US3760312A - Magnetically actuated reed switch assembly - Google Patents

Magnetically actuated reed switch assembly Download PDF

Info

Publication number
US3760312A
US3760312A US00299273A US3760312DA US3760312A US 3760312 A US3760312 A US 3760312A US 00299273 A US00299273 A US 00299273A US 3760312D A US3760312D A US 3760312DA US 3760312 A US3760312 A US 3760312A
Authority
US
United States
Prior art keywords
magnetically actuated
switch assembly
reed switch
reeds
actuated reed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00299273A
Inventor
B Shlesinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3760312A publication Critical patent/US3760312A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H36/0006Permanent magnet actuating reed switches

Definitions

  • ABSTRACT A magnetically actuated reed switch assembly comprising contact means including first and second cooperating magnetically actuated reeds in spaced relation to each other, a permanent magnet rotatable about an axis transverse to the longitudinal axis of the reeds and positioned with respect to the contact means so that its force field at certain positions of its rotation operates to influence the contact means to open or close, the contact means and magnet being encased in a housing assembly including contact and magnet supporting chambers.
  • PATENTEDSEPJBW a 760 312 sum anr a HISTORICAL BACKGROUND
  • many electrical devices have employed reed switches comprising a pair of magnetically actuated reed contacts sealed within a glass envelope and operated by a permanent magnet. Also, stepping switches using a plurality of reed switches and a rotating magnet are old. Hammond US. Pat. No. 3,418,610, Palmer U.S. Pat. No. 3,328,732 and Posey US. Pat. No. 3,559,124 are examples of these types of devices.
  • Still a further object of this invention is to provide a magnetically actuated reed switch assembly in which both the reed contacts and'the rotating'magnet are sealedfrorn the ambient atmosphere thereby precluding the corrosion of mechanically cooperating components.
  • a further object of this invention is to provide a magnetically actuated reed switch assembly capable of low cost manufacture and ease of installation.
  • Yet another object of this invention is. to provide a magnetically actuated reed switch assembly in which frictional effects are minimized.
  • Still a further object of this invention- is to provide a magnetically actuated reed" switch assembly which is capable of functioning as a rotary stepping switch.
  • a still further object of this invention is to provide a magnetically actuated reed switch assembly wherein the axis of rotation of the magnet is transverse'to the axes of the reeds.
  • FIG. 1 is a plan view of the invention
  • FIGS. 2 through 4, 5 and 6 are schematicviews showing other embodiments of the invention with portions shown in dotted lines to illustrate various positions of several of the reeds;
  • FIG. 5a is across sectional view of an enlarged; portion of the embodiment shown inFIG. 5;
  • FIG. 7 is a side elevational view in section of a further embodiment of the invention.
  • FIG. 7a is a: top'view of the embodiment shown in.
  • FIG. 7 I
  • FIGS. 8, 9, l0, l1 and 12 are plan views of various other embodiments of the invention.
  • FIG. 9a is a sectional view of the embodiment shown in FIG. 9 taken along lines 9a-9a and viewed in the direction of the arrows;
  • FIG. 12a is a sectional view of the embodiment shown in FIG. taken along lines 12al2a and viewed in the direction of the arrows;
  • FIGS. 13 through 21 illustrate still further embodiments of the invention shown schematically.
  • FIG. 1 the capsule C forms the housing for reeds 2 and 4.
  • the capsule C may be made of glass, plastic or any other material capable of sealing the reeds from the ambient atmosphere and not affecting a magnetic field.
  • the reeds 2 and 4 are anchored at one end in the solid end portions 6 and 8 of capsule C. These end portions 6 and 3 may be glass seals in the case of a glass capsule or any other appropriate means for sealing off the interior of the capsule C such .as a plug, cap, etc.
  • the reeds 2 and 4 extendinto the capsule C and have their respective endsl0 and l2'located in'proximate relationship to each other and separated by a small dis.-
  • the reeds2 and 4 are made of a material having good magnetic characteristics and electrical conductivity.
  • the reeds 2 and 4 may be coatedwith a conductor such as copper, gold, etc.
  • the core of the coated reedscould be made of non-conductive ferromagnetic material.
  • the reeds must. also be capable of relative spatial displacement under the influence of a sufflcientlystrong magnetic field. To accomplish this several alternative constructions are possible; one or both reeds maybe flexible, or
  • the, reeds may be rigid with at-least one of them being achored in a resilient mounting. .Other possibilities for providing for the-necessary freedom of movement. will be obvious.
  • a permanent magnet M rigidly mounted on a shaft 14 and capsule of rotation on shaft 14 within capsule D.
  • Shaft 14 passes through capsule D and is rotatably mounted at bearings 16 and I8.
  • Shaft 14 and magnet M may be rotated by any appropriate means such as motor 20 and pulley and belt assembly 22.
  • FIG. 2 through 6 are similar to that shown in FIG. 1 with the exception that the encapsulation means and rotation means are not shown.
  • magnetically actuated reed 24 is rigid and non-polarizedlwhile reed 26 is flexible and polarized'such that itsnorth'pole N is nearest reed 24'. Thereeds-are'normally in an open position. As magnet M is rotatedto its dotted line position, reed 26 will be repelled by the; north pole of magnet M and moved into contact with reed 24 as in the dotted line position.
  • magnetically actuated flexible, reeds 30 and 30and 32 are positioned such that contact feet 38 and 40 are parallel to each other. and separated by a smalldistance.
  • rotatable magnet M When rotatable magnet M is in the dotted line position, the magnetic field at bends 34 and 36 will be sufficiently strong to cause reeds 30 and 32 to move to their dotted line positions.
  • the individual reeds 30 and 32 each follow arcuate paths about the point where they would be anchored in their sealing capsules (not shown). Since the contact feet 38 and 40 also follow somewhat arcuate paths, they will come into contact with each other in the manner shown in the dotted line reed positions.
  • the point of the rotation of the magnet where the reeds are actuated to open or close is dependent on various factors such as the ferromagnetic properties of the reeds, the strength of the permanent magnet, the spatial relationship of the magnet and the reedsfand others. Variants of any of these factors will cause a difference in the actuation pattern of the reeds with respect to the rotation of the magnet.
  • the embodiment shown in FIG. 4 comprises of a pair of magnetically actuated flexible reeds 42'and 44 enclosed in a housing or capsule (not shown) and anchored at their respective ends 46 and 48.
  • the reeds 42 and 44 have obtuse bends 50 and 52 therein near their encapsulated ends forming a pair of contact feet 54 and 56.
  • the reeds 42 and 44 are positioned such that con tact feet 54 and 56 are substantially parallel and separated by a small'distance.
  • Reed 42 is rigid and nonpolarized whereas reed 44 is flexible and unpolarized.
  • permanent magnet M is in the dotted line position, the magnetic field at contact 56 is sufficiently strong to move reed 44 into contact with reed 42.
  • Reed 60 may be flexible and In FIG. 6, reeds 72 and 74, anchored at their respective ends 76 and 78 are each permanently polarized with the encapsulated ends having opposing polarities. Reed 74 isflex'ible and reed 72 may be either rigid or flexible. Accordingly, reeds 72 and 74 will come into contact with each other when the magnet M is in the dotted line position. In this position, the opposing magnetic field created by the south pole S of magnet M, will move reed 74 into contact with reed 72 if the field created by magnet M is sufficient to overcome the opposing field created by the south pole of reed 72.
  • Another variation of this embodiment would be to have reeds 72 and 74 polarized so that their encapsulated ends have opposite polarities and are nonnally closed. Reeds 72 and 74 would be opened once per revolution of the magnet M when the proximate pole of magnet M has a polarity identical to the encapsulated end of reed 74.
  • FIGS. 7 AND 8 An alternate embodiment of the invention would comprise a pair of magnetically actuated reeds 80 and 82 sealed in a elongated capsule C similar to the embodiment shown in FIG. 1.
  • the permanent magnet M is likewise sealed in a capsule D and rigidly mounted on a shaft 84 which may be rotated by a knob 86 or any other means.
  • the second capsule D and magnet M are positioned so that the axis or rotation of magnet M passes through the point where reeds 80 and 82 make contact. With has a notch 68 therein.
  • Reed 62 which is flexible in the plane of the reeds and 62 overlaps reed 60 at notch 68 and ispartially disposed therein as shown in FIG. 5a.
  • magnet M is in the solid line position, reed 62 will be attracted toward magnet M and make contact with wall of notch 68.
  • magnet M is in the dotted line position, the magnetic field at reed 62 is substantially less and it will return to its normally open position because of its inherent elasticity. In this manner, reeds 60 and 62 make contact once every 180 rotation of magnet M.
  • the reeds and 82 will close once per revolution of magnet M when the axis of polarity of the magnet is parallel to the longitudinal axis of the reeds.
  • cpasule D contains a permanent magnet M mounted for rotation about a shaft 88. Disposed radially from the axis of rotation of magnet M are two pairs of magnetically actuated reed contacts 90, 92 and 94, 96. They are each sealed in elongated capsules C and C! which are fused or otherwise connected to capsule D. Since reeds 90, 92, 94 and 96 are polarized and flexible, each of the contact pairs 90, 92 and 94, 96 would be actuated to a closed position when the magnet M is in the position shown. In this manner, each of the contact'pairs 90, 92 and 94, 96 will close simultaneously once per l80 revolution of magnet M.
  • FIG. 9 shows a further embodiment of the invention wherein the rotatable permanent magnet M is sealed in a capsule D and parallel magnetically actuated reeds 98 and 100 are sealed in a second capsule C. It is obvious that capsules C and D may be integral with each other, in open communication with each other, or sealed from each other without affecting the functioning of the system. As magnet M rotates about shaft 102 the reeds 98 and 100 will close once every l80 revolution. This occurs when the magnet M is in'the position shown.
  • capsules C and D, containing reed contact pairs 104 and 106 are disposed about the perimeter of capsule D.
  • Permanent magnet M rotates within capsule D about shaft 108.
  • the contacts pairs 104 and 106 are actuated according to the following table:
  • FIG. 11 shows a capsule D containing a permanent magnet M rotatable about shaft 110 with reed capsules C, C1 and C2 disposed about its perimeter.
  • Capsule C contains reed contact pair 112
  • capsule C1 contains reed contact pair 114
  • capsule C2 contains reed contact pair 116.
  • FIG. 12 shows an embodiment of the invention comprising a capsule or housing C which encases a number of cooperating, magnetically actuated reeds 118, 120, 122, 124 and a pair of rotating magnets 126 and 128.
  • the magnets 126 and 128 are connected tov armatures 130 and 132, respectively, which are rigidly connected to rotatable shaft 134.
  • the rotating magnet assembly 126, 130, 132, 128 is positioned so as to rotate in a plane parallel to and above the plane defined by the reeds 118-124.
  • FIGS. 13 THROUGH 21 FIGS. 13 through 21 illustrate various reed configurations which may be used'in the rotating magnet .systcm shown in FIG. 12.
  • the magnetically actuated reeds are anchored at their outermost ends in a capsule or housing similar to the embodiments previously discussed. Their operation will'be described for use in conjunction with asingle rotating magnet capable of assuming the various positions shown in dotted lines, but are not limited to this specific combination.
  • FIG. 13 illustrates awed configuration identical to thatshown in FIG. 12.
  • Reeds 136 and 138 are unpolarized and may berigid or flexible.
  • Flexible reeds 140 and 142 are also unpolarizedand have their respective encapsulated ends disposed between-contact feet 144 and 146 of reeds 136 and 138, respectively, Sincereeds 140 and 1,42'are flexible and magnetically actuated, they will be moved into contact with either contact foot 144 or 146 when the rotatable magnet (not shown) is in an actuating position on either side of reeds and 142.
  • These actuating positions are A, H, E, and D.
  • the magnet (not shown) rotates and sequentially assumes positions A through H, the reeds 136, 132, 138 and 140 will be in the following positions relative to each other:
  • FIG. 15 Illustrates-a'reedconfiguration comprising flexible reeds 166, 168, 170. and 172' having bifurcated portions 174, 176, 178, respectively, at their encapsulated ends.
  • a permanent magnet (not shown) assumes a position adjacent to one of reeds 166, 168, 170, 172, that reed will be moved from its normal position towards-the magnet (not shown). and in-the plan defined by the reeds. To illustrate this, assume that the permanent magnet (not shown) is in position A. This will cause reed 166 to move toward position'A and-furcation 182 will move into contactwith fur cation 184.
  • FIG. 17 illustrates another variation on the reed configuration shown in FIGS. and 16.
  • FIG. 18 shows a reed configuration comprising flexible reeds 218, 220 and 222.
  • Reed 218 has a bifurcated portion 224 at its encapsulated ends and reeds 220 and 222 have transverse contact feet 226 and 228, respectively, in a manner similar to the embodiments shown in FIGS. 15, 16, and 17, the reeds 218, 220 and 222 assume the following positions as the magnet (not shown) rotates through positions A through F:
  • FIG. 19 The reed conflguration illustrated in FIG. 19comprises reeds 230 and 232, which may be flexible or rigid, having contact feet 234 and 236, respectively, a flexible reed 238 having a bifurcated portion 240, and a flexible reed 242. Reed 238 will move into contact with either contact foot 234 or 236 when a permanent magnet (not shown) is in positions D or E, respectively.
  • Furcations 224 and 246 are spaced from each other a distance such that they will make contact with reed 242 also when the magnet (not shown) is in position D and E.
  • reed 242 When the magnet is in positions A through H, reed 242 will be actuated into contact with furcations 244 and 246, respectively.
  • the permanent magnet (not shown) assumes positions A through H, the reeds will be actuated in the following manner:
  • reeds 260 and 264 may be axially aligned due to the irregularly shaped bifurcated portions 270, 272, 274 and 276.
  • the magnet (not shown) is rotated through positions A through H, the reeds will assume the following positions:
  • a magnetically actuated reed switch assembly comprising:
  • a. contact means including first and second cooperating magnetically actuated reeds in spaced relation to each other,
  • said magnet being polarized along a first axis and rotatable about an axis transverse to said first axis
  • said contact means and said magnet being sealed in a housing assembly includingcontact'andmagnet supporting chambers, and
  • shaft means connected to said magnet and extending through said housing for rotating said magnet.
  • a magnetically actuated reed switch assembly as in claim 2 and wherein: Y
  • one of said surfaces of said second'capsule is tangent to said first capsule.
  • said second capsule is disc shaped having top and bottom surfaces.
  • said first capsule is tangent to the edge of said second capsule.
  • said contact means are disposed along the arcuate path defined by the rotation of said magnet b. thereby forming a rotary stepping switch.
  • At least two of said contact means are displaced from each other by 90.
  • a magnetically actuated reed switch assembly as.
  • said contact means includes a plurality of said cooperating magnetically actuated reeds.
  • 23. A magnetically actuated reed switch assembly as in claim 1 and wherein:
  • said magnet has its axis .of rotation substantially atthe point where said reeds make contact with each other.
  • said magnet has its axis of rotation adjacent the point where said reeds make, contact with each other;
  • a magnetically actuated reed switch assembly comprising:
  • a. contact means including at least three substantially coplanar cooperating magnetically actuated reeds in spaced relation to each other,
  • a rotatable magnet positioned-with respect to said contact means so that its force field at certain positions of its rotation operates to influence at least two of said angularly displaced cooperating reeds to open or close.
  • said first reed is transverse to said second and third reeds and a portion thereof is disposed between said second and third reeds.
  • said second and third reeds are axially aligned and have cross bar contact means at their respective ends.
  • said contact means includes a fourth cooperating reed transverse to said second and third reeds, and
  • a portion of said fourth reed is disposed between said second and third reeds.
  • said fourth reed is axially aligned with said first reed.
  • each of said reeds has a first portion and a second portion transverse to said first portion.
  • said first portion of one of said reeds cooperates with said second portion of the other of said reeds to form a contact pair.
  • each of said first portions are longer than each of said second portions, respectively.
  • each of said first portions are longer than each of said second portions, respectively.
  • each of said first portions are perpendicular to their respective said second portions.
  • each of said reeds has a first portion and a second portion transverse to said first portion.
  • each of said first portions are perpendicular to their respective said second portion.
  • said contact means includes first, second and third cooperating reeds b. said first reed has a bifurcated portion disposed between said second and third reeds.
  • said second and third reeds each have bifurcated portions.
  • first reed furcations are disposed within said second and third bifurcated portions, respectively.
  • said contact means includes a fourth cooperating reed having a bifurcated portion.
  • a. opposite fourth reed furcations are disposed within said second and third reed furcations, respectively.
  • a. opposite fourth reed furcations are adjacent second and third reed bifurcated portions, respectively.
  • each of said reeds has a bifurcated portion b. said reeds are positioned such that a furcation of each reed cooperates with a furcation of another reed in one-to-one correspondence to form a plurality of contact pairs.
  • one of said furcations of each of said reeds is disposed within said bifurcated portion of one of its cooperating reeds and the other of said furcations of each of said reeds is disposed externally to said bifurcated portion of the other of its cooperating reeds in interleaving fashion.

Abstract

A magnetically actuated reed switch assembly comprising contact means including first and second cooperating magnetically actuated reeds in spaced relation to each other, a permanent magnet rotatable about an axis transverse to the longitudinal axis of the reeds and positioned with respect to the contact means so that its force field at certain positions of its rotation operates to influence the contact means to open or close, the contact means and magnet being encased in a housing assembly including contact and magnet supporting chambers.

Description

United States Patent 1 Sept. 18, 1973 Shlesinger, J r. p
[ MAGN ETICALLY ACTUATED REED SWITCH ASSEMBLY [76] Inventor: Bernard Edward Shlesinger, Jr.,
941 l Macklin Ct., Alexandria, Va. 22309 s2 U.S. c1...[. 335/205, 335/206 [51] Int. Cl. H0lh 19/00, HOlh 36/00 [58] Field of Search ..3.35/205207 [56] References Cited UNITED STATES'PATENTS 10 1971 Porteru 335/206 1/1972 Weathers 335/207 Primary Examiner-Roy N. Envall, Jr. Attorney-B. Edward Shlesinger, Jr. et al.
[57] ABSTRACT A magnetically actuated reed switch assembly comprising contact means including first and second cooperating magnetically actuated reeds in spaced relation to each other, a permanent magnet rotatable about an axis transverse to the longitudinal axis of the reeds and positioned with respect to the contact means so that its force field at certain positions of its rotation operates to influence the contact means to open or close, the contact means and magnet being encased in a housing assembly including contact and magnet supporting chambers. 1 3,281,734 10/1966 Ansley 335/206 1 I 7 1 47 Claims, 25 Drawing Figures PATENTEUSEPI 8191s same or 3 Fig. I20
PATENTEDSEPJBW a 760 312 sum anr a HISTORICAL BACKGROUND In the past, many electrical devices have employed reed switches comprising a pair of magnetically actuated reed contacts sealed within a glass envelope and operated by a permanent magnet. Also, stepping switches using a plurality of reed switches and a rotating magnet are old. Hammond US. Pat. No. 3,418,610, Palmer U.S. Pat. No. 3,328,732 and Posey US. Pat. No. 3,559,124 are examples of these types of devices.
One difficulty with the switch assemblies in the prior art is that they are susceptible to corrosive and other wise damaging effects produced by contact with the ambient atmosphere. Anotherdrawback is that they tend to be complex in structure and require relatively elaborate means to provide for their installation.
OBJECTS AND SUMMARY It is therefore an objectofthisinvention to provide a magnetically actuated reedswitch assembly in which both the reed contacts and the rotating magnet are encased in a housing.
It is a further object of this invention to provide a magnetically actuated reed switch assembly which is unitary in structure. g
It is a further object of this inventiontoprovide. a magnetically actuated reed switch assembly which is capable of precisely timed actuation.
Still a further object of this invention is to provide a magnetically actuated reed switch assembly in which both the reed contacts and'the rotating'magnet are sealedfrorn the ambient atmosphere thereby precluding the corrosion of mechanically cooperating components. t
A further object of this invention is to provide a magnetically actuated reed switch assembly capable of low cost manufacture and ease of installation.
Yet another object of this invention is. to provide a magnetically actuated reed switch assembly in which frictional effects are minimized.
Still a further object of this invention-is to provide a magnetically actuated reed" switch assembly which is capable of functioning as a rotary stepping switch.
A still further object of this invention is to provide a magnetically actuated reed switch assembly wherein the axis of rotation of the magnet is transverse'to the axes of the reeds. g,
, These and other objects of this invention will be apparent from the following description and claims.
In the accompanying drawing which illustrates by way of example various embodiments of this invention:
FIG. 1 is a plan view of the invention;
FIGS. 2 through 4, 5 and 6 are schematicviews showing other embodiments of the invention with portions shown in dotted lines to illustrate various positions of several of the reeds;
FIG. 5a is across sectional view of an enlarged; portion of the embodiment shown inFIG. 5;
FIG. 7 is a side elevational view in section of a further embodiment of the invention;
FIG. 7a is a: top'view of the embodiment shown in.
FIG. 7; I
FIGS. 8, 9, l0, l1 and 12 are plan views of various other embodiments of the invention;
FIG. 9a is a sectional view of the embodiment shown in FIG. 9 taken along lines 9a-9a and viewed in the direction of the arrows;
FIG. 12a is a sectional view of the embodiment shown in FIG. taken along lines 12al2a and viewed in the direction of the arrows;
FIGS. 13 through 21 illustrate still further embodiments of the invention shown schematically.
FIGURES 1 THROUGH 6 In FIG. 1, the capsule C forms the housing for reeds 2 and 4. The capsule C may be made of glass, plastic or any other material capable of sealing the reeds from the ambient atmosphere and not affecting a magnetic field. The reeds 2 and 4 are anchored at one end in the solid end portions 6 and 8 of capsule C. These end portions 6 and 3 may be glass seals in the case of a glass capsule or any other appropriate means for sealing off the interior of the capsule C such .as a plug, cap, etc. The reeds 2 and 4 extendinto the capsule C and have their respective endsl0 and l2'located in'proximate relationship to each other and separated by a small dis.-
.tance. The reeds2 and 4 are made of a material having good magnetic characteristics and electrical conductivity. Alternatively, the reeds 2 and 4 may be coatedwith a conductor such as copper, gold, etc. In the latter alternative the core of the coated reedscould be made of non-conductive ferromagnetic material. The reeds must. also be capable of relative spatial displacement under the influence of a sufflcientlystrong magnetic field. To accomplish this several alternative constructions are possible; one or both reeds maybe flexible, or
. the, reeds may be rigid with at-least one of them being achored in a resilient mounting. .Other possibilities for providing for the-necessary freedom of movement. will be obvious.
Encased in a second capsule D, is a permanent magnet M rigidly mounted on a shaft 14 and capsule of rotation on shaft 14 within capsule D. Shaft 14 passes through capsule D and is rotatably mounted at bearings 16 and I8. Shaft 14 and magnet M may be rotated by any appropriate means such as motor 20 and pulley and belt assembly 22.
The embodiments shown in FIG. 2 through 6 are similar to that shown in FIG. 1 with the exception that the encapsulation means and rotation means are not shown. In the embodiment shown in FIG.,2, magnetically actuated reed 24 is rigid and non-polarizedlwhile reed 26 is flexible and polarized'such that itsnorth'pole N is nearest reed 24'. Thereeds-are'normally in an open position. As magnet M is rotatedto its dotted line position, reed 26 will be repelled by the; north pole of magnet M and moved into contact with reed 24 as in the dotted line position. When the magnet is in the solid" line position or any position except the, dotted-line1posi-- tion, the magnetic field at the northipole of reed 26 will not be sufficiently strong. to cause reed-26 tobe'actu ated into contact .with reed 24. While the reeds 24 and 26 are shown positioned transversely to each other, it
is obvious that other reed configurations are possible. InFIG. 3, magnetically actuated flexible, reeds 30 and 30and 32 are positioned such that contact feet 38 and 40 are parallel to each other. and separated by a smalldistance. When rotatable magnet M is in the dotted line position, the magnetic field at bends 34 and 36 will be sufficiently strong to cause reeds 30 and 32 to move to their dotted line positions. When this occurs, the individual reeds 30 and 32 each follow arcuate paths about the point where they would be anchored in their sealing capsules (not shown). Since the contact feet 38 and 40 also follow somewhat arcuate paths, they will come into contact with each other in the manner shown in the dotted line reed positions. Since the reeds 30 and 32 are not polarized, a similar closing action will occur when the south pole S of magnet M is in the position closest to the reeds 30 and 32. When the magnet is in the solid line position, the magnet field at bends 34 and 36 is no' longer sufficiently strong to attract the reeds 30 and 32 to their closed position.
It may be mentioned that, in all of the embodiments of this invention, the point of the rotation of the magnet where the reeds are actuated to open or close is dependent on various factors such as the ferromagnetic properties of the reeds, the strength of the permanent magnet, the spatial relationship of the magnet and the reedsfand others. Variants of any of these factors will cause a difference in the actuation pattern of the reeds with respect to the rotation of the magnet.
The embodiment shown in FIG. 4 comprises of a pair of magnetically actuated flexible reeds 42'and 44 enclosed in a housing or capsule (not shown) and anchored at their respective ends 46 and 48. The reeds 42 and 44 have obtuse bends 50 and 52 therein near their encapsulated ends forming a pair of contact feet 54 and 56. The reeds 42 and 44 are positioned such that con tact feet 54 and 56 are substantially parallel and separated by a small'distance. Reed 42 is rigid and nonpolarized whereas reed 44 is flexible and unpolarized. When permanent magnet M is in the dotted line position, the magnetic field at contact 56 is sufficiently strong to move reed 44 into contact with reed 42. When magnet M is in the solid line position, the magnetic field at contact foot 56 is not sufficient to move it from its normal position and the reeds 42 and 44 remain open. In this manner, the reeds 42 and 44 will close once per l80 revolution of magnet M. A variation of this embodiment would have reed 44 rigid and unpolarized and reed 42 flexible and polarized. In this case, when the magnet M is in the dotted line position and the polarity of contact foot 54is the same polarity as the proximate end of magnet M, reed 42 will be repelled by magnet M and moved into contact with reed 44. In this manner, the reeds will close once per rotation of magnet M. Other variations of this embodiment will be obvious.
The embodiments shown in FIG. includes two magnetically actuated reeds 60 and 62 anchored at their respective ends 64 and 66. Reed 60 may be flexible and In FIG. 6, reeds 72 and 74, anchored at their respective ends 76 and 78 are each permanently polarized with the encapsulated ends having opposing polarities. Reed 74 isflex'ible and reed 72 may be either rigid or flexible. Accordingly, reeds 72 and 74 will come into contact with each other when the magnet M is in the dotted line position. In this position, the opposing magnetic field created by the south pole S of magnet M, will move reed 74 into contact with reed 72 if the field created by magnet M is sufficient to overcome the opposing field created by the south pole of reed 72.
Another variation of this embodiment would be to have reeds 72 and 74 polarized so that their encapsulated ends have opposite polarities and are nonnally closed. Reeds 72 and 74 would be opened once per revolution of the magnet M when the proximate pole of magnet M has a polarity identical to the encapsulated end of reed 74.
FIGS. 7 AND 8 An alternate embodiment of the invention would comprise a pair of magnetically actuated reeds 80 and 82 sealed in a elongated capsule C similar to the embodiment shown in FIG. 1. The permanent magnet M is likewise sealed in a capsule D and rigidly mounted on a shaft 84 which may be rotated by a knob 86 or any other means.
The second capsule D and magnet M are positioned so that the axis or rotation of magnet M passes through the point where reeds 80 and 82 make contact. With has a notch 68 therein. Reed 62, which is flexible in the plane of the reeds and 62 overlaps reed 60 at notch 68 and ispartially disposed therein as shown in FIG. 5a. When magnet M is in the solid line position, reed 62 will be attracted toward magnet M and make contact with wall of notch 68. When magnet M is in the dotted line position, the magnetic field at reed 62 is substantially less and it will return to its normally open position because of its inherent elasticity. In this manner, reeds 60 and 62 make contact once every 180 rotation of magnet M.
this configuration, the reeds and 82 will close once per revolution of magnet M when the axis of polarity of the magnet is parallel to the longitudinal axis of the reeds.
In FIG. 8, cpasule D contains a permanent magnet M mounted for rotation about a shaft 88. Disposed radially from the axis of rotation of magnet M are two pairs of magnetically actuated reed contacts 90, 92 and 94, 96. They are each sealed in elongated capsules C and C! which are fused or otherwise connected to capsule D. Since reeds 90, 92, 94 and 96 are polarized and flexible, each of the contact pairs 90, 92 and 94, 96 would be actuated to a closed position when the magnet M is in the position shown. In this manner, each of the contact'pairs 90, 92 and 94, 96 will close simultaneously once per l80 revolution of magnet M.
FIGS. 9, 10 AND 11 FIG. 9 shows a further embodiment of the invention wherein the rotatable permanent magnet M is sealed in a capsule D and parallel magnetically actuated reeds 98 and 100 are sealed in a second capsule C. It is obvious that capsules C and D may be integral with each other, in open communication with each other, or sealed from each other without affecting the functioning of the system. As magnet M rotates about shaft 102 the reeds 98 and 100 will close once every l80 revolution. This occurs when the magnet M is in'the position shown.
In FIG. 10, capsules C and D, containing reed contact pairs 104 and 106 are disposed about the perimeter of capsule D. Permanent magnet M rotates within capsule D about shaft 108. As magnet M rotates and the north pole of the magnet M sequentially moves to positions W, X, Y and Z, the contacts pairs 104 and 106 are actuated according to the following table:
TABLE I Contact Pair 0=Open, l=Closed 104 106 Position of North Pole W l 0 X 0 I Y 1 0 Z 0 l FIG. 11 shows a capsule D containing a permanent magnet M rotatable about shaft 110 with reed capsules C, C1 and C2 disposed about its perimeter. Capsule C contains reed contact pair 112, capsule C1 contains reed contact pair 114 and capsule C2 contains reed contact pair 116. As magnet M rotates about shaft 110 and north pole N sequentially moves to positions W, X, Y and Z, the contact pairs 112, 114, and 116 are actuated according to the following table:
TABLE 2 Contact Pair 0=Open, 1=Closed 112 114 116' Position of North Pole W l 0 l X 0 l 0 Y, l 0 l Z 0 l 0 FIG. 12
FIG. 12 shows an embodiment of the invention comprising a capsule or housing C which encases a number of cooperating, magnetically actuated reeds 118, 120, 122, 124 and a pair of rotating magnets 126 and 128. The magnets 126 and 128 are connected tov armatures 130 and 132, respectively, which are rigidly connected to rotatable shaft 134. As shown in FIG. 12a, the rotating magnet assembly 126, 130, 132, 128 is positioned so as to rotate in a plane parallel to and above the plane defined by the reeds 118-124. I
As one of the magnets 126m 128 passes in proximity to flexible reed 120 or flexible reedl24, the magnetic attraction will urge that reed into contact with either of stationary reeds 118 or 122. It is obvious that the flexible reeds 120 and 124 will notv be actuated to make contact with reeds 118 or 122 when either magnet 126 or 128 is positioned directly above the flexible reeds 120 or 124, but only when the magnets 126 andv 128' are positioned to either side of them.
. A more complete description of the switching pattern of this reed configuration will be discussed in the next section.
FIGS. 13 THROUGH 21 FIGS. 13 through 21 illustrate various reed configurations which may be used'in the rotating magnet .systcm shown in FIG. 12. In all instances, the magnetically actuated reeds are anchored at their outermost ends in a capsule or housing similar to the embodiments previously discussed. Their operation will'be described for use in conjunction with asingle rotating magnet capable of assuming the various positions shown in dotted lines, but are not limited to this specific combination.
FIG. 13 illustrates awed configuration identical to thatshown in FIG. 12. Reeds 136 and 138 are unpolarized and may berigid or flexible. Flexible reeds 140 and 142 are also unpolarizedand have their respective encapsulated ends disposed between-contact feet 144 and 146 of reeds 136 and 138, respectively, Sincereeds 140 and 1,42'are flexible and magnetically actuated, they will be moved into contact with either contact foot 144 or 146 when the rotatable magnet (not shown) is in an actuating position on either side of reeds and 142. These actuating positions are A, H, E, and D. As the magnet (not shown) rotates and sequentially assumes positions A through H, the reeds 136, 132, 138 and 140 will be in the following positions relative to each other:
TABLE 3 Contact Pair 0=Open, I=Closed 136-142 142-138 138-140 140-136 Position of Magnet A 0 0 0 1 B 0 0 0 0 C 0 0 0 0 D l 0 0 0 E 0 l 0 0 F 0 0 0 0 G 0 0 0 0 H 0 0 l- 0 The reed configuration shown in FIG. l4'comprises flexible reeds 148, 150, 152 and 154 having transverse contact feet 156, 158, and 162 respectively. When a rotatable permanentmagnet (not shown) is in a position adjacent-to the long portion of each of the reeds 148, 150, 152 or 154, the encapsulated end of that reed TABLE 4 Contact Pair 0=0pen, l=Closed 154-148 148-150 150-152152-154 Positron of Magnet :|:C mUnw ooooooo coboobo cod-cacao o-ocococ FIG. 15illustrates-a'reedconfiguration comprising flexible reeds 166, 168, 170. and 172' having bifurcated portions 174, 176, 178, respectively, at their encapsulated ends. When a permanent magnet (not shown) assumes a position adjacent to one of reeds 166, 168, 170, 172, that reed will be moved from its normal position towards-the magnet (not shown). and in-the plan defined by the reeds. To illustrate this, assume that the permanent magnet (not shown) is in position A. This will cause reed 166 to move toward position'A and-furcation 182 will move into contactwith fur cation 184. As the permanent magnet (not shown) sequentially assumes positions A through H, the'reeds 168, 170, 172 and 166 will be in the following posigo o co o o 1 o H a TABLE 6 Contact Pair 0=0pen, l=Closed 186-188 188-190 190-192 192-186 Position of Magnet A 0 0 0 0 B l l 0 0 C 0 O O 0 D 0 l I O E O 0 0 0 F 0 0 1 l G 0 0 0 0 H l 0 0 1 FIG. 17 illustrates another variation on the reed configuration shown in FIGS. and 16. It includes flexible reeds 202, 204, 206 and 208 having bifurcated portions 210, 212, 214 and 216, respectively, at their encapsulated ends. Reeds actuation is accomplished in the same manner as in the embodiments shown in FIGS. 15 and 15..As the magnet (not shown) sequentially assumes positions A through H, the reeds will be actuated in the following manner:
TABLE 7 Contact Pair 0=Open, l=Closed 202-204 204-206 206-208 208-202 Positron of Magnet A 0 0 0 l B l l 0 0 C 0 0 0 0 D 0 l 0 0 E 0 0 l 0 F 0 0 0 0 G 0 0 l l H l 0 0 0 FIG. 18 shows a reed configuration comprising flexible reeds 218, 220 and 222. Reed 218 has a bifurcated portion 224 at its encapsulated ends and reeds 220 and 222 have transverse contact feet 226 and 228, respectively, in a manner similar to the embodiments shown in FIGS. 15, 16, and 17, the reeds 218, 220 and 222 assume the following positions as the magnet (not shown) rotates through positions A through F:
TABLE 8 Contact Pair O -Open. l=-C|osed 218-220 218-222 Position of Magnet A l 0 B 0 0. C I 0 D 0 l E 0 O F O 1 The reed conflguration illustrated in FIG. 19comprises reeds 230 and 232, which may be flexible or rigid, having contact feet 234 and 236, respectively, a flexible reed 238 having a bifurcated portion 240, and a flexible reed 242. Reed 238 will move into contact with either contact foot 234 or 236 when a permanent magnet (not shown) is in positions D or E, respectively. Furcations 224 and 246 are spaced from each other a distance such that they will make contact with reed 242 also when the magnet (not shown) is in position D and E. When the magnet is in positions A through H, reed 242 will be actuated into contact with furcations 244 and 246, respectively. As the permanent magnet (not shown) assumes positions A through H, the reeds will be actuated in the following manner:
TABLE 9 Contact Pair 0=Open, I=Closed Position of Magnet IO UO --oo---oococo-coo coo-coco TABLE 10 Contact Pair 0=Open, 1=Closed Position of Magnet II IUOW OOOOO- COO-'00 O 'OOOO The reed configuration shown in FIG. 21 comprises flexible reeds 260, 262, 264 and 266 having bifurcated portions 270, 272, 274, and 276, respectively, at their encapsulated ends. The primary difference between this embodiment and that shown in FIG. 16 is that whereas reeds 286 and (FIG. 16) could not be axially aligned due to the V-shaped bifurcations, reeds 260 and 264 (FIG. 21) may be axially aligned due to the irregularly shaped bifurcated portions 270, 272, 274 and 276. As the magnet (not shown) is rotated through positions A through H, the reeds will assume the following positions:
TABLE 1 l Contact Pair 0=Open, I=Closed 260-262 262-264 264-266 266-260 Position of Magnet :co'nrnuous cocoa-oooo--o-oo o-o-oooo o-ooooo-- the scope of the invention or the limits of the appended claims.
What is claimed is: 1. A magnetically actuated reed switch assembly comprising:
a. contact means including first and second cooperating magnetically actuated reeds in spaced relation to each other,
b. a rotatable magnet positioned with respect to said contact means so that its force field at certain positions of its rotation operates to influence said contact means to open or close,
c. said magnet being polarized along a first axis and rotatable about an axis transverse to said first axis,
d. said contact means and said magnet being sealed in a housing assembly includingcontact'andmagnet supporting chambers, and
e. shaft means connected to said magnet and extending through said housing for rotating said magnet.
2. A magnetically actuated reed switch assembly as in claim 1 and wherein: a. said chambers are interconnected capsules. 3. A magnetically actuated reed switch assembly as in claim 2 and wherein:
a. said first capsule is elongated. I 4. A magnetically actuated reed switch assembly as in claim 3 and wherein:
a. said second capsule is positioned adjacent the long dimension of said first capsule. 5. A magnetically actuated reed switch assembly as in claim 2 and wherein: Y
a. said second capsule is disc shaped having top and bottom surfaces. 6. A magnetically actuated reed switch assembly as in claim 5 and wherein:
a. the edge of said second capsule is tangent to said first capsule. 7. A magnetically actuated reed in claim 5 and wherein:
a. one of said surfaces of said second'capsule is tangent to said first capsule.
switch assembly as 8. A magnetically actuated reed switch assembly as 11. A magnetically actuated reed switch assembly as in claim 10 and including:
a. a plurality of said first capsules tangent to the edge of said second capsule. 12. A magnetically actuated reed switch assembly as in claim 2 and wherein: p v
a. said second capsule is disc shaped having top and bottom surfaces. r
13. A magnetically actuated reed switch assembly as in claim 12 and wherein:
a. said first capsule is tangent to the edge of said second capsule.
14. A magnetically actuated reed switch assembly as in claim 13 and including:
a. a plurality of said first capsules tangent to the edge of said second capsule.
15. A magnetically actuated reed switch assembly as in claim 1 and including a plurality of said contact means.
16. A magnetically actuated reed switch assembly as in claim 15 and wherein:
a. said contact means are disposed along the arcuate path defined by the rotation of said magnet b. thereby forming a rotary stepping switch.
17. A magnetically actuated reed switch assembly as in claim 16 and wherein:
a. at least two of said contact means are displaced from each other by 90.
18. A magnetically actuated reed switch assembly as in claim 16 and wherein:
a. at least three of said contact means are displaced from. each other by 90. y y
19. A magnetically actuated reed switch assembly as in claim 16 and wherein:
a. at least fourof said contact means are displaced from each other by 90..
20. A magnetically actuated reed switch assembly as in-claim 15 and wherein said contact means are disposed radially about the axis of rotation of said magnet.
. v 26. A magnetically actuated reed switch assembly as.
21. A magnetically actuated reed switch assembly as v in claim 1 and wherein:
a. the axes of said reeds are transverse to the axis of rotation. 22. A magnetically actuated reed switch assembly as in claim 1 and wherein:
a. said contact means includes a plurality of said cooperating magnetically actuated reeds. 23. A magnetically actuated reed switch assembly as in claim 1 and wherein:
a. said magnet has its axis .of rotation substantially atthe point where said reeds make contact with each other. i
24. A magnetically actuated reed switch assembly as in claim 1 and wherein:
a. said magnet has its axis of rotation adjacent the point where said reeds make, contact with each other; A
25. A magnetically actuated reed switch assembly comprising:
a. contact means including at least three substantially coplanar cooperating magnetically actuated reeds in spaced relation to each other,
b. said reeds being disposed radially about a central axis in spoke-like fashion and angularly displaced from each other, and
c. a rotatable magnet positioned-with respect to said contact means so that its force field at certain positions of its rotation operates to influence at least two of said angularly displaced cooperating reeds to open or close.
in claim '25 and wherein:
cooperating reeds b. said first reed is transverse to said second and third reeds and a portion thereof is disposed between said second and third reeds.
27. A magnetically actuated reed switch assembly as in claim 26 and wherein:
a. said second and third reeds are axially aligned and have cross bar contact means at their respective ends.
28. A magnetically actuated reed switch assembly as in claim 26 and wherein:
a. said contact means includes a fourth cooperating reed transverse to said second and third reeds, and
b. a portion of said fourth reed is disposed between said second and third reeds.
29. A magnetically actuated reed switch assembly as in claim 28 and including:
a. means on said first reed for making contact with both sides of said fourth reed.
30. A magnetically actuated reed switch assembly as in claim 28 and wherein:
a. said fourth reed is axially aligned with said first reed.
31. A magnetically actuated reed switch assembly as in claim 25 and including:
a. a plurality of rotatable magnets positioned with respect to said contact means so that their force fields at certain positions of their rotation operate to influence cooperating pairs of said reeds to open or close.
32. A magnetically actuated reed switch assembly as in claim 25 and wherein:
a. each of said reeds has a first portion and a second portion transverse to said first portion.
33. A magnetically actuated reed switch assembly as in claim 32 and wherein:
a. said first portion of one of said reeds cooperates with said second portion of the other of said reeds to form a contact pair.
34. A magnetically actuated reed switch assembly as in claim 33 and wherein:
a. each of said first portions are longer than each of said second portions, respectively.
35. A magnetically actuated reed switch assembly as in claim 32 and wherein:
a. said second portions cooperate with each other to form a contact pair.
36. A magnetically actuated reed switch assembly as in claim 35 and wherein:
a. each of said first portions are longer than each of said second portions, respectively.
37. A magnetically actuated reed switch assembly as in claim 32 and wherein:
a. each of said first portions are perpendicular to their respective said second portions.
38. A magnetically actuated reed switch assembly as in clain 25 and wherein:
a. each of said reeds has a first portion and a second portion transverse to said first portion.
39. A magnetically actuated reed switch assembly as in claim 38 and wherein:
a. each of said first portions are perpendicular to their respective said second portion.
40. A magnetically actuated reed switch assembly as in claim 25 and wherein:
a. said contact means includes first, second and third cooperating reeds b. said first reed has a bifurcated portion disposed between said second and third reeds.
41. A magnetically actuated reed switch assembly as in claim 40 and wherein:
a. said second and third reeds each have bifurcated portions.
42. A magnetically actuated reed switch assembly as in claim 41 and wherein:
a. opposite first reed furcations are disposed within said second and third bifurcated portions, respectively.
43. A magnetically actuated reed switch assembly as in claim 42 and wherein:
a. said contact means includes a fourth cooperating reed having a bifurcated portion.
44. A magnetically actuated reed switch assembly as in claim 43 and wherein:
a. opposite fourth reed furcations are disposed within said second and third reed furcations, respectively.
45. A magnetically actuated reed switch assembly as in claim 43 and wherein:
a. opposite fourth reed furcations are adjacent second and third reed bifurcated portions, respectively.
46. A magnetically actuated reed switch assembly as in claim 25 and wherein:
a. each of said reeds has a bifurcated portion b. said reeds are positioned such that a furcation of each reed cooperates with a furcation of another reed in one-to-one correspondence to form a plurality of contact pairs.
47. A magnetically actuated reed switch assembly as in claim 46 and wherein:
a. one of said furcations of each of said reeds is disposed within said bifurcated portion of one of its cooperating reeds and the other of said furcations of each of said reeds is disposed externally to said bifurcated portion of the other of its cooperating reeds in interleaving fashion.
l i I I! I

Claims (47)

1. A magnetically actuated reed switch assembly comprising: a. contact means including first and second cooperating magnetically actuated reeds in spaced relation to each other, b. a rotatable magnet positioned with respect to said contact means so that its force field at certain positions of its rotation operates to influence said contact means to open or close, c. said magnet being polarized along a first axis and rotatable about an axis transverse to said first axis, d. said contact means and said magnet being sealed in a housing assembly including contact and magnet supporting chambers, and e. shaft means connected to said magnet and extending through said housing for rotating said magnet.
2. A magnetically actuated reed switch assembly as in claim 1 and wherein: a. said chambers are interconnected capsules.
3. A magnetically actuated reed switch assembly as in claim 2 and wherein: a. said first capsule is elongated.
4. A magnetically actuated reed switch assembly as in claim 3 and wherein: a. said second capsule is positioned adjacent the long dimension of said first capsule.
5. A magnetically actuated reed switch assembly as in claim 2 and wherein: a. said second capsule is disc shaped having top and bottom surfaces.
6. A magnetically actuated reed switch assembly as in claim 5 and wherein: a. the edge of said second capsule is tangent to said first capsule.
7. A magnetically actuated reed switch assembly as in claim 5 and wherein: a. one of said surfaces of said second capsule is tangent to said first capsule.
8. A magnetically actuated reed switch assembly as in claim 3 and wherein: a. said second capsule is positioned adjacent the short dimension of said first capsule.
9. A magnetically actuated reed switch assembly as in claim 8 and wherein: a. said second capsule is disc shaped.
10. A magnetically actuated reed switch assembly as in claim 9 and wherein: a. the edge of said second capsule is tangent to said first capsule.
11. A magnetically actuated reed switch assembly as in claim 10 and including: a. a plurality of said first capsules tangent to the edge of said second capsule.
12. A magnetically actuated reed switch assembly as in claim 2 and wherein: a. said second capsule is disc shaped having top and bottom surfaces.
13. A magnetically actuated reed switch assembly as in claim 12 and wherein: a. said first capsule is tangent to the edge of said second capsule.
14. A magnetically actuated reed switch assembly as in claim 13 and including: a. a plurality of said first capsules tangent to the edge of said second capsule.
15. A magnetically actuated reed switch assembly as in claim 1 and including a plurality of said contact means.
16. A magnetically actuated reed switch assembly as in claim 15 and wherein: a. said contact means are disposed along the arcuate path defined by the rotation of said magnet b. thereby forming a rotary stepping switch.
17. A magnetically actuated reed switch assembly as in claim 16 and wherein: a. at least two of said contact means are displaced from each other by 90*.
18. A magnetically actuated reed switch assembly as in claim 16 and wherein: a. at least three of said contact means are displaced from each other by 90*.
19. A magnetically actuated reed switch assembly as in claim 16 and wherein: a. at least four of said contact means are displaced from each other by 90*.
20. A magnetically actuated reed switch assembly as in claim 15 and wherein said contact means are disposed radially about the axis of rotation of said magnet.
21. A magnetically actuated reed switch assembly as in claim 1 and wherein: a. the axes of said reeds are transverse to the axis of rotation.
22. A magnetically actuated reed switch assembly as in claim 1 and wherein: a. said contact means includes a plurality of said cooperating magnetically actuated reeds.
23. A magnetically actuated reed switch assembly as in claim 1 and wherein: a. said magnet has its axis of rotation substantially at the point Where said reeds make contact with each other.
24. A magnetically actuated reed switch assembly as in claim 1 and wherein: a. said magnet has its axis of rotation adjacent the point where said reeds make contact with each other.
25. A magnetically actuated reed switch assembly comprising: a. contact means including at least three substantially coplanar cooperating magnetically actuated reeds in spaced relation to each other, b. said reeds being disposed radially about a central axis in spoke-like fashion and angularly displaced from each other, and c. a rotatable magnet positioned with respect to said contact means so that its force field at certain positions of its rotation operates to influence at least two of said angularly displaced cooperating reeds to open or close.
26. A magnetically actuated reed switch assembly as in claim 25 and wherein: a. said contact means includes first, second and third cooperating reeds b. said first reed is transverse to said second and third reeds and a portion thereof is disposed between said second and third reeds.
27. A magnetically actuated reed switch assembly as in claim 26 and wherein: a. said second and third reeds are axially aligned and have cross bar contact means at their respective ends.
28. A magnetically actuated reed switch assembly as in claim 26 and wherein: a. said contact means includes a fourth cooperating reed transverse to said second and third reeds, and b. a portion of said fourth reed is disposed between said second and third reeds.
29. A magnetically actuated reed switch assembly as in claim 28 and including: a. means on said first reed for making contact with both sides of said fourth reed.
30. A magnetically actuated reed switch assembly as in claim 28 and wherein: a. said fourth reed is axially aligned with said first reed.
31. A magnetically actuated reed switch assembly as in claim 25 and including: a. a plurality of rotatable magnets positioned with respect to said contact means so that their force fields at certain positions of their rotation operate to influence cooperating pairs of said reeds to open or close.
32. A magnetically actuated reed switch assembly as in claim 25 and wherein: a. each of said reeds has a first portion and a second portion transverse to said first portion.
33. A magnetically actuated reed switch assembly as in claim 32 and wherein: a. said first portion of one of said reeds cooperates with said second portion of the other of said reeds to form a contact pair.
34. A magnetically actuated reed switch assembly as in claim 33 and wherein: a. each of said first portions are longer than each of said second portions, respectively.
35. A magnetically actuated reed switch assembly as in claim 32 and wherein: a. said second portions cooperate with each other to form a contact pair.
36. A magnetically actuated reed switch assembly as in claim 35 and wherein: a. each of said first portions are longer than each of said second portions, respectively.
37. A magnetically actuated reed switch assembly as in claim 32 and wherein: a. each of said first portions are perpendicular to their respective said second portions.
38. A magnetically actuated reed switch assembly as in clain 25 and wherein: a. each of said reeds has a first portion and a second portion transverse to said first portion.
39. A magnetically actuated reed switch assembly as in claim 38 and wherein: a. each of said first portions are perpendicular to their respective said second portion.
40. A magnetically actuated reed switch assembly as in claim 25 and wherein: a. said contact means includes first, second and third cooperating reeds b. said first reed has a bifurcated portion disposed between said second and third reeds.
41. A magnetically actuated reed switch assembly as in claim 40 and wherein: a. said second and third reeds each have bifurcated portions.
42. A magnetically actuated reed switch assembly as in claim 41 and wherein: a. opposite first reed furcations are disposed within said second and third bifurcated portions, respectively.
43. A magnetically actuated reed switch assembly as in claim 42 and wherein: a. said contact means includes a fourth cooperating reed having a bifurcated portion.
44. A magnetically actuated reed switch assembly as in claim 43 and wherein: a. opposite fourth reed furcations are disposed within said second and third reed furcations, respectively.
45. A magnetically actuated reed switch assembly as in claim 43 and wherein: a. opposite fourth reed furcations are adjacent second and third reed bifurcated portions, respectively.
46. A magnetically actuated reed switch assembly as in claim 25 and wherein: a. each of said reeds has a bifurcated portion b. said reeds are positioned such that a furcation of each reed cooperates with a furcation of another reed in one-to-one correspondence to form a plurality of contact pairs.
47. A magnetically actuated reed switch assembly as in claim 46 and wherein: a. one of said furcations of each of said reeds is disposed within said bifurcated portion of one of its cooperating reeds and the other of said furcations of each of said reeds is disposed externally to said bifurcated portion of the other of its cooperating reeds in interleaving fashion.
US00299273A 1972-10-20 1972-10-20 Magnetically actuated reed switch assembly Expired - Lifetime US3760312A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US29927372A 1972-10-20 1972-10-20

Publications (1)

Publication Number Publication Date
US3760312A true US3760312A (en) 1973-09-18

Family

ID=23154080

Family Applications (1)

Application Number Title Priority Date Filing Date
US00299273A Expired - Lifetime US3760312A (en) 1972-10-20 1972-10-20 Magnetically actuated reed switch assembly

Country Status (1)

Country Link
US (1) US3760312A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943474A (en) * 1973-10-09 1976-03-09 Shlesinger Jr Bernard E Reed and reed switch therefor
US3955388A (en) * 1975-06-09 1976-05-11 American Locker Company Combination magnetic key
US4012731A (en) * 1976-01-05 1977-03-15 Anna Grace Solomon Burglar alarm system
US4041427A (en) * 1975-04-15 1977-08-09 Futaba Denshi Kogyo K. K. Reed switching opening and closing device
US4152755A (en) * 1977-06-20 1979-05-01 Nixt Richard E Portable magnetically actuatable flashlight
US4380704A (en) * 1980-04-28 1983-04-19 Wisda Michael S Electrical switch
US4616285A (en) * 1984-05-14 1986-10-07 Sackett Robert L Safety and selective use switch for a power outlet
US5168545A (en) * 1991-02-13 1992-12-01 Robertshaw Controls Company Temperature operated control system, control device therefor, and methods of making the same
US5877664A (en) * 1996-05-08 1999-03-02 Jackson, Jr.; John T. Magnetic proximity switch system
US5929731A (en) * 1996-05-08 1999-07-27 Jackson Research, Inc. Balanced magnetic proximity switch assembly
US6690253B1 (en) * 2001-08-20 2004-02-10 Carroll Ray Precure Precure magnetic switch
US7498538B1 (en) 2007-07-20 2009-03-03 Judco Manufacturing, Inc. Sliding contact switch
US7504919B1 (en) 2005-02-10 2009-03-17 Judco Manufacturing, Inc. Water resistant switch assembly
US20100055549A1 (en) * 2008-09-02 2010-03-04 Rodney Corder Intrinsically Safe Battery Pack and System
US7880107B1 (en) 2007-10-12 2011-02-01 Judco Manufacturing, Inc. Momentary push button switch
US20130184526A1 (en) * 2005-10-05 2013-07-18 Olympus Corporation Capsule-type medical apparatus, guidance system and guidance method therefor, and intrasubject insertion apparatus
US20190111830A1 (en) * 2015-12-02 2019-04-18 Panasonic Intellectual Property Management Co., Ltd. Transfer mechanism, lever mechanism, and contactless lever switch
US11309140B2 (en) * 2019-01-04 2022-04-19 Littelfuse, Inc. Contact switch coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281734A (en) * 1965-03-12 1966-10-25 Arthur Ansley Mfg Company Variable-dwell commutating magnetic switch construction
US3614683A (en) * 1968-10-29 1971-10-19 Western Electric Co Multiple-contact glass-sealed dry reed switching device
US3636485A (en) * 1969-02-10 1972-01-18 Paul Weathers Security alarm system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281734A (en) * 1965-03-12 1966-10-25 Arthur Ansley Mfg Company Variable-dwell commutating magnetic switch construction
US3614683A (en) * 1968-10-29 1971-10-19 Western Electric Co Multiple-contact glass-sealed dry reed switching device
US3636485A (en) * 1969-02-10 1972-01-18 Paul Weathers Security alarm system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943474A (en) * 1973-10-09 1976-03-09 Shlesinger Jr Bernard E Reed and reed switch therefor
US4041427A (en) * 1975-04-15 1977-08-09 Futaba Denshi Kogyo K. K. Reed switching opening and closing device
US3955388A (en) * 1975-06-09 1976-05-11 American Locker Company Combination magnetic key
US4012731A (en) * 1976-01-05 1977-03-15 Anna Grace Solomon Burglar alarm system
US4152755A (en) * 1977-06-20 1979-05-01 Nixt Richard E Portable magnetically actuatable flashlight
US4380704A (en) * 1980-04-28 1983-04-19 Wisda Michael S Electrical switch
US4616285A (en) * 1984-05-14 1986-10-07 Sackett Robert L Safety and selective use switch for a power outlet
US5168545A (en) * 1991-02-13 1992-12-01 Robertshaw Controls Company Temperature operated control system, control device therefor, and methods of making the same
US5877664A (en) * 1996-05-08 1999-03-02 Jackson, Jr.; John T. Magnetic proximity switch system
US5929731A (en) * 1996-05-08 1999-07-27 Jackson Research, Inc. Balanced magnetic proximity switch assembly
US6690253B1 (en) * 2001-08-20 2004-02-10 Carroll Ray Precure Precure magnetic switch
US7504919B1 (en) 2005-02-10 2009-03-17 Judco Manufacturing, Inc. Water resistant switch assembly
US20130184526A1 (en) * 2005-10-05 2013-07-18 Olympus Corporation Capsule-type medical apparatus, guidance system and guidance method therefor, and intrasubject insertion apparatus
US8740774B2 (en) * 2005-10-05 2014-06-03 Olympus Corporation Capsule-type medical apparatus, guidance system and guidance method therefor, and intrasubject insertion apparatus
US7498538B1 (en) 2007-07-20 2009-03-03 Judco Manufacturing, Inc. Sliding contact switch
US7880107B1 (en) 2007-10-12 2011-02-01 Judco Manufacturing, Inc. Momentary push button switch
US20100055549A1 (en) * 2008-09-02 2010-03-04 Rodney Corder Intrinsically Safe Battery Pack and System
US8129046B2 (en) 2008-09-02 2012-03-06 Dwyer Instruments, Inc. Intrinsically safe battery pack and system
US20190111830A1 (en) * 2015-12-02 2019-04-18 Panasonic Intellectual Property Management Co., Ltd. Transfer mechanism, lever mechanism, and contactless lever switch
US10703258B2 (en) * 2015-12-02 2020-07-07 Panasonic Intellectual Property Management Co., Ltd. Transmission mechanism, lever mechanism, and contactless lever switch
US11309140B2 (en) * 2019-01-04 2022-04-19 Littelfuse, Inc. Contact switch coating
US20220122784A1 (en) * 2019-01-04 2022-04-21 Littelfuse, Inc. Contact switch coating

Similar Documents

Publication Publication Date Title
US3760312A (en) Magnetically actuated reed switch assembly
US4199741A (en) Moving magnet, rotary switch
US4694599A (en) Electromagnetic flip-type visual indicator
US3474366A (en) Magnetic switch assembly for operation by magnetic cards
US5829987A (en) Electromechanical connection device
US3559124A (en) Magnetically actuated reed switches
US4336518A (en) Plunger operated magnetic contact switch assembly
US3720895A (en) Magnetically actuated reed switch assembly
US3233061A (en) Magnetically detented keyboard switch
GB898948A (en) Improvements in and relating to control devices
US3458840A (en) Multi-position electric switch
US3060291A (en) Switching assembly
US3489971A (en) Magnetically actuated limit switch
US3678425A (en) Self-contained reed switch unit
US3866007A (en) Contact reed with foil-thin intermediate section
US3735300A (en) Magnetic coding device for moving bodies such as conveyor carriers
US3268840A (en) Magnetic switch contact assembly
US3486143A (en) Magnetic switches
US4101857A (en) Externally-programable switch
US3348175A (en) Normally closed reed switch
US3265826A (en) Rocker switch utilizing magnetic reeds
GB1285351A (en) Improvements in and relating to electrical switch devices
US4001744A (en) Electrical switch
US3582596A (en) Diaphragm pushbutton switches
CA1122629A (en) Control winding for a magnetic latching reed relay