US3778126A - Gas display panel without exhaust tube structure - Google Patents

Gas display panel without exhaust tube structure Download PDF

Info

Publication number
US3778126A
US3778126A US00214174A US3778126DA US3778126A US 3778126 A US3778126 A US 3778126A US 00214174 A US00214174 A US 00214174A US 3778126D A US3778126D A US 3778126DA US 3778126 A US3778126 A US 3778126A
Authority
US
United States
Prior art keywords
gas
sealing material
softening
temperature
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00214174A
Inventor
Wilson D Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Application granted granted Critical
Publication of US3778126A publication Critical patent/US3778126A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display

Definitions

  • an object of the present invention is to .-the thickness (andweight) of present glass substrata provide a simpler gas panel assembly process and product structure characterized by elimination of formation and handling of special exhaust ,connections to the envelope contained in the structure.
  • An associated object is to provide improved gas panel display stuctures of uniformly flat construction which can be stacked adjacently in layers to form three-dimensional displays.
  • a further object is to provide a gas panel display structure having uniformly flush surfaces without pro jections; whereby one surface of the structure may be conveniently arranged for viewing as a display while the opposite surface may be positioned-in contactwith photocopying equipment for contact printing of hard copy of displayed images.
  • Another object is to reduce significantly the time and cost of fabricating a gas panel display structure.
  • Another object is to reduce the possibility of gas panel failure by eliminating tubular exhaust/gas filling couplings and associated seals which inherently tend to be thermally and mechanically mismatched in relation to other elements of a panel assembly.
  • the foregoing and other related objectives are achieved by arranging high softening point glass spacing rods and low softening point glass-sealing material in picture frame pattern between disjoint high softening point glass plates within a vacuum oven enclosure.
  • the oven is adapted for selective coupling of vacuum, gas and heat into its enclosure.
  • the disjoint assembly is thereby successively scrubbed by vacuum, immersed in the gas which forms the light emitting medium of the display panel, and heat-fused while immersed in the gas.
  • the blass sealing material fuses with the plates to form a containing envelope around the gas surrounded by these elements.
  • the sealing material softens the upper plate collapses gradually towards and settles upon the spacing rods (diameter less than initial thickness of the unfused sealant); establishing the desired predetermined spacing of the envelope.
  • the sealing material is selected to have viscosity sufficiently low to flow during heat fusion cycling and yet high enough so that it will not run off and leave voids during such cycling.
  • additional objects of the present invention are to provide for improved display panel fabrication processing under conditions of reduced pressure stress whereby glass parts forming the bulk of the panel structure may be made with reduced thickness; such being desirable for both economy, and general effectiveuess of light transmission and handling;
  • FIGS. 1 and 4 provide contrasting partially schematic perspective views of gas panel assemblies formed respectively by earlier and present methods (FIG. 4 serves to indicate the elimination of the exhaust tube and the relatively reduced thickness of the glass plates forming the gas enclosure);
  • FIGS. 2 and 3 provide sectional views of the assembly of either FIG. 1 or FIG. 4 respectively before and after the heat fusion stage of assembly processing;
  • FIG. 5 is a schematic view of vacuum furnace apparatus utilized in the practice of the present invention to provide equalized pressure handling of the assembly throughout the in situ evacuation, gas-filling and heat sealing stages of the present process;
  • FIGS. 6 and 7 indicate additional uses which can be made of the flush rear surfaces of gas panels formed by the present method.
  • FIGS. 1 and 4 show earlier and present gas panel assemblies. The respective fabrication/assembly processes are compared as follows:
  • Vacuum oven enclosure successively exhausted at room temperature, filled with Ne-A gas mixture atspe cific pressure (700 torr), heated (at temperature cycle of note 3 above) to establish envelope sealant fusion and, upon cooling to room temperature, restored to ambient pressure.
  • Exhaust cycle pressure reduced from atmospheric pressure (approx. 750 ton) to about 10 torr in about 5 minutes, and from 10 torr to between 10 and 10 torr in about another hour.
  • Alternate process sequence a) evacuate enclosure; b) heat enclosure to temperature T(C) below softening point (400 C) of envelope sealant and dielectric plate coatings; 0) supply gas plasma to oven enclosure at elevated pressure T/25 X 700 torr; d) continue oven temperature cycle, per note 3, from T to 500 C and back to room temperature; e) restore oven enclosure to atmospheric pressure.
  • the metallized-passivated-dielectric coated front and rear glass plates 1, 2 and exhaust tube 3 are formed into an integral structure by heat union of envelope sealant 4with dielectric plate coatings 5, 6 and heat union of tube sealant 7 with tube 3 and plate 2.
  • edge spacer rods such as 8 may be supplemented by a not shown central spacer rod providing central support for the glass plates during subsequent evacuation and gas filling of envelope space 9 (FIG. 3) through tube 3 and hole 10 in plate 2 (FIG. 3) with the parts subject externally to atmospheric pressure.
  • the fused dielectric layers 5, 6, formed from sprayed and heated glass frit cover the patterned metallization (indicated schematically at 11 in FIG.
  • Layers 5, 6 have specific dielectric properties requisite to support of gas plasma discharge in envelope space 9. All glasses (substrate, dielectric layers, tube, tube sealant, border sealant) must have compatible thermal coefficients of expansion, albeit differing optical, physical, dielectric, and heat softening properties. The expense and effort involved in the exhaust and back filling operation are considerable.
  • the projecting exhaust tube structure 3 is also a relatively weak element in comparison to the main body of the panel formed by glass parts 1, 2.
  • Tube 3 also restricts contact between the exterior surface of plate 2 and other media; for instance other panels as suggested in FIG. 6 or hard copy photocopying equipment as suggested in FIG. 7.
  • Glass plates 1, 2 must have substantial thickness (e.g. one-fourth inch) and may require potentially obstructive central support rods in order to be able to withstand the differential pressures existing when envelope space 9 is evacuated while atmospheric pressure exists externally.
  • FIGS. 4, 2 and 3 Gas panels processed in accordance with the present invention have the form exemplified in FIGS. 4, 2 and 3.
  • Peripheral spacer rods such as 8a having higher softening temperature than the envelope sealant establish ultimate separation spacing of the fused glass parts.
  • the unjoined assembly is positioned in the desiredorientation (FIG. 2) within vacuum oven enclosure 16 (FIG. 5), associated with gas supply apparatus l8, l9, vacuum coupling apparatus 20 and heating unit 22.
  • gas supply apparatus l8, l9 gas supply apparatus 20 and heating unit 22.
  • Such ovens without the gas supply fittings, are sold under commercial designation High Temperature Vacuum Oven, Model 1408, by T-M Vacuum Products Co.
  • the unfused envelope sealant 4a permits unimpeded evacuation of the extended envelope space 26 bounded by the unjoined plates when enclosure 16 is evacuated and unimpeded permeation of gas into the same space when oven enclosure 16 is filled with gas.
  • envelope sealant 4a softens, flows and fuses with the dielectric metallization coating layers 50, 6a of the plates as suggested at 30 (FIG. 3), while the upper plate sinks down against spacers 8a establishing the desired final dimensions of the gas-filled/sealed envelope 9a contained between the plates. Thickness and viscosity of the unfused envelope sealant are selected so that upon softening and flowing the sealant forms a uniform void-free lining around the rectangular parellepiped gas enclosure space 9a.
  • Typical parameters of the present process are:
  • A1,0,-0.2 percent We have shown and described above the fundamental novel features of our invention as applied to a preferred embodiment. It will be understood that various omissions, substitutions and changes in form and detail 6 of the invention as described herein may be made by those skilled in the art without departing from the true spirit and scope of the invention. It is the intention therefore to be limited only by the scope of the following claims. What is claimed is: 1. A process for constructing a gas discharge display device devoid of gas-filling ducts or tubulations, comprising:
  • assembling discrete parts including a pair of transparent dielectric support plates bearing dielectric coated conductive circuits in. a spaced ,apart unfused configuration with uniform spacing between the unfused plates established by a heat fusible sealing material of generally uniform thickness arranged in an enclosure shape of predetermined form in an unfused condition, said sealing material having a pedetermined softening temperature substantially lower than the softening temperatures of said plates to form an enclosed space which is relatively permeable to gas flow at a boundary between said sealing material and said plates;
  • step of filling said space is accomplished by successively evacuating a volume of space containing said unfused assembled parts and filling said containing volume of space with said gas at said predetermined pressure while maintaining said volume at a temperature below the softening temperature of said sealing material.
  • a process for constructing dluctless gas discharge display devices comprising in succession:
  • a process for constructing gas discharge display devices devoid of specialized gas-filling structural projections or tubulations comprising:
  • arranging components including transparent flat dielectric support members having predetermined softening temperature and bearing integral printed circuit metallization patterns encapsulated in transparent dielectric film coatings of predetermined thickness, said coatings having predetermined softening temperature, and transparent dielectric spacer rods having predetermined softening temperature assembled in a spaced configuration established by a closed strip of heat fusible sealing material forming a permeable enclosure of a space between said members; said strip having predetermined generally uniform thickness greater than the diameter of the spacer rods and having predetermined softening temperature less than the softening temperatures of said members, film coatings and spacer rods within a vacuum oven enclosure; said spacer rods being located and dimensioned to establish a predetermined limiting spacing between the encapsulated metallization patterns on said plates upon subsequent softening of said sealing material;
  • said oven enclosure with a predetermined gas suited for display usage; with said gas at predetermined pressure specifically related to the pressure required for display operation and with said enclosure maintained at temperature below the softening point of said sealing material;
  • the evacuating step comprises reducing pressure within said oven enclosure from atmospheric ambient to approximately 10 Torr in approximately 5 minutes and from 10 Torr to between 10 and 10 Torr in approximately 60 minutes; and wherein the heating step comprises raising the oven temperature at a rate of between 1 and 3 C per minute to a point sufficient to establish selective softening and complete fusion of the sealing material and the restoring step comprises first cooling the oven enclosure at said rate of 1-3 C per minute and then restoring ambient atmosphere and pressure to the oven enclosure.
  • the evacuating step comprises reducing the pressure in said oven enclosure from atmospheric ambient to approximately 10 Torr in approximately 5 minutes and from 10 Torr to between 10 and 10" Torr in approximately 60 minutes; and said pre-heating step is executed between said evacuating and filling steps by adding heat to produce a temperature rise of between l3 C per minute; and wherein said heating step comprises adding more heat sufficient to increase the temperature at l3 C per minute to a value above the selective softening point of the sealing material before initiating ambient cooling and re-pressurization.

Abstract

Projecting exhaust tube constructions of earlier gas panels are eliminated by the disclosed process. In the present method an unfused low-softening-point glass sealant, arranged in a picture frame pattern, is sandwiched loosely between aligned flat glass plates, and the disjoint assembly is placed in a vacuum oven enclosure. The enclosure is successively evacuated, filled with the requisite gas mixture at predetermined pressure and heated above the softening point of the sealant to establish a sealed gas-filled envelope within the assembly. Previously the plates have been joined initially by heat fused sealant to form an envelope which is thereafter evacuated and filled with gas by connection to a thin glass tubular orifice projecting from one of the plates. Manipulation of this tube for evacuation and gas back-filling of the envelope, which is a difficult operation requiring considerable time, technique and skill, is eliminated by the present method.

Description

United States Patent Wilson GAS DISPLAY PANEL WITHOUT EXHAUST TUBE STRUCTURE [75] Inventor: Donald Miller Wilson, Kingston,
[73] Assignee: International Business Machines Corporation, Armonk, N.Y.
[22] Filed: Dec. 30, 1971 [211 App]. No.: 214,174
[52] U.S. Cl. 316/20, 313/220 [51] Int. Cl. H0lj 9/38 [58] Field of Search 316/19, 20; 315/169 R, 313/109.5, 182, 220; 29/630 B [56] References Cited UNITED STATES PATENTS 3,499,167 3/1970 Baker et al 315/169 R 3,340,347 9/1967 Spiegler 29/630 B 3,614,509 10/1971 Willson 315/169 R X 3,559,190 1/1971 Bitzer et a1. 315/169RX 3,602,756 8/1971 Bonnet 313/109.5
Primary Exam'inerCharles W. Lanham Assistant Examiner- 1. W. Davie Attorney-W. N. Barret, Jr. et a1.
[57] ABSTRACT Projecting. exhaust tube constructions of earlier gas panels are eliminated by the disclosed process. In the present method an unfused low-:softening-point glass sealant, arranged in a picture frame pattern, is sandwiched loosely between aligned flat glass plates, and the disjoint assembly is placed in a vacuum oven enclosure. The enclosure is successively evacuated, filled with the requisite gas mixture at predetermined pres sure and heated above the softening point of the sealant to establish a sealed gas-tilled envelope within the assembly. Previously the plates have been joined initially by heat fused sealant to form an envelope which is thereafter evacuated and tilled with gas by connection to a thin glass tubular orifice projecting from one of the plates. Manipulation of this tube for evacuation and gas back-filling of the envelope, which is a difficult operation requiring considerable time, technique and skill, is eliminated by the present method.
10 Claims, 7 Drawing Figures PAIENTED 1 W3 3. 778 .126
sum 1 or 3 v FIG 2 71/:
PAIENTEDBEU H915 3.778.126
SHEET 2 0F 3 FIG 4 i" ..-7/
FIG. 5
16 OVEN ENCLOSURE /ELECTR0N|0 MANOMETER L 22\ HEAT 5 comm 1 UNIT TO VACUUM SYSTEM GAS DISPLAY PANEL WITHOUT EXHAUST TUBE STRUCTURE CROSS-REFERENCE TO RELATED APPLICATIONS U. S. Pat. application Ser. No. 214,298 for Sealing Technique For Gas Panel, by Perry R..Langston, Jr. et al., filed Dec. 30, 1971.
U. S. Pat. application Ser. No. 214,348 for Gas Panel Fabrication, by P. H. Haberland et al., filed Dec. 30, 1971. V
U. S. Pat. application Ser. No. 198,953 for Protection of Terminal Metallurgy During Working and Reworking of Gas Discharge Display Devices filed No. 15,1971 by N. M. Poley et al.
U. S. Pat. application Ser. No. 176,625 for Dielectric Insulator For Gaseous Discharge Device filed Aug. 31, 1971 by P. H. Haberlandet al.
U. S. Pat. application,,Ser. No. 829,692, for Pilot Light Gas Cells For Gas Panels filed June 2, 1969 by P. Soltan, now US. Pat. No. 3,609,658 issued Sept. 28, 1971.
BACKGROUND OF THE INVENTION a and sealing tenchiques. The coupling operation therefore is quite time consuming and expensive.
Accordingly an object of the present invention is to .-the thickness (andweight) of present glass substrata provide a simpler gas panel assembly process and product structure characterized by elimination of formation and handling of special exhaust ,connections to the envelope contained in the structure.
An associated object is to provide improved gas panel display stuctures of uniformly flat construction which can be stacked adjacently in layers to form three-dimensional displays.
A further object is to provide a gas panel display structure having uniformly flush surfaces without pro jections; whereby one surface of the structure may be conveniently arranged for viewing as a display while the opposite surface may be positioned-in contactwith photocopying equipment for contact printing of hard copy of displayed images.
Another object is to reduce significantly the time and cost of fabricating a gas panel display structure.
Another object is to reduce the possibility of gas panel failure by eliminating tubular exhaust/gas filling couplings and associated seals which inherently tend to be thermally and mechanically mismatched in relation to other elements of a panel assembly.
The foregoing and other related objectives are achieved by arranging high softening point glass spacing rods and low softening point glass-sealing material in picture frame pattern between disjoint high softening point glass plates within a vacuum oven enclosure. The oven is adapted for selective coupling of vacuum, gas and heat into its enclosure. The disjoint assembly is thereby successively scrubbed by vacuum, immersed in the gas which forms the light emitting medium of the display panel, and heat-fused while immersed in the gas. In the heat fusion stage 1the blass sealing material fuses with the plates to form a containing envelope around the gas surrounded by these elements. As the sealing material softens the upper plate collapses gradually towards and settles upon the spacing rods (diameter less than initial thickness of the unfused sealant); establishing the desired predetermined spacing of the envelope. The sealing material is selected to have viscosity sufficiently low to flow during heat fusion cycling and yet high enough so that it will not run off and leave voids during such cycling.
Since the foregoing evacuating, gas-filling and heating functions are all performed within the oven enclosure there is never a differential in the pressure exerted upon the glass parts of the panel assembly. In the earlier exhaust tube processing vacuum and gas were coupled to the envelope while the exterior of the glass plates received atmospheric pressure. Consequently may be considerably reduced (e.g. from one-fourth inch to one-eighth inch) for more economical usage, more efficient light transmission and generally easier bulk shipment and handling.
Accordingly, additional objects of the present invention are to provide for improved display panel fabrication processing under conditions of reduced pressure stress whereby glass parts forming the bulk of the panel structure may be made with reduced thickness; such being desirable for both economy, and general effectiveuess of light transmission and handling;
It is worth noting also that with equalized pressures throughout the in situ filling/sealing stages of the present process the glass plates do not need-central support. Previously an additional spacing rod was used to provide central support for large area glass parts during evacuation of the enclosure since the parts by themselves could not sustain the external atmospheric pressure without bending. With the present arrangement the center spacer is unnecessary and it is therefore eliminated.
. Therefore another object of the invention is to reduce or eliminate central support elements of gas panel structures which although useful only during assembly processing are incorporated in the assembly and may BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 4 provide contrasting partially schematic perspective views of gas panel assemblies formed respectively by earlier and present methods (FIG. 4 serves to indicate the elimination of the exhaust tube and the relatively reduced thickness of the glass plates forming the gas enclosure);
FIGS. 2 and 3 provide sectional views of the assembly of either FIG. 1 or FIG. 4 respectively before and after the heat fusion stage of assembly processing;
FIG. 5 is a schematic view of vacuum furnace apparatus utilized in the practice of the present invention to provide equalized pressure handling of the assembly throughout the in situ evacuation, gas-filling and heat sealing stages of the present process;
FIGS. 6 and 7 indicate additional uses which can be made of the flush rear surfaces of gas panels formed by the present method.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT FIGS. 1 and 4 show earlier and present gas panel assemblies. The respective fabrication/assembly processes are compared as follows:
Present Method Prepare (Note la) ris! M o Prepare components (Note 1) issmb iiu umqasa 0191 (2) place in oven used ohry for temperature cycling; Assemble in unjoined state;
place in air-tight vacuum-oven enclosure (Note 2a) .loig fl gatjusel into integral assembly (Note 3) Evacuate, gas fill, heat fuse,
processing (Note 4) Complete terminal connection processing per prior method Notes:
1. Prepare plates, plate sealant, spacers, tube, tube sealant. Plate preparation: cut to size and clean soda-lime-silica window glass (e.g. 1/4 inch thick) into front and rear substrates; make hole in rear (top) plate for tube coupling; metallize interior surfaces of plates (deposit layer of metal, etch, passivate by heat treatment in forming gas, test); insulate (spary lead-borosilicate powdered glass frit over passivated metallization and fuse by heating); inspect. la. Same as l but omit preparation of tube, tube sealant and tube coupling hole in rear plate; also use thinner plates (e.g. one-eighth inch instead of onefourth inch).
2. Lay down unfused plate sealant picture frame strips on interior surface of front plate (preshaped lead-borosilicate glass rod or powdered glass frit in viscous binder; preparation available in strip form on plastic release tape); spacer rods on surface of same plate near and within sealant border; place other (rear) plate, with interior face down, on top of border sealant orthogonally aligning metallization on the two plates; place tube sealant and tube over rear plate opening. H
2a. Assembly same as 2 but omit placement of tube sealant and tube. Oven equipped for selective coupling of vacuum, gas plasma and heat to enclosure.
3. Heat in oven at atmospheric pressureto above softening point of sealants (plate and tube) and dielectric covering of plate metallization (softening point of latter approx. 400 C). Heating cycle: room temperature (approx. 25 C) to approx. 500 C at rate of l-3 C per minute establishes fusion of tube sealant to tube and outer surface of rear plate and fusion of envelope sealant between plates to dielectric coatings of plates and back to room temperature at l3 C per minute. Softening point of glass composition of plates, spacers and tube is well in excess of 500 C. This and other steps of process are performed with exterior of assembly at -atmssnhsrkpr s e- 3a. Vacuum oven enclosure successively exhausted at room temperature, filled with Ne-A gas mixture atspe cific pressure (700 torr), heated (at temperature cycle of note 3 above) to establish envelope sealant fusion and, upon cooling to room temperature, restored to ambient pressure. Exhaust cycle: pressure reduced from atmospheric pressure (approx. 750 ton) to about 10 torr in about 5 minutes, and from 10 torr to between 10 and 10 torr in about another hour. Alternate process sequence: a) evacuate enclosure; b) heat enclosure to temperature T(C) below softening point (400 C) of envelope sealant and dielectric plate coatings; 0) supply gas plasma to oven enclosure at elevated pressure T/25 X 700 torr; d) continue oven temperature cycle, per note 3, from T to 500 C and back to room temperature; e) restore oven enclosure to atmospheric pressure.
4. Remove dielectric and passivation coatings from plate metallization at appropriate (edge) termination sites; test; make connections; test; etc.
Referring to FIGS. l-3 in the prior method the metallized-passivated-dielectric coated front and rear glass plates 1, 2 and exhaust tube 3 are formed into an integral structure by heat union of envelope sealant 4with dielectric plate coatings 5, 6 and heat union of tube sealant 7 with tube 3 and plate 2. For large area panels edge spacer rods such as 8 may be supplemented by a not shown central spacer rod providing central support for the glass plates during subsequent evacuation and gas filling of envelope space 9 (FIG. 3) through tube 3 and hole 10 in plate 2 (FIG. 3) with the parts subject externally to atmospheric pressure. The fused dielectric layers 5, 6, formed from sprayed and heated glass frit cover the patterned metallization (indicated schematically at 11 in FIG. 1) intersecting at illuminatable cross points of the panel. Layers 5, 6 have specific dielectric properties requisite to support of gas plasma discharge in envelope space 9. All glasses (substrate, dielectric layers, tube, tube sealant, border sealant) must have compatible thermal coefficients of expansion, albeit differing optical, physical, dielectric, and heat softening properties. The expense and effort involved in the exhaust and back filling operation are considerable. The projecting exhaust tube structure 3 is also a relatively weak element in comparison to the main body of the panel formed by glass parts 1, 2.
Tube 3 also restricts contact between the exterior surface of plate 2 and other media; for instance other panels as suggested in FIG. 6 or hard copy photocopying equipment as suggested in FIG. 7.
Glass plates 1, 2 must have substantial thickness (e.g. one-fourth inch) and may require potentially obstructive central support rods in order to be able to withstand the differential pressures existing when envelope space 9 is evacuated while atmospheric pressure exists externally.
Gas panels processed in accordance with the present invention have the form exemplified in FIGS. 4, 2 and 3. In this process metallized-passivated-insulated glass plates 1a, 2a entirely free of projecting exhaust tubes or other obstructions, are assembled as in the previous method about low softening point envelope sealant 4a (e.g. powdered lead borosilicate glass in viscous binder peeled from plastic release tape or lead borosilicate glass rod pre-formed into picture frame outline). Peripheral spacer rods such as 8a having higher softening temperature than the envelope sealant establish ultimate separation spacing of the fused glass parts.
The unjoined assembly is positioned in the desiredorientation (FIG. 2) within vacuum oven enclosure 16 (FIG. 5), associated with gas supply apparatus l8, l9, vacuum coupling apparatus 20 and heating unit 22. Such ovens, without the gas supply fittings, are sold under commercial designation High Temperature Vacuum Oven, Model 1408, by T-M Vacuum Products Co.
The unfused envelope sealant 4a permits unimpeded evacuation of the extended envelope space 26 bounded by the unjoined plates when enclosure 16 is evacuated and unimpeded permeation of gas into the same space when oven enclosure 16 is filled with gas. When enclosure 16 is thereafter heated in accordance with note 3a above envelope sealant 4a softens, flows and fuses with the dielectric metallization coating layers 50, 6a of the plates as suggested at 30 (FIG. 3), while the upper plate sinks down against spacers 8a establishing the desired final dimensions of the gas-filled/sealed envelope 9a contained between the plates. Thickness and viscosity of the unfused envelope sealant are selected so that upon softening and flowing the sealant forms a uniform void-free lining around the rectangular parellepiped gas enclosure space 9a.
When enclosure 16 (FIG. 5) is restored to room temperature the fused border sealant hardens into a firm totally impervious seal. At this'time the plasma gas within the enclosure 16 and therefore within confined space 9a is under pressure just slightly less than atmospheric (about 700 torr).
Further details of component preparation, assembly handling and terminal connection processing ancillary to but not directly relevant to the present process are found in the references listed above under Cross Reference to Related Applications.
Typical parameters of the present process are:
Glass plate (la, 2a) dimensions: I
4 X 2 X /BIIIChCS (compared to 4 X 2 A; X
A inches previously) Envelope sealant 4a:
glass frit (Coming 7570) or Glass Rod (PbO-62 percent, ZnO-IS percent, B 40 percent, Bi O -3 percent) the frit in viscous binder (amyl acetate nitrocellulose) applied to glass plate in thickness 10 mil where final envelope height is 4.5 mil Dielectric/metallization layers a, 6a:
1 mil thick lead borosilicate glass sprayed and fired 600 C Composition:
a. metallization: Cr 1,000A, Cu 10,000A, Cr
b. passivation: 525 C in forming gas 5-8 C per minute up and down c. insulation: PhD-73.5 percent, Si-l3.6 percent,
B O l2.7 percent,
A1,0,-0.2 percent We have shown and described above the fundamental novel features of our invention as applied to a preferred embodiment. It will be understood that various omissions, substitutions and changes in form and detail 6 of the invention as described herein may be made by those skilled in the art without departing from the true spirit and scope of the invention. It is the intention therefore to be limited only by the scope of the following claims. What is claimed is: 1. A process for constructing a gas discharge display device devoid of gas-filling ducts or tubulations, comprising:
assembling discrete parts including a pair of transparent dielectric support plates bearing dielectric coated conductive circuits in. a spaced ,apart unfused configuration with uniform spacing between the unfused plates established by a heat fusible sealing material of generally uniform thickness arranged in an enclosure shape of predetermined form in an unfused condition, said sealing material having a pedetermined softening temperature substantially lower than the softening temperatures of said plates to form an enclosed space which is relatively permeable to gas flow at a boundary between said sealing material and said plates;
providing spacer elements within said enclosed space having thickness dimensions establishing a predetermined limiting dimension within said space less than the thickness of said unfused sealing material; said elements having softening temperature substantially higher than that of the sealing material;
filling said enclosed space, with an ionizable gas suited for display usage, by exposing said assembled parts to an atmosphere of said gas at predetermined pressure; and
heating said assembled parts with said enclosed space filled with and retaining said gas, over. a temperature range exceeding the softening point of the sealing material but below the softening points of said support plates and spacer elements, to cause selective softening of said sealing material with resulting fusion of said sealing material, dielectric circuit coatings and plates into a sealed unit impermeably confining a predetermined volume of said gas between said circuits in an envelope space of predetermined uniform height dimension established by said spacer elements.
2. A process according to claim 1 wherein said step of filling said space is accomplished by successively evacuating a volume of space containing said unfused assembled parts and filling said containing volume of space with said gas at said predetermined pressure while maintaining said volume at a temperature below the softening temperature of said sealing material.
3. A process for constructing dluctless gas discharge display devices comprising in succession:
arranging transparent flat glass plates, bearing orthogonally oriented printed circuit conductors encapsulated in transparent dielectric films, in substantially parallel spaced apart orientation with initial spacing determined by an enclosed strip of heat fusible envelope sealing material in unfused condition and ultimate spacing determined by glass spacer elements thinner than said sealing material; said material and dielectric films having softening temperatures lower than softening temperatures of said plates and spacer elements;
locating said arranged parts in the interior of a vacuum oven equipped for selective evacuation, gas filling and heating;
evacuating said oven interior while maintaining a temperature therein below the softening temperatures of said sealing material and dielectric films;
filling said oven interior with a gas subject to ionization display usage at predetermined pressure while maintaining temperature in said interior below said sealing material and dielectric film softening temperatures; and
varying the temperature in said oven interior over a range encompassing the said sealing material and film softening temperatures but substantially below the softening temperature of the glass plates and spacer elements to effect selective softening of said sealing material and films and fusion of said sealing material to said plates forming an integral unit impermeably confining an ionization space of predetermined uniform height dimensions determined by said spacer elements, said ionization space filled exclusively with a predetermined volume of said gas at a predetermined pressure.
4. Process of claim 3 wherein said sealing material is arranged initially in a uniformly thick picture frame strip pattern with initial thickness exceeding the desired height dimensions of said ionization space.
5. A process for constructing gas discharge display devices devoid of specialized gas-filling structural projections or tubulations comprising:
arranging components including transparent flat dielectric support members having predetermined softening temperature and bearing integral printed circuit metallization patterns encapsulated in transparent dielectric film coatings of predetermined thickness, said coatings having predetermined softening temperature, and transparent dielectric spacer rods having predetermined softening temperature assembled in a spaced configuration established by a closed strip of heat fusible sealing material forming a permeable enclosure of a space between said members; said strip having predetermined generally uniform thickness greater than the diameter of the spacer rods and having predetermined softening temperature less than the softening temperatures of said members, film coatings and spacer rods within a vacuum oven enclosure; said spacer rods being located and dimensioned to establish a predetermined limiting spacing between the encapsulated metallization patterns on said plates upon subsequent softening of said sealing material;
evacuating said oven enclosure with said arranged components located therein and with the temperature thereof maintained below the softening temperature of said sealing material;
filling said oven enclosure with a predetermined gas suited for display usage; with said gas at predetermined pressure specifically related to the pressure required for display operation and with said enclosure maintained at temperature below the softening point of said sealing material;
uniformly heating said gas-filled oven enclosure, with said gas confined therein, to a selected temperature above the softening points of said sealing material and film coatings but below the softening points of said members, film coatings and spacer rods thus effecting selective softening of said sealing material and fusion of said sealing material to said flat members forming an impermeable gas-filled envelope between said members of predetermined uniform height dimension determined by the thickness of said spacing rods, said envelope sealably confining a predetermined fractional volume of the gas in said oven enclosure at a predetermined elevated pressure; and
restoring said oven enclosure to ambient temperature and atmosphere and pressure conditions.
6. Process according to claim 5 wherein said oven enclosure is maintained at the temperature of the ambient environment surrounding the enclosure during said evacuating and gas filling step.
7. Process according to claim 5 wherein said oven enclosure is pre-heated to a temperature above the temperature of the surrounding ambient and below the softening points of said material prior to said gas filling step, whereby said gas may be introduced at a reduced pressure.
8. A process according to claim 5 wherein a plurality of panels are aggregately assembled in stacked formation to form a three-dimensional display.
9. A process according to claim 6 wherein the evacuating step comprises reducing pressure within said oven enclosure from atmospheric ambient to approximately 10 Torr in approximately 5 minutes and from 10 Torr to between 10 and 10 Torr in approximately 60 minutes; and wherein the heating step comprises raising the oven temperature at a rate of between 1 and 3 C per minute to a point sufficient to establish selective softening and complete fusion of the sealing material and the restoring step comprises first cooling the oven enclosure at said rate of 1-3 C per minute and then restoring ambient atmosphere and pressure to the oven enclosure.
10. A process according to claim 7 wherein the evacuating step comprises reducing the pressure in said oven enclosure from atmospheric ambient to approximately 10 Torr in approximately 5 minutes and from 10 Torr to between 10 and 10" Torr in approximately 60 minutes; and said pre-heating step is executed between said evacuating and filling steps by adding heat to produce a temperature rise of between l3 C per minute; and wherein said heating step comprises adding more heat sufficient to increase the temperature at l3 C per minute to a value above the selective softening point of the sealing material before initiating ambient cooling and re-pressurization.

Claims (10)

1. A process for constructing a gas discharge display device devoid of gas-filling ducts or tubulations, comprising: assembling discrete parts - including a pair of transparent dielectric support plates bearing dielectric coated conductive circuits in a spaced apart unfused configuration with uniform spacing between the unfused plates established by a heat fusible sealing material of generally uniform thickness arranged in an enclosure shape of predetermined form in an unfused condition, said sealing material having a pedetermined softening temperature substantially lower than the softening temperatures of said plates - to form an enclosed space which is relatively permeable to gas flow at a boundary between said sealing material and said plates; providing spacer elements within said enclosed space having thickness dimensions establishing a predetermined limiting dimension within said space less than the thickness of said unfused sealing material; said elements having softening temperature substantially higher than that of the sealing material; filling said enclosed space, with an ionizable gas suited for display usage, by exposing said assembled parts to an atmosphere of said gas at predeterminEd pressure; and heating said assembled parts with said enclosed space filled with and retaining said gas, over a temperature range exceeding the softening point of the sealing material but below the softening points of said support plates and spacer elements, to cause selective softening of said sealing material with resulting fusion of said sealing material, dielectric circuit coatings and plates into a sealed unit impermeably confining a predetermined volume of said gas between said circuits in an envelope space of predetermined uniform height dimension established by said spacer elements.
2. A process according to claim 1 wherein said step of filling said space is accomplished by successively evacuating a volume of space containing said unfused assembled parts and filling said containing volume of space with said gas at said predetermined pressure while maintaining said volume at a temperature below the softening temperature of said sealing material.
3. A process for constructing ductless gas discharge display devices comprising in succession: arranging transparent flat glass plates, bearing orthogonally oriented printed circuit conductors encapsulated in transparent dielectric films, in substantially parallel spaced apart orientation with initial spacing determined by an enclosed strip of heat fusible envelope sealing material in unfused condition and ultimate spacing determined by glass spacer elements thinner than said sealing material; said material and dielectric films having softening temperatures lower than softening temperatures of said plates and spacer elements; locating said arranged parts in the interior of a vacuum oven equipped for selective evacuation, gas filling and heating; evacuating said oven interior while maintaining a temperature therein below the softening temperatures of said sealing material and dielectric films; filling said oven interior with a gas subject to ionization display usage at predetermined pressure while maintaining temperature in said interior below said sealing material and dielectric film softening temperatures; and varying the temperature in said oven interior over a range encompassing the said sealing material and film softening temperatures but substantially below the softening temperature of the glass plates and spacer elements to effect selective softening of said sealing material and films and fusion of said sealing material to said plates forming an integral unit impermeably confining an ionization space of predetermined uniform height dimensions determined by said spacer elements, said ionization space filled exclusively with a predetermined volume of said gas at a predetermined pressure.
4. Process of claim 3 wherein said sealing material is arranged initially in a uniformly thick picture frame strip pattern with initial thickness exceeding the desired height dimensions of said ionization space.
5. A process for constructing gas discharge display devices devoid of specialized gas-filling structural projections or tubulations comprising: arranging components - including transparent flat dielectric support members having predetermined softening temperature and bearing integral printed circuit metallization patterns encapsulated in transparent dielectric film coatings of predetermined thickness, said coatings having predetermined softening temperature, and transparent dielectric spacer rods having predetermined softening temperature assembled in a spaced configuration established by a closed strip of heat fusible sealing material forming a permeable enclosure of a space between said members; said strip having predetermined generally uniform thickness greater than the diameter of the spacer rods and having predetermined softening temperature less than the softening temperatures of said members, film coatings and spacer rods - within a vacuum oven enclosure; said spacer rods being located and dimensioned to establish a predetermined limiting spacing between the encapsulAted metallization patterns on said plates upon subsequent softening of said sealing material; evacuating said oven enclosure with said arranged components located therein and with the temperature thereof maintained below the softening temperature of said sealing material; filling said oven enclosure with a predetermined gas suited for display usage; with said gas at predetermined pressure specifically related to the pressure required for display operation and with said enclosure maintained at temperature below the softening point of said sealing material; uniformly heating said gas-filled oven enclosure, with said gas confined therein, to a selected temperature above the softening points of said sealing material and film coatings but below the softening points of said members, film coatings and spacer rods thus effecting selective softening of said sealing material and fusion of said sealing material to said flat members forming an impermeable gas-filled envelope between said members of predetermined uniform height dimension determined by the thickness of said spacing rods, said envelope sealably confining a predetermined fractional volume of the gas in said oven enclosure at a predetermined elevated pressure; and restoring said oven enclosure to ambient temperature and atmosphere and pressure conditions.
6. Process according to claim 5 wherein said oven enclosure is maintained at the temperature of the ambient environment surrounding the enclosure during said evacuating and gas filling step.
7. Process according to claim 5 wherein said oven enclosure is pre-heated to a temperature above the temperature of the surrounding ambient and below the softening points of said material prior to said gas filling step, whereby said gas may be introduced at a reduced pressure.
8. A process according to claim 5 wherein a plurality of panels are aggregately assembled in stacked formation to form a three-dimensional display.
9. A process according to claim 6 wherein the evacuating step comprises reducing pressure within said oven enclosure from atmospheric ambient to approximately 10 Torr in approximately 5 minutes and from 10 Torr to between 10 3 and 10 6 Torr in approximately 60 minutes; and wherein the heating step comprises raising the oven temperature at a rate of between 1* and 3* C per minute to a point sufficient to establish selective softening and complete fusion of the sealing material and the restoring step comprises first cooling the oven enclosure at said rate of 1*-3* C per minute and then restoring ambient atmosphere and pressure to the oven enclosure.
10. A process according to claim 7 wherein the evacuating step comprises reducing the pressure in said oven enclosure from atmospheric ambient to approximately 10 Torr in approximately 5 minutes and from 10 Torr to between 10 3 and 10 6 Torr in approximately 60 minutes; and said pre-heating step is executed between said evacuating and filling steps by adding heat to produce a temperature rise of between 1*-3* C per minute; and wherein said heating step comprises adding more heat sufficient to increase the temperature at 1*-3* C per minute to a value above the selective softening point of the sealing material before initiating ambient cooling and re-pressurization.
US00214174A 1971-12-30 1971-12-30 Gas display panel without exhaust tube structure Expired - Lifetime US3778126A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21417471A 1971-12-30 1971-12-30

Publications (1)

Publication Number Publication Date
US3778126A true US3778126A (en) 1973-12-11

Family

ID=22798061

Family Applications (1)

Application Number Title Priority Date Filing Date
US00214174A Expired - Lifetime US3778126A (en) 1971-12-30 1971-12-30 Gas display panel without exhaust tube structure

Country Status (6)

Country Link
US (1) US3778126A (en)
JP (1) JPS539833B2 (en)
CA (1) CA996180A (en)
DE (1) DE2253835A1 (en)
FR (1) FR2166229B1 (en)
IT (1) IT970052B (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837724A (en) * 1971-12-30 1974-09-24 Ibm Gas panel fabrication
US3862830A (en) * 1973-07-18 1975-01-28 Rca Corp Method of forming vitreous enclosures for liquid crystal cells
US3879629A (en) * 1973-06-25 1975-04-22 Ibm Gas display panel and method of making same
US3909094A (en) * 1974-01-16 1975-09-30 Ibm Gas panel construction
US3919452A (en) * 1973-10-23 1975-11-11 Vitta Corp Precision bonding system
US3936930A (en) * 1972-07-10 1976-02-10 Rca Corporation Method of making electrical connections for liquid crystal cells
US3947260A (en) * 1975-01-02 1976-03-30 Owens-Illinois, Inc. Method of sealing and spacing glass substrates of gaseous discharge display panels used at high altitudes
US3998510A (en) * 1974-12-23 1976-12-21 Owens-Illinois, Inc. Method of using invisible spacers for electro-optical display device manufacture
US4001629A (en) * 1974-08-26 1977-01-04 Panel Technology, Inc. Segmented gas discharge display panel
US4018490A (en) * 1975-07-07 1977-04-19 International Business Machines Corporation Gas discharge display panel fabrication
US4029371A (en) * 1974-10-10 1977-06-14 Panel Technology, Inc. Method of manufacturing gas discharge display panels
US4045200A (en) * 1975-01-02 1977-08-30 Owens-Illinois, Inc. Method of forming glass substrates with pre-attached sealing media
US4051404A (en) * 1974-07-30 1977-09-27 Panel Technology, Inc. Gas discharge display panel with fused sealing plug
US4071287A (en) * 1976-03-15 1978-01-31 International Business Machines Corporation Manufacturing process for gaseous discharge device
US4119378A (en) * 1974-07-30 1978-10-10 Owens-Illinois, Inc. Segmented gas discharge display panel device and method of manufacturing same
US4124926A (en) * 1975-12-19 1978-11-14 Owens-Illinois, Inc. Edge terminations for gas discharge display panel device and method of manufacturing same
US4139250A (en) * 1975-10-27 1979-02-13 U.S. Philips Corporation Gas discharge display panel and method of manufacturing the same
US4182540A (en) * 1977-12-22 1980-01-08 Beckman Instruments, Inc. Method of sealing gas discharge displays
US4380855A (en) * 1980-01-18 1983-04-26 University Of Rochester Method for filling hollow shells with gas for use as laser fusion targets
US4407658A (en) * 1981-03-02 1983-10-04 Beckman Instruments, Inc. Gas discharge display device sealing method for reducing gas contamination
EP0162135A2 (en) * 1983-12-05 1985-11-27 Siemens Aktiengesellschaft Display device and method for manufacturing it
US4588261A (en) * 1984-06-07 1986-05-13 Rca Corporation IR-CCD imager and method of making the same
US5207607A (en) * 1990-04-11 1993-05-04 Mitsubishi Denki Kabushiki Kaisha Plasma display panel and a process for producing the same
US5657607A (en) * 1989-08-23 1997-08-19 University Of Sydney Thermally insulating glass panel and method of construction
EP0776022A3 (en) * 1995-11-27 1998-03-25 Canon Kabushiki Kaisha Manufacturing method and apparatus for image display apparatus
US5902652A (en) * 1993-06-30 1999-05-11 University Of Sydney Methods of construction of evacuated glazing
WO1999059180A1 (en) * 1998-05-14 1999-11-18 Candescent Technologies Corporation Seal material and a method for forming seal material
EP0992055A1 (en) * 1997-06-24 2000-04-12 Candescent Technologies Corporation Low temperature glass frit sealing for thin computer displays
US6261652B1 (en) * 1996-07-31 2001-07-17 Saint-Gobain Vitrage Method for producing a vacuum between two glass sheets and insulating glazing
US20020014854A1 (en) * 1998-06-25 2002-02-07 Hiroyuki Kado Plasma display panel and plasma display panel manufacturing method for achieving improved luminescence characteristics
US6362568B1 (en) * 1998-12-14 2002-03-26 Corning Incorporated Electrode assembly and discharge lamp comprising the same
US20030066311A1 (en) * 2001-10-09 2003-04-10 Chien-Hsing Li Encapsulation of a display element and method of forming the same
US6590332B1 (en) * 1999-08-06 2003-07-08 Samsung Sdi Co., Ltd. Plasma display panel including front and rear substrate assemblies
US20040150337A1 (en) * 2001-06-01 2004-08-05 Akira Shiokawa Gas discharge panel and manufacturing method for the same
US20040207314A1 (en) * 2003-04-16 2004-10-21 Aitken Bruce G. Glass package that is hermetically sealed with a frit and method of fabrication
US20040206953A1 (en) * 2003-04-16 2004-10-21 Robert Morena Hermetically sealed glass package and method of fabrication
US20050067956A1 (en) * 2003-09-25 2005-03-31 Doo-Young Kim Plasma display panel assembly
US20050140297A1 (en) * 2003-12-29 2005-06-30 Po-Cheng Chen Tubeless plasma display panel and manufacture of plasma display panel
US20050151151A1 (en) * 2003-04-16 2005-07-14 Hawtof Daniel W. Hermetically sealed package and method of fabrication of a hermetically sealed package
US20060066238A1 (en) * 2004-09-24 2006-03-30 Seok-Gyun Woo Plasma display panel and plasma display device
US20070128966A1 (en) * 2005-12-06 2007-06-07 Becken Keith J Method of encapsulating a display element
US20070128967A1 (en) * 2005-12-06 2007-06-07 Becken Keith J Method of making a glass envelope
US20080030136A1 (en) * 2006-08-07 2008-02-07 Lg Electronics Inc. Plasma display panel
US20080042566A1 (en) * 2006-03-29 2008-02-21 Jung-Suk Song Plasma display panel
US20080238821A1 (en) * 2007-03-30 2008-10-02 Motoyuki Miyata Plasma display panel
US8198203B2 (en) 2008-10-20 2012-06-12 Corning Incorporated Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit
US8448468B2 (en) 2008-06-11 2013-05-28 Corning Incorporated Mask and method for sealing a glass envelope

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1160700B (en) 1977-10-25 1987-03-11 Bfg Glassgroup PANELS
CA1136202A (en) * 1978-06-15 1982-11-23 Henry E. Franklin Method of sealing a gas discharge display without a tubulation
DE19826809A1 (en) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric layer for discharge lamps and associated manufacturing process
JP3706742B2 (en) * 1998-07-15 2005-10-19 パイオニア株式会社 Plasma display panel
KR100706151B1 (en) * 1999-01-29 2007-04-11 가부시키가이샤 히타치세이사쿠쇼 Gas discharge type display panel and production method therefor
KR100850909B1 (en) * 2006-08-07 2008-08-07 엘지전자 주식회사 Plasma Display Panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340347A (en) * 1964-10-12 1967-09-05 Corning Glass Works Enclosed electronic device
US3499167A (en) * 1967-11-24 1970-03-03 Owens Illinois Inc Gas discharge display memory device and method of operating
US3559190A (en) * 1966-01-18 1971-01-26 Univ Illinois Gaseous display and memory apparatus
US3602756A (en) * 1969-12-22 1971-08-31 Engelhard Min & Chem Gas ionization display device
US3614509A (en) * 1969-05-07 1971-10-19 Westinghouse Electric Corp Large area plasma panel display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1247372A (en) * 1967-10-18 1971-09-22 Burroughs Corp Display panel
US3585443A (en) * 1969-06-10 1971-06-15 Ibm Three-dimensional gas panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340347A (en) * 1964-10-12 1967-09-05 Corning Glass Works Enclosed electronic device
US3559190A (en) * 1966-01-18 1971-01-26 Univ Illinois Gaseous display and memory apparatus
US3499167A (en) * 1967-11-24 1970-03-03 Owens Illinois Inc Gas discharge display memory device and method of operating
US3614509A (en) * 1969-05-07 1971-10-19 Westinghouse Electric Corp Large area plasma panel display device
US3602756A (en) * 1969-12-22 1971-08-31 Engelhard Min & Chem Gas ionization display device

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837724A (en) * 1971-12-30 1974-09-24 Ibm Gas panel fabrication
US3936930A (en) * 1972-07-10 1976-02-10 Rca Corporation Method of making electrical connections for liquid crystal cells
US3879629A (en) * 1973-06-25 1975-04-22 Ibm Gas display panel and method of making same
US3862830A (en) * 1973-07-18 1975-01-28 Rca Corp Method of forming vitreous enclosures for liquid crystal cells
US3919452A (en) * 1973-10-23 1975-11-11 Vitta Corp Precision bonding system
US3909094A (en) * 1974-01-16 1975-09-30 Ibm Gas panel construction
US4051404A (en) * 1974-07-30 1977-09-27 Panel Technology, Inc. Gas discharge display panel with fused sealing plug
US4119378A (en) * 1974-07-30 1978-10-10 Owens-Illinois, Inc. Segmented gas discharge display panel device and method of manufacturing same
US4001629A (en) * 1974-08-26 1977-01-04 Panel Technology, Inc. Segmented gas discharge display panel
US4029371A (en) * 1974-10-10 1977-06-14 Panel Technology, Inc. Method of manufacturing gas discharge display panels
US3998510A (en) * 1974-12-23 1976-12-21 Owens-Illinois, Inc. Method of using invisible spacers for electro-optical display device manufacture
US4045200A (en) * 1975-01-02 1977-08-30 Owens-Illinois, Inc. Method of forming glass substrates with pre-attached sealing media
US3947260A (en) * 1975-01-02 1976-03-30 Owens-Illinois, Inc. Method of sealing and spacing glass substrates of gaseous discharge display panels used at high altitudes
US4018490A (en) * 1975-07-07 1977-04-19 International Business Machines Corporation Gas discharge display panel fabrication
US4139250A (en) * 1975-10-27 1979-02-13 U.S. Philips Corporation Gas discharge display panel and method of manufacturing the same
US4124926A (en) * 1975-12-19 1978-11-14 Owens-Illinois, Inc. Edge terminations for gas discharge display panel device and method of manufacturing same
US4071287A (en) * 1976-03-15 1978-01-31 International Business Machines Corporation Manufacturing process for gaseous discharge device
US4182540A (en) * 1977-12-22 1980-01-08 Beckman Instruments, Inc. Method of sealing gas discharge displays
US4380855A (en) * 1980-01-18 1983-04-26 University Of Rochester Method for filling hollow shells with gas for use as laser fusion targets
US4407658A (en) * 1981-03-02 1983-10-04 Beckman Instruments, Inc. Gas discharge display device sealing method for reducing gas contamination
EP0162135A2 (en) * 1983-12-05 1985-11-27 Siemens Aktiengesellschaft Display device and method for manufacturing it
EP0162135A3 (en) * 1983-12-05 1986-07-30 Siemens Aktiengesellschaft Display device and method for manufacturing it
US4588261A (en) * 1984-06-07 1986-05-13 Rca Corporation IR-CCD imager and method of making the same
US5657607A (en) * 1989-08-23 1997-08-19 University Of Sydney Thermally insulating glass panel and method of construction
US5207607A (en) * 1990-04-11 1993-05-04 Mitsubishi Denki Kabushiki Kaisha Plasma display panel and a process for producing the same
US5902652A (en) * 1993-06-30 1999-05-11 University Of Sydney Methods of construction of evacuated glazing
US6103324A (en) * 1993-06-30 2000-08-15 The University Of Sydney Methods of construction of evacuated glazing
US5855637A (en) * 1995-11-27 1999-01-05 Canon Kabushiki Kaisha Method of manufacturing image display apparatus using bonding agents
EP0776022A3 (en) * 1995-11-27 1998-03-25 Canon Kabushiki Kaisha Manufacturing method and apparatus for image display apparatus
US5928399A (en) * 1995-11-27 1999-07-27 Canon Kabushiki Kaisha Apparatus for manufacturing an image display apparatus using bonding agents
US6261652B1 (en) * 1996-07-31 2001-07-17 Saint-Gobain Vitrage Method for producing a vacuum between two glass sheets and insulating glazing
US6488796B2 (en) * 1996-07-31 2002-12-03 Saint-Gobain Glass France Method for producing a vacuum between two sheets of glass and insulating glazing
EP0992055A1 (en) * 1997-06-24 2000-04-12 Candescent Technologies Corporation Low temperature glass frit sealing for thin computer displays
EP0992055A4 (en) * 1997-06-24 2002-06-19 Candescent Intellectual Prop Low temperature glass frit sealing for thin computer displays
WO1999059180A1 (en) * 1998-05-14 1999-11-18 Candescent Technologies Corporation Seal material and a method for forming seal material
US6113450A (en) * 1998-05-14 2000-09-05 Candescent Technologies Corporation Seal material frit frame for flat panel displays
US20020014854A1 (en) * 1998-06-25 2002-02-07 Hiroyuki Kado Plasma display panel and plasma display panel manufacturing method for achieving improved luminescence characteristics
US6761605B2 (en) * 1998-06-25 2004-07-13 Matsushita Electric Industrial Co., Ltd. Plasma display panel and plasma display panel manufacturing method for achieving improved luminescence characteristics
US6362568B1 (en) * 1998-12-14 2002-03-26 Corning Incorporated Electrode assembly and discharge lamp comprising the same
US6590332B1 (en) * 1999-08-06 2003-07-08 Samsung Sdi Co., Ltd. Plasma display panel including front and rear substrate assemblies
US6913502B2 (en) 1999-08-06 2005-07-05 Samsung Sdi Co., Ltd. Method of fabricating plasma display panel
US20040150337A1 (en) * 2001-06-01 2004-08-05 Akira Shiokawa Gas discharge panel and manufacturing method for the same
US7235928B2 (en) 2001-06-01 2007-06-26 Matsushita Electric Industrial Co., Ltd. Gas discharge panel and manufacturing method for the same
US20040069017A1 (en) * 2001-10-09 2004-04-15 Delta Optoelectronics Inc. Encapsulation of a display element and method of forming the same
US20030066311A1 (en) * 2001-10-09 2003-04-10 Chien-Hsing Li Encapsulation of a display element and method of forming the same
US8063560B2 (en) 2003-04-16 2011-11-22 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
US20070007894A1 (en) * 2003-04-16 2007-01-11 Aitken Bruce G Glass package that is hermetically sealed with a frit and method of fabrication
US7344901B2 (en) 2003-04-16 2008-03-18 Corning Incorporated Hermetically sealed package and method of fabricating of a hermetically sealed package
US20050151151A1 (en) * 2003-04-16 2005-07-14 Hawtof Daniel W. Hermetically sealed package and method of fabrication of a hermetically sealed package
US20060009109A1 (en) * 2003-04-16 2006-01-12 Aitken Bruce G Glass package that is hermetically sealed with a frit and method of fabrication
US6998776B2 (en) 2003-04-16 2006-02-14 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
US7602121B2 (en) 2003-04-16 2009-10-13 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
US20040207314A1 (en) * 2003-04-16 2004-10-21 Aitken Bruce G. Glass package that is hermetically sealed with a frit and method of fabrication
US20040206953A1 (en) * 2003-04-16 2004-10-21 Robert Morena Hermetically sealed glass package and method of fabrication
US7550921B2 (en) * 2003-09-25 2009-06-23 Samsung Sdi Co., Ltd. Plasma display panel assembly
US20050067956A1 (en) * 2003-09-25 2005-03-31 Doo-Young Kim Plasma display panel assembly
US20050140297A1 (en) * 2003-12-29 2005-06-30 Po-Cheng Chen Tubeless plasma display panel and manufacture of plasma display panel
US7514869B2 (en) * 2004-09-24 2009-04-07 Samsung Sdi Co., Ltd. Plasma display panel and plasma display device
US20060066238A1 (en) * 2004-09-24 2006-03-30 Seok-Gyun Woo Plasma display panel and plasma display device
US20070128966A1 (en) * 2005-12-06 2007-06-07 Becken Keith J Method of encapsulating a display element
US7537504B2 (en) 2005-12-06 2009-05-26 Corning Incorporated Method of encapsulating a display element with frit wall and laser beam
US7597603B2 (en) 2005-12-06 2009-10-06 Corning Incorporated Method of encapsulating a display element
US20070128967A1 (en) * 2005-12-06 2007-06-07 Becken Keith J Method of making a glass envelope
US20080042566A1 (en) * 2006-03-29 2008-02-21 Jung-Suk Song Plasma display panel
US7679288B2 (en) * 2006-03-29 2010-03-16 Samsung Sdi Co., Ltd. Plasma display panel
US20080030136A1 (en) * 2006-08-07 2008-02-07 Lg Electronics Inc. Plasma display panel
US20080238821A1 (en) * 2007-03-30 2008-10-02 Motoyuki Miyata Plasma display panel
US8448468B2 (en) 2008-06-11 2013-05-28 Corning Incorporated Mask and method for sealing a glass envelope
US9399594B2 (en) 2008-06-11 2016-07-26 Corning Incorporated Mask and method for sealing a glass envelope
US8198203B2 (en) 2008-10-20 2012-06-12 Corning Incorporated Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit
US8434328B2 (en) 2008-10-20 2013-05-07 Corning Incorporated Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit

Also Published As

Publication number Publication date
JPS539833B2 (en) 1978-04-08
IT970052B (en) 1974-04-10
FR2166229B1 (en) 1975-03-28
DE2253835A1 (en) 1973-07-05
CA996180A (en) 1976-08-31
JPS4879575A (en) 1973-10-25
FR2166229A1 (en) 1973-08-10

Similar Documents

Publication Publication Date Title
US3778126A (en) Gas display panel without exhaust tube structure
US3778127A (en) Sealing technique for gas panel
US5897927A (en) Seal for vacuum devices and methods for making same
JP4653368B2 (en) Vacuum insulated glass window unit with peripheral edge
JP3883809B2 (en) Method and apparatus for depressurizing a glass chamber
US6146228A (en) Method for vacuum assembling a flat display screen
US3879629A (en) Gas display panel and method of making same
US5876260A (en) Method for assembling a flat display screen
US4407658A (en) Gas discharge display device sealing method for reducing gas contamination
US4195892A (en) Batch production of plasma display panels
US3858284A (en) Method of spacing the plates of a gaseous discharge device
JP2000172202A (en) Flat plate type image display device and its production
US3808497A (en) Gaseous discharge device and method of spacing the plates thereof
US5984748A (en) Method for fabricating a flat panel device
US4428764A (en) Method of making fusible spacer for display panel
US3931436A (en) Segmented gas discharge display panel device and method of manufacturing same
US3849190A (en) Dielectric glass overlays and method for producing said glass compositions
EP0042003A1 (en) Method for forming a fusible spacer for plasma display panel.
US4303847A (en) Flat-panel display with gas-impervious metallic sheet forming part of sealed enclosure
WO1999017154A1 (en) Method of manufacturing a flat glass panel for a picture display device
JPH06302279A (en) Flat display panel
JPS5836804B2 (en) Manufacturing method of gas discharge display panel
US4119378A (en) Segmented gas discharge display panel device and method of manufacturing same
US3615326A (en) Method of assembling electron discharge devices having sensitive components housed within a glass envelope
JP3177548B2 (en) Sealing method for flat cathode ray tubes