US3772196A - Lubricating compositions - Google Patents

Lubricating compositions Download PDF

Info

Publication number
US3772196A
US3772196A US00204668A US3772196DA US3772196A US 3772196 A US3772196 A US 3772196A US 00204668 A US00204668 A US 00204668A US 3772196D A US3772196D A US 3772196DA US 3772196 A US3772196 A US 3772196A
Authority
US
United States
Prior art keywords
block
percent
oil
lubricating oil
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00204668A
Inventor
D Clair
D Evans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Application granted granted Critical
Publication of US3772196A publication Critical patent/US3772196A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M157/00Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
    • C10M157/04Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential at least one of them being a nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M157/00Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/14Containing carbon-to-nitrogen double bounds, e.g. guanidines, hydrazones, semicarbazones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • ABSTRACT Lubricating oil compositions for internal combustion engines having unexpectedly wide temperature operating characteristics contain a combination of 2-block copolymer comprising a first polymer block of an alkenyl arene, e.g., styrene and a second essentially completely hydrogenated polymer block of isoprene and certain pour point depressants in a lubricant base stock having a viscosity index of at least 85.
  • the compositions have excellent shear stability and can be formulated to pass a number of the ASTM and SAE engine oil performance and engine service classifications.
  • lubricants which meet a F viscosity specification and a 210F viscosity specification, such as is shown for motor oils by the following table derived from SAE, 1300a taken from the SAE Handbook for 1969:
  • an SAE l0W/50 oil must have a viscosity at0F between 12 and 24 poises and a viscosity at 210F of between 85 and 110 SUS.
  • a large variety of polymeric additives have been employed primarily as thickening agents, viscosity index (VI) improvers andpour point depressants.
  • a common limitation of essentially all of these is shear sensitivity. This is not unexpected, since most of the these polymers are'relatively high molecular weight materials and consequently are readily subject to shear degradation.
  • relatively low molecular weight polymeric materials at least up to the present time, have proven to be relatively ineffective as thickeners or VI improvers in automotive engine lubricants, even Pat. No. 3,509,056 issued Apr. 28, 1970, shows the use though they may have reasonably good shear stability.
  • styrene-hydrogenated butadiene block copolymers have been employed as pour point depressants or thermal degradation stabilizers in pertroleum fuels as shown in Streets U.S. Pat. No. 3,419,365 issued Dec. 31, 1968. However, since they were employed as fuel additives, they-were used in frictional percentages which were too small to appreciably affect the thickening of the oil or the viscosity index thereof. Moreover, as will be developed later, block copolymers containing hydrogenated polybutadiene blocks show essentially no response to supplementary pour point depressants, especially if the 1,2-content is low.
  • hydrocarbon lubricating compositions comprising the following components:
  • a a hydrocarbon lubricating oil having a viscosity index of at least b. a minor but effective amount of pour point depressant for said oil; and g c. 01-10 percent by weight of a block copolymer comprising 1 I. a single polymer block A, at least 75 percent of which is condensed alkenyl arene units, no more than 5 percent of the aromatic unsaturation being reduced by hydrogenation of the block copolymer, said block A having an average molecular weight between about 10,000 and about 55,000; and 2.
  • a single hydrogenated polymer block B said block, priorto hydrogenation, being a polyisoprene block; at least percent of the olefinic unsaturation of block B being reduced by hydrogenation of the block copolymer; same block B having an average molecular weight between about 20,000 and about 100,000;
  • the weight ratio of block A to block B being between about 0.45:l and 0.8:1;
  • blocks C if any, in the block copolymer having a total average molecular weight not exceeding about 7,500 and being selected from alkenyl arene polymer blocks, conjugated diene polymer blocks and copolymer blocks of alkenyl arenes and conjugated dienes, each having the hydrogenation limitations of blocks A and B.
  • block copolymers having the above limitations when combined with a high viscosity index hydrocarbon lubricant containing a pour point depressant, exhibit outstanding physical characteristics not possessed by any other polymeric thickener investigated to date.
  • the block copolymer has the simple structure A-B.
  • it may have the alternative structure A-B-C wherein C is the relatively low molecular weight polymer block referred to above.
  • each of blocks A and B be homopolymeric blocks.
  • polymer block A be essentially aromatic, e.g. less than 5 percent hydrogenated while polymer block B be at least 99 percent saturated insofar as its original olefinic unsaturation is concerned.
  • the monoalkenyl arenes particularly a-alkenyl arenes, which may be used in the preparation of the subject class of block copolymers comprise styrene and methyl styrenes such as alpha methyl styrene, vinyl toluene and other ring methylated styrenes. Styrene is the preferred monomer. Mixtures of these alkenyl arenes may be used if desired.
  • Polyisoprene is the conjugated diene employed in preparing the precursor of block B.
  • the polyisoprene block should have at least about 80 percent l,4 structure which may be either cis or trans and still more preferably it should have at least about 88 percent 1,4 structure.
  • the block copolymers may be prepared by conventional methods using lithium-based initiators, preferably lithium alkyls such as lithium butyls or lithium amyls. Polymerization is usually conducted in solution in an inert solvent such as cyclohexane or alkanes such as butanes or pentanes and mixtures of the same.
  • the first monomer to be polymerized (which may be either mono alkenyl arene or isoprene) is injected into the system and contacted with the polymerization initiator which is added in an amount calculated to provide the predetermined average molecular weight.
  • the second monomer is then injected into the living polymer system and block polymerization occurs, resulting in the formulation of the living block copolymer poly(alkenyl arene)- polyisoprene which is then killed, e.g., by the addition of methanol.
  • This precursor is then subjected to selective hydrogenation such as by the method shown in Wald et al. U.S. Pat. No. 3,595,942 issued July 27, 1971, to form the block copolymers used in the lubricating compositions of this invention.
  • hydrogenation is conducted in the same solvent in which the polymer was prepared, utilizing a catalyst comprising the reaction product of aluminum alkyl and a nickel or cobalt carboxylate or alkoxide.
  • a favored catalyst is the reaction product formed from triethyl aluminum and nickel octoate.
  • the temperatures and pressures employed in the hydrogenation step are adjusted such as shown in the last referred-to patent to cause essentially complete hydrogenation of the polyisoprene block with essentially no effective hydrogenation of the monoalkenyl arene polymer block.
  • the polymer may be isolated from its solvent after its hydrogenation and dispersed in lubricating oil. This may be effected, for example, by adding a lubricating oil to the solution of hydrogenated polymer and thereafter evaporating the relatively volatile solvent.
  • Such concentrates suitably contain up to about 20 percent by weight of the hydrogenated block copolymer and preferably between about 2.5 and 15 percent by weight depending on polymer molecular weight.
  • molecular weights of the block copolymers are meant to refer to number average molecular weights as determined, for example, by tritium counting techniques or osmotic pressure methods.
  • Preparation of the block copolymers by anionic solution polymerization results in the desired relatively very narrow molecular weight spread as contrasted to the broad spectrum of species which results from the use of Ziegler polymerization catalysts.
  • Broad spectrum (Ziegler) polymers containing a substantial proportion of high molecular weight fractions, exhibit excessive shear degradation.
  • the polymer blocks A have molecular weights between about 25,000 and 50,000 and the polymer blocks B have molecular weights between about 35,000 and 80,000. Still more preferably, the weight ratio of A:B is from 0.521 to 0.721.
  • pour point depressants utilized in accordance with the present invention and in conjunction with the block polymers as defined above are employed primarily for their pour point depressing effect although many of them may act as viscosity index improvers or thickeners. However, since they are employed in minor (pour point depressing) amounts, e.g., 0.l2.5 percent by weight preferably 0.l50.7 percent by weight, their proportion is normally too small to have an appreciable effect upon oil properties other than pour point. It is essential that the pour point depressant be present, however, since the block copolymers defined above exhibit essentially no effective pour point depressant function.
  • one of the prime characteristics of the above class of block copolymers is their effective response to added pour point depressants such as high molecular weight compolymers of alkyl acrylates or alkyl methacrylates as well as nitrogen containing acrylic esters.
  • acrylic esters is meant esters of acids of the acrylic acid series including both acrylic acid and methacrylic acid.
  • Nitrogen-containing acrylic ester polymers as defined can be prepared by any suitable means such as described in Hughes et al. US. Pat. No. 3,215,632 issued Nov. 2, 1965, and can be illustrated by the following examples:
  • Nitrogen-containing polymers namely, copolymers of vinyl pyridine and C alkyl methacrylates, having a molecular weight range of from 1,500 to 2,000,000, preferably between 200,000 and 850,000 include (1) copolymer of 25 percent 2-methyl -vinyl pyridine and 75 percent stearyl methacrylate, molecular weight 200,000; (2) copolymer of 30 percent stearyl methacrylate, 51 percent lauryl methacrylate, 14 percent methyl methacrylate and 5 percent 2-methyl-5- vinyl pyridine, molecular weight 600,000; (3) copolymer of 14 percent methyl methacrylate, 54 percent lauryl methacrylate, 27 percent stearyl methacrylate and 5 percent 2-methyl-5-vinyl pyridine in weight ratio mo
  • the oil component of the lubricating compositions according to the present invention is especially designed for the preparation of multi-grade lubricants although single grade lubricants may be compounded as well. Still more specifically, the present combination of block copolymer and pour point depressant is especially beneficial in Wax-containing lubricating oil cuts such as found in Mid Continent oils, West Texas Ellenburger crudes, East Texas crudes, Oklahoma crudes, Pennsylvania crudes and California crudes and similar waxy crudes which may be referred to as paraffin base crudes, naphthenic crudes or mixed base crudes as distinguished from asphalt base crudes.
  • HVl High Viscosity Index
  • l-lVI very high viscosity index oils
  • LI low viscosity index
  • More volatile oils may be employed for special purposes such as(HVI) 80N.
  • HVI oils are produced by well-known refining methods, such as distillation, dewaxing, deasphalting, dearomatizing, etc, as may be needed, dependant largely on the crude oil used.
  • Typical properties of these HVI oils are the following:
  • One of the primary aspects of the present invention comprises the discovery of the unique capability of these compositions for the provision of wide multigrade lubricants having relatively low tendency toward oil consumption during use. It has been wellestablished that oil consumption is directly related to the relative volatility of the lubricant base. With most thickeners and VI improvers as well as most pour point depressants it is essential to formulate an SAE l0W/50 lubricant containing a substantial amount of relatively high volatility oils such as 80N or even lighter. This is due to the basic fact that most polymers alter the viscosity/temperature slope to only a moderate degree. However, as shown by FIG.
  • the block copolymers of the present invention have an unexpected effect in providing a unique viscosity/temperature slope between 210F and 0F.
  • multi-grade oils such as SAE l0W/30, l0W/4O and 10W/50 oils may be compounded with the present combination of additives utilizing as the oil base the relatively heavier oils, e.g., fractions having a viscosity at 100F of at least about SUS such as HV] or heavier, rather than resorting to thinning the composition with the more volatile lubricants.
  • the working examples furthermore demonstrate that even within the area of polymers having the structure polystyrenehydrogenated polyisoprene, the block molecular weights and weight proportions of thetwo blocks must be within the limits specified hereinbefore if the block copolymer is to impart a substantial increase inviscosity index.
  • the present invention not only provdes wide range multigrade lubricant compositions but also provides compositions having relatively low ash content, e.g. less than about 1 percent by weight sulfated ash, which are especially suitable for gasoline engines.
  • the basic composition as described above may be used as such but preferably is modified by the presence of supplementary additives combined with the block copolymer and pour point depressant to provide the necessary stability, detergency, dispersancy,antiwear and anticorrosion properties required of modern lubricants according to increasingly severe automotive specifications.
  • polymeric succinic acid derivatives used as detergent-dispersants. These can be made by the process described in U.S. Pat. Nos. to Hughes 3,215,632 issued Nov. 2, 1965; to Rense 3,215,707 issued Nov. 2, 1965; to Stuart et a1. 3,202,678 issued Aug. 24, 1965, or Le Suer et al. Canadian 681,235 issued Mar.
  • succinimide of mono(polyisobutylene) succinic anhydride and tetraethylene pentamine the polyiso-butylene radical having a molecular weight of about 1,000
  • amine derivative of polyisobutyl monocarboxylic acid and tetraethylene pentamine having a molecular weight of about 1,000
  • succinimide of mono(polypropylene)succinic anhydride and diethylene triamine the polypropylene radical having a molecular weight of 800-1,500
  • diimide of mono(polyisobutylene)succinic anhydride and tetraethylene pentamine the polyisobutylene radical having a molecular weight of 800-1500.
  • the most preferred ashless dispersants to be used in the lubricants of the present invention are achieved by providing oil-soluble compositions prepared by reacting under esterification conditions (A) at least one substituted poly carboxylic acid acylating agent containing an average of at least about 30 aliphatic carbon atoms per substituent with (B) at least one polyhydric alcohol in amounts such that there is at least one equivalent of polyhydric alcohol for each equivalent of substituted carboxylic acid acylating agent to form an estercontaining first reaction mixture and thereafter intimately contacting this first reaction mixture with (C) from about 0.025 to about 0.15 equivalent of at least one hydroxy-substituted primary amine per equivalent of (A).
  • (A) is further characterized in that it is a substantially saturated acylating agent produced by reacting ethylenically unsaturated carboxylic acidic reactant of the formula Itocoon or the corresponding carboxylic acid halides, anhydrides, and esters where R is characterized by the presence of at least one ethylenically unsaturated carbonto-carbon covalent bond and n is an integer of two to six, with an ethylenically unsaturated hydrocarbon or chlorinated hydrocarbon containing at least thirty aliphatic carbon atoms at a temperature within the range of l00-300C with the proviso that said acylating agent may contain polar substituents to the extent that such polar substituents do not exceed percent by weight of the hydrocarbon portion of the acylating agent excluding the weight of the carboxylic acid groups.
  • detergents results in a substantial reduction (e.g., -50 percent) in the ash level compared to the use of other detergents which may otherwise be effective and satisfactory, such as the succinimides of high molecular weight mono(polyolefin)- succinic anhydride and polyalkylene polyamines.
  • Alkaline earth metal overbased petroleum sulfonates also may be employed.
  • the highly basic alkaline earth metal (Mg, Ca and/or Ba) petroleum sulfonate can be made by suitable means known in the art such as described in British Patents 790,471 and 818,323 or Ellis et a1. U.S. Pat. No. 2,865,956 issued Dec. 23, 1958.
  • the basic calcium petroleum sulfonates (M.W. 300-800) are preferred.
  • basic sulfonate is meant that the end product has a basicity in excess of 20 percent and up to 1,800 percent and preferably between 40 percent and 1,400 percent in excess of that normally required to neutralize the acid to produce the normal salt.
  • alkyl aromatic compounds e.g., alkylated benzene, or alkylated naphthalene
  • alkylated benzene also can be used in forming the basic magnesium, calcium and/or barium sulfonate salt, such as basic calcium diwax benzene sulfonate, basic diwax naphthalene sulfonate and the like, the basicity being in excess of about 50-180 percent and the molecular weight of the compound between 450 and 750.
  • Similar alkaline earth metal alkyl phenates and alkyl salicylates also are useful.
  • dithiophosphates may be included as supplementary additives, e.g., Ca, Zn, Pb salts of alkylthiophosphates, as well as their thio derivatives, Zn bis (2-ethylhexyl)dithiophosphate, Zn dioctyl dithiophosphate Zn bis(alkylphenyl)dithiophosphate, P 8 terpene reaction product, phosphonates such as dibutyl methane phosphate, dibutyl trichloromethane phosphonate, dibutyl monochloromethane phosphate, dibutyl chlorobenzene phosphonate, and the like.
  • phosphonates such as dibutyl methane phosphate, dibutyl trichloromethane phosphonate, dibutyl monochloromethane phosphate, dibutyl chlorobenzene phosphonate, and the like.
  • the full esters of pentavalent phosphorus acids may be used, such as triphenyl, tricresyl, trilauryl and tristearyl orthophosphates or potzlssium salt of P S -terpene reaction products or zinc above, like Zn di(C alkyl)dithiophosphate, e.g., Zn bis(2-ethylhexyl)- dithiophosphate, Zn bis(alkylphenyl)dithiophosphate.
  • Anti-foaming agents such as silicone polymers, e.g., dimethyl silicone polymer, can also be used.
  • phenolic antioxidants such as alkylphenols, e.g., 2-6-ditert.butyl-4-methylphenol or p,p'- methylene bisphenols such as 4,4-methylene-bis(2,6- ditert.butylphenol) or arylamines such as phenylalphanaphthylamine; dialkyl sulfides and mixtures thereof, e.g., dibenzyl disulfide or didodecyl sulfide.
  • phenolic antioxidants such as alkylphenols, e.g., 2-6-ditert.butyl-4-methylphenol or p,p'- methylene bisphenols such as 4,4-methylene-bis(2,6- ditert.butylphenol) or arylamines such as phenylalphanaphthylamine; dialkyl sulfides and mixtures thereof, e.g., dibenzyl disulfide or didodec
  • Anti-scuffing agents include esters of metal salts or organic phosphites, phosphates, phosphonates and their thio derivatives, such as C trialkyl phosphites, or phosphonates, e.g., tributyl-, trioctyl-, trilauryl-, tristearyl-, tricyclohexyl-, tribenzyl-, tricresylor triphenyl phosphites or phosphates.
  • a preferred formulation incorporating the present invention is as follows:
  • the acrylic pour point depressant was a copolymer of cetyl methacrylate (50%w), lauryl methacrylate (%w) and octyl methacrylate (25%w), used in amount of 0. 1 7%w), based on the oil.
  • the block polymers tested are identified in Table I.
  • the polymer column identifies the types of blocks and the mol wt column shows the molecular weight of each block.
  • Ethylene/propylene random copolymer (Sample I) had poor shear stability. This particular ethylene/propylene copolymer was chosen for investigation because of its moderately good low temperature flow properties. In general, ethylene/propylene random copolymers are very poor in low temperature flow.
  • the hydrogenated block polymer containing a styrene/- butadiene random copolymer block (Sample I) had 11 poor thickening efficiency, less than the desired effect on V1 and relatively high viscosity.
  • the block copolymer including a hydrogenated polybutadiene block (prepared by 72 percent 1,2 addition) (Sample H) showed virtually no VI enhancement effect.
  • the set of Other block copolymers e.g., a 3-block copolymer having the structure:
  • the viscosity index was determined for lubricating at 2100 ⁇ ?” h lower the viscosity 00F measured i the compositions comprising a block copolymer (same as cold crahklhg slmulamrg the h f y the 011 me polymer of Sample F, Table II of Example [1), ployed for a given multigrade oil. It is readily apparent 02%, of a pour point depressant (Same as used in from the Figure that the polymers fall into two classes, ample II), and four lubricating oils differing in VI.
  • the ethylene propyl- HVI 100N 2.0 75.9 423 176 ene random copolymer is much too susceptible to deg- HVI WON 1246 186 radation by shear to remain an SAE 1OW/5O under norvHvt IOON 0 38.7 84 129 VHVI WON L0 483 I58 184 mal service.
  • Ratio Ratio (percent HVI HVI Sample Polymer Mn X 10- w) 100 N 250 N A Hydrogenated polyisoprene 41 P S- sible B ..do 98 2.4 10/90 C.... ..do 2.1 25/75 D... Polystyrene-hydrogenated polyisoprene Vietnamese 29-51 1.9 75/25 15.... ..do 32-54 1.7 75/25 F.... ..do 38-70 1.5 72/28 6.... ..do 40-69 1.8 77/23 H Hydrogenated polystyrene-hydrogenated 21-107 2.7 25/75 polyisoprene.
  • Sequence 111 C This is an oxidation thickening test, designed to simulate conditions such as those encountered by a car pulling a trailer at mph.
  • Sequence VC This is a low temperature sludge and varnish test to indicate effect of the oil formulation on engine cleanliness.
  • Sequence 118 This test is designed to establish the rust protection properties of the oil formulation under dynamic operating conditions.
  • the SAE 10W/50 formulation having low base stock volatility and low oil consumption in service is made possible by the unique thickener, polystyrenehydrogenated polyisoprene.
  • the low temperature properties are enhanced by the vinyl pyridinemethacrylate copolymer, while oxidation inhibition and anti-wear protection are obtained by the dithiophosphate.
  • Anti-rust and engine cleanliness are promoted by the overbased calcium sulfonate and the ashless dispersant (polybutylene succinimide).
  • the entire formulation typically has only 0.8 percent sulfated ash.
  • the above formulation provides excellent sludge, varnish and wear control as indicated by the Sequence 111C, VC and L-38 tests.
  • the rust rating in the Sequence 118 test assures adequate rust protection under the most severe operating conditions.
  • the oil satisfies current shear stability requirements: that is, it stays within the SAE 10W/50 viscosity grade after (a) 1,000 simulated miles in a Ford 302-C1D shear stability test (60 mph for 17 hours) and (b) 10 hours in the L-38 engine test.
  • An additional advantage of the present invention lies in the ease of hot starting, enabled by the use of, for example, a lW/50 oil of this invention. It is a fairly common occurrence that cars experience, hot starting problems when, for example, after a high speed trip on a freeway they are stopped to refill the gas tank.
  • a comparison was made between the SAE 10W/50 oil of Example VI and a SAE 10W/30 oil as described in the Henderson patent US. Pat. No. 3,438,897. The tests were carried out on a 1972 Chevelle with a 307-CID V-8 engine to determine cranking speed as a function of coolant temperature in the jacket next to the inder wall. Results of this comparison clearly indicated at least a 10F increase in the temperature at which the engine could be started when using the SAE 10W/50 oil of this invention over the [OW/30 oil of the Henderson patent.
  • the above SAE l0W/50 formulation was run in the Sequence I18 and gave an engine rust rating of 9.0.
  • the above formulation had essentially the same components in different concentrations as the formulation of Example V1, except that magnesium sulfonates (800 percent overbased) were used in place of calcium sulfonates.
  • a lubricating oil composition comprising a. a major amount of a mineral lubricating oil having a viscosity index of at least b. a minor but effective pour point depressing amount of a pour point depressant for said oil of the group consisting of copolymers of alkyl acrylates, copolymers of alkyl methacrylates and copolymers of nitrogen-containing esters of the acrylic acid series; and
  • a block copolymer comprising 1. a single polymer block A, at least about 75 percent of which is condensed alkenyl arene units, no more than about 5 percent of the aromatic unsaturation being reduced by hydrogenation, said block A having an average molecular weight between about 10,000 and 55,000;
  • a single hydrogenated polymer block B said block, prior to hydrogenation, being a polyisoprene block; at least about percent of the olefinic unsaturation of block 13 being reduced by hydrogenation; said block B having an average molecular weight between about 20,000 and about 100,000; the weight ratio of block A to block B being between about 0.45:1 and about 0.8:1; any remaining blocks in the block copolymer having a total average molecular weight not exceeding about 7,500, being selected from alkenyl arene polymer blocks and conjugated diene polymer blocks each having the monomer identity and hydrogenation limitations recited for blocks A and B.
  • a lubricating oil composition according to claim 1 comprising a. a major amount of a mineral lubrication oil
  • A is a polymer block comprising at least about 75 percent by weight of condensed styrene units, no more than 25 percent of the aromatic unsaturation in said block being reduced by hydrogenation; and 2.
  • B is hydrogenated polymer block comprising, prior to hydrogenation, at least 75 percent by weight of condensed isoprene units, at least 95 percent of the olefinic unsaturation in said block being reduced by hydrogenation.
  • A is a homopolymer block of styrene having an av- I erage molecular weight between about 25,000 and about 50,000.
  • B is a hydrogenated homopolyisoprene block having an average molecular weight between about 35,000 and about 80,000; the weight ratio of A18 being between 0.511 and 0.721.

Abstract

Lubricating oil compositions for internal combustion engines having unexpectedly wide temperature operating characteristics, contain a combination of 2-block copolymer comprising a first polymer block of an alkenyl arene, e.g., styrene and a second essentially completely hydrogenated polymer block of isoprene and certain pour point depressants in a lubricant base stock having a viscosity index of at least 85. The compositions have excellent shear stability and can be formulated to pass a number of the ASTM and SAE engine oil performance and engine service classifications.

Description

United States Patent [1 1 St. Clair et al.
[ Nov. 13, 1973 LUBRICATING COMPOSITIONS [75] Inventors: David J. St. Clair, Bethalto, 111.;
Donald D. Evans, Burlington, Ontario, Canada [52] [1.8. CI. 252/32.7 E, 252/51.5 A, 252/56 R,
252/59 [51] Int. Cl. C10m 1/48, ClOm l/16 [58] Field of Search 252/32.7 E, 33.4, 252/5l.5 A, 59, 56 R; 260/879 [56] References Cited UNITED STATES PATENTS 2,889,282 6/1959 Lorensen et al. 252/5l.5 A 3,438,897 4/1969 Henderson 3,554,911 l/1971 Schiff et a1 252/59 FOREIGN PATENTS OR APPLICATIONS 769,281 3/1957 Great Britain 252/59 Primary Examiner-Patrick P. Garvin Assistant Examiner-Andrew H. Metz Att0rneyWilliam I-I. Myers et a1.
[5 7] ABSTRACT Lubricating oil compositions for internal combustion engines having unexpectedly wide temperature operating characteristics, contain a combination of 2-block copolymer comprising a first polymer block of an alkenyl arene, e.g., styrene and a second essentially completely hydrogenated polymer block of isoprene and certain pour point depressants in a lubricant base stock having a viscosity index of at least 85. The compositions have excellent shear stability and can be formulated to pass a number of the ASTM and SAE engine oil performance and engine service classifications.
9 Claims, 1 Drawing Figure PAIENTEDIIIII I3 I975 HVI 250M MAY I HVI 80N MUST BE ADDED TO +I BE ADDED TO 3 FORMULATION FORMULATION h I I I N I N ,-I- o I F E I I :0 I O (I! A 9 I u. 0 I o I O m 4 1. (\I m I w a; I I: (I) o I O o m I 2 m 7,, I v m I 9 J, l 3 m I I E: O o (\l I m I I w I 0 I I BASE I BLEND I I SAE 5w SAE IOW SAE 20w I2p 24p VISCOSITY AT 0 F BASE BLEND CONTAINS ALL HVI MENTAL ADDITIVE PACKAGE WITHOUT VI IMPROVER.
IOON PLUS A COMPLETE SUPPLE- LUBRICATING COMPOSITIONS BACKGROUND OF THE INVENTION 1. Field of Invention This invention relates to novel lubricating compositions and the like, containing a critically defined combination of certain block copolymers and pour point depressants. Unless otherwise indicated, the terms lubricant, lubricating oil or lubricating composition refer to lubricating oils for internal combustion engines.
2. Description of the Prior Art a The art of lubricating oil formulation has become increasingly complex with the ever more stringent demands made by the developing automotive industry. One of the primary requirements is to provide an economical petroleum lubricant which can be utilized over a wide range of operating conditions, especially insofar as temperature variations are concerned. At the same time, the formulated lubricant must also possess an ability to impart oxidative stability, detergency, disper sancy, wear inhibition and corrosion inhibition during its use as well as during storage. Furthermore, the auto motive industry desireslubricants which will stay in their SAE viscosity grades'fora substantial length of time again under both use and storage conditions.
By multi-grade lubricants is meant lubricants which meet a F viscosity specification and a 210F viscosity specification, such as is shown for motor oils by the following table derived from SAE, 1300a taken from the SAE Handbook for 1969:
Viscosity at SAE Viscosity at SAE Oil Grade 0"F, poises Oil Grade 210F, SUS Spec. vSpec.
20 45-58 SW 12 maximum 30 5870 10W 12-24 40 7085 20W 24-96 50 According to the table, for example, an SAE l0W/50 oil must have a viscosity at0F between 12 and 24 poises and a viscosity at 210F of between 85 and 110 SUS.
The art has evolved a number of multi-grade oils such as SAE l0W/30 and SAE 20W/40 oils but with few exceptions has not been able to formulate wider multigrade oils such as SAE l0W/50 having low oil consumption and high shear stability. Commercially, such formulations should be economically feasible, capable of large scale production, versatile in regard to the base stock and preferably resistant to degradation under conditions of high shear.
A large variety of polymeric additives have been employed primarily as thickening agents, viscosity index (VI) improvers andpour point depressants. A common limitation of essentially all of these is shear sensitivity. This is not unexpected, since most of the these polymers are'relatively high molecular weight materials and consequently are readily subject to shear degradation. On the other hand, relatively low molecular weight polymeric materials, at least up to the present time, have proven to be relatively ineffective as thickeners or VI improvers in automotive engine lubricants, even Pat. No. 3,509,056 issued Apr. 28, 1970, shows the use though they may have reasonably good shear stability.
of styrene-olefin copolymers prepared by Ziegler catalysts as lubricating oil additives. These have proven to be surprisingly ineffective as thickening agents and VI improvers. A number of block polymers of the tapered type have been investigated such as those prepared by copolymerization of alpha methyl styrene and ethylene. For some unexplained reason, as shown in Anderson U.S. Pat. No. 3,290,414, issued Dec. 6, 1966, the tapered or random copolymerization as in the case of styrene-butadiene random copolymerization results in an unsatisfactory composition.
Certain styrene-hydrogenated butadiene block copolymers have been employed as pour point depressants or thermal degradation stabilizers in pertroleum fuels as shown in Streets U.S. Pat. No. 3,419,365 issued Dec. 31, 1968. However, since they were employed as fuel additives, they-were used in frictional percentages which were too small to appreciably affect the thickening of the oil or the viscosity index thereof. Moreover, as will be developed later, block copolymers containing hydrogenated polybutadiene blocks show essentially no response to supplementary pour point depressants, especially if the 1,2-content is low.
Fully formulated multi-grade oils of the SAE l0W/30 type are shown in Henderson U.S. Pat. No. 3,438,897 issued Apr. 15, 1969. However, the combination of lubricating oil additives disclosed by this patent, while useful for relatively narrow multi-grade oils, such as SAE 10W/30, does not provide for the possibility of compounding wider multi-grades such as SAE 5W/20, 5W/30, 10W/40, 10W/50 or SAE 20W/50.
SUMMARY OF THE INVENTION It is an object of the present invention to provide improved lubricating compositions. It is another object of the present invention to provide improved multi-grade lubricants. It is a particular object of the invention to provide wide multigrade compositions which will exhibit lower oil consumption due to volatility than the same viscosity multigrade oil made with conventional VI improvers. Other objects will become apparent during the following detailed description of the invention.
Now, in accordance with the present invention hydrocarbon lubricating compositions are provided comprising the following components:
a. a hydrocarbon lubricating oil having a viscosity index of at least b. a minor but effective amount of pour point depressant for said oil; and g c. 01-10 percent by weight of a block copolymer comprising 1 I. a single polymer block A, at least 75 percent of which is condensed alkenyl arene units, no more than 5 percent of the aromatic unsaturation being reduced by hydrogenation of the block copolymer, said block A having an average molecular weight between about 10,000 and about 55,000; and 2. a single hydrogenated polymer block B, said block, priorto hydrogenation, being a polyisoprene block; at least percent of the olefinic unsaturation of block B being reduced by hydrogenation of the block copolymer; same block B having an average molecular weight between about 20,000 and about 100,000;
the weight ratio of block A to block B being between about 0.45:l and 0.8:1;
remaining blocks C, if any, in the block copolymer having a total average molecular weight not exceeding about 7,500 and being selected from alkenyl arene polymer blocks, conjugated diene polymer blocks and copolymer blocks of alkenyl arenes and conjugated dienes, each having the hydrogenation limitations of blocks A and B.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In accordance with this invention it has been found that block copolymers having the above limitations, when combined with a high viscosity index hydrocarbon lubricant containing a pour point depressant, exhibit outstanding physical characteristics not possessed by any other polymeric thickener investigated to date. Preferably, the block copolymer has the simple structure A-B. However, as pointed out above, it may have the alternative structure A-B-C wherein C is the relatively low molecular weight polymer block referred to above. It is preferred that each of blocks A and B be homopolymeric blocks. Moreover, it is preferred that polymer block A be essentially aromatic, e.g. less than 5 percent hydrogenated while polymer block B be at least 99 percent saturated insofar as its original olefinic unsaturation is concerned.
The monoalkenyl arenes, particularly a-alkenyl arenes, which may be used in the preparation of the subject class of block copolymers comprise styrene and methyl styrenes such as alpha methyl styrene, vinyl toluene and other ring methylated styrenes. Styrene is the preferred monomer. Mixtures of these alkenyl arenes may be used if desired.
Polyisoprene is the conjugated diene employed in preparing the precursor of block B. Preferably the polyisoprene block should have at least about 80 percent l,4 structure which may be either cis or trans and still more preferably it should have at least about 88 percent 1,4 structure.
The block copolymers may be prepared by conventional methods using lithium-based initiators, preferably lithium alkyls such as lithium butyls or lithium amyls. Polymerization is usually conducted in solution in an inert solvent such as cyclohexane or alkanes such as butanes or pentanes and mixtures of the same. The first monomer to be polymerized (which may be either mono alkenyl arene or isoprene) is injected into the system and contacted with the polymerization initiator which is added in an amount calculated to provide the predetermined average molecular weight. Subsequent to obtaining the desired molecular weight and depletion of the monomer, the second monomer is then injected into the living polymer system and block polymerization occurs, resulting in the formulation of the living block copolymer poly(alkenyl arene)- polyisoprene which is then killed, e.g., by the addition of methanol.
This precursor is then subjected to selective hydrogenation such as by the method shown in Wald et al. U.S. Pat. No. 3,595,942 issued July 27, 1971, to form the block copolymers used in the lubricating compositions of this invention. Preferably hydrogenation is conducted in the same solvent in which the polymer was prepared, utilizing a catalyst comprising the reaction product of aluminum alkyl and a nickel or cobalt carboxylate or alkoxide. A favored catalyst is the reaction product formed from triethyl aluminum and nickel octoate.
The temperatures and pressures employed in the hydrogenation step are adjusted such as shown in the last referred-to patent to cause essentially complete hydrogenation of the polyisoprene block with essentially no effective hydrogenation of the monoalkenyl arene polymer block.
The polymer may be isolated from its solvent after its hydrogenation and dispersed in lubricating oil. This may be effected, for example, by adding a lubricating oil to the solution of hydrogenated polymer and thereafter evaporating the relatively volatile solvent.
It is convenient to prepare concentrates of the hydrogenated block copolymer in lubricating oil. Such concentrates suitably contain up to about 20 percent by weight of the hydrogenated block copolymer and preferably between about 2.5 and 15 percent by weight depending on polymer molecular weight.
Wherein the present specification and claims, reference is made to molecular weights of the block copolymers, these are meant to refer to number average molecular weights as determined, for example, by tritium counting techniques or osmotic pressure methods.
Preparation of the block copolymers by anionic solution polymerization results in the desired relatively very narrow molecular weight spread as contrasted to the broad spectrum of species which results from the use of Ziegler polymerization catalysts. Broad spectrum (Ziegler) polymers, containing a substantial proportion of high molecular weight fractions, exhibit excessive shear degradation.
Preferably the polymer blocks A have molecular weights between about 25,000 and 50,000 and the polymer blocks B have molecular weights between about 35,000 and 80,000. Still more preferably, the weight ratio of A:B is from 0.521 to 0.721.
The pour point depressants utilized in accordance with the present invention and in conjunction with the block polymers as defined above are employed primarily for their pour point depressing effect although many of them may act as viscosity index improvers or thickeners. However, since they are employed in minor (pour point depressing) amounts, e.g., 0.l2.5 percent by weight preferably 0.l50.7 percent by weight, their proportion is normally too small to have an appreciable effect upon oil properties other than pour point. It is essential that the pour point depressant be present, however, since the block copolymers defined above exhibit essentially no effective pour point depressant function. On the other hand, one of the prime characteristics of the above class of block copolymers is their effective response to added pour point depressants such as high molecular weight compolymers of alkyl acrylates or alkyl methacrylates as well as nitrogen containing acrylic esters. By the term acrylic esters" is meant esters of acids of the acrylic acid series including both acrylic acid and methacrylic acid.
The nitrogen-containing acrylic ester polymers as defined can be prepared by any suitable means such as described in Hughes et al. US. Pat. No. 3,215,632 issued Nov. 2, 1965, and can be illustrated by the following examples: Nitrogen-containing polymers, namely, copolymers of vinyl pyridine and C alkyl methacrylates, having a molecular weight range of from 1,500 to 2,000,000, preferably between 200,000 and 850,000 include (1) copolymer of 25 percent 2-methyl -vinyl pyridine and 75 percent stearyl methacrylate, molecular weight 200,000; (2) copolymer of 30 percent stearyl methacrylate, 51 percent lauryl methacrylate, 14 percent methyl methacrylate and 5 percent 2-methyl-5- vinyl pyridine, molecular weight 600,000; (3) copolymer of 14 percent methyl methacrylate, 54 percent lauryl methacrylate, 27 percent stearyl methacrylate and 5 percent 2-methyl-5-vinyl pyridine in weight ratio molecular weight 830,000; (4) copolymer of lauryl methacrylate, stearyl methacrylate and 2-methyl-5-vinyl pyridine in the weight ratio of 602355, molecular weight 810,000; (5) copolymer of 2-methyl-5-vinyl pyridine, lauryl methacrylate and stearyl methacrylate in the weight ratio of 75:58:34.5, molecular weight 31,000; (6) N-vinyl pyrrolidone-alkyl acrylate copolymers; and (7) N,N-dimetyl-aminoethyl acrylate-alkyl acrylate copolymers.
The oil component of the lubricating compositions according to the present invention is especially designed for the preparation of multi-grade lubricants although single grade lubricants may be compounded as well. Still more specifically, the present combination of block copolymer and pour point depressant is especially beneficial in Wax-containing lubricating oil cuts such as found in Mid Continent oils, West Texas Ellenburger crudes, East Texas crudes, Oklahoma crudes, Pennsylvania crudes and California crudes and similar waxy crudes which may be referred to as paraffin base crudes, naphthenic crudes or mixed base crudes as distinguished from asphalt base crudes. While lubricating oils of any viscosity may be used as the base for the present compositions, the preferred oils are referred to as High Viscosity Index (HVl) 100 Neutral, HVI 250 Neutral and PW! Bright Stock as well as combinations of the same. Also included in this general term l-lVI for the purpose of this description, are very high viscosity index (VHVl) oils such as those prepared via hydrocracking of poor quality oils, such as low viscosity index (LVI) oils. More volatile oils may be employed for special purposes such as(HVI) 80N. These neutral oils are produced by well-known refining methods, such as distillation, dewaxing, deasphalting, dearomatizing, etc, as may be needed, dependant largely on the crude oil used. Typical properties of these HVI oils are the following:
PROPERTIES OF BASE OILS HVI HVI HVI HVI VHVI Designation 80 N 100 N 250 N 150 BS 100 N VlS 210F (SUS) 38.0 39.8 50.0 157 38.6 VIS 100F (SUS) 82 107 265 2775 32.7 VI 103 93 93 95 126 Gravity (lb/gal) 7.08 7.20 7.33 7.44 7.21 Four Point (F) 5' 20 20 0 Flash Point (F) 360 405 430 575 400 Aniline Cloud Point 203 213 220 260 226 ll: Aromatics by UV 15 l1 14 27-40 5 w S 0.05 0.09 0.05 0.16 0.05 ASTM Color L05 L0.5 L10 L45 L05 The present invention, in part, comprises the discovery that the block polymers as defined hereinbefore are only effective in hydrocarbon lubricants having a viscosity index of at least and preferably of at least as defined by ASTM test D227064. Data given hereinafter will establish the criticality of the present invention in this respect by showing the block copolymers of the invention either have little or no effect on Vl on low and medium VI oils, or actually reduce the VI in such oils.
One of the primary aspects of the present invention comprises the discovery of the unique capability of these compositions for the provision of wide multigrade lubricants having relatively low tendency toward oil consumption during use. It has been wellestablished that oil consumption is directly related to the relative volatility of the lubricant base. With most thickeners and VI improvers as well as most pour point depressants it is essential to formulate an SAE l0W/50 lubricant containing a substantial amount of relatively high volatility oils such as 80N or even lighter. This is due to the basic fact that most polymers alter the viscosity/temperature slope to only a moderate degree. However, as shown by FIG. I forming a part of this specification, it will be seen that the block copolymers of the present invention have an unexpected effect in providing a unique viscosity/temperature slope between 210F and 0F. The practical result of this is that multi-grade oils such as SAE l0W/30, l0W/4O and 10W/50 oils may be compounded with the present combination of additives utilizing as the oil base the relatively heavier oils, e.g., fractions having a viscosity at 100F of at least about SUS such as HV] or heavier, rather than resorting to thinning the composition with the more volatile lubricants. The second commercially important implication of this is that a single mixture of relatively heavy lubricant base stocks may be kept in storage for the preparation of a number of multi-grade oils which may be prepared simply by varying the block copolymer concentration. Thus, by the use of the present invention it is possible not only to simplify manufacturing requirements but also to reduce oil consumption during engine operation.
As will be seen in the working examples which follow, other types of polymers which may provide a certain degree of oil thickening or VI improving at temperature between 100+F and 210F, do not have the unique and strong effect upon the viscosity/temperature slope between 0F and 210F as is experienced with the particular'block copolymers of this invention. The unexpectedly low viscosities at 0F of the SAE l0W/50 compositions of this invention are unique and cannot be achieved with other polymers. The working examples furthermore demonstrate that even within the area of polymers having the structure polystyrenehydrogenated polyisoprene, the block molecular weights and weight proportions of thetwo blocks must be within the limits specified hereinbefore if the block copolymer is to impart a substantial increase inviscosity index.
The present invention not only provdes wide range multigrade lubricant compositions but also provides compositions having relatively low ash content, e.g. less than about 1 percent by weight sulfated ash, which are especially suitable for gasoline engines.
The basic composition as described above may be used as such but preferably is modified by the presence of supplementary additives combined with the block copolymer and pour point depressant to provide the necessary stability, detergency, dispersancy,antiwear and anticorrosion properties required of modern lubricants according to increasingly severe automotive specifications.
Among such supplementary additives are polymeric succinic acid derivatives used as detergent-dispersants. These can be made by the process described in U.S. Pat. Nos. to Hughes 3,215,632 issued Nov. 2, 1965; to Rense 3,215,707 issued Nov. 2, 1965; to Stuart et a1. 3,202,678 issued Aug. 24, 1965, or Le Suer et al. Canadian 681,235 issued Mar. 3, 1964, and can be illustrated by examples (1) succinimide of mono(polyisobutylene) succinic anhydride and tetraethylene pentamine, the polyiso-butylene radical having a molecular weight of about 1,000, (2) amine derivative of polyisobutyl monocarboxylic acid and tetraethylene pentamine having a molecular weight of about 1,000, (3) succinimide of mono(polypropylene)succinic anhydride and diethylene triamine, the polypropylene radical having a molecular weight of 800-1,500, (4) diimide of mono(polyisobutylene)succinic anhydride and tetraethylene pentamine, the polyisobutylene radical having a molecular weight of 800-1500.
The most preferred ashless dispersants to be used in the lubricants of the present invention are achieved by providing oil-soluble compositions prepared by reacting under esterification conditions (A) at least one substituted poly carboxylic acid acylating agent containing an average of at least about 30 aliphatic carbon atoms per substituent with (B) at least one polyhydric alcohol in amounts such that there is at least one equivalent of polyhydric alcohol for each equivalent of substituted carboxylic acid acylating agent to form an estercontaining first reaction mixture and thereafter intimately contacting this first reaction mixture with (C) from about 0.025 to about 0.15 equivalent of at least one hydroxy-substituted primary amine per equivalent of (A). These reaction products and their preparation are described in Widmer et a1. U.S. Pat. No. 3,576,743, issued Apr. 27, 1971. Still more preferably, (A) is further characterized in that it is a substantially saturated acylating agent produced by reacting ethylenically unsaturated carboxylic acidic reactant of the formula Itocoon or the corresponding carboxylic acid halides, anhydrides, and esters where R is characterized by the presence of at least one ethylenically unsaturated carbonto-carbon covalent bond and n is an integer of two to six, with an ethylenically unsaturated hydrocarbon or chlorinated hydrocarbon containing at least thirty aliphatic carbon atoms at a temperature within the range of l00-300C with the proviso that said acylating agent may contain polar substituents to the extent that such polar substituents do not exceed percent by weight of the hydrocarbon portion of the acylating agent excluding the weight of the carboxylic acid groups. The use of such detergents results in a substantial reduction (e.g., -50 percent) in the ash level compared to the use of other detergents which may otherwise be effective and satisfactory, such as the succinimides of high molecular weight mono(polyolefin)- succinic anhydride and polyalkylene polyamines.
Alkaline earth metal overbased petroleum sulfonates also may be employed. The highly basic alkaline earth metal (Mg, Ca and/or Ba) petroleum sulfonate can be made by suitable means known in the art such as described in British Patents 790,471 and 818,323 or Ellis et a1. U.S. Pat. No. 2,865,956 issued Dec. 23, 1958. The basic calcium petroleum sulfonates (M.W. 300-800) are preferred. By basic sulfonate is meant that the end product has a basicity in excess of 20 percent and up to 1,800 percent and preferably between 40 percent and 1,400 percent in excess of that normally required to neutralize the acid to produce the normal salt. Other types of sulfonic acids in the molecular weight range of 350 to 800 and derived from olefinic polymers, alkyl aromatic compounds, e.g., alkylated benzene, or alkylated naphthalene also can be used in forming the basic magnesium, calcium and/or barium sulfonate salt, such as basic calcium diwax benzene sulfonate, basic diwax naphthalene sulfonate and the like, the basicity being in excess of about 50-180 percent and the molecular weight of the compound between 450 and 750. Similar alkaline earth metal alkyl phenates and alkyl salicylates also are useful.
Furthermore, dithiophosphates may be included as supplementary additives, e.g., Ca, Zn, Pb salts of alkylthiophosphates, as well as their thio derivatives, Zn bis (2-ethylhexyl)dithiophosphate, Zn dioctyl dithiophosphate Zn bis(alkylphenyl)dithiophosphate, P 8 terpene reaction product, phosphonates such as dibutyl methane phosphate, dibutyl trichloromethane phosphonate, dibutyl monochloromethane phosphate, dibutyl chlorobenzene phosphonate, and the like. The full esters of pentavalent phosphorus acids may be used, such as triphenyl, tricresyl, trilauryl and tristearyl orthophosphates or potzlssium salt of P S -terpene reaction products or zinc above, like Zn di(C alkyl)dithiophosphate, e.g., Zn bis(2-ethylhexyl)- dithiophosphate, Zn bis(alkylphenyl)dithiophosphate. Corresponding dithiocarbamates, preferably zinc salts, also may be employed.
Anti-foaming agents such as silicone polymers, e.g., dimethyl silicone polymer, can also be used.
When desired, additional improvements with respect to oxidation stability and scuffing inhibition can be imparted to the oil compositions of the invention by incorporating small amounts (0.01 %2%, preferably 0.1%-1%) of phenolic antioxidants such as alkylphenols, e.g., 2-6-ditert.butyl-4-methylphenol or p,p'- methylene bisphenols such as 4,4-methylene-bis(2,6- ditert.butylphenol) or arylamines such as phenylalphanaphthylamine; dialkyl sulfides and mixtures thereof, e.g., dibenzyl disulfide or didodecyl sulfide. Anti-scuffing agents include esters of metal salts or organic phosphites, phosphates, phosphonates and their thio derivatives, such as C trialkyl phosphites, or phosphonates, e.g., tributyl-, trioctyl-, trilauryl-, tristearyl-, tricyclohexyl-, tribenzyl-, tricresylor triphenyl phosphites or phosphates.
A preferred formulation incorporating the present invention is as follows:
Components by Weight Block Copolymer 0.1-10 Pour Point Deprcssant 0.1-5 Oil Soluble Metal Thiophosphate 0.01-0.11 Ashless detergent 0.1-8.5 Overbased alkaline earth metal alkaryl sulfonate (Basis sulfated ash) 0.0S-3.5 Oil Balance EXAMPLE 1 Response of Various Block Polymers to Pour Point Depressants The basic compounded oil in this example was a W base oil (47 SUS at 210F) containing sufficient acrylic pour point depressant to reduce its pour point to -F; the VI of the base oil (including acrylic additive) was 117 (Sample A in Table I). The acrylic pour point depressant was a copolymer of cetyl methacrylate (50%w), lauryl methacrylate (%w) and octyl methacrylate (25%w), used in amount of 0. 1 7%w), based on the oil.
The block polymers tested are identified in Table I. The polymer column identifies the types of blocks and the mol wt column shows the molecular weight of each block.
When the polymers of Table I were tested in the uncompounded base oil'they showed no pour point depressant effect. The polymers must therefore be used in combination with a pour point depressant to be useful as low temperature lubricant compositions.
In the tests recorded in Table I, the amount of each polymer employed was that required to thicken the oil blend from 47 SUS to 65 SUS at 210F. Table I summarizes the data obtained:
(Samples C, D, F and G) had substantially higher pour points than that of the compounded base oil without block copolymer. Further data indicate that this pour point problem may be solved by randomly copolymerizing styrene with the butadiene block or by including higher 1,2-content (about 70 percent) in the butadiene block. Both remedies, however, have an adverse effect on the thickening efficiency of the polymer and thus require either higher polymer concentrations to thicken the oil or higher polymer molecular weights.
EXAMPLE II Comparison of Polymers TABLE I Polymer Mol wt conc. Polymer x 10- percentw point, P V1 None 20 l 17 Polystyrene-hydrogenated polyisoprene..... 28-44 1.2 -20 171 Polystyrene-hydrogenated polybutadiene 23-53 1.0 +20 147 Hydrogenated polystyrene-hydrogenated 23-53 1.4 +25 146 polybutadiene. Hydrogenated polystyrene-hydrogenated 21-107 1.0 25 147 polyisoprene Hydrogenated polybutadiene-polystyrene- 61-140-61 1.4 15 160 hydrogenated polybutadiene. Polystyrene-(styrenelhydrogenated buta- 19-(35/10) 1.5 +25 102 diene random copolymer). Hydrogenated polystyrene-hydrogenated 13-70-13 1.3 147 polyisoprene-hydrogenated polystyrene.
TABLE II Sonic shear Conc. Visc. percent Mol wt (percent at 0 F, loss at Sample Polymer X 10 w) VI poises 210 A None B Hydrogenated polyisoprene. 88 1.95 C Polystyrene-hydrogenated po y opren 21-21 4.0 D ..d 19-51 2.6 21-107 1.75 F 28-44 1.85 G 29-51 1.70 11.. Polystyrene-hydrogenated polybutadiene 16-47 4.0 I Hydrogenated polystyrene-hydrogenated 20-(25/25) 7 4,6
(butadicne/styrene)-copolymer J Ethylene/propylene copolymer 1.2 173 14.8
The above screening comparison illustrates several points: Ethylene/propylene random copolymer (Sample I) had poor shear stability. This particular ethylene/propylene copolymer was chosen for investigation because of its moderately good low temperature flow properties. In general, ethylene/propylene random copolymers are very poor in low temperature flow. The hydrogenated block polymer containing a styrene/- butadiene random copolymer block (Sample I) had 11 poor thickening efficiency, less than the desired effect on V1 and relatively high viscosity. The block copolymer including a hydrogenated polybutadiene block (prepared by 72 percent 1,2 addition) (Sample H) showed virtually no VI enhancement effect. The set of Other block copolymers, e.g., a 3-block copolymer having the structure:
hydrogenated polystyrene-hydrogenated polyisoprene-hydrogenated polystyrene did not show this critical feature, being about equally effective in all types of lubricants regardless of V1. However, as the Figure shows, such 3-block copolymers requires the addition ofa relatively light lubricant (80N) in order to meet broad spectrum multi-grade viscosity requirements, such as SAE l0W/50.
EXAMPLE IV Oil Base Stock Requirements for Multigrade Oils the two types of blocks and the molecular weights come within the limits specified for this invention The primary objective, as discussed hereinbefore, (Samples F and G), then the lubricating oil composiwas to design a multgrade lubricant having relatively tion exhibits high polymer thickening efficiency and low volatility. The Figure shows graphically the effect high VI response. of a number of types of polymers upon the oil base stock allowable for multigrade oils. All polymers were EXAMPLE added to a base blend containing HVI 100N plus a rep- Rheological Properties: Relationship to Base Oil resentative additive combination. At a given viscosity The viscosity index was determined for lubricating at 2100}?! h lower the viscosity 00F measured i the compositions comprising a block copolymer (same as cold crahklhg slmulamrg the h f y the 011 me polymer of Sample F, Table II of Example [1), ployed for a given multigrade oil. It is readily apparent 02%, of a pour point depressant (Same as used in from the Figure that the polymers fall into two classes, ample II), and four lubricating oils differing in VI. those cohtalhlhg Polystyrene and thos cohtalhlhg y- Table n presents the results obtained: drogenated polystyrene or no styrene at all. It 15 also apparent that the polystyrene-containing polymers TABLE show a steeper slope in the Figure and thus show superior performance. gr: at glg at 3, 1 These data have been converted into actual polymer Base Oil SUS SUS v1 concentrations and base oil compositions allowed in LVl 100M 0 38.2 106 6 Lvl 100M L0 456 2M 70 SAE 1OW/50 motor oils. Results are shown in Table LVl 100N 2.0 55.4 564 19 IV. The lettered curves on the Figure refer to the corre- LVl WON sponding samples listed in Table IV. It is apparent from Mvl lOON 0 38.2 100 38 My 100M 20 591 638 35 these data that polystyrene-hydrogenated polyisoprene MVI MON 30 98.2 2092 33 is the only polymer which can be used to make an ac- :gg: 8 32% g; :28 ceptable SAE 10W/50 lubricant. The ethylene propyl- HVI 100N 2.0 75.9 423 176 ene random copolymer is much too susceptible to deg- HVI WON 1246 186 radation by shear to remain an SAE 1OW/5O under norvHvt IOON 0 38.7 84 129 VHVI WON L0 483 I58 184 mal service. Except with polystyrene-hydrogenated VHVl IOON 2.0 0.2 39 205 polyisoprene polymers, in order to obtain an SAE 2120 200+ l0W/50 lubricant it was necessary to use substantial As the above data show, the present invention applies am u of HVI 80 Oil in the blend 0f higher to the use of high viscosity index, including very high amounts of polymer. If an 80 neutral oll IS requ viscosity index lubricating oils, since the polystyrene- Inmate result 15 g 011 cohshmphoh dunhg hhydrogenated polyisoprene block polymers were either f a l g amount Ph y needed, the 'hp ineffective or even detrimental in low or medium VI 15 at ah ecohomlc dlsadvahtage compared Wlth the oils. more efficient polymers.
TABLE IV Conc. Ratio Ratio (percent HVI HVI Sample Polymer Mn X 10- w) 100 N 250 N A Hydrogenated polyisoprene 41 P S- sible B ..do 98 2.4 10/90 C.... ..do 2.1 25/75 D... Polystyrene-hydrogenated polyisoprene..... 29-51 1.9 75/25 15.... ..do 32-54 1.7 75/25 F.... ..do 38-70 1.5 72/28 6.... ..do 40-69 1.8 77/23 H Hydrogenated polystyrene-hydrogenated 21-107 2.7 25/75 polyisoprene. l ..do 38-70 3.1 lO/90 J ..do 40-69 3.2 10/90 K Hydrogenated polystyrene-hydrogenated 13-70-13 2.8 25/75 polyisoprene-hydrogenated polystyrene. L Ethylene/propylene random copolymer 1.5 70/30 M Polymethacrylate 6.8 35/65 From comparison, an expert in lubricating oil formulation can see that only the polystyrene-hydrogenated polyisoprene block copolymers are the suitable choice: 1) they are effective at relatively low concentrations; 2) they do not require any high volatility (80 neutral) oil; and 3) a range or oils (e.g. SAE 10W/30, 10W/40 and 10W/50) can be made from the same oil base by varying the polymer concentration.
EXAMPLE V Effect of Partial Hydrogenation of Aromatic Block TABLE V Aromatic Polymer Viscosity Saturation Concentration at 210F (sus) V1 Unexpectedly, these data show that even a small degree of aromatic hydrogenation renders the polymer less desirable as a V1 improver.
EXAMPLE V1 Performance Features of Fully Formulated SAE W/50 Motor Oil A representative SAE 10W/50 lubricating oil formulation in accordance with this invention is shown herewith:
Component %w HVl 100 neutral oil (Mid-Continent 65.66 l-lVl 250 neutral oil (Mid'Continent) 21.89 Polystyrene-hydrogenated polyisoprene (29,000-5l,000 mol wt) 1.95 Zince dialkyl dithiophosphate 2.00 Polyisobutylene succinimide (0.34% total nitrogen. Basic nitrogen nil) 7.00 overbased Ca petroleum sulfonate (1400% excess basicity as CaCO;,) 1.00 Copolymer of 2-methyl-5-vinyl pyridine (5%),
lauryl methacrylate) (60%) and stearyl methacrylate (35%) 810,000 mol wt) 0.50 Dimethyl silicone, ppm 10 Typical properties for this formulation are the following:
Tested Oil Viscosity at 210F, SUS 108.8 Viscosity at 100F, SUS 756.0 Viscosity at 0F (cold cranking 21.2
' simulator), poise Viscosity index 174 Pour Point, F -30 Flash Point, F 405 TBN-E Total Base Number electrometric 5.15 TAN-E Total Acid Number electrometric 2.60 Initial pH 7.5 Sulfated Ash, %w 0.89
Gravity, AP1 29.1 Zinc, %w 0 Phosphorus, %w 5 Calcium, %w 0.17 Magnesium, %w N ASTM Foam Test, ml Sequence 1 1 0/0 Sequence 2 :10/0 (Foam Tendency/Foam Stability Sequence 3 0/0 The formulation was subjected to the series of tests designated ASTM-SE, which were set as standard to satisfy automotive requirements. Reference to these tests may be found in the ASTM special Technical Publication No. 315-E. The set of engine tests are those proposed as additions to Technical Report .1183 of the 1971 SAE Handbook. The more important results of the tests, all of which were passed by the above formulation, are summarized as follows:
Sequence 111 C This is an oxidation thickening test, designed to simulate conditions such as those encountered by a car pulling a trailer at mph.
SE Requirement Tested Oil Average Sludge (10=clean) 9.0 min. 9.8 Average Piston Skirt Varnish (l0=clean) 9.5 min. 9.8 Average Ring Land Varnish (10=c1ean) 6.0 min. 8.3 Viscosity Increase at F,
at 40 hours 400 max. 4 at 64 hours Must complete 18 Cam and Lifter Wear, in.
Average 0.0010 0.0006 Maximum 0.0020 0.0013
Sequence VC This is a low temperature sludge and varnish test to indicate effect of the oil formulation on engine cleanliness.
SE Requirement Tested Oil AverageSludge (l0=clean) 8.5 min. 9.6
Average Varnish (10qrlean) 8.0 min. 8.7 Average Piston Skirt Varnish (l0=clean) 8.7
Oil Screen Clogging, 5 max. 0
Oil Ring Clogging, 5 max. 0
Compression Ring Sticking None None L-38 This is a high temperature test to indicate copperlead bearing corrosion under operating conditions.
Bearing weight loss, mg at 40 hours 40 max. 12.2
Sequence 118 This test is designed to establish the rust protection properties of the oil formulation under dynamic operating conditions.
Average Engine Rust (10=clean) 8.9 min. 8 9
Summarizing the above formulation and engine test results, the SAE 10W/50 formulation having low base stock volatility and low oil consumption in service is made possible by the unique thickener, polystyrenehydrogenated polyisoprene. The low temperature properties are enhanced by the vinyl pyridinemethacrylate copolymer, while oxidation inhibition and anti-wear protection are obtained by the dithiophosphate. Anti-rust and engine cleanliness are promoted by the overbased calcium sulfonate and the ashless dispersant (polybutylene succinimide). The entire formulation typically has only 0.8 percent sulfated ash.
As shown by the engine test results, the above formulation provides excellent sludge, varnish and wear control as indicated by the Sequence 111C, VC and L-38 tests. The rust rating in the Sequence 118 test assures adequate rust protection under the most severe operating conditions.
In addition to these laboratory engine test results which should assure excellent performance in the field, the oil satisfies current shear stability requirements: that is, it stays within the SAE 10W/50 viscosity grade after (a) 1,000 simulated miles in a Ford 302-C1D shear stability test (60 mph for 17 hours) and (b) 10 hours in the L-38 engine test.
An additional advantage of the present invention lies in the ease of hot starting, enabled by the use of, for example, a lW/50 oil of this invention. It is a fairly common occurrence that cars experience, hot starting problems when, for example, after a high speed trip on a freeway they are stopped to refill the gas tank. A comparison was made between the SAE 10W/50 oil of Example VI and a SAE 10W/30 oil as described in the Henderson patent US. Pat. No. 3,438,897. The tests were carried out on a 1972 Chevelle with a 307-CID V-8 engine to determine cranking speed as a function of coolant temperature in the jacket next to the inder wall. Results of this comparison clearly indicated at least a 10F increase in the temperature at which the engine could be started when using the SAE 10W/50 oil of this invention over the [OW/30 oil of the Henderson patent.
EXAMPLE VII In order to determine if three-block polymers having terminal polystyrene blocks attached to a hydrogenated rubber center block could be used in the compositions of the present invention, the gelling tendencies of such polymers in lubricating oils were examined.
Polystyrene-hydrogenated polybutadienepolystyrene polymers having the block molecular weights as shown below, were dispersed in I-IVI 100 neutral lubricating oil at 2%w concentration and observed at room temperature.
Sample Block Mol WtXlO" Room Temp. Gel Results A 3534 no gel B 5255 no gel gelled Anti-Rust Characteristics of Formulated Oil %w 100 HVl neutral 65.24 250 HVl neutral 21.75 Block copolymer 1.85 Zinc dialkyl dithiophosphate 1.5 Polyisobutylene succinimide of trimethylolaminomethane 7.00 Overbased magnesium sulfonates 2.16 Vinyl pyridine-acrylate copolymer 0.50 Dimethyl silicone, ppm Total sulfated ash, %w 1.0
The above SAE l0W/50 formulation was run in the Sequence I18 and gave an engine rust rating of 9.0. The above formulation had essentially the same components in different concentrations as the formulation of Example V1, except that magnesium sulfonates (800 percent overbased) were used in place of calcium sulfonates.
EXAMPLE IX Diesel Cleanliness of Formulated Oil %w 100 l-IVl Neutral 34.0 250 HVl Neutral 29.0 150 HVI Bright Stock 14.0 Polystyrene-hydrogenated polyisoprene Block Copolymer 0.8 Tetraethylene pentamine derivative of polyisobutylene 6.0 Zinc diaryl dithiophosphate 3.4 Overbased calcium salicylate 1 1.7 Acrylate polymer 0.1 Isooctyl phenoxytetraethoxyl ethanol 1.0 Silicone fluid, ppm +10 Total sulfated ash, %w 1.8
The above SAE 20W/40 formulation was run in the Caterpillar l-G test for 240 hours. The results were excellent with very little top-ring groove carbon filling (2 percent) and very little lacquer deposit. This performance is almost identical to an SAE 30 oil with the same additive package except without the block copolymer. A comparable oil containing a polymethacrylate polymer gave poorer clenliness ratings with about 25 percent top-ring groove filling.
We claim as our invention:
1. A lubricating oil composition comprising a. a major amount of a mineral lubricating oil having a viscosity index of at least b. a minor but effective pour point depressing amount of a pour point depressant for said oil of the group consisting of copolymers of alkyl acrylates, copolymers of alkyl methacrylates and copolymers of nitrogen-containing esters of the acrylic acid series; and
c. 0.1 l0 percent by weight of a block copolymer comprising 1. a single polymer block A, at least about 75 percent of which is condensed alkenyl arene units, no more than about 5 percent of the aromatic unsaturation being reduced by hydrogenation, said block A having an average molecular weight between about 10,000 and 55,000;
2. a single hydrogenated polymer block B, said block, prior to hydrogenation, being a polyisoprene block; at least about percent of the olefinic unsaturation of block 13 being reduced by hydrogenation; said block B having an average molecular weight between about 20,000 and about 100,000; the weight ratio of block A to block B being between about 0.45:1 and about 0.8:1; any remaining blocks in the block copolymer having a total average molecular weight not exceeding about 7,500, being selected from alkenyl arene polymer blocks and conjugated diene polymer blocks each having the monomer identity and hydrogenation limitations recited for blocks A and B.
2. A lubricating oil composition according to claim 1 comprising a. a major amount of a mineral lubrication oil;
b. a minor but effective amount of a pour point depressant for said oil; and
0. 0.1-10 percent by weight of a block copolymer having the structure wherein l. A is a polymer block comprising at least about 75 percent by weight of condensed styrene units, no more than 25 percent of the aromatic unsaturation in said block being reduced by hydrogenation; and 2. B is hydrogenated polymer block comprising, prior to hydrogenation, at least 75 percent by weight of condensed isoprene units, at least 95 percent of the olefinic unsaturation in said block being reduced by hydrogenation.
3. A lubricating oil composition according to claim 2 wherein the pour point depressant is an oil-soluble copolymer of (l) a monovinyl-substituted pyridine of the group consisting of pyridines substituted on one of the ring carbon atoms with, as the sole substituted substituent, a vinyl group, and derivatives of the aforedescribed vinyl pyridines having a lower alkyl group substituted on a ring carbon atom and (2) a mixture of a C to C alkyl ester of an acrylic acid of the group consisting of acrylic acid and methacrylic acid and a C to C alkyl ester of an acrylic acid of the group consisting of acrylic acid and methacrylic acid in mole ratios varying from 1:4 to 4:1, said copolymer having the monoviiiyl pyridine and the combined acrylic acid esters in a mole ratio varying from 1:2 to 1:10, respectively, and a molecular weight from 5 X to 2.5 X 10.
4. A lubricating oil composition according to claim 3 wherein the block copolymer has the structure AB wherein 1. A is a homopolymer block of styrene having an av- I erage molecular weight between about 25,000 and about 50,000.
2. B is a hydrogenated homopolyisoprene block having an average molecular weight between about 35,000 and about 80,000; the weight ratio of A18 being between 0.511 and 0.721.
5. A lubricating oil composition according to claim 3 wherein the pour point depressant is a copolymer of 2-methyl-5-vinyl pyridine, lauryl methacrylate and stearyl methacrylate.
6. A lubricating oil composition according to claim 1 wherein the composition has a viscosity of less than 24 poises at 0F and more than 58 SUS at 210F.
7. A lubricating oil composition according to claim 6 wherein the composition has a viscosity more than SUS at 210F.
8. A lubricating oil composition according to claim 6 wherein the lubricating oil consists essentially of fractions having a viscosity of at least about SUS at i 9. A composition according to claim 7, which comprises in addition:
a. 0.1-3.0 percent oil-soluble metal thiophosphate;
b. 0.18.5 percent oil-soluble essentially ashless detergent; and
c. a rust-inhibiting amount of an oil-soluble basic alkaline earth metal hydrocarbon sulfonate.

Claims (11)

  1. 2. a single hydrogenated polymer block B, said block, prior to hydrogenation, being a polyisoprene block; at least about 95 percent of the olefinic unsaturation of block B being reduced by hydrogenation; said block B having an average molecular weight between about 20,000 and about 100,000; the weight ratio of block A to block B being between about 0.45:1 and about 0.8:1; any remaining blocks in the block copolymer having a total average molecular weight not exceeding about 7, 500, being selected from alkenyl arene polymer blocks and conjugated diene polymer blocks each having the monomer identity and hydrogenation limitations recited for blocks A and B.
  2. 2. A lubricating oil composition according to claim 1 comprising a. a major amount of a mineral lubrication oil; b. a minor but effective amount of a pour point depressant for said oil; and c. 0.1-10 percent by weight of a block copolymer having the structure A - B wherein
  3. 2. B is hydrogenated polymer block comprising, prior to hydrogenation, at least 75 percent by weight of condensed isoprene units, at least 95 percent of the olefinic unsaturation in said block being reduced by hydrogenation.
  4. 2. B is a hydrogenated homopolyisoprene block having an average molecular weight between about 35,000 and about 80,000; the weight ratio of A:B being between 0.5:1 and 0.7:1.
  5. 3. A lubricating oil composition according to claim 2 wherein the pour point depressant is an oil-soluble copolymer of (1) a monovinyl-substituted pyridine of the group consisting of pyridines substituted on one of the ring carbon atoms with, as the sole substituted substituent, a vinyl group, and derivatives of the afore-described vinyl pyridines having a lower alkyl group substituted on a ring carbon atom and (2) a mixture of a C16 to C20 alkyl ester of an acrylic acid of the group consisting of acrylic acid and methacrylic acid and a C10 to C14 alkyl ester of an acrylic acid of the group consisting of acrylic acid and methacrylic acid in mole ratios varying from 1:4 to 4:1, said copolymer having the monovinyl pyridine and the combined acrylic acid esters in a mole ratio varying from 1:2 to 1:10, respectively, and a molecular weight from 5 X 104 to 2.5 X 106.
  6. 4. A lubricating oil composition according to claim 3 wherein the block copolymer has the structure A-B wherein
  7. 5. A lubricating oil composition according to claim 3 wherein the pour point depressant is a copolymer of 2-methyl-5-vinyl pyridine, lauryl methacrylate and stearyl methacrylate.
  8. 6. A lubricating oil composition according to claim 1 wherein the composition has a viscosity of less than 24 poises at 0*F and more than 58 SUS at 210*F.
  9. 7. A lubricating oil composition according to claim 6 wherein the composition has a viscosity more than 85 SUS at 210*F.
  10. 8. A lubricating oil composition according to claim 6 wherein the lubricating oil consists essentially of fractions having a viscosity of at least about 95 SUS at 100*F.
  11. 9. A composition according to claim 7, which comprises in addition: a. 0.1-3.0 percent oil-soluble metal thiophosphate; b. 0.1-8.5 percent oil-soluble essentially ashless detergent; and c. a rust-inhibiting amount of an oil-soluble basic alkaline earth metal hydrocarbon sulfonate.
US00204668A 1971-12-03 1971-12-03 Lubricating compositions Expired - Lifetime US3772196A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20466871A 1971-12-03 1971-12-03

Publications (1)

Publication Number Publication Date
US3772196A true US3772196A (en) 1973-11-13

Family

ID=22758915

Family Applications (1)

Application Number Title Priority Date Filing Date
US00204668A Expired - Lifetime US3772196A (en) 1971-12-03 1971-12-03 Lubricating compositions

Country Status (8)

Country Link
US (1) US3772196A (en)
JP (1) JPS4947401A (en)
BR (1) BR7208473D0 (en)
CA (1) CA977736A (en)
DE (1) DE2258966C2 (en)
FR (1) FR2162174B1 (en)
GB (1) GB1413298A (en)
IT (1) IT971471B (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903003A (en) * 1974-03-06 1975-09-02 Shell Oil Co Lubricating compositions containing an amido-amine reaction product of a terminally carboxylated isoprene polymer
US3965019A (en) * 1973-08-16 1976-06-22 Shell Oil Company Lubricating compositions containing hydrogenated block copolymers as viscosity index improvers
US4014794A (en) * 1974-03-11 1977-03-29 E. I. Du Pont De Nemours And Company Oil filter adapter
US4032459A (en) * 1976-01-29 1977-06-28 Shell Oil Company Lubricating compositions containing hydrogenated butadiene-isoprene copolymers
DE2603034A1 (en) * 1976-01-28 1977-08-11 Basf Ag LUBRICATING OIL MIXTURES
DE2716390A1 (en) * 1976-04-19 1977-11-10 Exxon Research Engineering Co OIL COMPOSITION
US4194057A (en) * 1977-05-19 1980-03-18 Orobis Limited Polymer composition viscosity index improver additive and lubricating oil containing the additive
US4358565A (en) * 1979-11-16 1982-11-09 Shell Oil Company Lube oil additive
US4402844A (en) * 1981-10-23 1983-09-06 Phillips Petroleum Company Viscosity index improvers with dispersant properties prepared by reaction of lithiated hydrogenated copolymers with substituted aminolactams
US4402843A (en) * 1981-10-23 1983-09-06 Phillips Petroleum Company Viscosity index improvers with dispersant properties prepared by reaction of lithiated hydrogenated copolymers with 4-substituted aminopyridines
US4409120A (en) * 1981-12-21 1983-10-11 Shell Oil Company Process for forming oil-soluble product
US4412087A (en) * 1981-12-16 1983-10-25 Phillips Petroleum Company Viscosity index improver with high thickening power
US4427834A (en) 1981-12-21 1984-01-24 Shell Oil Company Dispersant-VI improver product
US4788361A (en) * 1987-10-30 1988-11-29 Shell Oil Company Polymeric viscosity index improver and oil composition comprising the same
US4849481A (en) * 1987-07-10 1989-07-18 Shell Oil Company Star shaped asymmetric block copolymer of monoalkenyl aromatic hydrocarbon and conjugated diene
US4877836A (en) * 1988-05-24 1989-10-31 Shell Oil Company Viscosity index improver and composition containing same
USH731H (en) 1985-08-16 1990-02-06 Blends of thermoplastic polymers and modified block copolymers
US4900875A (en) * 1987-07-10 1990-02-13 Shell Oil Company Polymeric viscosity index additive and oil composition comprising the same
US4922045A (en) * 1987-08-03 1990-05-01 Texaco Inc. Diesel lubricating oil consumption control additives
USH826H (en) 1988-02-17 1990-10-02 Lubricant compositions containing a viscosity index improver having dispersant properties
US4983673A (en) * 1988-12-22 1991-01-08 Shell Oil Company High impact resistant blends of thermoplastic polyamides and modified diblock copolymers
US4988765A (en) * 1985-08-16 1991-01-29 Shell Oil Company High impact resistant blends of thermoplastic polyamides and modified diblock copolymers
US4992529A (en) * 1987-10-29 1991-02-12 Shell Oil Company Method for separating metal contaminants from organic polymers
US5049294A (en) * 1988-10-13 1991-09-17 Shell Oil Company Modified dispersant V.I. improver
US5209862A (en) * 1991-01-30 1993-05-11 Shell Oil Company Vi improver and composition containing same
US5223579A (en) * 1991-01-28 1993-06-29 Shell Oil Company Solid viscosity index improvers which provide excellant low temperature viscosity
US5310490A (en) * 1991-03-13 1994-05-10 Exxon Chemical Products Inc. Viscosity modifer polymers
US5310814A (en) * 1991-03-15 1994-05-10 Exxon Chemical Patents Inc. Viscosity modifier polybutadiene polymers
US5360564A (en) * 1993-07-30 1994-11-01 Shell Oil Company Dispersant viscosity index improvers
EP0629689A2 (en) * 1993-06-10 1994-12-21 Exxon Research And Engineering Company Grease composition
US5458792A (en) * 1994-08-11 1995-10-17 Shell Oil Company Asymmetric triblock copolymer viscosity index improver for oil compositions
US5458807A (en) * 1991-12-12 1995-10-17 Idemitsu Kosan Co., Ltd. Engine oil composition
US5458791A (en) * 1994-07-01 1995-10-17 Shell Oil Company Star polymer viscosity index improver for oil compositions
US5460739A (en) * 1994-09-09 1995-10-24 Shell Oil Company Star polymer viscosity index improver for oil compositions
US5616542A (en) * 1996-04-03 1997-04-01 Shell Oil Company Oil with asymmetric radial polymer having block copolymer arm
EP0819755A2 (en) * 1996-07-15 1998-01-21 The Lubrizol Corporation Oil concentrates of polymers with improved viscosity
US6034040A (en) * 1998-08-03 2000-03-07 Ethyl Corporation Lubricating oil formulations
US20010018484A1 (en) * 1999-09-17 2001-08-30 Bitler Steven P. Polymeric thickeners for oil-containing compositions
US20030137721A1 (en) * 2000-06-29 2003-07-24 Satoshi Kajiya Optical amplifier device
US6750305B2 (en) * 2000-03-14 2004-06-15 Institut Francais Du Petrole Acrylic copolymers as additives for inhibiting paraffin deposit in crude oil, and compositions containing same
EP1433800A1 (en) * 1998-11-06 2004-06-30 Shell Internationale Research Maatschappij B.V. Copolymers
US20050130853A1 (en) * 2003-12-11 2005-06-16 Mishra Munmaya K. Lubricating oil compositions
US20060047072A1 (en) * 2004-08-27 2006-03-02 Polimeri Europa S.P.A. Ethylene-propylene copolymers with an improved shape stability suitable for modifying lubricating oils and process for the preparation thereof
US20070062101A1 (en) * 2003-08-28 2007-03-22 Marie-France Delamotte Stable emulsions which are used to lower the pour point of crude oils and to inhibit paraffin deposition
US20070099802A1 (en) * 2005-11-03 2007-05-03 Scott Robin H Lubricating Oil Compositions
EP1783198A2 (en) * 2005-11-03 2007-05-09 Infineum International Limited Linear diblock copolymers as anti-wear additives for lubricants of internal combustion engine crankcases
WO2007093446A1 (en) * 2006-02-16 2007-08-23 Polimeri Europa S.P.A. Ethylene-propylene copolymers suitable for the modification of lubricating oils and process for the preparation thereof
US20070213241A1 (en) * 2006-03-10 2007-09-13 St Clair David John Viscosity index improver for lubricating oils
US7439301B2 (en) 2004-03-03 2008-10-21 Kraton Polymers U.S. Llc Block copolymers having high flow and high elasticity
DE102007032120A1 (en) 2007-07-09 2009-01-15 Evonik Rohmax Additives Gmbh Use of comb polymer comprising polyolefin-based macro-monomer derived from repeating units and repeating units derived from low molecular monomers comprising e.g. styrene monomer, to reduce the fuel consumption in motor vehicles
DE102007046223A1 (en) 2007-09-26 2009-04-02 Evonik Rohmax Additives Gmbh Use of comb polymer comprising repeating units derived from polyolefin-based macro-monomer and repeating units derived from low molecular monomers comprising e.g. styrene monomer, to reduce fuel consumption in motor vehicles
DE102009001447A1 (en) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Use of comb polymers to improve the load carrying capacity
WO2010102903A1 (en) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Use of comb polymers as antifatigue additives
DE102010028195A1 (en) 2010-04-26 2011-10-27 Evonik Rohmax Additives Gmbh Lubricant for transmissions
WO2013182581A1 (en) 2012-06-06 2013-12-12 Evonik Oil Additives Gmbh Fuel efficient lubricating oils
WO2015159249A1 (en) 2014-04-17 2015-10-22 Eni S.P.A. Hydrogenated polymers with a radial structure having a core based on calixarenes and use thereof in lubricant compositions
WO2018041755A1 (en) 2016-08-31 2018-03-08 Evonik Oil Additives Gmbh Comb polymers for improving noack evaporation loss of engine oil formulations
WO2018114673A1 (en) 2016-12-19 2018-06-28 Evonik Oil Additives Gmbh Lubricating oil composition comprising dispersant comb polymers
WO2019012031A1 (en) 2017-07-14 2019-01-17 Evonik Oil Additives Gmbh Comb polymers comprising imide functionality
EP3450527A1 (en) 2017-09-04 2019-03-06 Evonik Oil Additives GmbH New viscosity index improvers with defined molecular weight distributions
WO2020064619A1 (en) 2018-09-24 2020-04-02 Evonik Operations Gmbh Use of trialkoxysilane-based compounds for lubricants
EP3708640A1 (en) 2019-03-11 2020-09-16 Evonik Operations GmbH Polyalkylmethacrylate viscosity index improvers
WO2020187954A1 (en) 2019-03-20 2020-09-24 Evonik Operations Gmbh Polyalkyl(meth)acrylates for improving fuel economy, dispersancy and deposits performance
IT201900013836A1 (en) 2019-08-02 2021-02-02 Eni Spa LIPOPHILIC COPOLYMERS INCLUDING MULTI-POLAR BLOCKS, PROCEDURE FOR THEIR PREPARATION AND THEIR USE IN LUBRICANT COMPOSITIONS.
US11078437B2 (en) 2014-04-17 2021-08-03 Eni S.P.A. Hydrogenated polymers with a radial structure having a core based on calixarenes and use thereof in lubricant compositions
WO2022112899A1 (en) 2020-11-25 2022-06-02 Chevron Japan Ltd. Lubricating oil compositions
WO2022129495A1 (en) 2020-12-18 2022-06-23 Evonik Operations Gmbh Process for preparing homo- and copolymers of alkyl (meth)acrylates with low residual monomer content
WO2023084360A1 (en) 2021-11-09 2023-05-19 Chevron Japan Ltd. High efficiency engine oil compositions
WO2023099634A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023099637A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023099635A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023110529A1 (en) 2021-12-17 2023-06-22 Evonik Operations Gmbh Hydraulic lubricant formulations with high flash point and improved shear stability
WO2023180896A1 (en) 2022-03-21 2023-09-28 Chevron Japan Ltd. Low viscosity lubricating oil
WO2024033156A1 (en) 2022-08-08 2024-02-15 Evonik Operations Gmbh Polyalkyl (meth)acrylate-based polymers with improved low temperature properties

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1575449A (en) * 1976-04-02 1980-09-24 Exxon Research Engineering Co Hydrogenated tapered-block copolymers of conjegated dienes and vinyl aromatic are useful as oil additives
DE3001045A1 (en) * 1980-01-12 1981-07-16 Röhm GmbH, 6100 Darmstadt SHEAR-STABLE LUBRICANT ADDITIVES
DE3207292A1 (en) * 1982-03-01 1983-09-08 Röhm GmbH, 6100 Darmstadt CONCENTRATED EMULSIONS OF OLEFIN COPOLYMERS
DE3207291A1 (en) * 1982-03-01 1983-09-08 Röhm GmbH, 6100 Darmstadt CONCENTRATED EMULSIONS OF OLEFIN COPOLYMERS
JPS59122595A (en) * 1982-12-28 1984-07-16 Nippon Oil Co Ltd Multigrade engine oil composition for engine with turbocharger
DE3339103A1 (en) * 1983-10-28 1985-05-09 Röhm GmbH, 6100 Darmstadt ADDITIVES FOR LUBRICANTS
DE3544061A1 (en) * 1985-12-13 1987-06-19 Roehm Gmbh HIGHLY STABLE MULTI-RANGE LUBRICANTS WITH IMPROVED VISCOSITY INDEX
GB9301929D0 (en) * 1993-02-01 1993-03-17 Raychem Ltd Low-temperature-tolerant gels
ES2584163T3 (en) * 2003-03-28 2016-09-26 The Lubrizol Corporation Viscosity enhancing compositions that provide the lubricating oil with improved low temperature characteristics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769281A (en) * 1954-05-27 1957-03-06 Exxon Research Engineering Co Improvements in or relating to hydrogenated liquid polymer oils
US2889282A (en) * 1956-09-17 1959-06-02 Shell Dev Lubricating oil compositions
US3438897A (en) * 1966-10-10 1969-04-15 Shell Oil Co Engine lubricating compositions
US3554911A (en) * 1967-11-30 1971-01-12 Phillips Petroleum Co Viscosity index improvers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2686759A (en) * 1952-03-27 1954-08-17 Socony Vacuum Oil Co Inc Oil compositions containing waxalkylated styrene-isoprene copolymers
BE759715A (en) * 1969-12-12 1971-06-02 Shell Int Research BLOCK COPOLYMERS AS VISCOSITY INDEX IMPROVING AGENTS
BE759713A (en) * 1969-12-12 1971-06-02 Shell Int Research BLOCK COPOLYMERS AS VISCOSITY INDEX IMPROVING AGENTS
JPS5137285A (en) * 1974-09-25 1976-03-29 Mitsubishi Heavy Ind Ltd X senoryokusokuteihoho

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769281A (en) * 1954-05-27 1957-03-06 Exxon Research Engineering Co Improvements in or relating to hydrogenated liquid polymer oils
US2889282A (en) * 1956-09-17 1959-06-02 Shell Dev Lubricating oil compositions
US3438897A (en) * 1966-10-10 1969-04-15 Shell Oil Co Engine lubricating compositions
US3554911A (en) * 1967-11-30 1971-01-12 Phillips Petroleum Co Viscosity index improvers

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965019A (en) * 1973-08-16 1976-06-22 Shell Oil Company Lubricating compositions containing hydrogenated block copolymers as viscosity index improvers
US3903003A (en) * 1974-03-06 1975-09-02 Shell Oil Co Lubricating compositions containing an amido-amine reaction product of a terminally carboxylated isoprene polymer
US4014794A (en) * 1974-03-11 1977-03-29 E. I. Du Pont De Nemours And Company Oil filter adapter
DE2603034A1 (en) * 1976-01-28 1977-08-11 Basf Ag LUBRICATING OIL MIXTURES
US4032459A (en) * 1976-01-29 1977-06-28 Shell Oil Company Lubricating compositions containing hydrogenated butadiene-isoprene copolymers
DE2716390A1 (en) * 1976-04-19 1977-11-10 Exxon Research Engineering Co OIL COMPOSITION
US4073737A (en) * 1976-04-19 1978-02-14 Exxon Research & Engineering Co. Hydrogenated copolymers of conjugated dienes and when desired a vinyl aromatic monomer are useful as oil additives
US4194057A (en) * 1977-05-19 1980-03-18 Orobis Limited Polymer composition viscosity index improver additive and lubricating oil containing the additive
US4358565A (en) * 1979-11-16 1982-11-09 Shell Oil Company Lube oil additive
US4402844A (en) * 1981-10-23 1983-09-06 Phillips Petroleum Company Viscosity index improvers with dispersant properties prepared by reaction of lithiated hydrogenated copolymers with substituted aminolactams
US4402843A (en) * 1981-10-23 1983-09-06 Phillips Petroleum Company Viscosity index improvers with dispersant properties prepared by reaction of lithiated hydrogenated copolymers with 4-substituted aminopyridines
US4412087A (en) * 1981-12-16 1983-10-25 Phillips Petroleum Company Viscosity index improver with high thickening power
US4409120A (en) * 1981-12-21 1983-10-11 Shell Oil Company Process for forming oil-soluble product
US4427834A (en) 1981-12-21 1984-01-24 Shell Oil Company Dispersant-VI improver product
US4988765A (en) * 1985-08-16 1991-01-29 Shell Oil Company High impact resistant blends of thermoplastic polyamides and modified diblock copolymers
USH731H (en) 1985-08-16 1990-02-06 Blends of thermoplastic polymers and modified block copolymers
US4849481A (en) * 1987-07-10 1989-07-18 Shell Oil Company Star shaped asymmetric block copolymer of monoalkenyl aromatic hydrocarbon and conjugated diene
US4900875A (en) * 1987-07-10 1990-02-13 Shell Oil Company Polymeric viscosity index additive and oil composition comprising the same
US4922045A (en) * 1987-08-03 1990-05-01 Texaco Inc. Diesel lubricating oil consumption control additives
US4992529A (en) * 1987-10-29 1991-02-12 Shell Oil Company Method for separating metal contaminants from organic polymers
EP0314251A2 (en) * 1987-10-30 1989-05-03 Shell Internationale Researchmaatschappij B.V. Oil composition comprising a polymeric viscosity index improver
US4788361A (en) * 1987-10-30 1988-11-29 Shell Oil Company Polymeric viscosity index improver and oil composition comprising the same
EP0314251B1 (en) * 1987-10-30 1992-05-13 Shell Internationale Researchmaatschappij B.V. Oil composition comprising a polymeric viscosity index improver
USH826H (en) 1988-02-17 1990-10-02 Lubricant compositions containing a viscosity index improver having dispersant properties
EP0344836A1 (en) * 1988-05-24 1989-12-06 Shell Internationale Researchmaatschappij B.V. Viscosity index improver and composition containing same
US4877836A (en) * 1988-05-24 1989-10-31 Shell Oil Company Viscosity index improver and composition containing same
US5049294A (en) * 1988-10-13 1991-09-17 Shell Oil Company Modified dispersant V.I. improver
US4983673A (en) * 1988-12-22 1991-01-08 Shell Oil Company High impact resistant blends of thermoplastic polyamides and modified diblock copolymers
US5223579A (en) * 1991-01-28 1993-06-29 Shell Oil Company Solid viscosity index improvers which provide excellant low temperature viscosity
US5278252A (en) * 1991-01-28 1994-01-11 Shell Oil Company Solid viscosity index improvers which provide excellent low temperature viscosity
US5209862A (en) * 1991-01-30 1993-05-11 Shell Oil Company Vi improver and composition containing same
US5543469A (en) * 1991-03-13 1996-08-06 Exxon Chemical Patents Inc. Viscosity modifier polymers
US5310490A (en) * 1991-03-13 1994-05-10 Exxon Chemical Products Inc. Viscosity modifer polymers
US5310814A (en) * 1991-03-15 1994-05-10 Exxon Chemical Patents Inc. Viscosity modifier polybutadiene polymers
US5945485A (en) * 1991-03-15 1999-08-31 Exxon Chemical Patents Inc Viscosity modifier polybutadiene polymers
US5458807A (en) * 1991-12-12 1995-10-17 Idemitsu Kosan Co., Ltd. Engine oil composition
EP0629689A2 (en) * 1993-06-10 1994-12-21 Exxon Research And Engineering Company Grease composition
EP0629689A3 (en) * 1993-06-10 1995-01-18 Exxon Research Engineering Co Grease composition.
US5360564A (en) * 1993-07-30 1994-11-01 Shell Oil Company Dispersant viscosity index improvers
US5458791A (en) * 1994-07-01 1995-10-17 Shell Oil Company Star polymer viscosity index improver for oil compositions
EP0690082A2 (en) 1994-07-01 1996-01-03 Shell Internationale Researchmaatschappij B.V. Star polymer viscosity index improver for oil lubricating compositions
US5458792A (en) * 1994-08-11 1995-10-17 Shell Oil Company Asymmetric triblock copolymer viscosity index improver for oil compositions
EP0698626A1 (en) 1994-08-11 1996-02-28 Shell Internationale Researchmaatschappij B.V. Asymmetric triblock copolymer, viscosity index improver for oil compositions
AU694529B2 (en) * 1994-08-11 1998-07-23 Shell Internationale Research Maatschappij B.V. Asymmetric triblock copolymer viscosity index improver for oil compositions
US5460739A (en) * 1994-09-09 1995-10-24 Shell Oil Company Star polymer viscosity index improver for oil compositions
EP0700942A2 (en) 1994-09-09 1996-03-13 Shell Internationale Researchmaatschappij B.V. Star polymer viscosity index improver for lubricating oil compositions
US5616542A (en) * 1996-04-03 1997-04-01 Shell Oil Company Oil with asymmetric radial polymer having block copolymer arm
AU722525B2 (en) * 1996-07-15 2000-08-03 Lubrizol Corporation, The Oil concentrates of polymers with improved viscosity
EP0819755A2 (en) * 1996-07-15 1998-01-21 The Lubrizol Corporation Oil concentrates of polymers with improved viscosity
US5747433A (en) * 1996-07-15 1998-05-05 The Lubrizol Corporation Oil concentrates of polymers with improved viscosity
EP0819755A3 (en) * 1996-07-15 1999-02-17 The Lubrizol Corporation Oil concentrates of polymers with improved viscosity
US6034040A (en) * 1998-08-03 2000-03-07 Ethyl Corporation Lubricating oil formulations
EP1433800A1 (en) * 1998-11-06 2004-06-30 Shell Internationale Research Maatschappij B.V. Copolymers
US20010018484A1 (en) * 1999-09-17 2001-08-30 Bitler Steven P. Polymeric thickeners for oil-containing compositions
US7449511B2 (en) 1999-09-17 2008-11-11 Landec Corp. Polymeric thickeners for oil-containing compositions
US20050272618A1 (en) * 1999-09-17 2005-12-08 Bitler Steven P Polymeric thickeners for oil-containing compositions
US7101928B1 (en) * 1999-09-17 2006-09-05 Landec Corporation Polymeric thickeners for oil-containing compositions
US6989417B2 (en) * 1999-09-17 2006-01-24 Landec Corporation Polymeric thickeners for oil-containing compositions
US20050272615A1 (en) * 1999-09-17 2005-12-08 Bitler Steven P Polymeric thickeners for oil-containing compositions
US6750305B2 (en) * 2000-03-14 2004-06-15 Institut Francais Du Petrole Acrylic copolymers as additives for inhibiting paraffin deposit in crude oil, and compositions containing same
US20030137721A1 (en) * 2000-06-29 2003-07-24 Satoshi Kajiya Optical amplifier device
US20070062101A1 (en) * 2003-08-28 2007-03-22 Marie-France Delamotte Stable emulsions which are used to lower the pour point of crude oils and to inhibit paraffin deposition
EP1548092A1 (en) * 2003-12-11 2005-06-29 Afton Chemical Corporation Lubricating oil compositions
US20050130853A1 (en) * 2003-12-11 2005-06-16 Mishra Munmaya K. Lubricating oil compositions
US7407918B2 (en) 2003-12-11 2008-08-05 Afton Chemical Corporation Lubricating oil compositions
US7439301B2 (en) 2004-03-03 2008-10-21 Kraton Polymers U.S. Llc Block copolymers having high flow and high elasticity
EP1632504A3 (en) * 2004-08-27 2006-06-07 Polimeri Europa S.p.A. Ethylene-propylene copolymers with an improved shape stability suitable for modifying lubricating oils and process for the preparation thereof
US7208543B2 (en) 2004-08-27 2007-04-24 Polimeri Europa S.P.A. Ethylene-propylene copolymers with an improved shape stability suitable for modifying lubricating oils and process for the preparation thereof
CN1837339B (en) * 2004-08-27 2012-01-11 波利玛利欧洲股份公司 Ethylene-propylene copolymers with an improved shape stability suitable for modifying lubricating oils and process for the preparation thereof
US20060047072A1 (en) * 2004-08-27 2006-03-02 Polimeri Europa S.P.A. Ethylene-propylene copolymers with an improved shape stability suitable for modifying lubricating oils and process for the preparation thereof
US20070099802A1 (en) * 2005-11-03 2007-05-03 Scott Robin H Lubricating Oil Compositions
EP1783198A2 (en) * 2005-11-03 2007-05-09 Infineum International Limited Linear diblock copolymers as anti-wear additives for lubricants of internal combustion engine crankcases
EP1783198A3 (en) * 2005-11-03 2007-07-04 Infineum International Limited Linear diblock copolymers as anti-wear additives for lubricants of internal combustion engine crankcases
US8193135B2 (en) 2006-02-16 2012-06-05 Polimeri Europa S.P.A. Ethylene-propylene copolymers suitable for the modification of lubricating oils and process for the preparation thereof
US20090018041A1 (en) * 2006-02-16 2009-01-15 Polimeri Europa S.P.A. Ethylene-propylene copolymers suitable for the modification of lubricating oils and process for the preparation thereof
CN101379170B (en) * 2006-02-16 2013-07-10 波利玛利欧洲股份公司 Ethylene-propylene copolymers suitable for the modification of lubricating oils and process for the preparation thereof
WO2007093446A1 (en) * 2006-02-16 2007-08-23 Polimeri Europa S.P.A. Ethylene-propylene copolymers suitable for the modification of lubricating oils and process for the preparation thereof
US20070213241A1 (en) * 2006-03-10 2007-09-13 St Clair David John Viscosity index improver for lubricating oils
US7625851B2 (en) 2006-03-10 2009-12-01 Kraton Polymers Us Llc Viscosity index improver for lubricating oils
WO2007106346A2 (en) 2006-03-10 2007-09-20 Kraton Polymers U.S. Llc Viscosity index improver for lubricating oils
DE102007032120A1 (en) 2007-07-09 2009-01-15 Evonik Rohmax Additives Gmbh Use of comb polymer comprising polyolefin-based macro-monomer derived from repeating units and repeating units derived from low molecular monomers comprising e.g. styrene monomer, to reduce the fuel consumption in motor vehicles
DE102007046223A1 (en) 2007-09-26 2009-04-02 Evonik Rohmax Additives Gmbh Use of comb polymer comprising repeating units derived from polyolefin-based macro-monomer and repeating units derived from low molecular monomers comprising e.g. styrene monomer, to reduce fuel consumption in motor vehicles
WO2010102903A1 (en) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Use of comb polymers as antifatigue additives
DE102009001446A1 (en) 2009-03-10 2010-09-23 Evonik Rohmax Additives Gmbh Use of comb polymers as antifatigue additives
DE102009001447A1 (en) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Use of comb polymers to improve the load carrying capacity
WO2011134695A1 (en) 2010-04-26 2011-11-03 Evonik Rohmax Additives Gmbh Transmission lubricant
DE102010028195A1 (en) 2010-04-26 2011-10-27 Evonik Rohmax Additives Gmbh Lubricant for transmissions
WO2013182581A1 (en) 2012-06-06 2013-12-12 Evonik Oil Additives Gmbh Fuel efficient lubricating oils
US11078437B2 (en) 2014-04-17 2021-08-03 Eni S.P.A. Hydrogenated polymers with a radial structure having a core based on calixarenes and use thereof in lubricant compositions
WO2015159249A1 (en) 2014-04-17 2015-10-22 Eni S.P.A. Hydrogenated polymers with a radial structure having a core based on calixarenes and use thereof in lubricant compositions
US10584299B2 (en) 2014-04-17 2020-03-10 Eni S.P.A. Hydrogenated polymers with a radial structure having a core based on calixarenes and use thereof in lubricant compositions
US10633610B2 (en) 2016-08-31 2020-04-28 Evonik Operations Gmbh Comb polymers for improving Noack evaporation loss of engine oil formulations
WO2018041755A1 (en) 2016-08-31 2018-03-08 Evonik Oil Additives Gmbh Comb polymers for improving noack evaporation loss of engine oil formulations
US11015139B2 (en) 2016-08-31 2021-05-25 Evonik Operations Gmbh Comb polymers for improving Noack evaporation loss of engine oil formulations
WO2018114673A1 (en) 2016-12-19 2018-06-28 Evonik Oil Additives Gmbh Lubricating oil composition comprising dispersant comb polymers
WO2019012031A1 (en) 2017-07-14 2019-01-17 Evonik Oil Additives Gmbh Comb polymers comprising imide functionality
EP3450527A1 (en) 2017-09-04 2019-03-06 Evonik Oil Additives GmbH New viscosity index improvers with defined molecular weight distributions
US10731097B2 (en) 2017-09-04 2020-08-04 Evonik Operations Gmbh Viscosity index improvers with defined molecular weight distributions
WO2020064619A1 (en) 2018-09-24 2020-04-02 Evonik Operations Gmbh Use of trialkoxysilane-based compounds for lubricants
EP3708640A1 (en) 2019-03-11 2020-09-16 Evonik Operations GmbH Polyalkylmethacrylate viscosity index improvers
WO2020187954A1 (en) 2019-03-20 2020-09-24 Evonik Operations Gmbh Polyalkyl(meth)acrylates for improving fuel economy, dispersancy and deposits performance
IT201900013836A1 (en) 2019-08-02 2021-02-02 Eni Spa LIPOPHILIC COPOLYMERS INCLUDING MULTI-POLAR BLOCKS, PROCEDURE FOR THEIR PREPARATION AND THEIR USE IN LUBRICANT COMPOSITIONS.
WO2022112899A1 (en) 2020-11-25 2022-06-02 Chevron Japan Ltd. Lubricating oil compositions
WO2022129495A1 (en) 2020-12-18 2022-06-23 Evonik Operations Gmbh Process for preparing homo- and copolymers of alkyl (meth)acrylates with low residual monomer content
WO2023084360A1 (en) 2021-11-09 2023-05-19 Chevron Japan Ltd. High efficiency engine oil compositions
WO2023099634A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023099637A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023099635A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023110529A1 (en) 2021-12-17 2023-06-22 Evonik Operations Gmbh Hydraulic lubricant formulations with high flash point and improved shear stability
WO2023180896A1 (en) 2022-03-21 2023-09-28 Chevron Japan Ltd. Low viscosity lubricating oil
WO2024033156A1 (en) 2022-08-08 2024-02-15 Evonik Operations Gmbh Polyalkyl (meth)acrylate-based polymers with improved low temperature properties

Also Published As

Publication number Publication date
FR2162174B1 (en) 1978-06-30
GB1413298A (en) 1975-11-12
JPS4947401A (en) 1974-05-08
DE2258966A1 (en) 1973-06-07
DE2258966C2 (en) 1985-10-17
BR7208473D0 (en) 1973-09-25
CA977736A (en) 1975-11-11
IT971471B (en) 1974-04-30
FR2162174A1 (en) 1973-07-13

Similar Documents

Publication Publication Date Title
US3772196A (en) Lubricating compositions
US3835053A (en) Lubricating compositions
US3779928A (en) Automatic transmission fluid
US4686054A (en) Succinimide lubricating oil dispersant
US2526497A (en) Mineral lubricating oil containing polysulfides of thiophosphorous and thiophosphoric acid esters
CA1049488A (en) Multigrade lubricants containing interpolymers
US3903003A (en) Lubricating compositions containing an amido-amine reaction product of a terminally carboxylated isoprene polymer
RU2058331C1 (en) Method of synthesis of modified thermoelastoplastic
JPS63280796A (en) Lubricating oil composition having improved temperature characteristic
US3994815A (en) Additive concentrates and lubricating compositions containing these concentrates
CA1190216A (en) Succinimide lubricating oil dispersant
JP2000319682A (en) Lubricating oil composition for internal combustion engine
US4032459A (en) Lubricating compositions containing hydrogenated butadiene-isoprene copolymers
US4115286A (en) Lubricant antiwear additives containing sulfur and boron
JPS63309592A (en) Lube base oil composition
US3793199A (en) Friction reducing agent for lubricants
JP2002503283A (en) Power transmission oil with improved viscosity and anti-vibration properties
US3480550A (en) Lubricant containing mixture of low and high molecular weight sulfonates
US3761404A (en) Lubricant compositions
US3003959A (en) Lubricating oil additives and lubricating oils containing the same
US3377281A (en) Lubricating composition
EP0438848A1 (en) Inhibiting fluoroelastomer degradation during lubrication
US2506310A (en) Lubricating oil composition
US4356097A (en) Alkylphosphonate lubricating oil
JPH06200274A (en) Lubricant composition for final reduction gear