US3764235A - Pneumatic pump - Google Patents

Pneumatic pump Download PDF

Info

Publication number
US3764235A
US3764235A US3764235DA US3764235A US 3764235 A US3764235 A US 3764235A US 3764235D A US3764235D A US 3764235DA US 3764235 A US3764235 A US 3764235A
Authority
US
United States
Prior art keywords
hollow body
pneumatic pump
pump device
sealing elements
riser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
V Bittermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamit Nobel AG
Original Assignee
Dynamit Nobel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamit Nobel AG filed Critical Dynamit Nobel AG
Application granted granted Critical
Publication of US3764235A publication Critical patent/US3764235A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3115Gas pressure storage over or displacement of liquid
    • Y10T137/3127With gas maintenance or application
    • Y10T137/314Unitary mounting for gas pressure inlet and liquid outlet

Abstract

A pneumatic pump device for the removal of water from holes inlcuding an inflatable cylindrical hollow body of an elastic material sealed off on both ends by sealing elements. A flexible riser is arranged to extend in the axial direction through the hollow body and in sealing contact through both of the sealing elements. First and second bores are provided, one in each of the sealing elements for permitting the entry and egress of a gas to and from the hollow body. In one of these bores a valve is installed which is controlled by the internal pressure of the hollow body.

Description

United States Patent 1191 Bittermann Oct. 9, 1973 PNEUMATIC PUMP 2,943,644 7/1960 Moseley 138/133 x 3,493,045 2/1970 Bassani 166/187 [75] Invent: stuttgart'uhlbacl" 3,511,280 5/1970 Mercier 138/30 Germany [73] Assignee: Dynamit Nobel AG, Troisdorf, P ima y Ex miner-Carlton R. Croyle G Assistant Examiner-R. E. Gluck Art P1M.C,J.tl. 22 Filed: Dec. 27, 1971 omey mg I e a 21 Appl.No.: 212,389 57 ABSTRACT A pneumatic pump device for the removal of water 52 us. 01 417/118, 137/212, 166/187, from holes inlcuding an inflatable cylindrical hollow 277 34 body of an elastic material sealed off on both ends by 51 hm CL F04f 1 0 F04f 3 00 152 3 3 12 sealing elements. A flexible riser is arranged to extend [58] Field of Search 137/212; 417/118, in the axial direction through the hollow y and in 417/121, 122, 137, 143, 120; 277/34.6, 34; Sealing contact through both of the sealing elements. 1 6/101 106 137 207 First and second bores are provided, one in each of the sealing elements for permitting the entry and [56] References Cit d egress of a gas to and from the hollow body. In one of UNITED STATES PATENTS these bores a valve is installed which is controlled by the internal pressure of the hollow body. 1,893,979 l/l933 Barrere 277/34 X 2,395,119 2/ 1946 Hawle 417/143 7 Claims, 2 Drawing Figures PNEUMATIC PUMP BACKGROUND OF THE INVENTION This invention relates to a pneumatic pump, particularly for use in large shot holes for the removal of water.
In the conductance of large-scale shot hole blasting operations in quarries, it is often necessary to remove water which has collected in the shot holes, in order to be able to accommodate larger amounts of explosive therein. This water serves to reduce drilling costs. In particular, the practical testing of blasting slurries (sludges, slushes) showed that the desired degree of filling of the shot hole with explosive can only be attained when the water is removed from the shot holes.
Heretofore, it has been customary to blow the water out of the shot holes by introducing a compressed-air hose into the extreme depth of the drill hole and spraying (forcing) the water out of the shot hole by means of compressed air. This method exhibits several disadvantages. Firstly, the operating personnel are often wetted down by the spray of water, which is very unpleasant, particularly in the wintertime. Further, loose stones are detached by the water shooting upwardly along the wall of the shot hole thereby clogging the same. Finally, part of the water flows back into the shot hole, since it adheres, in part, to the shot hole wall and often has not been conducted away sufficiently from the mouth of the shot hole.
The depths of the shot holes vary normally between 15 meters and 40 meters. The most frequent shot hole diameters are between 75 millimeters and I millimeters. In view of the relatively small shot hole diameters verses the relatively large depths of the shot holes, the use of normal pumps for dewatering such shot holes is impossible.
SUMMARY OF THE INVENTION It is an object of this invention to eliminate the disadvantages of the conventional method for the draining of shot holes. According to the invention, this is accomplished by the use of a pneumatically actuated pump characterized in that an inflatable cylindrical hollow body of an elastic material is provided and tightly sealed on both of its ends by means of a pair of fixed sealing elements. The hollow body is equipped with a flexible riser extending in the axial direction and passing through in the zone of the sealing elements in a sealed fashion. First and second bores are provided in the sealing elements, a controllable valve being installed in the second of said bores, which valve is regulatable by the internal pressure of the inflatable hollow body.
BRIEF DESCRIPTION OF THE DRAWING Additional objects, advantages and details of the pump of the invention, as well as its mode of operation, will be explained in greater detail hereinafter with reference to an embodiment shown in the accompanying drawing wherein;
FIG. 1 is a sectional view of the pneumatic pump of the instant invention;
FIG. 2 is a partial sectional view of an alternate embodiment.
The pump consists, in the central section, of inflatable cylindrical hollow body 1 of an elastic material, for example a hose, which is tightly sealed at its open ends at the top and at the bottom by similar cylindrical sealing elements 3, 4, for example, of metal or other solid materials. Bore 5 passes through upper sealing element 3 and includes insert pipe 6 having gasket 8 being inserted thereon. Compressed air flows into inflatable chamber 2 through insert pipe 6. A compressed-air hose, not shown, is placed in communication with the pump body via the connecting socket 7 of insert pipe 6. Riser 10 extends in a sealed manner by means of gasket 11 through second bore 9 in upper sealing element 3. Upper end 12 of the riser is advantageously adapted to threadedly receive a hose. Riser 10 further passes through inflatable chamber 2 and sealingly extends through the bore 13 in lower sealing element 4. Below the pump body, the riser can be extended as desired, for example, by way of coupling means 15. Since the cylindrical body 1 is somewhat shortened during inflation, riser 10 must be fashioned to be flexible at least within inflatable chamber 2, and consists, for example, of a flexible wire-reinforced hose or two pipe sections 10' joined in the manner of a telescope such as shown in FIG. 2. In lower sealing element 4, valve 17, schematically illustrated and installed in continuous bore 16, is constructed in such a manner that it opens only when a predetermined air pressure has been reached in the inflatable chamber 2 of the pump. At this point, valve 17 opens by compression of spring 18, and the compressed air from chamber 2 exits through aperture The draining of a shot hole by means of the present invention takes place by coupling a riser line, extending riser 10, to the pump body. (The diameter of the pump body should be somewhat smaller, for example at least 15 millimeters smaller, than the shot hole diameter.) The coupling is effected at lower coupling end 15 of riser 10. A compressed-air hose, connecting the pump body to a compressor, is coupled to the upper sealing element at connecting socket 7 while a water hose is connected to free end 12 of riser 10. On these two hoses, the pump body is introduced into the shot hole until the end of the extended riser has reached the extreme depth of the shot hole 20. Then, compressed air, taken from a compressor of, for example, 6 atmospheres gauge, is fed into inflatable chamber 2 of the pump via the compressed-air hose at connecting socket 7. Closed valve 17 in the lower sealing element 4 first prevents the exit of the compressed air, so that inflatable chamber 2 is inflated until inflatable hose 1 expands into solid contact with the shot hole wall and thus effects a sealing of the lower, water-filled shot hole portion with respect to the upper shot hole portion having the open mouth. Once the air pressure in the inflatable chamber has reached, for example, 4 atmospheres gauge, valve 17 in the lower sealing element 4 opens allowing the compressed air, which continues to enter, to exit from opening 19. The water in the shot hole 20 is displaced by the compressed air and flows, via the riser line, which is open at the bottom, into riser l0 and through the pump body and the water hose at free end 12 to any desired place outside the shot hole. When the flow of water ceases and only compressed air flows out, the compressed air feed is terminated and valve 17 in lower sealing element 4 closes automatically. The cock for feeding and terminating the introduction of the compressed air must be fashioned in such a manner that, simultaneously with the blockage of the feed of compressed air, a deflation of the compressed air hose and inflated pump body result. The extensible central portion (inflatable chamber 2) of the pump body thus shrinks permitting the water which is still located above the pump body to flow between the pump body and the wall of the shot hole 20 into the pumped-out lower shot hole space. At this juncture, compressed air is fed again and the venting valve is closed to restart the emptying procedure. The water below the pump body is again displaced. This procedure is repeated until no water is present any more in the shot hole whereupon the pump body is pulled out of the shot hole 20 at its upper hoses, and introduced into the next shot hole.
The amount of water displaced by one pumping operation depends on the length of the riser line below the sealing element. The length can be variable and adapted to the respective water levels in the shot holes. The pump body, however, is to be always at the level of the water, or underneath the water level, prior to the first pumping step, since the shot hole, with a great degree of probability, is tight underneath the water level and has no open fissures at that point.
In order to avoid the subsequent falling of loose stones from the region of the mouth of the shot hole into the latter and thus to prevent the danger of jamming of the pump body, the endangered zone in the upper portion of the shot hole should be protected by a plastic pipe inserted therein.
The pump of this invention is simple in principle and can be relatively simply manufactured. The pump can be utilized anywhere with a few manipulations. In addition, it operates very rapidly, since in each case only the compressed-air cock need be opened and/or closed to effect the pumping of the water from the shot hole. Depending on the pressure conditions selected, water may be removed at a very high rate of speed.
It is understood that the embodiment disclosed herein is susceptible to numerous changes and modifications, as will be apparent to a person skilled in the art. Accordingly, the present invention is not limited to the details shown and described herein but intended to cover any such changes and modifications within the scope of the invention.
I claim:
1. A pneumatic pump device for the removal of water from holes comprising an inflatable hollow body of an elastic material, sealing elements disposed on the upper and lower ends thereof for sealing off the same, a flexible riser extending in the axial direction through said hollow body and sealingly through both of said sealing elements, a first bore positioned in one of the sealing elements, means for permitting the entry of a gas into said hollow body to expand said hollow body into sealing position with a hole, a second bore disposed in the other of said sealing elements, and a valve means disposed in said second bore for regulating the egress of said gas from said hollow body into the hole upon the gas in said hollow body reaching a predetermined pressure whereby water below said hollow body is discharged through said riser out of the hole by said gas passing through said valve means.
2. A pneumatic pump device according to claim 1 wherein said hollow body and said sealing elements are cylindrical.
3. A pneumatic pump device according to claim 1 wherein said means for permitting entry of a gas is provided with a connection means for the feeding of a compressed gas to said hollow body.
4. A pneumatic pump device according to claim 1 wherein said flexible riser consists of two pipe sections telescopically joined within said hollow body.
5. A pneumatic pump device according to claim 1 wherein said flexible riser consists of a flexible wirereinforced hose.
6. A pneumatic pump device according to claim 1 further comprising means connected with the ends of said flexible riser for coupling said riser with additional pipes.
7. A pneumatic pump device according to claim 1 wherein said first bore is disposed in the upper sealing element.

Claims (7)

1. A pneumatic pump device for the removal of water from holes comprising an inflatable hollow body of an elastic material, sealing elements disposed on the upper and lower ends thereof for sealing off the same, a flexible riser extending in the axial direction through said hollow body and sealingly through both of said sealing elements, a first bore positioned in one of the sealing elements, means for permitting the entry of a gas into said hollow body to expand said hollow body into sealing position with a hole, a second bore disposed in the other of said sealing elements, and a valve means disposed in said second bore for regulating the egress of said gas from said hollow body into the hole upon the gas in said hollow body reaching a predetermined pressure whereby water below said hollow body is discharged through said riser out of the hole by said gas passing through said valve means.
2. A pneumatic pump device according to claim 1 wherein said hollow body and said sealing elements are cylindrical.
3. A pneumatic pump device according to claim 1 wherein said means for permitting entry of a gas is provided with a connection means for the feeding of a compressed gas to said hollow body.
4. A pneumatic pump device according to claim 1 wherein said flexible riser consists of two pipe sections telescopically joined within said hollow body.
5. A pneumatic pump device according to claim 1 wherein said flexible riser consists of a flexible wire-reinforced hose.
6. A pneumatic pump device according to claim 1 further comprising means connected with the ends of said flexible riser for coupling said riser with additional pipes.
7. A pneumatic pump device according to claim 1 wherein said first bore is disposed in the upper sealing element.
US3764235D 1971-12-27 1971-12-27 Pneumatic pump Expired - Lifetime US3764235A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21238971A 1971-12-27 1971-12-27

Publications (1)

Publication Number Publication Date
US3764235A true US3764235A (en) 1973-10-09

Family

ID=22790803

Family Applications (1)

Application Number Title Priority Date Filing Date
US3764235D Expired - Lifetime US3764235A (en) 1971-12-27 1971-12-27 Pneumatic pump

Country Status (1)

Country Link
US (1) US3764235A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971437A (en) * 1974-12-12 1976-07-27 Clay Robert B Apparatus for dewatering boreholes
WO1984000054A1 (en) * 1982-06-14 1984-01-05 William C Lane De-watering pump
US5184677A (en) * 1991-05-10 1993-02-09 Gas Research Institute Pass-through zone isolation packer and process for isolating zones in a multiple-zone well
US5226485A (en) * 1991-05-10 1993-07-13 Gas Research Institute Pass-through zone isolation packer and process for isolating zones in a multiple-zone well
US6398514B1 (en) * 2000-11-22 2002-06-04 Steve C. Smith Double-acting rod pump
US20050244281A1 (en) * 2004-04-14 2005-11-03 Smith Steve C Crossover switching valve
US20060171827A1 (en) * 2004-04-14 2006-08-03 Smith Steve C Crossover switching and pump system
ES2323104A1 (en) * 2006-08-14 2009-07-06 Jose Maria Fernandez Jimenez Water extractor. (Machine-translation by Google Translate, not legally binding)
US7753115B2 (en) 2007-08-03 2010-07-13 Pine Tree Gas, Llc Flow control system having an isolation device for preventing gas interference during downhole liquid removal operations
US8276673B2 (en) 2008-03-13 2012-10-02 Pine Tree Gas, Llc Gas lift system
US11306742B2 (en) 2017-05-01 2022-04-19 Michael K. Breslin Submersible pneumatic pump with air-exclusion valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1893979A (en) * 1932-02-12 1933-01-10 John P Barrere Cleaning device for waste or drain pipes
US2395119A (en) * 1944-04-10 1946-02-19 Jr John B Hawley Apparatus for blowing oil wells
US2943644A (en) * 1957-02-01 1960-07-05 Compoflox Company Ltd Flexible hose
US3493045A (en) * 1968-02-29 1970-02-03 Peppino Bassani Fluid pressurized shothole plug and water control device
US3511280A (en) * 1966-12-23 1970-05-12 Jean Mercier Pressure vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1893979A (en) * 1932-02-12 1933-01-10 John P Barrere Cleaning device for waste or drain pipes
US2395119A (en) * 1944-04-10 1946-02-19 Jr John B Hawley Apparatus for blowing oil wells
US2943644A (en) * 1957-02-01 1960-07-05 Compoflox Company Ltd Flexible hose
US3511280A (en) * 1966-12-23 1970-05-12 Jean Mercier Pressure vessel
US3493045A (en) * 1968-02-29 1970-02-03 Peppino Bassani Fluid pressurized shothole plug and water control device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971437A (en) * 1974-12-12 1976-07-27 Clay Robert B Apparatus for dewatering boreholes
WO1984000054A1 (en) * 1982-06-14 1984-01-05 William C Lane De-watering pump
US4607999A (en) * 1982-06-14 1986-08-26 Lane William C De-watering pump
US5184677A (en) * 1991-05-10 1993-02-09 Gas Research Institute Pass-through zone isolation packer and process for isolating zones in a multiple-zone well
US5226485A (en) * 1991-05-10 1993-07-13 Gas Research Institute Pass-through zone isolation packer and process for isolating zones in a multiple-zone well
US6398514B1 (en) * 2000-11-22 2002-06-04 Steve C. Smith Double-acting rod pump
US20050244281A1 (en) * 2004-04-14 2005-11-03 Smith Steve C Crossover switching valve
US20060171827A1 (en) * 2004-04-14 2006-08-03 Smith Steve C Crossover switching and pump system
US7625190B2 (en) 2004-04-14 2009-12-01 K.R. Anderson, Inc. Crossover switching valve
ES2323104A1 (en) * 2006-08-14 2009-07-06 Jose Maria Fernandez Jimenez Water extractor. (Machine-translation by Google Translate, not legally binding)
US7753115B2 (en) 2007-08-03 2010-07-13 Pine Tree Gas, Llc Flow control system having an isolation device for preventing gas interference during downhole liquid removal operations
US7789158B2 (en) 2007-08-03 2010-09-07 Pine Tree Gas, Llc Flow control system having a downhole check valve selectively operable from a surface of a well
US7789157B2 (en) 2007-08-03 2010-09-07 Pine Tree Gas, Llc System and method for controlling liquid removal operations in a gas-producing well
US7971649B2 (en) 2007-08-03 2011-07-05 Pine Tree Gas, Llc Flow control system having an isolation device for preventing gas interference during downhole liquid removal operations
US7971648B2 (en) 2007-08-03 2011-07-05 Pine Tree Gas, Llc Flow control system utilizing an isolation device positioned uphole of a liquid removal device
US8006767B2 (en) 2007-08-03 2011-08-30 Pine Tree Gas, Llc Flow control system having a downhole rotatable valve
US8162065B2 (en) 2007-08-03 2012-04-24 Pine Tree Gas, Llc System and method for controlling liquid removal operations in a gas-producing well
US8302694B2 (en) 2007-08-03 2012-11-06 Pine Tree Gas, Llc Flow control system having an isolation device for preventing gas interference during downhole liquid removal operations
US8528648B2 (en) 2007-08-03 2013-09-10 Pine Tree Gas, Llc Flow control system for removing liquid from a well
US8276673B2 (en) 2008-03-13 2012-10-02 Pine Tree Gas, Llc Gas lift system
US11306742B2 (en) 2017-05-01 2022-04-19 Michael K. Breslin Submersible pneumatic pump with air-exclusion valve

Similar Documents

Publication Publication Date Title
US3764235A (en) Pneumatic pump
US3971437A (en) Apparatus for dewatering boreholes
CN107882518B (en) Hydrological hole cleaning device and using method
JPS57157078A (en) Plunger pump
US3970106A (en) Collapsible ball valve
US5002465A (en) Off-on control for an inflation aspirator
US2733450A (en) wallace
US2347472A (en) dorward
US2862448A (en) Fluid operated well pumps
US2425957A (en) Pumping system for evacuating containers of liquid
US2421237A (en) Air charger for jet pumps
KR101297362B1 (en) Hydrophore tank and hydrophore tank using the tank
US4961689A (en) Positive displacement vacuum pumps
US3626985A (en) Self-emptying hose
GB2069617A (en) A borehole water extractor
US1028722A (en) Pneumatically-controlled drain-valve.
US1409346A (en) Method and apparatus for removing water from wells
US235712A (en) Ejector for oil-wells
FR2371588A1 (en) Hand pump for unblocking drains - contains head of water for applying pressure to blockage, using pumping action
US2256370A (en) Automatic air chamber
US4607999A (en) De-watering pump
US2236687A (en) Pumping apparatus
US3533448A (en) Hydro pneumatic pressure tanks
AU619447B2 (en) Water pumping system using compressed air
US510180A (en) Suction and force pump