US3760360A - Matrix switch - Google Patents

Matrix switch Download PDF

Info

Publication number
US3760360A
US3760360A US00194261A US3760360DA US3760360A US 3760360 A US3760360 A US 3760360A US 00194261 A US00194261 A US 00194261A US 3760360D A US3760360D A US 3760360DA US 3760360 A US3760360 A US 3760360A
Authority
US
United States
Prior art keywords
conductors
map
housing
card
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00194261A
Inventor
R Reynolds
S Nordberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
E Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Systems Inc filed Critical E Systems Inc
Application granted granted Critical
Publication of US3760360A publication Critical patent/US3760360A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04146Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using pressure sensitive conductive elements delivering a boolean signal and located between crossing sensing lines, e.g. located between X and Y sensing line layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • H01H13/703Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches characterised by spacers between contact carrying layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2207/00Connections
    • H01H2207/012Connections via underside of substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2209/00Layers
    • H01H2209/016Protection layer, e.g. for legend, anti-scratch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2209/00Layers
    • H01H2209/024Properties of the substrate
    • H01H2209/032Properties of the substrate non elastomeric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2209/00Layers
    • H01H2209/068Properties of the membrane
    • H01H2209/076Properties of the membrane non elastomeric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2211/00Spacers
    • H01H2211/006Individual areas
    • H01H2211/01Ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2219/00Legends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2219/00Legends
    • H01H2219/002Legends replaceable; adaptable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2219/00Legends
    • H01H2219/002Legends replaceable; adaptable
    • H01H2219/026Legends replaceable; adaptable with programming switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2219/00Legends
    • H01H2219/036Light emitting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/024Spacer elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2229/00Manufacturing
    • H01H2229/024Packing between substrate and membrane
    • H01H2229/032Screw
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2231/00Applications
    • H01H2231/026Car
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2231/00Applications
    • H01H2231/034Coordinate determination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2239/00Miscellaneous
    • H01H2239/01Miscellaneous combined with other elements on the same substrate

Definitions

  • MATRIX SWITCH [75] Inventors Robert S. Reynolds R Svein T. Nordberg, Saratoga, both of Calif.
  • a finger-pressure actuated matrix switch assembly includes a map overlay and generates a binary coded signal corresponding to the coordinates of the point of application of pressure to the map.
  • the assembly comprises a housing with a slot for positioning a replaceable map card in operative position and a storage chamber for a plurality of such map cards.
  • Each of the map cards is edge-notched with a unique code identifying that card, and switches supported on the housing are actuated by these notches when a map card is inserted into its operative position to generate a binary electrical signal corresponding to' that code.
  • the matrix or grid is formed by orthogonally related sets of printed conductors on stacked boards spaced apart by resilient strip separators formed directly on one of the boards.
  • Logic circuitry for converting the coordinates of contacting conductors into binary digits is carried on a single pluggable board detachably connected to the matrix boards for quick replacement to facilitate maintenance and repair.
  • PATENTEBSEH 8191s saw an; 4
  • This invention relatesto matrix switches and more particularly to an improved pressure-actuated matrix switch assembly for generating electrical signals identifying the coordinates of the point of pressure on the assembly.
  • Such a switch isuseful in police andother vehicles for giving a remote station the location of the vehicle.
  • the police department of a medium size city having a population of 300,000 or more may have as many as thirty police patrol cars on duty at one time.
  • the officer in each patrol car periodically calls the dispatcher to report his location.
  • Each of these messages is verbally acknowledged by the dispatcher who then manually enters'the information on a status board. Operation in this mode crowds the available communication channels with routine messages and prevents the dispatcher from addressing more important tasks requiring his attention.
  • One of the prior art techniques proposed for automatically accomplishing this function comprises a transmitter in each carperiodically transmitting at a unique characteristic frequency and several fixed receiving antennas at different stations around the city which triangulate on received signals to fix the location of the vehicle. Such systems are complex and expensive.
  • An object of this invention is theprovision of a grid coordinate matrix switch capable of accommodating a plurality of replaceable map cards forming subdivisions of a larger map.
  • Another object is the provision of a matrix switch of this type with meansfor automatically generating a signalto identify a selected map card when inserted into the operating position.
  • a further object is the provision of a matrix switch having a multilayer printed circuit board assembly with a pluggable component board to facilitate maintenance.
  • a further object is the provision of a low-cost matrix switch with grid-forming conductors printed on stacked circuit boards and spaced by resilient separators formed directly on one'of the boards by silk screen or printing techniques.
  • a binary outputmatrix switch is capable of receiving one of a plurality of map overlay cards for generating I a coded location signal in response to finger pressure at a selected point on the map.
  • Each card carries an identification code which is translated into part of the binary output signal when the card is inserted into operating position.
  • Grid conductors are formed by printed circuit techniques and an easily removed pluggable component board facilitates maintenance and trouble shooting of the unit.
  • FIG. l isa partially schematic and partially perspective view of a vehicle. locator system with a matrix switch embodying this invention
  • FIG. '2 is a side elevation, partially in section, of the switch embodying this invention.
  • FIG. 3 is a perspective view of the switch showing details of the multilayer construction
  • FIG. 4 is an exploded viewof the multilayer assembly comprising the switch; and.
  • FIG. 5 is a greatly enlarged transverse section of part of the switch assembly taken on line 55 of FIG. 3.
  • FIG. 1 a position locating system embodying this invention is shown in FIG. 1 and comprises a matrix switch assembly 10 which produces a binary signal output on line 11 in response to finger pressure by the hand H of the operator against the working surface 12 shown, by way of example, as a portion of a city street map.
  • the binary output signal on line 1 1 is processed by a multiplexer 14 toform a coded binary word representing the coordinates of the finger pressure point on surface 12.
  • This binary signal is applied to transmitter 15 for transmission over antenna 16 preferably as a tone burst when used in conjunction with a police communication network of the type described in US. Pat. No. 3,678,391 of Warren Gough.
  • the transmitted signal is received at the remote station by antenna 17 and is processed in receiver 18 and decoder 19 for presentation on a display unit 20.
  • a translucent map 21 on the surface of unit 20 is identical to the map on matrix switch surface 12 and is illuminated at point 22 corresponding to the finger pressure point on surface 12 by appropriate lighting means in response to the output of a logic circuit in decoder 19.
  • a general system including a binary signal generating matrix switch for vehicle location is described in the aforementioned application of Kent Penwarden and transmitter 15 may comprise a vehicle mounted digital communications unit described in the foregoing patent of Warren Gough.
  • the instant invention resides in the matrix switch assembly 10.
  • Switch assembly 10 comprises a generally rectangular housing 24having a front section 25 and a rear section 26 releasably connected together and a multilayer unit 27 mounted on front section 25.
  • Front section 25 has side members25a and 25b and top and bottom members 250 and 25d, respectively, defining an unobstructed rectangular opening which is traversed by the working surface or map area 12.
  • Top member 250 and the upper parts of side members 25a and 25b project forwardly to form a shield and carry indicator lights 29 and 30 on opposite sides for monitoring operation of the switch assembly.
  • a power input terminal 33 and a control switch 34 are connected to circuits within the housing and project below bottom member 25d.
  • a matrix switch assembly 10 that is to be mounted in an already crowded police patrol vehicle, preferably adjacent the dashboard, is dependent on the compactness of the unit as well as its capability of displaying a sufficient area of a map to be effective.
  • minimum overall space occupied and maximum map viewing area provision is made in housing 24 to accommodate a plurality of replaceable maps or map cards 35 comprising portions of a larger map.
  • the rearwardly facing edge of top member 250 of front section 25 is formed with a transversely extending recess 36 and each of the side members 25a and 25b has an inwardly opening vertically extending shoulder 38 (see FIG. aligned in the plane of recess 36.
  • Recess 36 and shoulders 38 define a slot for reception of map card 35 which comprises a plane rectangular frame 41, see FIGS. 4 and 5, enclosing the map 12 and having an upwardly projecting identification tab 42 with a visible code number thereon.
  • the rear housing section 26 has a compartment 44 with an upper opening 45 through which cards are removed and inserted; the tabs 42 of stored cards are staggered and project above top member 250 of the front section so as to be visually as well as physically accessible to the operator.
  • the outline of a map card 35 partially inserted in recess 36 is shown in broken lines in FIG. 1.
  • multilayer unit 27 The structure of multilayer unit 27 is shown more clearly in FIGS. 3-5, inclusive, and comprises a component board 48, a lower matrix board 49, an upper matrix sheet 50, a resilient magnetized cover 51, an a semi-permanent preferably small scale map 52.
  • Replaceable map card 35 with a large scale map 12 overlies map 52.
  • the side edges of matrix board 49 and sheet 50, cover 51 and permanent map 52 overlie the side edges of component board 48 as shown in FIG. 5 and receive screws 54 which secure these parts to sides 25a and 25b of front housing section 25.
  • Component board 48 is a relatively rigid sheet of H16 inch epoxy laminate and mounts circuit components 55 such as gates, flip-flops and core memories which comprise the logic elements of the switch assembly. These components are mounted on one side of the board, the underside as shown in FIGS. 4 and 5, the upper or top side of the board having printed conductors as shown for-making intercomponent and other electrical connections. Board 48 also has terminal sockets 57 and '58 along adjacent side edges, respectively, for providing a releasable connection with the conductors on lower matrix board 49 and sheet 50 as described below. Signal output and power terminals 32 and 33 as well as control switch 34 are physically mounted on component board 48 and are electrically connected to the assembly through this board.
  • circuit components 55 such as gates, flip-flops and core memories which comprise the logic elements of the switch assembly. These components are mounted on one side of the board, the underside as shown in FIGS. 4 and 5, the upper or top side of the board having printed conductors as shown for-making intercomponent and other electrical connections.
  • Board 48 also
  • a plurality of switches 60 are mounted on component board 48 and have outwardly projecting fingers 60a-60d, inclusive.
  • the lower end of each map frame 41 is formed with notches 62 and teeth 63 defining an identification code for the particular card and switch fingers 60a60d are positioned to cooperate with these notches and teeth.
  • Switches 60 generate a 4-bit coded signal depending on the number and position of fingers 60a-60d which are depressed by teeth 63 (or not depressed by notches 62) and this identification code is transmitted as part of the output signal from the switch assembly; the signal is decoded at the remote station to enable the operator there to use a corresponding map on display unit 20.
  • the number of switches 60 may be varied to suit the number of codes required to identify the replaceable maps. When no map card 35 is in the operative position, i.e., when small scale map 52 is exposed for use, none of the switch fingers are depressed which constitutes the code for indicating use of this map.
  • Lower matrix board 49 preferably is made of 1/8 inch epoxy glass laminate or similar material and has a plurality of straight laterally spaced parallel conductors 64 formed preferably by printed circuit techniques on the upper surface 49a and extending substantially the full length of the board. The ends of conductors 64 are electrically connected to pins 65 which extend along the lower edge, as viewed, and through the board for removable insertion into and electrical connection with aligned terminal sockets 57 on the corresponding edge of component board 48.
  • Upper matrix sheet 50 is composed of relatively thin (0.004 inch) epoxy glass or similar material and has a plurality of laterally spaced parallel conductors 67 formed on the underside 50a and extending substantially the full width of the sheet at right angles to conductors 64 on matrix board 49.
  • Conductors 67 are connected at one end to terminal elements68 along the left side edge, as viewed, of sheet 50; elements 68 extend through sheet 50 and make electrical contact with pins 69 along the corresponding edge of board 49 when these parts are secured together in a stacked position. Pins 69 extend through board 49 and releasably engage sockets 58 in component board 48.
  • Conductors 64 and 67 on board 49 and sheet 50, respectively, are spaced from each other by a plurality of separator strips 71 formed on board 49 and extending parallel to conductors 64.
  • Preferably one separator strip is located midway between adjacent conductors 64 and is coextensive with those conductors.
  • Strips 71 are composed of a resilient compressible material such as neoprene, synthetic rubber, film rubber, or any other elastomer, which is applied to board 49 by deposition through a silk screen or the like in the manner employed to form masks in printed circuit processes.
  • a resilient compressible material such as neoprene, synthetic rubber, film rubber, or any other elastomer
  • each strip whichdefines the separation gap between board 49 and sheet 50 and thus the length of the switch stroke is approximately 0.002 to 0.004 inch.
  • Sheet 50 is sufficiently stiff to maintain a normally plane shape in the absence of a compressive force to insure separation of matrix conductors 64 and 67 at their crossover points, and yet has the desired flexibility for compressing separators 71 and permitting contact between conductors 64 and 67 in response to such force.
  • Cover 51 is composed of a resilient magnetized material about 0.030 to 0.040 inch thick and is designed to protect sheet 50 from damage by impact of a sharp object.
  • the magnetic character of sheet 51 makes it a convenient mechanism for retaining a metallic washer or cursor 73, see FIG. 3, on a map surface overlaying the cover to indicate to the operator the last location transmitted by application of finger pressure to the map.
  • a commercially available material useful in forming cover 51 is sold under the trademark Plastiform by 3M Company.
  • Sheet 52 preferably is a small scale map of an area of interest such 'as a city or county whereas the replaceable map cards 35 carry large scale maps constituting portions of map 52.
  • a map arrangement permits the vehicle operator to quickly expose a large area of a city at any time simply by removing the map card 35 in use and also permits him to pinpoint his location more precisely by use of a magnefied view of various parts of that city available through selection of an appropriate map card 35.
  • the electrical and mechanical operation of the matrix switch assembly is the same with either large or small scale maps, the dispatcher at the remote station being instantly informed by the code switches 60 as to the identity of any map selected for use by the operator in the vehicle.
  • matrix switch assembly 10 in police communications networks as well as in other systems requires an extremely fast maintenance and repair capability if and when the assembly requires such attention.
  • substantially all of the parts susceptible to failure are carried on component board 48, Le, signal output tenninal 32, power terminal 33, control switch 34, code switches 60 and all components 55.
  • Terminal sockets 57 and 58 on board 48 permit rapid electrical connection with and disconnection from pins 65 and 69, respectively, the remainder of the multilayer unit 27 being securely held to the front housing section by screws 54.
  • rear housing section 26 is removed from front section 25, the component board is unplugged, a newcomponent board inserted in its place, and the rear housing section is replaced. The entire operation is accomplished in a few minutes.
  • a forwardly extending cam-type projection 75 is formed on each tab 42 of map card 35, see, FIG. 4, and is positioned to extend into and engage a transverse groove 76, see FIG. 2, in top member 25c of front housing section 25 along the inner face of re-cess 36. Projection 75 snaps into slot 76 when the map card is bottomed in its operative position and the latter is held firmly in that position until intentionally removed by the operator.
  • a matrix switch assembly comprising a housing having an unobstructed opening and a stacked multilayer compression switch supported on said housing and traversing said opening, said unit comprising a first electrically nonconductive sheet having a first set of laterally spaced parallel conductors on one side, a
  • a second electrically nonconductive sheet having a second set of laterally spaced parallel conductors on a side facing said one side of said first sheet and extending transversely of the direction of said first set of con-ductors
  • each of said separators comprising an elongated strip disposed between adjacent conductors on said one sheet
  • a matrix switch assembly comprising a housing having anopening therein
  • a compression switch unit mounted on and within said housing and having a surface traversing said opening, said switch comprising a first set of spaced parallel conductors in a first plane and a second set of spaced parallel conductors in a second plane spaced from the first plane, the conductors in the first set overlying and extending transversely of the conductors in the second set and defining therewith crossover points at which electrical contact is made between conductors of the two sets in response to a compressive force applied transversely of said planes,
  • said housing having slot means in a plane parallel to and adjacent to said surface
  • card means removably insertable into said slot means to an operative position overlying said surface, said card means being capable of transmitting to said surface of the switch unit said compressive force when applied thereto.
  • each of said card means is formed with a different identification code for generating a corresponding electrical signal whereby automatically to distinguish the card means from each other when inserted into said operative position.
  • each of said card means comprising a frame and a flexible sheet mounted in said frame, said frame having a projection engageable in said groove when the frame is in the operative position in said slot.

Abstract

A finger-pressure actuated matrix switch assembly includes a map overlay and generates a binary coded signal corresponding to the coordinates of the point of application of pressure to the map. The assembly comprises a housing with a slot for positioning a replaceable map card in operative position and a storage chamber for a plurality of such map cards. Each of the map cards is edgenotched with a unique code identifying that card, and switches supported on the housing are actuated by these notches when a map card is inserted into its operative position to generate a binary electrical signal corresponding to that code. The matrix or grid is formed by orthogonally related sets of printed conductors on stacked boards spaced apart by resilient strip separators formed directly on one of the boards. Logic circuitry for converting the coordinates of contacting conductors into binary digits is carried on a single pluggable board detachably connected to the matrix boards for quick replacement to facilitate maintenance and repair.

Description

iJnited States Patent Reynolds et al.
[451 Sept. 18,1973
[ MATRIX SWITCH [75] Inventors Robert S. Reynolds R Svein T. Nordberg, Saratoga, both of Calif.
[73] Assignee: E-Systems Incorporated, Dallas,
Tex.
[22] Filed: Nov. 1, 1971 [2]] Appl. No.: 194,261
[52] US. Cl 340/166 R, 340/24, 340/225 [51] Int. Cl H04q 9/10, G08b 5/00, G08g 1/12 [58] Field of Search 340/166, 324 R, 378 A,
340/225; 178/18; 343/5 MM; 235/6l.6 A
[56] References Cited UNITED STATES PATENTS 3,240,114 3/1966 Jonker et al. 340/152 R UX 3,495,232 2/1970 Wagner 340/324 R 3,671,716 6/1972 Slutsky 178/18 X Primary Examiner-Donald J. Yusko Attorney-Norman J. OMalley et al.
[57] ABSTRACT A finger-pressure actuated matrix switch assembly includes a map overlay and generates a binary coded signal corresponding to the coordinates of the point of application of pressure to the map. The assembly comprises a housing with a slot for positioning a replaceable map card in operative position and a storage chamber for a plurality of such map cards. Each of the map cards is edge-notched with a unique code identifying that card, and switches supported on the housing are actuated by these notches when a map card is inserted into its operative position to generate a binary electrical signal corresponding to' that code.'The matrix or grid is formed by orthogonally related sets of printed conductors on stacked boards spaced apart by resilient strip separators formed directly on one of the boards. Logic circuitry for converting the coordinates of contacting conductors into binary digits is carried on a single pluggable board detachably connected to the matrix boards for quick replacement to facilitate maintenance and repair.
9 Claims, 5 Drawing Figures TRAA/SM TTER DECODER PATENTEDSEH 81975 SHEET 1 BF 4 TRANSM TTER MUL T/Pl. E X ER RECE/VER DECODER 1 E HQ FIE... l
PATENTEBSEH 8191s saw an; 4
60 60a 60b 60c 60d TIIEI MATRIX SWITCH BACKGROUNDQOF'TIIE INVENTION This invention relatesto matrix switches and more particularly to an improved pressure-actuated matrix switch assembly for generating electrical signals identifying the coordinates of the point of pressure on the assembly. Such a switch isuseful in police andother vehicles for giving a remote station the location of the vehicle. I
The police department of a medium size city having a population of 300,000 or more may have as many as thirty police patrol cars on duty at one time. In order to maintain a current and accurate record of the location of all patrol cars, the officer in each patrol car periodically calls the dispatcher to report his location. Each of these messages is verbally acknowledged by the dispatcher who then manually enters'the information on a status board. Operation in this mode crowds the available communication channels with routine messages and prevents the dispatcher from addressing more important tasks requiring his attention. One of the prior art techniques proposed for automatically accomplishing this function comprises a transmitter in each carperiodically transmitting at a unique characteristic frequency and several fixed receiving antennas at different stations around the city which triangulate on received signals to fix the location of the vehicle. Such systems are complex and expensive.
An improved vehicle location system utilizing a fin ger-actuated matrix switch in the vehicle to generate a binary coded signal for transmission over the radio network to the dispatcher is described in copending application Ser. No. 287,63 1 of Kent PenwardemA key element in such a locator system is the pressureresponsive matrix switch assembly which generates a binary signal corresponding to the position of a selected pressure point on a street map overlaying the switch. This invention is directed to an improved construction of such a matrix switch.
An object of this invention is theprovision of a grid coordinate matrix switch capable of accommodating a plurality of replaceable map cards forming subdivisions of a larger map.
Another object is the provision of a matrix switch of this type with meansfor automatically generating a signalto identify a selected map card when inserted into the operating position.
A further object is the provision of a matrix switch having a multilayer printed circuit board assembly with a pluggable component board to facilitate maintenance.
A further object is the provision of a low-cost matrix switch with grid-forming conductors printed on stacked circuit boards and spaced by resilient separators formed directly on one'of the boards by silk screen or printing techniques.
SUMMARY OF'THE INVENTION A binary outputmatrix switch is capable of receiving one of a plurality of map overlay cards for generating I a coded location signal in response to finger pressure at a selected point on the map. Each card carries an identification code which is translated into part of the binary output signal when the card is inserted into operating position. Grid conductors are formed by printed circuit techniques and an easily removed pluggable component board facilitates maintenance and trouble shooting of the unit.
DESCRIPTION OF THE DRAWINGS FIG. lisa partially schematic and partially perspective view of a vehicle. locator system with a matrix switch embodying this invention;
FIG. '2 is a side elevation, partially in section, of the switch embodying this invention;
FIG. 3 is a perspective view of the switch showing details of the multilayer construction;
FIG. 4 is an exploded viewof the multilayer assembly comprising the switch; and.
FIG. 5 is a greatly enlarged transverse section of part of the switch assembly taken on line 55 of FIG. 3.
DESCRIPTION OF PREFERRED EMBODIMENT Referring now to the drawings, a position locating system embodying this invention is shown in FIG. 1 and comprises a matrix switch assembly 10 which produces a binary signal output on line 11 in response to finger pressure by the hand H of the operator against the working surface 12 shown, by way of example, as a portion of a city street map. The binary output signal on line 1 1 is processed by a multiplexer 14 toform a coded binary word representing the coordinates of the finger pressure point on surface 12. This binary signal is applied to transmitter 15 for transmission over antenna 16 preferably as a tone burst when used in conjunction with a police communication network of the type described in US. Pat. No. 3,678,391 of Warren Gough. The transmitted signal is received at the remote station by antenna 17 and is processed in receiver 18 and decoder 19 for presentation on a display unit 20. A translucent map 21 on the surface of unit 20 is identical to the map on matrix switch surface 12 and is illuminated at point 22 corresponding to the finger pressure point on surface 12 by appropriate lighting means in response to the output of a logic circuit in decoder 19.
A general system including a binary signal generating matrix switch for vehicle location is described in the aforementioned application of Kent Penwarden and transmitter 15 may comprise a vehicle mounted digital communications unit described in the foregoing patent of Warren Gough. The instant invention resides in the matrix switch assembly 10.
Switch assembly 10 comprises a generally rectangular housing 24having a front section 25 and a rear section 26 releasably connected together and a multilayer unit 27 mounted on front section 25. Front section 25 has side members25a and 25b and top and bottom members 250 and 25d, respectively, defining an unobstructed rectangular opening which is traversed by the working surface or map area 12. Top member 250 and the upper parts of side members 25a and 25b project forwardly to form a shield and carry indicator lights 29 and 30 on opposite sides for monitoring operation of the switch assembly. In addition to signal output terminal 32, a power input terminal 33 and a control switch 34 are connected to circuits within the housing and project below bottom member 25d.
The utility and practicability of a matrix switch assembly 10 that is to be mounted in an already crowded police patrol vehicle, preferably adjacent the dashboard, is dependent on the compactness of the unit as well as its capability of displaying a sufficient area of a map to be effective. In order to balance these two limits minimum overall space occupied and maximum map viewing area provision is made in housing 24 to accommodate a plurality of replaceable maps or map cards 35 comprising portions of a larger map. To this end, the rearwardly facing edge of top member 250 of front section 25 is formed with a transversely extending recess 36 and each of the side members 25a and 25b has an inwardly opening vertically extending shoulder 38 (see FIG. aligned in the plane of recess 36. Recess 36 and shoulders 38 define a slot for reception of map card 35 which comprises a plane rectangular frame 41, see FIGS. 4 and 5, enclosing the map 12 and having an upwardly projecting identification tab 42 with a visible code number thereon. In order to store a plurality of map cards 35, the rear housing section 26 has a compartment 44 with an upper opening 45 through which cards are removed and inserted; the tabs 42 of stored cards are staggered and project above top member 250 of the front section so as to be visually as well as physically accessible to the operator. The outline of a map card 35 partially inserted in recess 36 is shown in broken lines in FIG. 1.
The structure of multilayer unit 27 is shown more clearly in FIGS. 3-5, inclusive, and comprises a component board 48, a lower matrix board 49, an upper matrix sheet 50, a resilient magnetized cover 51, an a semi-permanent preferably small scale map 52. Replaceable map card 35 with a large scale map 12 overlies map 52. The side edges of matrix board 49 and sheet 50, cover 51 and permanent map 52 overlie the side edges of component board 48 as shown in FIG. 5 and receive screws 54 which secure these parts to sides 25a and 25b of front housing section 25.
Component board 48 is a relatively rigid sheet of H16 inch epoxy laminate and mounts circuit components 55 such as gates, flip-flops and core memories which comprise the logic elements of the switch assembly. These components are mounted on one side of the board, the underside as shown in FIGS. 4 and 5, the upper or top side of the board having printed conductors as shown for-making intercomponent and other electrical connections. Board 48 also has terminal sockets 57 and '58 along adjacent side edges, respectively, for providing a releasable connection with the conductors on lower matrix board 49 and sheet 50 as described below. Signal output and power terminals 32 and 33 as well as control switch 34 are physically mounted on component board 48 and are electrically connected to the assembly through this board.
In order to automatically inform the remote station of the identity of a particular map card 35 which has been inserted into operative position in the housing, a plurality of switches 60, preferably four in number, are mounted on component board 48 and have outwardly projecting fingers 60a-60d, inclusive. The lower end of each map frame 41 is formed with notches 62 and teeth 63 defining an identification code for the particular card and switch fingers 60a60d are positioned to cooperate with these notches and teeth. Switches 60 generate a 4-bit coded signal depending on the number and position of fingers 60a-60d which are depressed by teeth 63 (or not depressed by notches 62) and this identification code is transmitted as part of the output signal from the switch assembly; the signal is decoded at the remote station to enable the operator there to use a corresponding map on display unit 20. The number of switches 60 may be varied to suit the number of codes required to identify the replaceable maps. When no map card 35 is in the operative position, i.e., when small scale map 52 is exposed for use, none of the switch fingers are depressed which constitutes the code for indicating use of this map.
Lower matrix board 49 preferably is made of 1/8 inch epoxy glass laminate or similar material and has a plurality of straight laterally spaced parallel conductors 64 formed preferably by printed circuit techniques on the upper surface 49a and extending substantially the full length of the board. The ends of conductors 64 are electrically connected to pins 65 which extend along the lower edge, as viewed, and through the board for removable insertion into and electrical connection with aligned terminal sockets 57 on the corresponding edge of component board 48. Upper matrix sheet 50 is composed of relatively thin (0.004 inch) epoxy glass or similar material and has a plurality of laterally spaced parallel conductors 67 formed on the underside 50a and extending substantially the full width of the sheet at right angles to conductors 64 on matrix board 49. Conductors 67 are connected at one end to terminal elements68 along the left side edge, as viewed, of sheet 50; elements 68 extend through sheet 50 and make electrical contact with pins 69 along the corresponding edge of board 49 when these parts are secured together in a stacked position. Pins 69 extend through board 49 and releasably engage sockets 58 in component board 48.
Conductors 64 and 67 on board 49 and sheet 50, respectively, are spaced from each other by a plurality of separator strips 71 formed on board 49 and extending parallel to conductors 64. Preferably one separator strip is located midway between adjacent conductors 64 and is coextensive with those conductors. Strips 71 are composed of a resilient compressible material such as neoprene, synthetic rubber, film rubber, or any other elastomer, which is applied to board 49 by deposition through a silk screen or the like in the manner employed to form masks in printed circuit processes. Thus the height and width of each separator strip is precisely controlled and all the strips are deposited simultaneously and rapidly. For example, the height of each strip whichdefines the separation gap between board 49 and sheet 50 and thus the length of the switch stroke is approximately 0.002 to 0.004 inch. Sheet 50 is sufficiently stiff to maintain a normally plane shape in the absence of a compressive force to insure separation of matrix conductors 64 and 67 at their crossover points, and yet has the desired flexibility for compressing separators 71 and permitting contact between conductors 64 and 67 in response to such force.
Cover 51 is composed of a resilient magnetized material about 0.030 to 0.040 inch thick and is designed to protect sheet 50 from damage by impact of a sharp object. In addition, the magnetic character of sheet 51 makes it a convenient mechanism for retaining a metallic washer or cursor 73, see FIG. 3, on a map surface overlaying the cover to indicate to the operator the last location transmitted by application of finger pressure to the map. A commercially available material useful in forming cover 51 is sold under the trademark Plastiform by 3M Company.
Sheet 52 preferably is a small scale map of an area of interest such 'as a city or county whereas the replaceable map cards 35 carry large scale maps constituting portions of map 52. Such a map arrangement permits the vehicle operator to quickly expose a large area of a city at any time simply by removing the map card 35 in use and also permits him to pinpoint his location more precisely by use of a magnefied view of various parts of that city available through selection of an appropriate map card 35. The electrical and mechanical operation of the matrix switch assembly is the same with either large or small scale maps, the dispatcher at the remote station being instantly informed by the code switches 60 as to the identity of any map selected for use by the operator in the vehicle.
The use of matrix switch assembly 10 in police communications networks as well as in other systems requires an extremely fast maintenance and repair capability if and when the assembly requires such attention. In order to accommodate this requirement, substantially all of the parts susceptible to failure are carried on component board 48, Le, signal output tenninal 32, power terminal 33, control switch 34, code switches 60 and all components 55. Terminal sockets 57 and 58 on board 48 permit rapid electrical connection with and disconnection from pins 65 and 69, respectively, the remainder of the multilayer unit 27 being securely held to the front housing section by screws 54. In order to repair a defective switch assembly, rear housing section 26 is removed from front section 25, the component board is unplugged, a newcomponent board inserted in its place, and the rear housing section is replaced. The entire operation is accomplished in a few minutes.
The dimensional tolerances of map cards frame 41 and shoulders 38 in the side members 25a and 25b of the front housing section 25 are sufficiently close to permit ready insertion and removal of a map card without substantial play between the map card and the stationary multilayer unit 27. In order to hold map card 35 stationary when inserted into the operative position, a forwardly extending cam-type projection 75 is formed on each tab 42 of map card 35, see, FIG. 4, and is positioned to extend into and engage a transverse groove 76, see FIG. 2, in top member 25c of front housing section 25 along the inner face of re-cess 36. Projection 75 snaps into slot 76 when the map card is bottomed in its operative position and the latter is held firmly in that position until intentionally removed by the operator.
What is claimed is: r
1. A matrix switch assembly comprising a housing having an unobstructed opening and a stacked multilayer compression switch supported on said housing and traversing said opening, said unit comprising a first electrically nonconductive sheet having a first set of laterally spaced parallel conductors on one side, a
a second electrically nonconductive sheet having a second set of laterally spaced parallel conductors on a side facing said one side of said first sheet and extending transversely of the direction of said first set of con-ductors,
one of said sheets having a plurality of resilient separators formed thereon for spacing said first and second sets of conductors, each of said separators comprising an elongated strip disposed between adjacent conductors on said one sheet,
and
means for generating an output signal in response to an electrical contact between a conductor of the first set and a conductor of the second set.
2. The assembly according to claim 1 in which said strips are parallel to and coextensive with the conductors of said one member.
3. The assembly according to claim 1 in which said conductors have a printed circuit construction.
4. The assembly according to claim 2 in which said strips are permanently bonded to said one member.
5. A matrix switch assembly, comprising a housing having anopening therein,
a compression switch unit mounted on and within said housing and having a surface traversing said opening, said switch comprising a first set of spaced parallel conductors in a first plane and a second set of spaced parallel conductors in a second plane spaced from the first plane, the conductors in the first set overlying and extending transversely of the conductors in the second set and defining therewith crossover points at which electrical contact is made between conductors of the two sets in response to a compressive force applied transversely of said planes,
said housing having slot means in a plane parallel to and adjacent to said surface, and
card means removably insertable into said slot means to an operative position overlying said surface, said card means being capable of transmitting to said surface of the switch unit said compressive force when applied thereto.
6. The switch assembly according to claim 5 in which a portion of said card means is formed with an identification code, and switch means mounted on said unit and actuated by said portion of the card when the latter is in the operative position for producing an electrical signal corresponding to said identification code.
7.' The switch assembly according to claim 6 in which said housing has a compartment adapted to receive and store a plurality of said card means.
8. The switch assembly according to claim 7 in which each of said card means is formed with a different identification code for generating a corresponding electrical signal whereby automatically to distinguish the card means from each other when inserted into said operative position.
9. The switch assembly according to claim 8 in which said housing has a transverse groove in a portion thereof defining said slot, each of said card means comprising a frame and a flexible sheet mounted in said frame, said frame having a projection engageable in said groove when the frame is in the operative position in said slot.
t t 4 l 8

Claims (9)

1. A matrix switch assembly comprising a housing having an unobstructed opening and a stacked multilayer compression switch supported on said housing and traversing said opening, said unit comprising a first electrically nonconductive sheet having a first set of laterally spaced parallel conductors on one side, a second electrically nonconductive sheet having a second set of laterally spaced parallel conductors on a side facing said one side of said first sheet and extending transversely of the direction of said first set of con-ductors, one of said sheets having a plurality of resilient separators formed thereon for spacing said first and second sets of conductors, each of said separators comprising an elongated strip disposed between adjacent conductors on said one sheet, and means for generating an output signal in response to an electrical contact between a conductor of the first set and a conductor of the second set.
2. The assembly according to claim 1 in which said strips are parallel to and coextensive with the conductors of said one member.
3. The assembly according to claim 1 in which said conductors have a printed circuit construction.
4. The assembly according to claim 2 in which said strips are permanently bonded to said one member.
5. A matrix switch assembly, comprising a housing having an opening therein, a compression switch unit mounted on and within said housing and having a surface traversing said opening, said switch comprising a first set of spaced parallel conductors in a first plane and a second set of spaced parallel conductors in a second plane spaced from the first plane, the conductors in the first set overlying and extending transversely of the conductors in the second set and defining therewith crossover points at which electrical contact is made between conductors of the two sets in response to a compressive force applied transversely of said planes, said housing having slot means in a plane parallel to and adjacent to said surface, and card means removably insertable into said slot means to an operative position overlying said surface, said card means being capable of transmitting to said surface of the switch unit said compresSive force when applied thereto.
6. The switch assembly according to claim 5 in which a portion of said card means is formed with an identification code, and switch means mounted on said unit and actuated by said portion of the card when the latter is in the operative position for producing an electrical signal corresponding to said identification code.
7. The switch assembly according to claim 6 in which said housing has a compartment adapted to receive and store a plurality of said card means.
8. The switch assembly according to claim 7 in which each of said card means is formed with a different identification code for generating a corresponding electrical signal whereby automatically to distinguish the card means from each other when inserted into said operative position.
9. The switch assembly according to claim 8 in which said housing has a transverse groove in a portion thereof defining said slot, each of said card means comprising a frame and a flexible sheet mounted in said frame, said frame having a projection engageable in said groove when the frame is in the operative position in said slot.
US00194261A 1971-11-01 1971-11-01 Matrix switch Expired - Lifetime US3760360A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19426171A 1971-11-01 1971-11-01

Publications (1)

Publication Number Publication Date
US3760360A true US3760360A (en) 1973-09-18

Family

ID=22716909

Family Applications (1)

Application Number Title Priority Date Filing Date
US00194261A Expired - Lifetime US3760360A (en) 1971-11-01 1971-11-01 Matrix switch

Country Status (1)

Country Link
US (1) US3760360A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078257A (en) * 1976-08-23 1978-03-07 Hewlett-Packard Company Calculator apparatus with electronically alterable key symbols
US4085302A (en) * 1976-11-22 1978-04-18 Control Data Corporation Membrane-type touch panel
FR2389217A1 (en) * 1977-04-25 1978-11-24 Amp Inc TRANSPARENT ELECTRICAL SWITCH FOR DISPLAY DEVICE
US4202041A (en) * 1977-07-11 1980-05-06 Massachusetts Institute Of Technology Dynamically variable keyboard terminal
US4257179A (en) * 1978-04-07 1981-03-24 Sharp Kabushiki Kaisha Item list setting mechanism in an item selection signal input system
US4279421A (en) * 1979-06-19 1981-07-21 Darrell M. Tepoorten Electronic gameboard
US4348660A (en) * 1980-09-09 1982-09-07 Sheldon Industries Inc. Automatically relegendable keyboard
US4377049A (en) * 1980-05-22 1983-03-22 Pepsico Inc. Capacitive switching panel
US4403965A (en) * 1980-10-01 1983-09-13 Texas Instruments Incorporated Electronic teaching apparatus
US4406998A (en) * 1981-03-20 1983-09-27 Linda Willough Non-verbal communication device
US4502123A (en) * 1981-07-07 1985-02-26 Nippondenso Co., Ltd. Navigation system for use with an automobile and reading unit for the system
US4511973A (en) * 1981-08-24 1985-04-16 Nippondenso Co., Ltd. Navigator for vehicles
US4543572A (en) * 1981-05-13 1985-09-24 Nissan Motor Company, Limited Road map display system with indications of a vehicle position and destination
USRE32040E (en) * 1976-08-23 1985-11-26 Calculator apparatus with electronically alterable key symbols
US4571577A (en) * 1982-01-27 1986-02-18 Boussois S.A. Method and apparatus for determining the coordinates of a point on a surface
FR2602608A1 (en) * 1986-08-07 1988-02-12 Campo Herve Keyboard with removable indexed plate identifying the functions of the keys and the programmings to be used
EP0284007A2 (en) * 1987-03-27 1988-09-28 KOENIG & BAUER-ALBERT AKTIENGESELLSCHAFT Information entry for printing presses
US4958148A (en) * 1985-03-22 1990-09-18 Elmwood Sensors, Inc. Contrast enhancing transparent touch panel device
US5113178A (en) * 1988-01-29 1992-05-12 Aisin Seiki K.K. Position display apparatus
US5132684A (en) * 1991-02-11 1992-07-21 Pecker Edwin A Traffic information system
US5523737A (en) * 1992-10-23 1996-06-04 Luna; Luis A. Universal intelligent group guidance system and method
US5539429A (en) * 1989-10-24 1996-07-23 Mitsubishi Denki Kabushiki Kaisha Touch device panel
US6304819B1 (en) 1995-11-21 2001-10-16 Yeoman Marine Limited Locating positions on maps
EP1186986A2 (en) * 2000-08-29 2002-03-13 International Business Machines Corporation System and method for locating on a physical document items referenced in an electronic document
WO2003042862A2 (en) * 2001-11-13 2003-05-22 International Business Machines Corporation System and method for selecting electronic documents from a physical document and for displaying said electronic documents over said physical document
US20030117378A1 (en) * 2001-12-21 2003-06-26 International Business Machines Corporation Device and system for retrieving and displaying handwritten annotations
WO2004034280A1 (en) * 2002-10-10 2004-04-22 International Business Machines Corporation System and method for selecting, ordering and accessing copyrighted information from physical documents
US20080017422A1 (en) * 2003-06-26 2008-01-24 Carro Fernando I Method and system for processing information relating to active regions of a page of physical document
US7472338B2 (en) 2000-08-29 2008-12-30 International Business Machines Corporation Method and apparatus for locating items on a physical document and method for creating a geographical link from an electronic document to the physical document

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240114A (en) * 1961-11-17 1966-03-15 Jonker Business Machines Inc Information storage and retrieval copy apparatus
US3495232A (en) * 1966-10-07 1970-02-10 Westinghouse Electric Corp Display screen and switching matrix
US3671716A (en) * 1970-08-24 1972-06-20 Arthur Samuel Slutsky Method and apparatus of digitizing analog records

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240114A (en) * 1961-11-17 1966-03-15 Jonker Business Machines Inc Information storage and retrieval copy apparatus
US3495232A (en) * 1966-10-07 1970-02-10 Westinghouse Electric Corp Display screen and switching matrix
US3671716A (en) * 1970-08-24 1972-06-20 Arthur Samuel Slutsky Method and apparatus of digitizing analog records

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078257A (en) * 1976-08-23 1978-03-07 Hewlett-Packard Company Calculator apparatus with electronically alterable key symbols
USRE32040E (en) * 1976-08-23 1985-11-26 Calculator apparatus with electronically alterable key symbols
US4085302A (en) * 1976-11-22 1978-04-18 Control Data Corporation Membrane-type touch panel
FR2389217A1 (en) * 1977-04-25 1978-11-24 Amp Inc TRANSPARENT ELECTRICAL SWITCH FOR DISPLAY DEVICE
US4202041A (en) * 1977-07-11 1980-05-06 Massachusetts Institute Of Technology Dynamically variable keyboard terminal
US4257179A (en) * 1978-04-07 1981-03-24 Sharp Kabushiki Kaisha Item list setting mechanism in an item selection signal input system
US4279421A (en) * 1979-06-19 1981-07-21 Darrell M. Tepoorten Electronic gameboard
US4377049A (en) * 1980-05-22 1983-03-22 Pepsico Inc. Capacitive switching panel
US4348660A (en) * 1980-09-09 1982-09-07 Sheldon Industries Inc. Automatically relegendable keyboard
US4403965A (en) * 1980-10-01 1983-09-13 Texas Instruments Incorporated Electronic teaching apparatus
US4406998A (en) * 1981-03-20 1983-09-27 Linda Willough Non-verbal communication device
US4543572A (en) * 1981-05-13 1985-09-24 Nissan Motor Company, Limited Road map display system with indications of a vehicle position and destination
US4502123A (en) * 1981-07-07 1985-02-26 Nippondenso Co., Ltd. Navigation system for use with an automobile and reading unit for the system
US4511973A (en) * 1981-08-24 1985-04-16 Nippondenso Co., Ltd. Navigator for vehicles
US4571577A (en) * 1982-01-27 1986-02-18 Boussois S.A. Method and apparatus for determining the coordinates of a point on a surface
US4958148A (en) * 1985-03-22 1990-09-18 Elmwood Sensors, Inc. Contrast enhancing transparent touch panel device
FR2602608A1 (en) * 1986-08-07 1988-02-12 Campo Herve Keyboard with removable indexed plate identifying the functions of the keys and the programmings to be used
EP0284007A2 (en) * 1987-03-27 1988-09-28 KOENIG & BAUER-ALBERT AKTIENGESELLSCHAFT Information entry for printing presses
EP0284007A3 (en) * 1987-03-27 1990-01-03 Koenig & Bauer Aktiengesellschaft Information entry for printing presses
US5113178A (en) * 1988-01-29 1992-05-12 Aisin Seiki K.K. Position display apparatus
US5539429A (en) * 1989-10-24 1996-07-23 Mitsubishi Denki Kabushiki Kaisha Touch device panel
US5132684A (en) * 1991-02-11 1992-07-21 Pecker Edwin A Traffic information system
US5523737A (en) * 1992-10-23 1996-06-04 Luna; Luis A. Universal intelligent group guidance system and method
US6304819B1 (en) 1995-11-21 2001-10-16 Yeoman Marine Limited Locating positions on maps
US6498984B2 (en) 1995-11-21 2002-12-24 Yeoman Navigation Systems Limited Locating positions on maps
US7472338B2 (en) 2000-08-29 2008-12-30 International Business Machines Corporation Method and apparatus for locating items on a physical document and method for creating a geographical link from an electronic document to the physical document
EP1186986A2 (en) * 2000-08-29 2002-03-13 International Business Machines Corporation System and method for locating on a physical document items referenced in an electronic document
EP1186986A3 (en) * 2000-08-29 2005-11-16 International Business Machines Corporation System and method for locating on a physical document items referenced in an electronic document
WO2003042862A2 (en) * 2001-11-13 2003-05-22 International Business Machines Corporation System and method for selecting electronic documents from a physical document and for displaying said electronic documents over said physical document
WO2003042862A3 (en) * 2001-11-13 2004-03-11 Ibm System and method for selecting electronic documents from a physical document and for displaying said electronic documents over said physical document
US20050028092A1 (en) * 2001-11-13 2005-02-03 Carro Fernando Incertis System and method for selecting electronic documents from a physical document and for displaying said electronic documents over said physical document
US7530023B2 (en) 2001-11-13 2009-05-05 International Business Machines Corporation System and method for selecting electronic documents from a physical document and for displaying said electronic documents over said physical document
US20030117378A1 (en) * 2001-12-21 2003-06-26 International Business Machines Corporation Device and system for retrieving and displaying handwritten annotations
US10664153B2 (en) 2001-12-21 2020-05-26 International Business Machines Corporation Device and system for retrieving and displaying handwritten annotations
US20060167754A1 (en) * 2002-10-10 2006-07-27 Carro Fernando I System and method for selecting, ordering and accessing copyrighted information from physical documents
KR100804519B1 (en) * 2002-10-10 2008-02-20 인터내셔널 비지네스 머신즈 코포레이션 System and method for selecting, ordering and accessing copyrighted information from physical documents
US7574407B2 (en) 2002-10-10 2009-08-11 International Business Machines Corporation System and method for selecting, ordering and accessing copyrighted information from physical documents
US20090299871A1 (en) * 2002-10-10 2009-12-03 International Business Machines Corporation Method for selecting, ordering and accessing copyrighted information from physical documents
US8112363B2 (en) 2002-10-10 2012-02-07 International Business Machines Corporation Selecting, ordering and accessing copyrighted information from physical documents
WO2004034280A1 (en) * 2002-10-10 2004-04-22 International Business Machines Corporation System and method for selecting, ordering and accessing copyrighted information from physical documents
US20080017422A1 (en) * 2003-06-26 2008-01-24 Carro Fernando I Method and system for processing information relating to active regions of a page of physical document
US8196041B2 (en) 2003-06-26 2012-06-05 International Business Machines Corporation Method and system for processing information relating to active regions of a page of physical document

Similar Documents

Publication Publication Date Title
US3760360A (en) Matrix switch
US2817824A (en) Card switching device
US4081631A (en) Dual purpose, weather resistant data terminal keyboard assembly including audio porting
US3573558A (en) Printed circuit card holder with control and display units
US2581967A (en) Simplified chassis for electronic equipment
US3944788A (en) Vote-recording apparatus
US3557311A (en) Information transmission system including a unit for producing a printed record of information transmitted
US2734954A (en) Card switching device
KR930703744A (en) Electroacoustic transducer mounting device
GB1332917A (en) Magnet actuated mechanism for use with card having magnetic areas
US4377003A (en) Testing device for electronic circuits and especially for portable radios
US3783445A (en) Vehicle locator system
US2977434A (en) Decoding
US3592965A (en) Apparatus for converting cathode ray portrayable information to spacial images
US3576175A (en) Condition indicator
KR890701392A (en) Car radio receiver antitheft device
US2766447A (en) Visual in-line multi-symbol signal indicator
US3150362A (en) Multi-character readout assembly
US3459900A (en) Visual call indicator for telephone sets
US3593292A (en) Personal identification circuit card device
US2813266A (en) Indicator device and means for mounting
US3509561A (en) Indicating means for information input
US4011560A (en) Programmable light display system
GB2178236A (en) Keysensor and keyholder
GB2234128A (en) Structure of an LCD holder for a paging receiver