directing vapor from within said container to said nozzle to impact upon droplets of said fluid after such droplets are forced through said apertured member.
9.. The device of claim 8, wherein said means defining at least one vapor channel is a solid member surrounding said dip tube having at least one vapor channel communicating said nozzle with the interior of said container.
10. The device of claim 8, wherein said vapor channel terminates exteriorly of said apertured member.
11. The device of claim 8 wherein said apertured member defines a multiplicity of apertures and wherein said apertured member extends across said vapor channel whereby said vapor passes therethrough at a position adjacent to that portion of said apertured member through which a liquid is passing.
12. The device of claim 8, wherein said vapor channel terminates in a conical channel concentric with said clip tube.
13. The device of claim 8, wherein said vapor channel is parallel to said dip tube and said device further includes a raised flange positioned exteriorly of said apertured member to direct vapor to said nozzle means.
14. The device of claim 8, wherein said dip tube includes an expanded chamber preceding said apertured member, said chamber having an annular shoulder, said means defining at least one vapor channel comprises a lateral port through the side of said chamber, and said device further includes a floating disc positioned between said shoulder and said apertured member.
15. A device for continuously dispensing a fluid from a pressurized container which comprises:
a dip tube;
an elongate tubular member positioned over an end of said dip tube, said member having a centrally disposed orifice communicating with said dip tube, said nozzle member and said central orifice having an interior diameter greater than the exterior diameler of said dip tube to form an annular vapor canal ity of apertures having diameters of from 0.5 to therebetween; y, some of said apertures being within said vapor an apertured member positioned between said cencanal and at least one being over said dip tube; and
tral orifice and said dip tube in a position to be the annular sealing means positioned to secure said aperlast element forming droplets of the discharged 5 tured member to said nozzle member.
spray, said apertured member defining a multiplic- UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,-756, 472' Dated v Se gtember 4, 1973 lnventofls) Kohneth Vos It is certified that error appears the abov-i'defifiifid potent and that said Letters Patent are hereby corrected as shown below:-
Assignee: Change "Hohiasom" to "Johnson";
In Column 5, line 17, after the word "interior"v insert "diarneter I,
In Column 6, li'ne l3, r ziha ng "dpdsitd" to "positioned".
Signed and sealed this 18th day of December 1973.
(SEAL) Attest:
EDWARD M. FLETCHER, JR. RENE D. I'EG'I'MEYER Attesting Officer Acting Commissioner of Patents

Claims (15)

1. A device for continuously dispensing fluid from a pressurized container which has a discharge conduit defining a channel extending from the liquid reservoir to the atmosphere, said conduit comprising: - a dip tube having one end positioned to be in said fluid; and - a nozzle means having its innermost end attached to the other end of said dip tube, said nozzle means having an apertured member positioned therein to be the last element for forming droplets of the discharged spray, said apertured member defining at least one aperture of diameter of from 0.5 to 15 Mu .
2. The device of claim 1 wherein said apertured member is selected from the group consisting of polycarbonate, glass, sintered silver, sintered stainless steel, sintered high density polyethylene, cellulose acetate, cellulose nitrate, etched stainless steel, etched copper and electrodeposited nickel, tin-lead alloy, rhodium, gold, copper, silver or iron.
3. The device of claim 1 which further includes filtering means secured within said channel.
4. In an aerosol container having a depress type valve, a dip tube depending from said valve into said container and a valve stem extending upwardly from said valve, a continuous dispensing device which comprises: a top hat positioned over the end of said valve stem and defining a discharge channel and having an outermost discharge exit; an apertured member mounted within said channel and interposed between said valve stem and said discharge exit, said apertured member having at least one aperture having a diameter of from 0.5 to 15said apertured member being the last element for forming droplets of the discharged spray; filter means mounted within said top hat between said apertured member and said valve stem, said filter means being capable of filtering out solid particles of a size at least as large as the smallest of said at least one aperture; sealing means within said top hat to prevent leakage of fluid normally flowing from said valve stem through said top hat; and locking means engaging said top hat and adapted to depress said top hat and valve stem to open said valve and to maintain said valves in open position.
5. The device of claim 4, wherein pre-filtering means is interposed between said dip tube and said depress valve.
6. The device of claim 4, wherein said locking means comprises: an upstanding cylinder shaped member mountable to said valve cap; and a rotatable cap threadably engaging said cylinder member and defining a central orifice through which said discharge exit extends, the rim of said orifice being engageable with said top hat whereby, rotation of said cap downward depresses said top hat and actuates said depress valve.
7. The device of claim 4, wherein a spider is interposed between said filter means and said apertured member to prevent said filter from stopping fluid flow.
8. A device for continuously dispensing fluid from a pressurized container which comprises: a dip tube; nozzle means positioned over one end of said dip tube; an apertured member secured within said nozzle means positioned to be the last element for forming droplets of the discharged spray, said apertured member defining at least one aperture having a diameter of from 0.5 to 15 Mu ; and means defining at least one vapor channel directing vapor from within said container to said nozzle to impact upon droplets of said fluid after such droplets are forced through said apertured member.
9. The device of claim 8, wherein said means defining at least one vapor channel is a solid member surrounding said dip tube having at least one vapor channel communicating said nozzle with the interior of said container.
10. The device of claim 8, wherein said vapor channel terminates exteriorly of said apertured member.
11. The device of claim 8 wherein said apertured member defines a multiplicity of apertures and wherein said apertured member extends across said vapor channel whereby said vapor passes therethrough at a position adjacent to that portion of said apertured member through which a liquid is passing.
12. The device of claim 8, wherein said vapor channel terminates in a conical channel concentric with said dip tube.
13. The device of claim 8, wherein said vapor channel is parallel to said dip tube and said device further includes a raised flange positioned exteriorly of said apertured member to direct vapor to said nozzle means.
14. The device of claim 8, wherein said dip tube includes an expanded chamber preceding said apertured member, said chamber having an annular shoulder, said means defining at least one vapor channel comprises a lateral port through the side of said chamber, and said device further includes a floating disc positioned between said shoulder and said apertured member.
15. A device for continuously dispensing a fluid from a pressurized container which comPrises: a dip tube; an elongate tubular member positioned over an end of said dip tube, said member having a centrally disposed orifice communicating with said dip tube, said nozzle member and said central orifice having an interior diameter greater than the exterior diameter of said dip tube to form an annular vapor canal therebetween; an apertured member positioned between said central orifice and said dip tube in a position to be the last element forming droplets of the discharged spray, said apertured member defining a multiplicity of apertures having diameters of from 0.5 to 15 Mu , some of said apertures being within said vapor canal and at least one being over said dip tube; and annular sealing means positioned to secure said apertured member to said nozzle member.
US00190154A 1971-10-18 1971-10-18 Micro-emitter Expired - Lifetime US3756472A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19015471A 1971-10-18 1971-10-18

Publications (1)

Publication Number Publication Date
US3756472A true US3756472A (en) 1973-09-04

Family

ID=22700219

Family Applications (1)

Application Number Title Priority Date Filing Date
US00190154A Expired - Lifetime US3756472A (en) 1971-10-18 1971-10-18 Micro-emitter

Country Status (10)

Country Link
US (1) US3756472A (en)
JP (1) JPS4850304A (en)
AR (1) AR192981A1 (en)
CA (1) CA978502A (en)
DE (1) DE2251311A1 (en)
ES (1) ES407700A1 (en)
FR (1) FR2157569A5 (en)
GB (1) GB1412276A (en)
IT (1) IT968930B (en)
NL (1) NL7214017A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917119A (en) * 1974-11-01 1975-11-04 Bel Art Prod Inc Squeeze type device for dispensing liquid medicaments or the like to a bodily organ
DE2553054A1 (en) * 1974-12-02 1976-08-12 Tor Harry Petterson DISTRIBUTOR FOR INTERMITTING DISPENSING OF AN AEROSOL
US4030667A (en) * 1974-06-05 1977-06-21 Establissements Valois S.A. Push-button having a calibrated outlet for a container under pressure
US4077542A (en) * 1974-12-02 1978-03-07 Petterson Tor H Unattended aerosol dispenser
US4122978A (en) * 1975-06-18 1978-10-31 The Gillette Company Pressurized package for dispensing a product in a finely dispersed spray pattern with little dilution by propellant
US4195756A (en) * 1978-05-11 1980-04-01 Riviana Foods, Inc. Aerosol container cap and actuator
US4440325A (en) * 1981-07-24 1984-04-03 Treuhaft Martin B Actuator
US4463880A (en) * 1982-04-30 1984-08-07 The Regents Of The University Of California Medicine drop dispenser with anti-bacterial filter
US4530449A (en) * 1979-03-19 1985-07-23 Yoshino Kogyosho Co. Ltd. Liquid spraying device
US4785977A (en) * 1985-09-24 1988-11-22 Metal Box Public Ltd. Co. Aerated liquid storage/dispensing apparatus
US4805839A (en) * 1988-05-11 1989-02-21 S. C. Johnson & Son, Inc. Tilt-spray aerosol actuator button and dies
US4925327A (en) * 1985-11-18 1990-05-15 Minnesota Mining And Manufacturing Company Liquid applicator with metering insert
WO1990005110A1 (en) * 1988-11-03 1990-05-17 Eye Research Institute Of Retina Foundation Filter bottle
US5027986A (en) * 1989-06-09 1991-07-02 Heinzel Irving Charles Actuating valve for aerosol foam product
US5516504A (en) * 1990-09-03 1996-05-14 Soltec Research Pty. Ltd. Concentrated water-free aerosol space spray
FR2743055A1 (en) * 1995-10-23 1997-07-04 Frappe Dominique Atomiser for perfume spray
US5935554A (en) * 1990-09-03 1999-08-10 Soltec Research Pty. Ltd. Concentrated aerosol space spray that is not an emulsion
US5988231A (en) * 1996-06-07 1999-11-23 Precision Valve Corporation Valve stem for transferring fluid between sealed containers
US6062432A (en) * 1996-01-29 2000-05-16 Estrada; Juan Jose Hugo Ceja Latching aerosol cap
US6230501B1 (en) 1994-04-14 2001-05-15 Promxd Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control
US6237814B1 (en) * 1998-12-15 2001-05-29 Bespak Plc Relating to dispensing apparatus
US6283337B1 (en) * 1998-12-21 2001-09-04 Kao Corporation Aerosol container
US6517009B2 (en) 1997-12-25 2003-02-11 Gotit Ltd. Automatic spray dispenser
EP1370478A1 (en) * 2001-02-14 2003-12-17 Precision Valve Corporation Preassembled aerosol actuator assembly for in-line capping to an aerosol container
US20050150910A1 (en) * 2000-09-22 2005-07-14 Gebauer Company Apparatus and method for dispensing liquids
US20060049216A1 (en) * 2004-09-08 2006-03-09 Kevin Bromber Self-orienting aerosol apparatus and method of cleaning a trash can
US20060144864A1 (en) * 2000-09-22 2006-07-06 Aleksandr Groys Apparatus and method for dispensing vapocoolants
WO2008014161A1 (en) * 2006-07-24 2008-01-31 3M Innovative Properties Company Metered dose dispensers
US7584907B2 (en) 2005-03-29 2009-09-08 Contadini Carl D Precision release aerosol device
US20100001104A1 (en) * 2005-03-29 2010-01-07 Waterbury Companies, Inc. Precision release vaporization device
USD743257S1 (en) * 2012-03-13 2015-11-17 S.C. Johnson & Son, Inc. Pump dispenser
EP3275558A1 (en) * 2016-07-27 2018-01-31 Aptar Radolfzell GmbH Spray assembly and dispenser with such a spray assembly, and applicator head for such a dispenser
EP3275555A1 (en) * 2016-07-27 2018-01-31 Aptar Radolfzell GmbH Liquid dispenser, in particular inhaler
USD811893S1 (en) * 2016-12-21 2018-03-06 Misty Mate, Inc. Personal cooling apparatus
US10351334B1 (en) * 2018-02-23 2019-07-16 Icp Adhesives And Sealants, Inc. Fluid dispensing device
US20190262848A1 (en) * 2018-02-23 2019-08-29 Icp Adhesives And Sealants, Inc. Fluid Dispensing Device
WO2020141024A1 (en) * 2019-01-03 2020-07-09 Aptar Radolfzell Gmbh Nozzle unit, liquid dispenser comprising such a nozzle unit, and method for producing such nozzle units
US11433188B2 (en) 2016-11-21 2022-09-06 Aptar Radolfzell Gmbh Inhalation device for the purpose of inhalation of a droplet mist

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127813U (en) * 1973-03-10 1974-11-01
JPS49129112U (en) * 1973-03-22 1974-11-06
JPS5419532Y2 (en) * 1975-04-30 1979-07-19
IT8221182V0 (en) * 1982-03-18 1982-03-18 Sar Spa VALVE AND CAP FOR DISPENSING FLUID SUBSTANCES UNDER PRESSURE WITH GUARANTEE SEAL.
GB2156204B (en) * 1984-03-22 1988-02-24 Masahiko Izumi Cleaning objects
GB8909312D0 (en) * 1988-11-22 1989-06-07 Dunne Stephen T Liquid-gas mixing device
FR2674774B1 (en) * 1991-04-08 1993-07-16 Oreal DEVICE FOR SPRAYING A LIQUID COMPRISING A PRESSURIZED CONTAINER PROVIDED WITH AN ADDITIONAL GAS TAKE VALVE.
GB2290731A (en) * 1994-06-30 1996-01-10 Bespak Plc Dispensing apparatus
GB2428208A (en) * 2005-07-13 2007-01-24 Geoffrey Norman Sloan Cleaning nozzle arrangement
JP7013229B2 (en) * 2017-12-22 2022-01-31 株式会社ダイゾー Discharge members and aerosol products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2594539A (en) * 1945-09-08 1952-04-29 Bridgeport Brass Co Insecticide dispenser
US2757964A (en) * 1953-07-16 1956-08-07 Bridgeport Brass Co High pressure fluid dispensing device
US2774628A (en) * 1954-05-10 1956-12-18 Kathleen B Engstrum Apparatus for dispensing under pressure
US2815889A (en) * 1955-07-28 1957-12-10 Engine Parts Mfg Company Metering device controlling discharge of fluids from aerosol containers
US3362640A (en) * 1966-03-04 1968-01-09 Morton Z. Fainman Superclean spray gun

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2594539A (en) * 1945-09-08 1952-04-29 Bridgeport Brass Co Insecticide dispenser
US2757964A (en) * 1953-07-16 1956-08-07 Bridgeport Brass Co High pressure fluid dispensing device
US2774628A (en) * 1954-05-10 1956-12-18 Kathleen B Engstrum Apparatus for dispensing under pressure
US2815889A (en) * 1955-07-28 1957-12-10 Engine Parts Mfg Company Metering device controlling discharge of fluids from aerosol containers
US3362640A (en) * 1966-03-04 1968-01-09 Morton Z. Fainman Superclean spray gun

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030667A (en) * 1974-06-05 1977-06-21 Establissements Valois S.A. Push-button having a calibrated outlet for a container under pressure
US3917119A (en) * 1974-11-01 1975-11-04 Bel Art Prod Inc Squeeze type device for dispensing liquid medicaments or the like to a bodily organ
DE2553054A1 (en) * 1974-12-02 1976-08-12 Tor Harry Petterson DISTRIBUTOR FOR INTERMITTING DISPENSING OF AN AEROSOL
US4077542A (en) * 1974-12-02 1978-03-07 Petterson Tor H Unattended aerosol dispenser
US4122978A (en) * 1975-06-18 1978-10-31 The Gillette Company Pressurized package for dispensing a product in a finely dispersed spray pattern with little dilution by propellant
US4195756A (en) * 1978-05-11 1980-04-01 Riviana Foods, Inc. Aerosol container cap and actuator
US4530449A (en) * 1979-03-19 1985-07-23 Yoshino Kogyosho Co. Ltd. Liquid spraying device
US4440325A (en) * 1981-07-24 1984-04-03 Treuhaft Martin B Actuator
US4463880A (en) * 1982-04-30 1984-08-07 The Regents Of The University Of California Medicine drop dispenser with anti-bacterial filter
US4785977A (en) * 1985-09-24 1988-11-22 Metal Box Public Ltd. Co. Aerated liquid storage/dispensing apparatus
US4940169A (en) * 1985-09-24 1990-07-10 Metal Box Public Limited Company Aerated liquid storage/dispensing apparatus
US4925327A (en) * 1985-11-18 1990-05-15 Minnesota Mining And Manufacturing Company Liquid applicator with metering insert
US4805839A (en) * 1988-05-11 1989-02-21 S. C. Johnson & Son, Inc. Tilt-spray aerosol actuator button and dies
WO1990005110A1 (en) * 1988-11-03 1990-05-17 Eye Research Institute Of Retina Foundation Filter bottle
US4938389A (en) * 1988-11-03 1990-07-03 Eye Research Institute Of Retina Foundation Filter bottle
US5027986A (en) * 1989-06-09 1991-07-02 Heinzel Irving Charles Actuating valve for aerosol foam product
US5516504A (en) * 1990-09-03 1996-05-14 Soltec Research Pty. Ltd. Concentrated water-free aerosol space spray
US5935554A (en) * 1990-09-03 1999-08-10 Soltec Research Pty. Ltd. Concentrated aerosol space spray that is not an emulsion
US6230501B1 (en) 1994-04-14 2001-05-15 Promxd Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control
FR2743055A1 (en) * 1995-10-23 1997-07-04 Frappe Dominique Atomiser for perfume spray
US6062432A (en) * 1996-01-29 2000-05-16 Estrada; Juan Jose Hugo Ceja Latching aerosol cap
US5988231A (en) * 1996-06-07 1999-11-23 Precision Valve Corporation Valve stem for transferring fluid between sealed containers
US6517009B2 (en) 1997-12-25 2003-02-11 Gotit Ltd. Automatic spray dispenser
US6540155B1 (en) 1997-12-25 2003-04-01 Gotit Ltd. Automatic spray dispenser
US6237814B1 (en) * 1998-12-15 2001-05-29 Bespak Plc Relating to dispensing apparatus
US6283337B1 (en) * 1998-12-21 2001-09-04 Kao Corporation Aerosol container
US20050150910A1 (en) * 2000-09-22 2005-07-14 Gebauer Company Apparatus and method for dispensing liquids
US7731062B2 (en) * 2000-09-22 2010-06-08 Gebauer Company Apparatus and method for dispensing liquids
US20060144864A1 (en) * 2000-09-22 2006-07-06 Aleksandr Groys Apparatus and method for dispensing vapocoolants
US7658304B2 (en) * 2000-09-22 2010-02-09 Gebauer Company Apparatus and method for dispensing vapocoolants
EP1370478A4 (en) * 2001-02-14 2005-09-14 Precision Valve Corp Preassembled aerosol actuator assembly for in-line capping to an aerosol container
EP1880955A1 (en) * 2001-02-14 2008-01-23 Precision Valve Corporation Preassembled aerosol actuator assembly for in-line capping to an aerosol container
EP1882646A1 (en) * 2001-02-14 2008-01-30 Precision Valve Corporation Preassembled aerosol actuator assembly for in-line capping to an aerosol container
EP1370478A1 (en) * 2001-02-14 2003-12-17 Precision Valve Corporation Preassembled aerosol actuator assembly for in-line capping to an aerosol container
US20060049216A1 (en) * 2004-09-08 2006-03-09 Kevin Bromber Self-orienting aerosol apparatus and method of cleaning a trash can
US8146779B2 (en) 2004-09-08 2012-04-03 Kevin Bromber Self-orienting aerosol apparatus and method of cleaning a trash can
US7708173B2 (en) * 2004-09-08 2010-05-04 Kevin Bromber Self-orienting aerosol apparatus and method of cleaning a trash can
US7584907B2 (en) 2005-03-29 2009-09-08 Contadini Carl D Precision release aerosol device
US20100001104A1 (en) * 2005-03-29 2010-01-07 Waterbury Companies, Inc. Precision release vaporization device
WO2008014161A1 (en) * 2006-07-24 2008-01-31 3M Innovative Properties Company Metered dose dispensers
US20100018524A1 (en) * 2006-07-24 2010-01-28 Jinks Philip A Metered dose dispensers
US10335562B2 (en) * 2006-07-24 2019-07-02 3M Innovative Properties Company Metered dose dispensers with porous body
USD743257S1 (en) * 2012-03-13 2015-11-17 S.C. Johnson & Son, Inc. Pump dispenser
EP3275555A1 (en) * 2016-07-27 2018-01-31 Aptar Radolfzell GmbH Liquid dispenser, in particular inhaler
WO2018019717A1 (en) * 2016-07-27 2018-02-01 Aptar Radolfzell Gmbh Liquid dispenser, in particular an inhaler
EP3275558A1 (en) * 2016-07-27 2018-01-31 Aptar Radolfzell GmbH Spray assembly and dispenser with such a spray assembly, and applicator head for such a dispenser
US11433188B2 (en) 2016-11-21 2022-09-06 Aptar Radolfzell Gmbh Inhalation device for the purpose of inhalation of a droplet mist
USD811893S1 (en) * 2016-12-21 2018-03-06 Misty Mate, Inc. Personal cooling apparatus
US10351334B1 (en) * 2018-02-23 2019-07-16 Icp Adhesives And Sealants, Inc. Fluid dispensing device
US20190262848A1 (en) * 2018-02-23 2019-08-29 Icp Adhesives And Sealants, Inc. Fluid Dispensing Device
US10549292B2 (en) * 2018-02-23 2020-02-04 Icp Adhesives And Sealants, Inc. Fluid dispensing device
WO2020141024A1 (en) * 2019-01-03 2020-07-09 Aptar Radolfzell Gmbh Nozzle unit, liquid dispenser comprising such a nozzle unit, and method for producing such nozzle units
US20220080133A1 (en) * 2019-01-03 2022-03-17 Aptar Radolfzell Gmbh Nozzle unit, liquid dispenser comprising such a nozzle unit, and methods for producing such nozzle units

Also Published As

Publication number Publication date
GB1412276A (en) 1975-11-05
AU4789272A (en) 1974-04-26
AR192981A1 (en) 1973-03-21
NL7214017A (en) 1973-04-24
DE2251311A1 (en) 1973-04-26
JPS4850304A (en) 1973-07-16
FR2157569A5 (en) 1973-06-01
CA978502A (en) 1975-11-25
ES407700A1 (en) 1975-10-16
IT968930B (en) 1974-03-20

Similar Documents

Publication Publication Date Title
US3756472A (en) Micro-emitter
US2715481A (en) Dispensing device for containers holding products under pressure
US4204614A (en) Fluid dispenser having a spring biased locking mechanism for a safety nozzle cap
US8087548B2 (en) Spray products with particles and improved valve for inverted dispensing without clogging
US3053461A (en) Pressure controlled spray device
US3933279A (en) Aerosol dispenser for fluid products comprising a piston pump assembly for generating compressed air
KR910008933B1 (en) Dual function cap
US5213265A (en) Single valve aspiration type sprayer
AU670935B2 (en) Spray pump package employing multiple orifices for dispensing liquid in different spray patterns with automatically adjusted optimized pump stroke for each pattern
US5183186A (en) Spray dispensing device having a tapered mixing chamber
EP0500249A1 (en) Dispenser
US3912132A (en) Dispenser valve assembly for a pressurized aerosol dispenser
JP2004509743A (en) Aerosol spray dispenser
US4024992A (en) Air atomizer bottle sprayer with screw cap
DE2807204A1 (en) Squeeze bottle-like aerosol can
JPS63500922A (en) rotating water faucet
US20040134934A1 (en) Multilayer container package for dispensing a liquid product
US3437270A (en) Self-sealing spray-actuator button
EP1301404B1 (en) Variable discharge dispensing head for a squeeze dispenser
US3854636A (en) Aerosol valve for low delivery rate
US4203552A (en) Pressurized atomizer
US4223842A (en) Squeeze bottle atomizer
US3306497A (en) Actuator cap for dispensers
US5018643A (en) Aerosol dispenser with sealed actuator and aerosol dispensing method
CA2124653C (en) Aerosol valve having means to shut off flow if valve is tipped beyond a certain inclination from vertical