US3769511A - Spacecraft heat shield testing method - Google Patents

Spacecraft heat shield testing method Download PDF

Info

Publication number
US3769511A
US3769511A US00079836A US3769511DA US3769511A US 3769511 A US3769511 A US 3769511A US 00079836 A US00079836 A US 00079836A US 3769511D A US3769511D A US 3769511DA US 3769511 A US3769511 A US 3769511A
Authority
US
United States
Prior art keywords
coating
heat shield
beta
measured
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00079836A
Inventor
T Delacy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Dynamics Corp
Original Assignee
General Dynamics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Dynamics Corp filed Critical General Dynamics Corp
Application granted granted Critical
Publication of US3769511A publication Critical patent/US3769511A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • G01N3/562Investigating resistance to wear or abrasion using radioactive tracers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Definitions

  • Removal of remnants of the previous coating is diffitechniques. Merely applying a new full coating over the remnants of the prior coating is unsatisfactory because of the adhesion problems, increase in weight in some areas after a number of flights, and the possibility of hiding structural defects in underlying coating layers.
  • the initial coating have sufficient service life for a number of flights. However, it is essential that the coating be examined and measured after every flight to assure that no defects have developed and that sufficient thickness remains in all areas.
  • Another object of this invention is to provide a method of rapidly and accurately measuring heat shield coating thickness and detecting coating defects.
  • Still another object of this invention is to provide a method of measuring heat shield characteristics which may be quickly performed over a large heat shield area without hazard to personnel in the area.
  • FIG. I is a flow chart detailing the steps performed in the novel method.
  • FIG. 2 is an illustration of the loss of radio activity with decreasing coating thickness.
  • FIG. 1 there is seen a flow chart illustrating the basic steps in the method of this invention.
  • a ceramic coating slurry is prepared as shown in box 11 and mixed (box 12) with a dispersion (box 10) of the selected radioisotope in an appropriate carrier. It is highly desirable that this mixing produce a very uniform dispersion of the isotope throughout the coating slurry. Any suitable mixing technique may be used.
  • the heat shield substrate is then uniformly coated with the slurry as indicated by box 13. While any suitable coating technique may be used, spraying or dipping is typical depending on shield geometry. After drying, the coating is preferably fired at about l,500C.
  • a base reading of the beta emission levels over the heat shield surface is taken as indicated in box 14. This may include a scan of the entire surface with a Geiger-Muller counter and/or autoradiographic examination of the surface. In addition to establishing base emission levels, these measurements will provide pro- Cess controls in that they will show original coating thickness, uniformity, freedom from surface defects, etc.
  • box 15 After exposure to the service environment (box 15), which in the case of a spacecraft heat shield would be reentry into the atmosphere, the measurements of beta emission at the shield surface are repeated, as indicated in box 16.
  • the re-measurement will show any loss in 3. coating thickness and will disclose any defects, such as spelling or surface cracking, in the coating.
  • the steps of boxes 15 and 16 may be repeated a number of times, until the service life of the coating has been completed.
  • FIG. 2 shows a typical curveof loss of radioactivity plotted against loss of coating thickness.
  • the decrease in emission counted is approximately logarithmic with respect to decrease in coating thickness.
  • tests (of the sort described in Example I) are made of a particular combination of isotope, carrier, coating and substrate with mechanical abrasion of the surface. Once the curve is prepared from the tests, remaining heat shield thickness after exposure to the service environment (e.g. heat shield atmosphere re-entry) may be determined from measured emission levels. Loss of radioactivity is not directly proportional to loss in thickness because of such effects as diffusion of the isotope into the substrate. The curve shown in F lG.. 2 is corrected for these variables.
  • the heat shield coating may comprise any suitable material formed on any suitable substrate.
  • Typical heat shields comprise a thin inorganic refractory ceramic coating over a suitable substrate. Best results have been obtained with layers of disilicides and subsilicides. These are primarily MSi: and M Si where M is the combination of the refractory base alloy and various additions to the silicon.
  • disilicides are slowly converted to lower order subsilicides as the refractory alloy substrate diffuses outward, while stable silicon dioxide is formed in the coating through the infusion of oxygen.
  • modifier elements may be included in the coating to form other stable oxides and improve oxidation properties.
  • Coating life depends on a number of conditions and variables, among which are coating thicknesses and composition, oxidation temperature, and pressure.
  • the heat shield coating may have any suitable thickness. In general, thicknesses of up to about 250 microns are useful. Thicknesses in the range of 75 to 100 microrneters are preferred.
  • the energy of the beta emitter is selected to provide a range beyond the nominal coating thickness. Accordingly, the beta particle count at the surface of the coating is proportional to the thickness of the coating. The scattering of the beta particles in the coating provides a technique for obscuring subsurface defects while providing a very strong signal from critical defects in the surface of the coating.
  • coating materials may be coated onto any suitable heat shield substrate, high temperatureresistant materials including carbon composites and refractory alloys of columbiurn and tantalum are preferred.
  • the radioisotope dispersed in the coating material is a radioisotope which emits beta radiation at low electron-energy levels, and has a half-life of at least one year.
  • the isotope should not emit gamma radiation because of the danger to personnel maintaining the shielded spacecraft, difficulties in providing proper shielding and difficulties in separating signals from opposite sides of the shield.
  • Beta radiation at low energy levels is generally harmless to personnel working in the area of the shielding, and can easily be shielded with a strippable plastic film coating, is necessary.
  • the half-life of the isotope is preferably greater than two years, so that decay will not seriously deplete the quantity present over the useful life of the spacecraft.
  • Typical radioisotopes which emit beta radiation include promethium-l47, thuliurn-l7l, thallium-204, and europium-l52.
  • promethium-l47 is preferred since it emits beta particles having a maximum energy level of 0.223 Mev, emits no gamma radiation, has a half-life of 2.62 years and has a high boiling point (about 4,000C for Pm O
  • the average energy of beta particles emitted by promethium-l47 is about 70KeV per disintegration so that l millicurie of the isotope (3.7 X 10 disintegrations per second) emits about 4.15 ergs/sec.
  • the maximum range of these beta particles is about 55 mglcm the actual range in air (at a density of about 1.29 mg/cc.) is less than 43 cm and in skin is such that all of the radiation dose is delivered to the skin.
  • the dose rate to the skin of the hand will be about 1 erg/sec-gm, or about 2.5 rems/hour.
  • the allowed dose to the hands per cal endar quarter is 18.75 rems, a direct contact exposure of 7.5 hours could be tolerated. Thus, probably no radiation shielding of the heat shield surfaces would be necessary during maintenance of the spacecraft.
  • a strippable plastic film could be sprayed over the heat shield during spacecraft maintenance.
  • a coating of most plastics having a thickness of a few thousandths of an inch would absorb all of the beta radia tion emitted at the heat shield surface.
  • gloves having an area density of at least about mg/cm could be worn to eliminate the radiation hazard.
  • the isotope may be used in any suitable form, the oxide is preferred since it is stable, simply prepared and is compatible with the coating materials. Generally, it is preferred that the isotope be dispersed in a carrier material which is in turn dispersed in the coating slurry. Use of the carrier improves the uniformity of the final dispersion, since so little isotope is used. While any suitable carrier material may be used, lanthanum oxide is preferred for use with promethium oxide because of its similar orbital structure and excellent dispersion characteristics.
  • isotope in the coating material may be any suitable concentration of isotope in the coating material, from about 1 to about 2 micro-curies per cm is preferred in the case of promethium-l47. While increased amounts of the isotope will speed measurement techniques such as autoradiography, they will also increase the radiation hazard.
  • EXAMPLE I To an acetone slurry containing about 5 grams solid, finely divided coating agents comprising about 20 percent hafnium, lO percent chromium, 5 percent iron and 65 percent silicon is added about 9.8 milligrams of lanthanum oxide having dispersed therein about microcuries of promethium-l47. The mixture is extenl5 sively shaken and mechanically mixed, then sprayed onto a 5 cm. square columbium coupon. After coating, the coupon is allowed to dry, then is fired at about 1,500C in a vacuum to form a radioactively tagged silicide coating on both sides of the coupon.
  • each side of the coupon contains about 0.5 microcuries (1.1 X 10 disintegrations per minute) of radioactivity.
  • a comparison of the weight of the coated coupon to its weight before coating shows an increase of about 0.451 grams.
  • the radioactive loading is about 0.02 microcurieslcm
  • the radioactivity at the surface of the coating, counted with a Geiger-Muller counter having a 3.2 cm. window, is 4051 counts/min (front) and 3110 counts/min (back). This indicates that the front coating weighs about 0.254 grams and the back coating about 0.197 grams.
  • Each surface is than autoradiographed by contact with Eastman Kodak Type T film for 110 hours. The resulting pictures show slight segregation and unevenness in the coating.
  • the coated surfaces are then abraded with carborundum paper in eight steps. After each abrasion step, the radioactivity of the surface is measured. Results show that the reduction of beta radiation detected at the surface is proportional to the decrease in coating thickness. It is found that coating thickness changes can be measured using a single 3.2 cm. diameter Geiger-Muller detector to a precision of better than 1 percent with a 10 minute counting period. The autoradiographs are found to be capable of resolving details at least as small as 0.005 cm. in the coating.
  • EXAMPLE II To an acetone slurry containing about 20 percent chromium, 10 percent titanium and 70 percent silicon is added about 2microcuries of thallium-204 in a ni-' tride carrier. Following mechanical stirring to break up material aggregates, the mixture is extensively shaken. The mixture is applied to a carbon composite substrate, outgassed for about 1 hour, then fired at about l,400C in vacuum to form a radioactively-tagged silicide coating on both sides of the specimen.
  • the spray utilization during coating application is gauged to be about 20 percent and the amount of isotope contained by the coating is estimated to be about 0.02 microcurieslcm Using a 1 cm end window Geiger-Muller counter, the count rate is found to be about 300 counts/second at the surface of the coating.
  • the radioactive loading at the surface of the coating is measured following abrasion in equal steps of about 12 micrometers. The results show that the decrease in counting rate is approximately logarithmic. It is determined that the range of the beta radiation is sufficient to provide meaningful measurement of coating thickness up to about 200 mg/cm or actual coating thickness of about 0.05 cm.
  • EXAMPLE III About 300 square feet of columbium heat shield area of a re-entry spacecraft is coated with a slurry of radioactively tagged silicide heat shielding material to a dry thickness of about 0.008 cm. The surface is fired at about l,400C in a vacuum to form the silicide coating.
  • the slurry contains about 20 percent chromium, 20 percent iron; 60 percent silicon towhich is added about 10 percent lanthanum oxide carrier containing about 500 X 10 atoms/cm promethium-l47.
  • the radioactive loading level is estimated to be about 2 microcuries/cm
  • the heat shield surface is completely autoradiographed, using Eastman Kodak Type AA film, and the entire surface is scanned with a Geiger- Muller counter having 3.2 cm. diameter aperture. Scanning with a single counter and a 0.2 minute count of each incremental area requires about 20 hours.
  • the autoradiography and scanning are repeated after each of several trips into space during which the heat shield is subjected to the stresses of re-entry.
  • the decrease in coating thickness indicated by a decrease in beta radiation detected at the heat shield surface is found to closely correlate to actual destructive thickness measurement tests.
  • the autoradiographs are found to clearly reveal defects developing in the coating surface and damage sustained from impact with flying objects.
  • a method of testing protective coatings on reentry spacecraft which comprises:

Abstract

A process for measuring the service life of heat shields on reentry spacecraft after each flight is disclosed. A low electronenergy level, beta emitting, isotope, having a reasonably long half-life, preferably promethium-147, is uniformly dispersed throughout a refractory heat shield coating. The beta particle emission level at the coating surface is measured to provide a base reading. After each space flight, the beta emission level at the coating surface is again measured, such as by autoradiography or with a Geiger-Muller counter. Erosion, abrasive wear, spalling or other damage is detected and measured to determine whether additional flights can be made without re-coating.

Description

imite Stes Batent [1 1 Delacy [451 Oct. 30, 1973 SPACECRAFT HEAT SHIELD TESTING METHOD Inventor:
Thomas J. Delacy, La Mesa, Calif.
General Dynamics Corporation, San Diego, Calif.
Oct. 1 2, 197 0 Assignee:
Filed:
Appl. No.:
I 52 l [1.8. (II ..Z50/303 References Cited UNITED STATES PATENTS 5/1962 I-Ieiman .Q250/l06 R OTHER PUBLICATIONS Cucchiara et al., Materials Evaluation, Kryptonates: A New Technique for the Detection of Wear, May
1967, pp. 109-117. (250-106T) PREPARE CERAMIC COATING SLURRY Primary Examiner.lames W. Lawrence Assistant ExaminerDavis L. Willis Attorney-John R. Duncan [57] ABSTRACT tected and measured to determine whether additional flights can be made without re-coating.
3 Claims, 2 Drawing Figures DISPERSE RADIOISOTOPE CARRIER MIX COAT HEAT SHIELD MEASURE BETA EMISSION EXPOSE TO SERVICE ENVIRONMENT RE-MEASURE BETA EMISSION SPACECRAFT HEAT SHIELD TESTING METHOD BACKGROUND OF THE INVENTION Re-entry spacecraft generally are provided with a heat shield to protect against thermal and abrasive effects of re-entering the earths atmosphere. Typical heat shields employ relatively thick organic ablative materials or thin radiative materials which may employ coatings.
Where a spacecraft employing a radiative thermal protection system is designed for a single trip, it is merely necessary that the coating have sufficient thickness and integrity to survive one re-entry. However, where it is intended that the spacecraft be used for multiple trips into space, as with the Space Shuttle, it is necessary that either the heat shield be refurbished after every trip or that it have sufficient service life (e.g. thickness, strength and structural integrity) to survive the intended number of re-entry flights.
Re-coating the heat shield is difficult and expensive.
Removal of remnants of the previous coating is diffitechniques. Merely applying a new full coating over the remnants of the prior coating is unsatisfactory because of the adhesion problems, increase in weight in some areas after a number of flights, and the possibility of hiding structural defects in underlying coating layers.
Thus, it is preferred that the initial coating have sufficient service life for a number of flights. However, it is essential that the coating be examined and measured after every flight to assure that no defects have developed and that sufficient thickness remains in all areas.
Attempts have been made to monitor recession of relatively thick ablative heat shields or missile nose cones by inserting radioactive plugs into holes in the shield, then measuring the decrease in radioactive emission due to shield losses. A typical system of this sort is described in U.S. Pat. No. 3,461,289. However, these systems merely measure losses at one location and are incapable of detecting varying wear patterns across a large heat shield surface. Also, these systems are incapable of detecting dangerous surface defects, such as cracks, which may develop over a series of space flights. While these systems provide useful experimental information, they do not provide the required measurement of the entire heat shield surface which is necessary if the heat shield is to be used for a series of space flights. Furthermore, these systems generally use isotopes which emit gamma radiation. Gamma radiation is difficult to shield and is dangerous to ground personnel working on or around the spacecraft between flights.
I-Ieretofore, non-destructive techniques for measuring the thickness and quality of a thin coating have not been sufficiently accurate or rapid to meet the requirements of the reusable heat shield. It is essential that all defects, such as cracks and spalling be detected and that the thickness of the entire coating area be rapidly and accurately measured.
Thus, there is a continuing need for improved methods of non-destructive testing which will provide rapid determination of heat shield reusability.
SUMMARY OF THE INVENTION It is, therefore, an object of this invention to provide a heat shield measuring method overcoming the above noted problems.
Another object of this invention is to provide a method of rapidly and accurately measuring heat shield coating thickness and detecting coating defects.
Still another object of this invention is to provide a method of measuring heat shield characteristics which may be quickly performed over a large heat shield area without hazard to personnel in the area.
The above objects, and others, are accomplished in accordance with this invention by incorporating into the heat shield coating a low-electron energy level, beta radiation emitting radioisotope, having a half-life of at least one year. After the heat shield coating is applied, measurements of beta radiation emitted by the shield surface are taken by any suitable technique, such as autoradiography or measurement with a Geiger-Muller counter. After each space flight, the radiation level at the heat shield surface is again measured. After allowing for natural decay of the radioisotope over the time period since the previous measurement, any decrease in emission levels is indicative of decreased shield thickness. In addition, autoradiographic examination will reveal coating irregularities, and defects such as surface cracks.
BRIEF DESCRIPTION OF THE DRAWING The basic requirements of the method of this invention will be further understood upon reference to the drawing, in which:
FIG. I is a flow chart detailing the steps performed in the novel method; and
FIG. 2 is an illustration of the loss of radio activity with decreasing coating thickness.
DETAILED DESCRIPTION OF THE INVENTION Referring now to FIG. 1, there is seen a flow chart illustrating the basic steps in the method of this invention. As shown, initially a ceramic coating slurry is prepared as shown in box 11 and mixed (box 12) with a dispersion (box 10) of the selected radioisotope in an appropriate carrier. It is highly desirable that this mixing produce a very uniform dispersion of the isotope throughout the coating slurry. Any suitable mixing technique may be used.
The heat shield substrate is then uniformly coated with the slurry as indicated by box 13. While any suitable coating technique may be used, spraying or dipping is typical depending on shield geometry. After drying, the coating is preferably fired at about l,500C. Next, a base reading of the beta emission levels over the heat shield surface is taken as indicated in box 14. This may include a scan of the entire surface with a Geiger-Muller counter and/or autoradiographic examination of the surface. In addition to establishing base emission levels, these measurements will provide pro- Cess controls in that they will show original coating thickness, uniformity, freedom from surface defects, etc.
After exposure to the service environment (box 15), which in the case of a spacecraft heat shield would be reentry into the atmosphere, the measurements of beta emission at the shield surface are repeated, as indicated in box 16. The re-measurement will show any loss in 3. coating thickness and will disclose any defects, such as spelling or surface cracking, in the coating. Then, the steps of boxes 15 and 16 may be repeated a number of times, until the service life of the coating has been completed.
FIG. 2 shows a typical curveof loss of radioactivity plotted against loss of coating thickness. As can be seen, in general the decrease in emission counted is approximately logarithmic with respect to decrease in coating thickness. Desirably, tests (of the sort described in Example I) are made of a particular combination of isotope, carrier, coating and substrate with mechanical abrasion of the surface. Once the curve is prepared from the tests, remaining heat shield thickness after exposure to the service environment (e.g. heat shield atmosphere re-entry) may be determined from measured emission levels. Loss of radioactivity is not directly proportional to loss in thickness because of such effects as diffusion of the isotope into the substrate. The curve shown in F lG.. 2 is corrected for these variables.
The heat shield coating may comprise any suitable material formed on any suitable substrate. Typical heat shields comprise a thin inorganic refractory ceramic coating over a suitable substrate. Best results have been obtained with layers of disilicides and subsilicides. These are primarily MSi: and M Si where M is the combination of the refractory base alloy and various additions to the silicon. During high temperature service as a heat shield during reentry, disilicides are slowly converted to lower order subsilicides as the refractory alloy substrate diffuses outward, while stable silicon dioxide is formed in the coating through the infusion of oxygen. If desired, modifier elements may be included in the coating to form other stable oxides and improve oxidation properties.
While theoretically the life of the coating depends on the rate at which stable SiO is formed, the coating does not resist oxidation because of thermo-chemical preference for a reduced state. For satisfactory service, the most significant characteristic is the formation of an adherent oxide film on the surface of the coating which either prevents or reduces the infusion of oxygen. Coating life depends on a number of conditions and variables, among which are coating thicknesses and composition, oxidation temperature, and pressure.
The heat shield coating may have any suitable thickness. In general, thicknesses of up to about 250 microns are useful. Thicknesses in the range of 75 to 100 microrneters are preferred. The energy of the beta emitter is selected to provide a range beyond the nominal coating thickness. Accordingly, the beta particle count at the surface of the coating is proportional to the thickness of the coating. The scattering of the beta particles in the coating provides a technique for obscuring subsurface defects while providing a very strong signal from critical defects in the surface of the coating.
While these coating materials may be coated onto any suitable heat shield substrate, high temperatureresistant materials including carbon composites and refractory alloys of columbiurn and tantalum are preferred.
Preferably, the radioisotope dispersed in the coating material is a radioisotope which emits beta radiation at low electron-energy levels, and has a half-life of at least one year. Ideally, the isotope should not emit gamma radiation because of the danger to personnel maintaining the shielded spacecraft, difficulties in providing proper shielding and difficulties in separating signals from opposite sides of the shield. Beta radiation at low energy levels is generally harmless to personnel working in the area of the shielding, and can easily be shielded with a strippable plastic film coating, is necessary. The half-life of the isotope is preferably greater than two years, so that decay will not seriously deplete the quantity present over the useful life of the spacecraft. Typical radioisotopes which emit beta radiation include promethium-l47, thuliurn-l7l, thallium-204, and europium-l52. Of these, promethium-l47 is preferred since it emits beta particles having a maximum energy level of 0.223 Mev, emits no gamma radiation, has a half-life of 2.62 years and has a high boiling point (about 4,000C for Pm O The average energy of beta particles emitted by promethium-l47 is about 70KeV per disintegration so that l millicurie of the isotope (3.7 X 10 disintegrations per second) emits about 4.15 ergs/sec. Since the maximum range of these beta particles is about 55 mglcm the actual range in air (at a density of about 1.29 mg/cc.) is less than 43 cm and in skin is such that all of the radiation dose is delivered to the skin. For illustration, if a hand with an area of 250 cm is placed in direct contact with a surface loaded with 1 microcurie of 147 Pm per cm the dose rate to the skin of the hand will be about 1 erg/sec-gm, or about 2.5 rems/hour. Since the allowed dose to the hands per cal endar quarter is 18.75 rems, a direct contact exposure of 7.5 hours could be tolerated. Thus, probably no radiation shielding of the heat shield surfaces would be necessary during maintenance of the spacecraft. However, if desired a strippable plastic film could be sprayed over the heat shield during spacecraft maintenance. A coating of most plastics having a thickness of a few thousandths of an inch would absorb all of the beta radia tion emitted at the heat shield surface. Alternatively, gloves having an area density of at least about mg/cm could be worn to eliminate the radiation hazard.
While the isotope may be used in any suitable form, the oxide is preferred since it is stable, simply prepared and is compatible with the coating materials. Generally, it is preferred that the isotope be dispersed in a carrier material which is in turn dispersed in the coating slurry. Use of the carrier improves the uniformity of the final dispersion, since so little isotope is used. While any suitable carrier material may be used, lanthanum oxide is preferred for use with promethium oxide because of its similar orbital structure and excellent dispersion characteristics.
Although any suitable concentration of isotope in the coating material may be used, from about 1 to about 2 micro-curies per cm is preferred in the case of promethium-l47. While increased amounts of the isotope will speed measurement techniques such as autoradiography, they will also increase the radiation hazard. A
typically applied onto the substrate, then heated in a vacuum to form the silicide coating.
DESCRIPTIQN OF PREFERRED EMBODIMENTS The following examples define preferred embodi- 5 ments of the method of this invention. Parts and percentages are by weight, unless otherwise indicated.
EXAMPLE I To an acetone slurry containing about 5 grams solid, finely divided coating agents comprising about 20 percent hafnium, lO percent chromium, 5 percent iron and 65 percent silicon is added about 9.8 milligrams of lanthanum oxide having dispersed therein about microcuries of promethium-l47. The mixture is extenl5 sively shaken and mechanically mixed, then sprayed onto a 5 cm. square columbium coupon. After coating, the coupon is allowed to dry, then is fired at about 1,500C in a vacuum to form a radioactively tagged silicide coating on both sides of the coupon. Since about percent of the slurry remains on the coupons, each side of the coupon contains about 0.5 microcuries (1.1 X 10 disintegrations per minute) of radioactivity. A comparison of the weight of the coated coupon to its weight before coating shows an increase of about 0.451 grams. The radioactive loading is about 0.02 microcurieslcm The radioactivity at the surface of the coating, counted with a Geiger-Muller counter having a 3.2 cm. window, is 4051 counts/min (front) and 3110 counts/min (back). This indicates that the front coating weighs about 0.254 grams and the back coating about 0.197 grams. Each surface is than autoradiographed by contact with Eastman Kodak Type T film for 110 hours. The resulting pictures show slight segregation and unevenness in the coating. The coated surfaces are then abraded with carborundum paper in eight steps. After each abrasion step, the radioactivity of the surface is measured. Results show that the reduction of beta radiation detected at the surface is proportional to the decrease in coating thickness. It is found that coating thickness changes can be measured using a single 3.2 cm. diameter Geiger-Muller detector to a precision of better than 1 percent with a 10 minute counting period. The autoradiographs are found to be capable of resolving details at least as small as 0.005 cm. in the coating.
EXAMPLE II To an acetone slurry containing about 20 percent chromium, 10 percent titanium and 70 percent silicon is added about 2microcuries of thallium-204 in a ni-' tride carrier. Following mechanical stirring to break up material aggregates, the mixture is extensively shaken. The mixture is applied to a carbon composite substrate, outgassed for about 1 hour, then fired at about l,400C in vacuum to form a radioactively-tagged silicide coating on both sides of the specimen. The spray utilization during coating application is gauged to be about 20 percent and the amount of isotope contained by the coating is estimated to be about 0.02 microcurieslcm Using a 1 cm end window Geiger-Muller counter, the count rate is found to be about 300 counts/second at the surface of the coating. The radioactive loading at the surface of the coating is measured following abrasion in equal steps of about 12 micrometers. The results show that the decrease in counting rate is approximately logarithmic. It is determined that the range of the beta radiation is sufficient to provide meaningful measurement of coating thickness up to about 200 mg/cm or actual coating thickness of about 0.05 cm.
EXAMPLE III About 300 square feet of columbium heat shield area of a re-entry spacecraft is coated with a slurry of radioactively tagged silicide heat shielding material to a dry thickness of about 0.008 cm. The surface is fired at about l,400C in a vacuum to form the silicide coating. The slurry contains about 20 percent chromium, 20 percent iron; 60 percent silicon towhich is added about 10 percent lanthanum oxide carrier containing about 500 X 10 atoms/cm promethium-l47. The radioactive loading level is estimated to be about 2 microcuries/cm The heat shield surface is completely autoradiographed, using Eastman Kodak Type AA film, and the entire surface is scanned with a Geiger- Muller counter having 3.2 cm. diameter aperture. Scanning with a single counter and a 0.2 minute count of each incremental area requires about 20 hours. The autoradiography and scanning are repeated after each of several trips into space during which the heat shield is subjected to the stresses of re-entry. The decrease in coating thickness indicated by a decrease in beta radiation detected at the heat shield surface is found to closely correlate to actual destructive thickness measurement tests. The autoradiographs are found to clearly reveal defects developing in the coating surface and damage sustained from impact with flying objects.
Although specific ingredients, components and proportions have been described in the above description of preferred embodiments, other suitable materials and conditions may be used, where suitable, with similar results, as indicated above. In addition, other materials may be included in the heat shield coating to enhance or otherwise modify its properties.
Other modifications and ramifications of the present invention will occur to those skilled in the art upon reading the present disclosure. These are intended to be included within the scope of this invention, as defined in the appended claims.
I claim:
1. A method of testing protective coatings on reentry spacecraft which comprises:
a. forming a coating on a surface to be protected, said coating comprising a composition selected from the group consisting of disilicides, subsilicides and mixtures thereof having dispersed therethrough a composition comprising an oxide of promethium- 147 and a lanthanum oxide carrier, said coating having a thickness from about to micrometers and containing from about l to about 2 microcuries of promethium-l47 per square centimeter of coating surface;
b. measuring the beta radiation at the surface of said coating;
0. exposing said surface to a high temperature atmospheric re-entry environment likely to cause loss of coating protection;
d. again measuring the beta radiation at said surface,
to detect losses of coating protection.
2. The method according to claim 1 wherein said beta radiation is measured by autoradiography whereby defects in said coating are revealed.
3. The method according to claim 1 wherein said beta radiation is measured by scanning said surface with a Geiger-Muller counter.

Claims (2)

  1. 2. The method according to claim 1 wherein said beta radiation is measured by autoradiography whereby defects in said coating are revealed.
  2. 3. The method according to claim 1 wherein said beta radiation is measured by scanning said surface with a Geiger-Muller counter.
US00079836A 1970-10-12 1970-10-12 Spacecraft heat shield testing method Expired - Lifetime US3769511A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7983670A 1970-10-12 1970-10-12

Publications (1)

Publication Number Publication Date
US3769511A true US3769511A (en) 1973-10-30

Family

ID=22153109

Family Applications (1)

Application Number Title Priority Date Filing Date
US00079836A Expired - Lifetime US3769511A (en) 1970-10-12 1970-10-12 Spacecraft heat shield testing method

Country Status (1)

Country Link
US (1) US3769511A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866043A (en) * 1970-04-20 1975-02-11 Central Electr Generat Board Coated particle fuel for nuclear reactors and to the manufacture of such fuel
FR2618555A1 (en) * 1987-07-24 1989-01-27 Rolls Royce Plc IMPROVEMENTS IN OR RELATING TO A RADIO-ISOTOPIC IMAGE FORMING PROCESS
US5511747A (en) * 1992-04-23 1996-04-30 Aerospatiale Societe Nationale Industrielle Arrangement for thermal protection of an object, such as a thermal shield
US5803406A (en) * 1996-04-22 1998-09-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Integrated thermal insulation system for spacecraft
US6103295A (en) * 1997-12-22 2000-08-15 Mds Nordion Inc. Method of affixing radioisotopes onto the surface of a device
US6444271B2 (en) * 1999-07-20 2002-09-03 Lockheed Martin Corporation Durable refractory ceramic coating
US6676988B2 (en) 1997-12-22 2004-01-13 Mds (Canada) Inc. Radioactively coated devices
US20080019582A1 (en) * 2006-07-21 2008-01-24 Southwest Research Institute Autoradiography-Based Differential Wear Mapping
US7918293B1 (en) * 2005-03-09 2011-04-05 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US8695358B2 (en) 2011-05-23 2014-04-15 Abb Research Ltd. Switchgear having evaporative cooling apparatus
US8969833B1 (en) 2011-12-16 2015-03-03 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
WO2019010041A1 (en) * 2017-07-05 2019-01-10 Raytheon Company Overcoat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034244A (en) * 1954-08-02 1962-05-15 Warren J Heiman Gun barrel with a layer of radioactive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034244A (en) * 1954-08-02 1962-05-15 Warren J Heiman Gun barrel with a layer of radioactive material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cucchiara et al., Materials Evaluation, Kryptonates: A New Technique for the Detection of Wear, May 1967, pp. 109 117. (250 106T) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866043A (en) * 1970-04-20 1975-02-11 Central Electr Generat Board Coated particle fuel for nuclear reactors and to the manufacture of such fuel
FR2618555A1 (en) * 1987-07-24 1989-01-27 Rolls Royce Plc IMPROVEMENTS IN OR RELATING TO A RADIO-ISOTOPIC IMAGE FORMING PROCESS
US4885464A (en) * 1987-07-24 1989-12-05 Rolls-Royce Plc Improvements relating to a method of radioisotope imaging
US5511747A (en) * 1992-04-23 1996-04-30 Aerospatiale Societe Nationale Industrielle Arrangement for thermal protection of an object, such as a thermal shield
US5803406A (en) * 1996-04-22 1998-09-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Integrated thermal insulation system for spacecraft
US6676988B2 (en) 1997-12-22 2004-01-13 Mds (Canada) Inc. Radioactively coated devices
US6103295A (en) * 1997-12-22 2000-08-15 Mds Nordion Inc. Method of affixing radioisotopes onto the surface of a device
US6749942B1 (en) 1999-07-20 2004-06-15 Lockheed Martin Corporation Durable refractory ceramic coating
US6444271B2 (en) * 1999-07-20 2002-09-03 Lockheed Martin Corporation Durable refractory ceramic coating
US7918293B1 (en) * 2005-03-09 2011-04-05 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US8617310B1 (en) 2005-03-09 2013-12-31 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US9453802B1 (en) 2005-03-09 2016-09-27 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US20080019582A1 (en) * 2006-07-21 2008-01-24 Southwest Research Institute Autoradiography-Based Differential Wear Mapping
US8050489B2 (en) 2006-07-21 2011-11-01 Southwest Research Institute Autoradiography-based differential wear mapping
US8695358B2 (en) 2011-05-23 2014-04-15 Abb Research Ltd. Switchgear having evaporative cooling apparatus
US8969833B1 (en) 2011-12-16 2015-03-03 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US9423364B1 (en) 2011-12-16 2016-08-23 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and second region of a superabrasive volume
WO2019010041A1 (en) * 2017-07-05 2019-01-10 Raytheon Company Overcoat

Similar Documents

Publication Publication Date Title
US3769511A (en) Spacecraft heat shield testing method
Campbell et al. PIXE analysis of thick targets
Presser et al. Reactions 7Li+ n, 7Li+ p and excited states of the A= 8 system
EP0290368B1 (en) Method and apparatus for measuring the density and hardness of porous plasma sprayed coatings
Morgan et al. Relative hazard of the various radioactive materials
Whitehead et al. Angular Distribution of Neutrons Scattered from Aluminum, Iron, and Lead
Delacy Spacecraft heat shield testing method
White et al. A remeasurement of the half-life of 235U
Saito The interaction mean free paths and the fragmentation probabilities of cosmic heavy nuclei at energies above 10 gev/nucleon
US3516939A (en) Vitreous composition for measuring neutron fluence
Dwyer et al. Plastic scintillator response to relativistic nuclei, Z≤ 28
Brantley et al. Electron spectroscopy studies of the decay of 154Eu
Duerden et al. Ion beam analysis studies of desert varnish
Adair et al. Preparation and characterization of neutron dosimeter materials
Mapother Effect of X-Ray Irradiation on the Self-Diffusion Coefficient of Na in NaCl
Niiler et al. The 56Fe (p, n) 56Co reaction in steel wear measurement
Gorlov et al. The fission cross-sections of 233U and 235U for neutrons having energies between 3 and 800 keV
Sharp et al. Angular Distributions of Elastically and Inelastically Scattered Protons from Indium
Duthie et al. The study of high-energy γ-rays produced by cosmic radiation at 40000 feet part i. experimental disposition, and determination of energy and nature of electromagnetic cascades
Harris Measurement of slow neutrons and coexisting radiations
Koskinas et al. A coincidence system for radionuclide standardization using surface barrier detectors
Liritzis et al. Grain size distribution in ceramics and the beta dose-rate for thermoluminescence dating
US3525865A (en) Quantitative method for determining the weight per unit area of coatings applied to papers
Berenyi et al. Investigations of the Decay-Scheme of Fe59
Iwamoto et al. Techniques for quality inspection of coated fuel particles