US3776807A - Air formed adhesive bonded webs and method for forming such webs - Google Patents

Air formed adhesive bonded webs and method for forming such webs Download PDF

Info

Publication number
US3776807A
US3776807A US00145458A US3776807DA US3776807A US 3776807 A US3776807 A US 3776807A US 00145458 A US00145458 A US 00145458A US 3776807D A US3776807D A US 3776807DA US 3776807 A US3776807 A US 3776807A
Authority
US
United States
Prior art keywords
web
webs
adhesive
liquid
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00145458A
Inventor
C Dunning
W Day
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Corp
Original Assignee
Kimberly Clark Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Corp filed Critical Kimberly Clark Corp
Priority claimed from CA176,316A external-priority patent/CA985084A/en
Application granted granted Critical
Publication of US3776807A publication Critical patent/US3776807A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/14Making cellulose wadding, filter or blotting paper
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres

Definitions

  • a method of forming a lightweight, airlaid Web of wood fibers suitable for tissue and toweling applications comprises airlaying a wood fiber continuum onto a foraminous carrier, bringing the continuum into contact with a transfer member printed with an adhesive in a preselected pattern, the adhesive being disposed in a liquid, and removing the liquid to provide an airlaid, adhesively bonded web.
  • the present invention relates to cellulosic products and, more particularly, to the preparation of lightweight cellulosic products useful in tissue and toweling applications which are characterized by a desirable combination of strength, absorbency, and tactile properties.
  • creping has several limitations, including the fact that the detrimental effects of the initial overall bonding is not completely ofiset. Also, in a waterlaid method, there is typically preferential fiber orientation in the machine direction; and, as a result, the strength in this direction is always higher than in the cross direction. Consequently, achieving creped products with acceptable cross direction strengths generally requires developing excessive machine direction strength. Because of this, the attainment of optimum tactile properties is prevented.
  • the copending related applications previously identified disclose a method, and the resulting products, of air laying a cellulosic web to provide an aesthetically pleasing cellulosic web characterized by a desirable combination of strength, absorbency and tactile properties.
  • Such webs are made by air laying a continuum of substantially unbonded wood fibers and forming a coherent structure by bonding the fibers together at regularly patterned areas of the continuum.
  • These webs possess a novel combination of attributes which makes them highly desirable as substitutes for conventional waterlaid paper products in a variety of disposable applications.
  • a further and closely related object is to provide a high speed process wherein transfer of an airlaid continuum of wood fibers from its forming wire to a bonding station can be accomplished without moisturizing the web on the forming wire.
  • An additional object is to provide light weight, airlaid webs of wood fibers having desirable absorbency and tactile properties and which also have exceptionally high strength.
  • a further object is to provide adhesively spot bonded, airlaid webs of Wood pulp fibers which can be prepared at high speeds and in a manner that does not require moisturizing of the web prior to the application of 'the adhesive thereto.
  • FIG. 1 is a side view illustrating an arrangement of apparatus which can be used in accomplishing the present invention
  • FIG. 2 is a cross-sectional view of a product prepared using the apparatus illustrated in FIG. 1;
  • FIGS. 3 and 4 are side elevation :views of additional embodiments of apparatus which can be used in accomplishing the process of the present invention.
  • the present invention involves forming a lightweight, airlaid web of wood fibers on a moving foraminous carrier and thereafter bringing the web into contact with a transfer member moving at substantially the same speed as the carrier.
  • the transfer member has printed on its surface, in a preselected pattern, an adhesive disposed in a liquid.
  • the liquid On contact between the web and the moving transfer member, the liquid rapidly penetrates into the web and wets the airlaid fibers in those localized regions corresponding to the preselected pattern.
  • Such rapid wetting temporarily unites the fibers of the web together, thus permitting transfer of the web to the transfer member without substantial disruption of the web.
  • bonding of the web in the preselected pattern to form a useful product can be accomplished by simply removing the liquid, generally by means of heat when the liquid is water or an easily vaporized medium.
  • the preselected pattern of liquid containing the adhesive be applied to the transfer member at discrete spots which are spaced less than an average fiber length of the cellulosic web apart. Such a pattern not only assures that the web will have sufiicient integrity during transfer but also that the resulting adhesively bonded product will be sufiiciently strong for most intended end uses.
  • a suitable pattern can comprise a series of discrete spots arranged on the transfer member so that the resultant bonded web has bonded areas at a frequency of about -40 bonds per sq. inch across both dimensions of the web and such that the total bonded area of the web is about 1040%. Webs so bonded not onl have sufiicient strength but are additionally characterized by highly desirable absorbency and tactile properties due principally to the substantial areas of the unbonded fibers existing between the particular bonded zones.
  • the cellulosic web be in its as formed condition on contact with the printed transfer member and, in particular, that it not be substantially compacted.
  • the use of uncompacted airlaid webs assures that the liquid printed on the transfer member will rapidly penetrate the web on contact therewith, thus providing almost instantaneous, though somewhat temporary, structural integrity to the web.
  • the particular adhesive employed in accomplishing the present invention is not particularly important so long as it can be applied in combination with a liquid which functions in effectuating transfer as above described and that the adhesive in its solid form, adequately bond the cellulosic web without excessive tackiness.
  • Adhesives which can be deposited from a liquid medium in a solid, untacky condition at a temperature below or at the temperature necessary to remove the liquid are generally most desirable for use herein.
  • Adhesives which can be applied as aqueous dispersions or solutions are generally suitable for use herein.
  • examples of such materials include various starches, water soluble polymeric materials, and water dispersible resins such as various vinyl resins (e.g., polyvinyl acetate and vinyl acetate/ ethylene copolymers) and acrylics.
  • Adhesive materials such as vinyl resins dissolved in suitable organic solvents can also be employed.
  • plastisols i.e., polymeric materials such as vinyl polymers (e.g., vinyl chloride) and copolymers dispersed in fluid plasticizers such as dioctyl phthalate and the like, can also be used at suitably low viscosities.
  • liquid plasticizer With respect to such plastisols, removal of the liquid plasticizer is accomplished by absorbing the plasticizer into the polymer particles which occurs on curing of the plastisol.
  • hot melt adhesives can be used. Such adhesives are applied as liquids. On cooling, the liquid character thereof disappears leaving the solidified adhesive.
  • FIG. 1 illustrates one manner of practicing the present invention.
  • a cellulosic web 10 is formed by initially separating a pulp sheet 12 into its individual fibers 14 by unwinding the pulp sheet 12 from a roll 16 and forwarding the sheet by means of the driven rolls 18, 20 to a divellicating means such as a picker roll 22, powered by means not shown.
  • the individual fibers 14 are conveyed through a forming duct 24 and onto a moving foraminous wire 26.
  • Air from a source 28 in combination with a vacuum box 30 creates a downwardly moving stream of air which assists in collecting the air formed web 10 on the foraminous Wire.
  • the forming duct 24 illustrated in FIG. 1 is eflicient in obtaining an especially suitable web, particularly at high speeds.
  • the illustrated duct has a width approximately equal to the height of the picker teeth on the roll 22 and is positioned so as to tangentially receive the fibers as they leave the picker.
  • fiber velocity can be maintained essentially constant throughout the length of the duct.
  • Webs formed in this manner have exceptionally good uniformity and are substantially free of fiber floccing.
  • Appropriate sizing of the forming duct and the spatial arrangement with respect to the picker and the wire are more completely described in copending Appel application Ser. No. 882,265, now abandoned, filed on Dec. 4, 1969 entitled Pulp Picking Apparatus With Improved Fiber Forming Duct.
  • the weight of the airlaid web formed in the above illustrated manner is dependent upon the desired end-use of the subsequently prepared product. For most applications, however, webs having a basis weight of about 5-50 lbs/2880 ft. are suitable, 10 to 25 lbs/2880 ft. being preferred.
  • the particular type of cellulosic fibers used in preparing the web is also not critical and the type selected will generally depend upon the desired surface texture. For example, webs with a soft and flutfy texture are generally obtained from cedar fibers while a slightly more wooly texture with increased body can be obtained from southern pine fibers.
  • the surface of the web opposite the wire 26 is brought into contact with the heated transfer roll 32, which as viewed in FIG. 1, rotates in a counterclockwise direction and is moving at substantially the same speed as the wire.
  • a slight degree of wrap of the wire 26 around the transfer roll 32 can be provided in order to aid in transfer to the roll 32.
  • the transfer roll 32 has a plurality of raised points on its surface to which an adhesive such as above-described disposed in a liquid is applied from the pan 36 via the adhesive transfer rolls 38 and 40.
  • the size of the raised points on the transfer roll 32 are desirably comparatively steep with heights of about 0.015-0.030.
  • the web After transfer to the roll 32, the web is conveyed on the heated surface thereof for a time suflicient to remove the liquid, thus leaving the solidified adhesive.
  • the web can then be removed from the roll 32 by passage over the roll 42.
  • the surface of the transfer roll 32 is desirably made of an easily releasable material such as tetrafluoroethylene.
  • the foraminous wire 2'6 can also be fashioned from an easily releasable material.
  • FIG. 2 illustrates a cross sectional view of a web prepared in a manner such as described with respect to FIG. 1.
  • the web is characterized by a continuum of fibers 44 interrupted in a pattern of adhesive bonds 46.
  • the adhesive bonds are highly compacted compared with the regions between bonds and, typically, the thickness of the unbonded regions will be at least several times greater than the thicknessof the bond areas.
  • FIG. 3 there is illustrated a further method for practicing the present invention.
  • an airlaid web 48 formed in a manner similar to that described with respect to the web of FIG. 1 is conveyed on the forming wire 50 to the nip between the roll 52 and the heated, transfer roll 54.
  • the surface of the roll 54 is, in this embodiment, smooth and has printed thereon a pattern of liquid-borne adhesive.
  • adhesive printing on the roll 54 can be accomplished by bringing the surface of the roll 54 into light pressure contact with the rubber-intaglio roll 56 which has depressions in its surface corresponding to the desired preselected adhesive pattern.
  • Adhesive disposed in a liquid from a supply pan 58 is pumped or otherwise transferred to a reservoir located immediately above an inclined doctor blade 60the reservoir being defined in part bythe upper surface of the inclined doctor blade and the adjacent portion of the rotating periphery of the surface of the intaglio roll 56.
  • the intaglio printing roll 56 rotates (in a clockwise direction as viewed in FIG. 3)
  • the intaglio pattern surface thereof is filled with the liquid carrying the adhesive, excess liquid is removed by the doctor blade 60 and a metered amount of liquid is transferred to the transfer roll 54.
  • the adhesive When the liquid on the surface of the transfer roll 54 contacts the web 48 at the transfer nip, the adhesive immediately penetrates the Web in the preselected pattern. Such penetration with the accompanying temporary binding effect on the web 48 in combination with the preferential attraction of the liquid for the transfer roll 54 causes the web 48 to transfer, substantially intact, from the wire 50 to the transfer roll 54. With respect to effecting such transfer, the clearance in the transfer nip should be such as to permit the web 48 to come into contact with the printed liquid adhesive, but should not be so small as to cause liquid to be forced through the web to the wire 50. If liquid is forced through the web, a degree of web adherence to the wire 50 may develop and such can adversely affect web transfer to the roll 54.
  • the web After the web has been transferred to the heated roll 54 in the manner indicated, the web is maintained in contact with the roll for a time suflicient to effect solidification of the adhesive and removal of the accompanying liquid. Thereafter, the bonded web can be removed from the roll 54 over the roll 62.
  • the surface of the roll 54 is desirably of a releasable character so that removal of the bonded web therefrom can be easily effected.
  • the roll 54 has a surface such as of steel from which the web does not easily release, the web can be removed therefrom by conventional creping techniques.
  • FIG. 4 the manner illustrated therein of preparing a bonded web is quite similar to that shown in FIG. 3 except that an endless belt 70 is employed as a transfer member for the web '66, transfer being effected in the nip '68 between the airlaid web forming wire 64 and the belt 70.
  • Printing of the adhesive onto the belt 70 can be accomplished at the printing station 72 in the manner described previously with reference to FIG. 3. Since it is difiicult to maintain the belt 70 in a heated condition sufiicient to solidify the adhesive and remove the liquid therefrom, the temporarily stabilized web transferred to the belt 70 at the transfer nip 68 can again be transferred to the heated roll 74 for solidification of the adhesive and removal of the liquid.
  • the surface of the belt 70 should contain a release coating and the web should be drawn into contact with the roll 74 by rotating the roll 74 at a speed slightly higher than the speed of the belt 70. Due to the temporarily stabilized nature of the web 66 on the belt 70, the draw necessary to effect transfer does not adversely affect the integrity of the web 66.
  • the bonded web can be removed therefrom using a creping blade 96. Alternatively, the web can be removed as illustrated in FIG. 3.
  • the roll 74 is preferably fabricated from or coated with a material from which the web can be easily released.
  • FIG. 4 The embodiment depicted in FIG. 4 is quite useful when hot melt adhesives are employed.
  • the adhesive is applied in a heated, liquid form to the belt 70.
  • a cooled roll 74 the liquid characteristics of the adhesive are removed on travel of the web in contact with the cooled roll 74 after transfer thereto.
  • the product is formed without the necessity of an overall moisture application and thus no extensive drying is required. Due to the distinctive character of the airlaid web where-in substantial areas of unbonded fibers are present, the product has very desirable tactile and absorbency properties. In addition, due to the external adhesive nature of the web bonding, the webs exhibit a surprising degree of strength.
  • the products of the present invention contain unbonded fiber areas interrupted by a pattern of bonded areas.
  • a transfer member containing raised points such as illustrated in FIG. 1
  • the bonded areas will be compacted so that the thickness of the unbonded areas will be several times that of the bonded areas.
  • Such a distinctive character can also be achieved by other means.
  • One such means involves using slight pressure in effecting transfer of the web to a smooth transfer member. Such pressure initially compacts the Web over all of its surface area; however, on release of the pressure those regions not printed with fluid spring back to their substantially uncompacted state, the printed regions remaining compacted.
  • Such a distinctive web character is also obtained when the liquid in which the adhesive is disposed has the capacity for softening the wood fibers of the web. Water is the most noticeable example of such liquids. The surface tension forces accompanying the removal of water compact the web in those preselected regions of application thus yielding an adhesively bonded web containing the previously described distinctive compacted and bonded regions.
  • a strong, lightweight web suitable for tissue and toweling applications which comprises an airlaid threedimensional continuum of wood fibers in their substantially unbonded airlaid state interrupted by a pattern of compacted adhesive bond areas spaced less than an average fiber length apart at a frequency of from 10 to 40 per square inch across both dimensions of the web, occupying from about 10 to 40% of the web area and the adhesive being confined to the bond areas, the thickness of the unbonded fiber areas being at least several times that of the bonded areas and the web having a basis weight of about 5 to 50 lbs. per 2880 ft.
  • a strong, lightweight web suitable for tissue and toweling applications which comprises an airlaid threedimensional continuum of wood fibers in their substantially unbonded airlaid state interrupted by a pattern of compacted adhesive bond areas spaced less than an average fiber length apart and the adhesive being confined to said areas, said adhesive having been applied in a wood fiber softening liquid with compaction of said web in the bond areas having been achieved through surface tension forces accompanying removal of said liquid from said web, the web having a basis weight of about 5 to 50 lbs. 3,616,157 10/1971 Smith 161-124 per 2880 ft.”. 3,301,746 1/1967 Sanford et a1. 162-117 3.
  • the web of claim' 2 wherein the liquid is water.

Abstract

A METHOD OF FORMING A LIGHTWEIGHT, AIRLAID WEB OF WOOD FIBERS SUITABLE FOR TISSUE AND TOWELING APPLICATIONS COMPRISES AIRLAYING A WOOD FIBER CONTINUUM ONTO A FORAMINOUS CARRIER, BRINGING THE CONTINUUM TO CONTACT WITH A TRANSFER MEMBER PRINTED WITH AN ADHESIVE IN A PRESELECTED PATTERN, THE ADHESIVE BEING DISPOSED IN A LIQUID, AND REMOVING THE LIQUID TO PROVIDE AN AIRLAID, ADHESIVELY BONDED WEB.

D R A W I N G

Description

Dec. 4, 1973 c, DUNNlNG ETI'AL 3,776,897
AIR FORMED ADHESIVE BONDED WEBS AND METHOD FOR FORMING CH WEBS Filed May 0, 1971 United States Patent Ofliee 3,776,807 Patented Dec. 4, 1973 3,776,807 AIR FORMED ADHESIVE BONDED WEBS AND METHOD FOR FORMING SUCH WEBS Charles E. Dunning and Winterton U. Day, Neenah, Wis, assignors to Kimberly-Clark Corporation, Neenah, Wis. Filed May 20, 1971, Ser. No. 145,458 Int. Cl. D04h 1/04; D21h 5/26 U.S. Cl. 161- 124 4 Claims ABSTRACT OF THE DISCLOSURE A method of forming a lightweight, airlaid Web of wood fibers suitable for tissue and toweling applications comprises airlaying a wood fiber continuum onto a foraminous carrier, bringing the continuum into contact with a transfer member printed with an adhesive in a preselected pattern, the adhesive being disposed in a liquid, and removing the liquid to provide an airlaid, adhesively bonded web.
RELATED APPLICATIONS Dunning, Ser. No. 882,257, filed Dec. 4, 1969, for: Air- Formed Web and Methods for Making Such Webs, now U.S. Pat. No. 3,962,622, a continuation-in-part of Ser. No. 783,877, filed Dec. 16, 1908, now abandoned.
Dunning application Ser. No. 145,449, for: Air-Formed Adhesively Supplemented, Hydrogen-Bonded Webs and Method for Making Such Webs, filed on May 20, 1971.
Dunning and Kellenberger applications, for: Ap paratus for Forming Airlaid Webs, Ser. No. 145,452, and High Speed Method for Forming Airlaid Webs, Ser. No. 145,546, filed on May 20, 1971.
DESCRIPTION OF THE INVENTION The present invention relates to cellulosic products and, more particularly, to the preparation of lightweight cellulosic products useful in tissue and toweling applications which are characterized by a desirable combination of strength, absorbency, and tactile properties.
Conventionally, disposable tissue and towel products have been formed on paper-making equipment by water laying a wood pulp fiber sheet and, thereafter, removing the water Wither by drying or a combination of pressing and drying. During water removal, strong capillary surface tension force is developed between fibers and a degree of overall bonding inevitably results. Because of this invention overall bonding phenomenon, sheets prepared by waterlaid methods inherently possess very unfavorable tactile properties (e.g., harshness, stiflness, low bulk and poor overall softness) and absorbency. To enhance these latter properties, waterlaid sheets are conventionally creped, which artificially improves the tactile and absorbency properties by disrupting the excessive fiber bonding.
However, creping has several limitations, including the fact that the detrimental effects of the initial overall bonding is not completely ofiset. Also, in a waterlaid method, there is typically preferential fiber orientation in the machine direction; and, as a result, the strength in this direction is always higher than in the cross direction. Consequently, achieving creped products with acceptable cross direction strengths generally requires developing excessive machine direction strength. Because of this, the attainment of optimum tactile properties is prevented.
Where products are to be used in contact with moisture such as toweling and facial tissues, it is customary to treat them with wet'strength resins. The addition of such resins can detract from the tactile properties of the products.
-Air forming of wood pulp fiber sheets has been carried out for many years; however, the resulting webs have only been used for applications where either little strength is required (such as for example absorbent products) or applications wherein a certain minimum strength is required but the tactile and absorbency properties are unimportant (such as various specialty papers.) U.S. Pats. 2,447,161 and 2,810,940 and British Pat. 1,088,991 illustrate air forming techniques for such applications.
The copending related applications previously identified disclose a method, and the resulting products, of air laying a cellulosic web to provide an aesthetically pleasing cellulosic web characterized by a desirable combination of strength, absorbency and tactile properties. Such webs are made by air laying a continuum of substantially unbonded wood fibers and forming a coherent structure by bonding the fibers together at regularly patterned areas of the continuum. These webs possess a novel combination of attributes which makes them highly desirable as substitutes for conventional waterlaid paper products in a variety of disposable applications.
While the properties of such webs render them very suitable for applications such as sanitary Wipes and towelings, widespread use is contingent upon the ability to make the webs in an economic fashion. This necessitates forming the product at high speeds, desirably in excess of 1000 ft. per minute. Operation at such speeds, however, creates a considerable variety of problems. A particularly ditficult problem arises because the airlaid continum which is formed has little integrity and yet must be subjected to a bonding step that requires removal of the flimsy material from the wire on which it was formed. Bonding, at high speeds, to provide the desired strength level and coherency of the product also creates difiiculty.
Methods for forming desirable airlaid webs at high speeds are disclosed in the copending applications identified previously entitled Apparatus for Forming Airlaid Webs, Ser. No. 145,452, and High Speed Method for Forming Airlaid Webs, Ser. No. 145,546. The procedures disclosed in these applications involve moisturizing an airlaid continuum while it is on the wire on which it was formed in order to subsequently transfer it into and out of a bonding station. The presence of such moisture requires the subsequent drying of the formed Web.
It is a principal object of the present invention to provide a high speed method for forming cellulosic webs having desirable strength, absorbency and tactile properties which does not necessitate extensive drying of the web after preparation. A further and closely related object is to provide a high speed process wherein transfer of an airlaid continuum of wood fibers from its forming wire to a bonding station can be accomplished without moisturizing the web on the forming wire.
An additional object is to provide light weight, airlaid webs of wood fibers having desirable absorbency and tactile properties and which also have exceptionally high strength.
A further object is to provide adhesively spot bonded, airlaid webs of Wood pulp fibers which can be prepared at high speeds and in a manner that does not require moisturizing of the web prior to the application of 'the adhesive thereto.
Other objects and advantages of the present invention will be apparent as the following description proceeds, taken in conjunction with the accompanying drawing in which:
FIG. 1 is a side view illustrating an arrangement of apparatus which can be used in accomplishing the present invention;
FIG. 2 is a cross-sectional view of a product prepared using the apparatus illustrated in FIG. 1; and
FIGS. 3 and 4 are side elevation :views of additional embodiments of apparatus which can be used in accomplishing the process of the present invention.
While the invention is susceptible of various modifications and alternative constructions, there is shown in the drawings and will herein be described in detail the preferred embodiments. It is to be understood, however, that it is not intended to limit the invention to the specific forms disclosed. On the contrary, it is intended to cover all modifications and alternative constructions falling Within the spirit and scope of the invention as expressed in the appended claims.
Briefiy stated, the present invention involves forming a lightweight, airlaid web of wood fibers on a moving foraminous carrier and thereafter bringing the web into contact with a transfer member moving at substantially the same speed as the carrier. The transfer member has printed on its surface, in a preselected pattern, an adhesive disposed in a liquid. On contact between the web and the moving transfer member, the liquid rapidly penetrates into the web and wets the airlaid fibers in those localized regions corresponding to the preselected pattern. Such rapid wetting temporarily unites the fibers of the web together, thus permitting transfer of the web to the transfer member without substantial disruption of the web. After transfer has been effected, bonding of the web in the preselected pattern to form a useful product can be accomplished by simply removing the liquid, generally by means of heat when the liquid is water or an easily vaporized medium.
In preparing webs as above described, it is important that the preselected pattern of liquid containing the adhesive be applied to the transfer member at discrete spots which are spaced less than an average fiber length of the cellulosic web apart. Such a pattern not only assures that the web will have sufiicient integrity during transfer but also that the resulting adhesively bonded product will be sufiiciently strong for most intended end uses. A suitable pattern can comprise a series of discrete spots arranged on the transfer member so that the resultant bonded web has bonded areas at a frequency of about -40 bonds per sq. inch across both dimensions of the web and such that the total bonded area of the web is about 1040%. Webs so bonded not onl have sufiicient strength but are additionally characterized by highly desirable absorbency and tactile properties due principally to the substantial areas of the unbonded fibers existing between the particular bonded zones.
In addition to the selection of an appropriate bond pattern, it is also an important aspect of the present invention that the cellulosic web be in its as formed condition on contact with the printed transfer member and, in particular, that it not be substantially compacted. The use of uncompacted airlaid webs assures that the liquid printed on the transfer member will rapidly penetrate the web on contact therewith, thus providing almost instantaneous, though somewhat temporary, structural integrity to the web.
The particular adhesive employed in accomplishing the present invention is not particularly important so long as it can be applied in combination with a liquid which functions in effectuating transfer as above described and that the adhesive in its solid form, adequately bond the cellulosic web without excessive tackiness. Adhesives which can be deposited from a liquid medium in a solid, untacky condition at a temperature below or at the temperature necessary to remove the liquid are generally most desirable for use herein.
Adhesives which can be applied as aqueous dispersions or solutions are generally suitable for use herein. Examples of such materials include various starches, water soluble polymeric materials, and water dispersible resins such as various vinyl resins (e.g., polyvinyl acetate and vinyl acetate/ ethylene copolymers) and acrylics. Adhesive materials such as vinyl resins dissolved in suitable organic solvents can also be employed. In addition, plastisols, i.e., polymeric materials such as vinyl polymers (e.g., vinyl chloride) and copolymers dispersed in fluid plasticizers such as dioctyl phthalate and the like, can also be used at suitably low viscosities. With respect to such plastisols, removal of the liquid plasticizer is accomplished by absorbing the plasticizer into the polymer particles which occurs on curing of the plastisol. In addition, hot melt adhesives can be used. Such adhesives are applied as liquids. On cooling, the liquid character thereof disappears leaving the solidified adhesive.
Turning now to the drawing, FIG. 1 illustrates one manner of practicing the present invention. As shown, a cellulosic web 10 is formed by initially separating a pulp sheet 12 into its individual fibers 14 by unwinding the pulp sheet 12 from a roll 16 and forwarding the sheet by means of the driven rolls 18, 20 to a divellicating means such as a picker roll 22, powered by means not shown. The individual fibers 14 are conveyed through a forming duct 24 and onto a moving foraminous wire 26. Air from a source 28 in combination with a vacuum box 30 creates a downwardly moving stream of air which assists in collecting the air formed web 10 on the foraminous Wire.
While customary air forming techniques can be utilized in forming the web, the forming duct 24 illustrated in FIG. 1 is eflicient in obtaining an especially suitable web, particularly at high speeds. The illustrated duct has a width approximately equal to the height of the picker teeth on the roll 22 and is positioned so as to tangentially receive the fibers as they leave the picker. By using a duct with such a width, fiber velocity can be maintained essentially constant throughout the length of the duct. Webs formed in this manner have exceptionally good uniformity and are substantially free of fiber floccing. Appropriate sizing of the forming duct and the spatial arrangement with respect to the picker and the wire are more completely described in copending Appel application Ser. No. 882,265, now abandoned, filed on Dec. 4, 1969 entitled Pulp Picking Apparatus With Improved Fiber Forming Duct.
The weight of the airlaid web formed in the above illustrated manner is dependent upon the desired end-use of the subsequently prepared product. For most applications, however, webs having a basis weight of about 5-50 lbs/2880 ft. are suitable, 10 to 25 lbs/2880 ft. being preferred. The particular type of cellulosic fibers used in preparing the web is also not critical and the type selected will generally depend upon the desired surface texture. For example, webs with a soft and flutfy texture are generally obtained from cedar fibers while a slightly more wooly texture with increased body can be obtained from southern pine fibers.
Referring again to FIG. 1, after formation on the foraminous wire 26, the surface of the web opposite the wire 26 is brought into contact with the heated transfer roll 32, which as viewed in FIG. 1, rotates in a counterclockwise direction and is moving at substantially the same speed as the wire. A slight degree of wrap of the wire 26 around the transfer roll 32 can be provided in order to aid in transfer to the roll 32.
In the illustrated embodiment, the transfer roll 32 has a plurality of raised points on its surface to which an adhesive such as above-described disposed in a liquid is applied from the pan 36 via the adhesive transfer rolls 38 and 40. The size of the raised points on the transfer roll 32 are desirably comparatively steep with heights of about 0.015-0.030.
After transfer to the roll 32, the web is conveyed on the heated surface thereof for a time suflicient to remove the liquid, thus leaving the solidified adhesive. The web can then be removed from the roll 32 by passage over the roll 42. In order to facilitate such removal, the surface of the transfer roll 32 is desirably made of an easily releasable material such as tetrafluoroethylene. Similarly, in order to aid the initial transfer of the web to the roll 32, the foraminous wire 2'6 can also be fashioned from an easily releasable material.
FIG. 2 illustrates a cross sectional view of a web prepared in a manner such as described with respect to FIG. 1. As shown, the web is characterized by a continuum of fibers 44 interrupted in a pattern of adhesive bonds 46. As illustrated, the adhesive bonds are highly compacted compared with the regions between bonds and, typically, the thickness of the unbonded regions will be at least several times greater than the thicknessof the bond areas.
Turning now to FIG. 3, there is illustrated a further method for practicing the present invention. As shown, an airlaid web 48 formed in a manner similar to that described with respect to the web of FIG. 1 is conveyed on the forming wire 50 to the nip between the roll 52 and the heated, transfer roll 54. The surface of the roll 54 is, in this embodiment, smooth and has printed thereon a pattern of liquid-borne adhesive. As illustrated, adhesive printing on the roll 54 can be accomplished by bringing the surface of the roll 54 into light pressure contact with the rubber-intaglio roll 56 which has depressions in its surface corresponding to the desired preselected adhesive pattern. Adhesive disposed in a liquid from a supply pan 58 is pumped or otherwise transferred to a reservoir located immediately above an inclined doctor blade 60the reservoir being defined in part bythe upper surface of the inclined doctor blade and the adjacent portion of the rotating periphery of the surface of the intaglio roll 56. As the intaglio printing roll 56 rotates (in a clockwise direction as viewed in FIG. 3), the intaglio pattern surface thereof is filled with the liquid carrying the adhesive, excess liquid is removed by the doctor blade 60 and a metered amount of liquid is transferred to the transfer roll 54.
When the liquid on the surface of the transfer roll 54 contacts the web 48 at the transfer nip, the adhesive immediately penetrates the Web in the preselected pattern. Such penetration with the accompanying temporary binding effect on the web 48 in combination with the preferential attraction of the liquid for the transfer roll 54 causes the web 48 to transfer, substantially intact, from the wire 50 to the transfer roll 54. With respect to effecting such transfer, the clearance in the transfer nip should be such as to permit the web 48 to come into contact with the printed liquid adhesive, but should not be so small as to cause liquid to be forced through the web to the wire 50. If liquid is forced through the web, a degree of web adherence to the wire 50 may develop and such can adversely affect web transfer to the roll 54.
After the web has been transferred to the heated roll 54 in the manner indicated, the web is maintained in contact with the roll for a time suflicient to effect solidification of the adhesive and removal of the accompanying liquid. Thereafter, the bonded web can be removed from the roll 54 over the roll 62. Preferably, as is true with respect to the previous embodiment, the surface of the roll 54 is desirably of a releasable character so that removal of the bonded web therefrom can be easily effected. Alternatively, if the roll 54 has a surface such as of steel from which the web does not easily release, the web can be removed therefrom by conventional creping techniques.
Referring now to FIG. 4, the manner illustrated therein of preparing a bonded web is quite similar to that shown in FIG. 3 except that an endless belt 70 is employed as a transfer member for the web '66, transfer being effected in the nip '68 between the airlaid web forming wire 64 and the belt 70. Printing of the adhesive onto the belt 70 can be accomplished at the printing station 72 in the manner described previously with reference to FIG. 3. Since it is difiicult to maintain the belt 70 in a heated condition sufiicient to solidify the adhesive and remove the liquid therefrom, the temporarily stabilized web transferred to the belt 70 at the transfer nip 68 can again be transferred to the heated roll 74 for solidification of the adhesive and removal of the liquid. In order to accomplish transfer to the roll 74, the surface of the belt 70 should contain a release coating and the web should be drawn into contact with the roll 74 by rotating the roll 74 at a speed slightly higher than the speed of the belt 70. Due to the temporarily stabilized nature of the web 66 on the belt 70, the draw necessary to effect transfer does not adversely affect the integrity of the web 66. After solidification and removal of liquid on the roll 74, the bonded web can be removed therefrom using a creping blade 96. Alternatively, the web can be removed as illustrated in FIG. 3. To do such, and as has been previously discussed with respect to other embodiments, the roll 74 is preferably fabricated from or coated with a material from which the web can be easily released.
The embodiment depicted in FIG. 4 is quite useful when hot melt adhesives are employed. In such instances the adhesive is applied in a heated, liquid form to the belt 70. By the use of a cooled roll 74, the liquid characteristics of the adhesive are removed on travel of the web in contact with the cooled roll 74 after transfer thereto.
As has been illustrated, there is herein provided a method for forming a lightweight cellulosic product useful in tissue and toweling applications. The product is formed without the necessity of an overall moisture application and thus no extensive drying is required. Due to the distinctive character of the airlaid web where-in substantial areas of unbonded fibers are present, the product has very desirable tactile and absorbency properties. In addition, due to the external adhesive nature of the web bonding, the webs exhibit a surprising degree of strength.
As illustrated with respect to FIG. 2, the products of the present invention contain unbonded fiber areas interrupted by a pattern of bonded areas. When a transfer member containing raised points such as illustrated in FIG. 1 is employed, the bonded areas will be compacted so that the thickness of the unbonded areas will be several times that of the bonded areas. Such a distinctive character can also be achieved by other means. One such means involves using slight pressure in effecting transfer of the web to a smooth transfer member. Such pressure initially compacts the Web over all of its surface area; however, on release of the pressure those regions not printed with fluid spring back to their substantially uncompacted state, the printed regions remaining compacted. Such a distinctive web character is also obtained when the liquid in which the adhesive is disposed has the capacity for softening the wood fibers of the web. Water is the most noticeable example of such liquids. The surface tension forces accompanying the removal of water compact the web in those preselected regions of application thus yielding an adhesively bonded web containing the previously described distinctive compacted and bonded regions.
What is claimed is:
1. A strong, lightweight web suitable for tissue and toweling applications which comprises an airlaid threedimensional continuum of wood fibers in their substantially unbonded airlaid state interrupted by a pattern of compacted adhesive bond areas spaced less than an average fiber length apart at a frequency of from 10 to 40 per square inch across both dimensions of the web, occupying from about 10 to 40% of the web area and the adhesive being confined to the bond areas, the thickness of the unbonded fiber areas being at least several times that of the bonded areas and the web having a basis weight of about 5 to 50 lbs. per 2880 ft.
2. A strong, lightweight web suitable for tissue and toweling applications which comprises an airlaid threedimensional continuum of wood fibers in their substantially unbonded airlaid state interrupted by a pattern of compacted adhesive bond areas spaced less than an average fiber length apart and the adhesive being confined to said areas, said adhesive having been applied in a wood fiber softening liquid with compaction of said web in the bond areas having been achieved through surface tension forces accompanying removal of said liquid from said web, the web having a basis weight of about 5 to 50 lbs. 3,616,157 10/1971 Smith 161-124 per 2880 ft.". 3,301,746 1/1967 Sanford et a1. 162-117 3. The web of claim' 2 wherein the liquid is water. 3,444,859 5/1969 Kalwaites 128-284 4. The web of claim 1 wherein the basis weight is 3,043,733 7/1962 Harmon et al 156-209 from 10 to 25 lbs. per2880 ft. 5 2,952,260 9/ 1960 Burgeni 128-290 References Cited GEORGE F. LESMES, Primary Examiner UNITED STATES PATENTS J. J. BELL, Assistant Examiner 3,017,304 1/1962 Burgeni 161-145 3,059,313 10/1962 Harmon 161-148 CL 2,464,301 3/1949 Francis 161124 156-622, 209, 290; 161-148, 169; 264-119, 128
2,902,395 9/1959 Hirschy et al. 16182 22% UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Dated December 4, 1973 Patent No. 776, 807
g fl Charles E, Dunning and Winterton U. Day
It is certified that error appears 'in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the Specification:
C01. 1, line 23, change "3,962,622" to --3,e92,s22--,
Signed. and sealed this 21st day of May 1971 (SEAL) fittest;
c HAM SiiALL DAL) ;.-1 Commissioner of Patents Attesting; Officer
US00145458A 1971-05-20 1971-05-20 Air formed adhesive bonded webs and method for forming such webs Expired - Lifetime US3776807A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US14548571A 1971-05-20 1971-05-20
US14545871A 1971-05-20 1971-05-20
CA176,316A CA985084A (en) 1971-05-20 1973-07-12 Air formed adhesive bonded webs and method for forming such webs
ZA734860A ZA734860B (en) 1971-05-20 1973-07-17 Air formed adhesive bonded webs and method for forming such webs
GB3410173A GB1439966A (en) 1971-05-20 1973-07-17 Air formed adhesive bonded webs and method for forming such webs
FR7328034A FR2239558B1 (en) 1971-05-20 1973-07-31
DE2339207A DE2339207C3 (en) 1971-05-20 1973-07-31 Process for making an air-laid fiber web

Publications (1)

Publication Number Publication Date
US3776807A true US3776807A (en) 1973-12-04

Family

ID=35262211

Family Applications (1)

Application Number Title Priority Date Filing Date
US00145458A Expired - Lifetime US3776807A (en) 1971-05-20 1971-05-20 Air formed adhesive bonded webs and method for forming such webs

Country Status (1)

Country Link
US (1) US3776807A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978257A (en) * 1973-08-06 1976-08-31 Kimberly-Clark Corporation Internally adhesively bonded fibrous web
US4011034A (en) * 1972-07-08 1977-03-08 Karl Kroyer St. Anne's Limited Production of fibrous sheet material
US4097640A (en) * 1972-07-08 1978-06-27 Karl Kroyer St. Anne's Limited Production of fibrous sheet material
US4127637A (en) * 1975-03-13 1978-11-28 Scott Paper Co. Method of manufacturing a dry-formed, embossed adhesively bonded, nonwoven fibrous sheet
US4160004A (en) * 1972-07-08 1979-07-03 Karl Kroyer St. Anne's Limited Production of fibrous sheet material
US4268340A (en) * 1973-08-05 1981-05-19 Colgate-Palmolive Company Method of forming an absorbent article
EP0033988A2 (en) * 1980-02-04 1981-08-19 THE PROCTER & GAMBLE COMPANY Method of making a pattern densified fibrous web having spaced, binder impregnated high density zones
US4285764A (en) * 1978-04-11 1981-08-25 Beloit Corporation Method and apparatus for producing corrugated combined board
US4366111A (en) * 1979-12-21 1982-12-28 Kimberly-Clark Corporation Method of high fiber throughput screening
US4417931A (en) * 1981-07-15 1983-11-29 Cip, Inc. Wet compaction of low density air laid webs after binder application
US4612231A (en) * 1981-10-05 1986-09-16 James River-Dixie Northern, Inc. Patterned dry laid fibrous web products of enhanced absorbency
US5399412A (en) * 1993-05-21 1995-03-21 Kimberly-Clark Corporation Uncreped throughdried towels and wipers having high strength and absorbency
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5667636A (en) * 1993-03-24 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for making smooth uncreped throughdried sheets
US20050247416A1 (en) * 2004-05-06 2005-11-10 Forry Mark E Patterned fibrous structures
EP1645672A1 (en) 2004-10-06 2006-04-12 KVG Technologies Inc. Vibrationally compressed glass fiber and/or other material fiber mats and methods for making the same
US20090241831A1 (en) * 2007-07-06 2009-10-01 Jezzi Arrigo D Apparatus for the uniform distribution of fibers in an air stream
US7694379B2 (en) 2005-09-30 2010-04-13 First Quality Retail Services, Llc Absorbent cleaning pad and method of making same
US7744723B2 (en) 2006-05-03 2010-06-29 The Procter & Gamble Company Fibrous structure product with high softness
US7749355B2 (en) 2005-09-16 2010-07-06 The Procter & Gamble Company Tissue paper
US20100289169A1 (en) * 2007-07-06 2010-11-18 Jezzi Arrigo D Apparatus and method for dry forming a uniform non-woven fibrous web
US7962993B2 (en) 2005-09-30 2011-06-21 First Quality Retail Services, Llc Surface cleaning pad having zoned absorbency and method of making same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011034A (en) * 1972-07-08 1977-03-08 Karl Kroyer St. Anne's Limited Production of fibrous sheet material
US4097640A (en) * 1972-07-08 1978-06-27 Karl Kroyer St. Anne's Limited Production of fibrous sheet material
US4160004A (en) * 1972-07-08 1979-07-03 Karl Kroyer St. Anne's Limited Production of fibrous sheet material
US4268340A (en) * 1973-08-05 1981-05-19 Colgate-Palmolive Company Method of forming an absorbent article
US3978257A (en) * 1973-08-06 1976-08-31 Kimberly-Clark Corporation Internally adhesively bonded fibrous web
US4127637A (en) * 1975-03-13 1978-11-28 Scott Paper Co. Method of manufacturing a dry-formed, embossed adhesively bonded, nonwoven fibrous sheet
US4285764A (en) * 1978-04-11 1981-08-25 Beloit Corporation Method and apparatus for producing corrugated combined board
US4366111A (en) * 1979-12-21 1982-12-28 Kimberly-Clark Corporation Method of high fiber throughput screening
EP0033988A3 (en) * 1980-02-04 1981-09-16 The Procter & Gamble Company Pattern densified fibrous web having spaced, binder impregnated high density zones, and method of making such a web
EP0033988A2 (en) * 1980-02-04 1981-08-19 THE PROCTER & GAMBLE COMPANY Method of making a pattern densified fibrous web having spaced, binder impregnated high density zones
US4417931A (en) * 1981-07-15 1983-11-29 Cip, Inc. Wet compaction of low density air laid webs after binder application
US4612231A (en) * 1981-10-05 1986-09-16 James River-Dixie Northern, Inc. Patterned dry laid fibrous web products of enhanced absorbency
US5667636A (en) * 1993-03-24 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for making smooth uncreped throughdried sheets
US5888347A (en) * 1993-03-24 1999-03-30 Kimberly-Clark World Wide, Inc. Method for making smooth uncreped throughdried sheets
US5399412A (en) * 1993-05-21 1995-03-21 Kimberly-Clark Corporation Uncreped throughdried towels and wipers having high strength and absorbency
US5616207A (en) * 1993-05-21 1997-04-01 Kimberly-Clark Corporation Method for making uncreped throughdried towels and wipers
US6171442B1 (en) 1993-06-24 2001-01-09 Kimberly-Clark Worldwide, Inc. Soft tissue
US5772845A (en) * 1993-06-24 1998-06-30 Kimberly-Clark Worldwide, Inc. Soft tissue
US5656132A (en) * 1993-06-24 1997-08-12 Kimberly-Clark Worldwide, Inc. Soft tissue
US5932068A (en) * 1993-06-24 1999-08-03 Kimberly-Clark Worldwide, Inc. Soft tissue
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US20030089475A1 (en) * 1993-06-24 2003-05-15 Farrington Theodore Edwin Soft tissue
US20040206465A1 (en) * 1993-06-24 2004-10-21 Farrington Theodore Edwin Soft tissue
US6827818B2 (en) 1993-06-24 2004-12-07 Kimberly-Clark Worldwide, Inc. Soft tissue
US20050006039A1 (en) * 1993-06-24 2005-01-13 Farrington Theodore Edwin Soft tissue
US6849157B2 (en) 1993-06-24 2005-02-01 Kimberly-Clark Worldwide, Inc. Soft tissue
US7156954B2 (en) 1993-06-24 2007-01-02 Kimberly-Clark Worldwide, Inc. Soft tissue
US20050258576A1 (en) * 2004-05-06 2005-11-24 Forry Mark E Patterned fibrous structures
US20050247416A1 (en) * 2004-05-06 2005-11-10 Forry Mark E Patterned fibrous structures
EP1645672A1 (en) 2004-10-06 2006-04-12 KVG Technologies Inc. Vibrationally compressed glass fiber and/or other material fiber mats and methods for making the same
US7749355B2 (en) 2005-09-16 2010-07-06 The Procter & Gamble Company Tissue paper
US7694379B2 (en) 2005-09-30 2010-04-13 First Quality Retail Services, Llc Absorbent cleaning pad and method of making same
US7962993B2 (en) 2005-09-30 2011-06-21 First Quality Retail Services, Llc Surface cleaning pad having zoned absorbency and method of making same
US8026408B2 (en) 2005-09-30 2011-09-27 First Quality Retail Services, Llc Surface cleaning pad having zoned absorbency and method of making same
US7744723B2 (en) 2006-05-03 2010-06-29 The Procter & Gamble Company Fibrous structure product with high softness
USRE42968E1 (en) * 2006-05-03 2011-11-29 The Procter & Gamble Company Fibrous structure product with high softness
US20090241831A1 (en) * 2007-07-06 2009-10-01 Jezzi Arrigo D Apparatus for the uniform distribution of fibers in an air stream
US20100289169A1 (en) * 2007-07-06 2010-11-18 Jezzi Arrigo D Apparatus and method for dry forming a uniform non-woven fibrous web
US7886411B2 (en) 2007-07-06 2011-02-15 Jezzi Arrigo D Apparatus for the uniform distribution of fibers in an air stream
US8122570B2 (en) 2007-07-06 2012-02-28 Jezzi Arrigo D Apparatus and method for dry forming a uniform non-woven fibrous web

Similar Documents

Publication Publication Date Title
US3976734A (en) Method for forming air formed adhesive bonded webs
US3776807A (en) Air formed adhesive bonded webs and method for forming such webs
US4035217A (en) Method of manufacturing absorbent facing materials
US3765997A (en) Laminate
US4501640A (en) Creping adhesives containing polyvinyl alcohol and cationic polyamide resins
US3682738A (en) Methods and apparatus for depositing powdered materials in patterned areas
US3395201A (en) Method and apparatus for producing an absorbent product
US4528316A (en) Creping adhesives containing polyvinyl alcohol and cationic polyamide resins
GB1294794A (en) Fibrous sheet material and method and apparatus for forming same
US6214146B1 (en) Creped wiping product containing binder fibers
US4326000A (en) Soft, absorbent, unitary, laminate-like fibrous web
US4377543A (en) Strength and softness control of dry formed sheets
US4057669A (en) Method of manufacturing a dry-formed, adhesively bonded, nonwoven fibrous sheet and the sheet formed thereby
US3978257A (en) Internally adhesively bonded fibrous web
US3684603A (en) Method of making a two-sided towel
US2698574A (en) Apparatus for bonding nonwoven webs
US4093765A (en) Soft absorbent fibrous web and disposable diaper including same
US4125659A (en) Patterned creping of fibrous products
US3692622A (en) Air formed webs of bonded pulp fibers
US3014832A (en) Method of fabricating tissue
US4503116A (en) Dental adhesive device and method of producing same
US2537126A (en) Coated sheet material and process for making the same
US3812000A (en) Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the elastomer containing fiber furnished until the sheet is at least 80%dry
US4035219A (en) Bonding of structures
US3444859A (en) Absorbent fibrous batt with longitudinal barrier areas