US3782822A - Method and apparatus for automatic ranging with variable power telescopic gun sight - Google Patents

Method and apparatus for automatic ranging with variable power telescopic gun sight Download PDF

Info

Publication number
US3782822A
US3782822A US00196698A US3782822DA US3782822A US 3782822 A US3782822 A US 3782822A US 00196698 A US00196698 A US 00196698A US 3782822D A US3782822D A US 3782822DA US 3782822 A US3782822 A US 3782822A
Authority
US
United States
Prior art keywords
power
telescope
aim point
range
stadia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00196698A
Inventor
M Spence
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3782822A publication Critical patent/US3782822A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/14Viewfinders
    • G02B23/145Zoom viewfinders

Definitions

  • ABSTRACT In a variable power telescope gun sight, provided with stadia and aim point at the rear focus between the ocular lens and zoom system, an aim point is located above the optic center and correlated with bullet trajectory.
  • the distance of off set of the aim point is such that, at minimum power, the aim point is zeroed relative to the stadia for impact at minimum range, this usually being the point blank range of the projectile, and at some higher power relative to an increase in range the projectile is again zeroed, in that the projectile impact and the aim point coincide.
  • the novel telescopic sight and method of its use are based on the observations that (1) between approximately 15 and 34; maximum range and maximum range the trajectory of a high velocity bullet is substantially linear, (2) that as magnification is increased the aim point will appear to move downwardly toward optic center and (3) that the low power and some higher power of the telescope, respectively, can be correlated with a zero at the minimum and maximum range, respectively, with reference to the stadia. Correlated in such manner, changes in magnification, in the optic sense automatically set the aim point for firing without any necessity of the observer knowing the actual distance to the target.
  • Telescopic gun sights have been long known in the art, and it has become commonplace for sportsmen to mount such devices on small fire-arms, particularly rifles.
  • the standard telescopic gun sight there are two points of focus at which a reticle, or device which carries an aim point, e.g., cross hairs, can be located, viz., at the front focus or rear focus.
  • variable power telescopes it has now become most desirable to locate the reticle at the point of rear focus so that as power is increased, the apparent size or thickness of the reticle is not magnified, such as would tend to obscure the target.
  • telescopes which include a variable power or zoom element include the above described improvement in reticle location, and also builtin rangefinders of various types.
  • various indicia defining an aim point e.g., the point where the vertical and horizontal lines of cross hairs intersect, is located within the telescope at the exact optical center (the point which does not move when power is changed).
  • the observer holds over the target to compensate for the difference between the range at which the telescope and rifle are zeroed and that estimated for the range of the target, and then fires.
  • a telescope with a built-in rangefinder of the above type, now in wide commercial use, is described in US. Pat. No. 3,386,330.
  • a target of known size is precisely circumscribed between stadia wires, and by change of power or magnification, the distance of the target from the observer can be read from a scale. Knowing the range, the observer can then select the magnification desired and then hold over the target to compensate for the difference between the range at which the telescope and rifle are zeroed and the distance to the target as determined by the known ballistics of the type of cartridge used, and then fire.
  • the aim point is the optical center of the telescope sight which is held over the target by an amount esti mated to compensate for the trajectory of the bullet, or bullet drop.
  • The. time required for adjustments of power, to estimate range, return to a desired magnification and mentally compute hold-over obviously have their limitations.
  • Telescopic sights have thus been pivotally mounted in relation to a gun barrel so that power adjustments made in framing a target between a pair of stadia raises or lowers the telescope with relationship to the barrel to align the optical center of the telescope upon the target after the adjustments are completed. Hold-over is unnecessary, and after the target is so framed, and the mechanical adjustment for trajectory thus made, a pair of stationary cross hairs, one horizontal and one vertical, which cross at the optical center of the telescope, is then sighted upon the target, and the gun fired.
  • US. Pat. No. 3,431,632 also described a telescopic gun sight wherein power adjustments automatically compensate for bullet trajectory without there being any necessity of the observer knowing the actual distance between himself and the target.
  • a scale ring is used to elevate and vertically space a pair of movable horizontal cross hairs to circumscribe a target of known size. The aim point defined by the lower horizontal cross hair and a fixed vertical cross hair is automatically set at the proper elevation to fix upon the circumscribed target.
  • the above patents are technically superb, however, they require major modification to current design of telescopes or mounts and the non-stationary mounting gives rise to accidental displacement by rough service or the introduction of foreign particles between cam and stationary mount stud.
  • the telescopic gun sight embodied by the present invention obviates many of these disadvantages and provides further improvements over these and other known prior art telescopic sighting devices.
  • variable power telescopic gun sight which contains a rangefinder, or stadia, and means for changing magnification power while simultaneously automatically adjusting the reticle or aim point to compensate for the trajectory of the bullet, whether or not the actual distance to the target is known.
  • variable power telescope of the character described wherein the reticle or aim point is located in a vertical plane above the optic center of the telescope, and an exact relationship is provided between the eccentric reticle or aim point and an external ring which operates to produce magnification or power changes such that increases in magnification causes the reticle or aim point to move downwardly toward the optic center of the telescope thereby optically compensating for the bullet trajectory at increased ranges, whether or not the actual distance to the target is known.
  • telescopic gun sights comprising the usual combination of a telescopic tube which contains objective lens, ocular lens, erectors and magnifiers for effecting change in magnification (i.e., a zoom system) and a power change mechanism or adjusting means for changing the magnification or power.
  • a reticle with aim point directly above the optic center, with respect to image is located within the rear focus of the lens system, with stadia as used for estimating distance.
  • the aim point is correlated, empirically or by calculation, with the trajectory of the gun on which the telescope is used, as determined by ballistics data, such that as magnification or power is increased relative to the stadia the aim point moves vertically downwardly to track the path of the bullet in flight as it falls due to the influence of gravity.
  • the degree of displacement of the aim point is such that as magnification is increased on a linear relationship with range, which can be read from the rangefinder, if desired, but whether or not the observer has any knowledge of the actual distance to the target, compensation is automatically made for the range and the aim point is centered directly on the target.
  • FIG. 1 depicts a side elevation view of a variable power telescopic gun sight in accordance with this invention mounted on a rifle;
  • FIG. 2 depicts schematically the optical system of a standard variable power telescopic gun sight as embodied in this invention
  • FIG. 3 depicts the essentials (the full field not being shown) of a preferred type of reticle cell or reticle disk which includes both aim point and stadia as embodied by the present invention
  • FIGS. 4 and 5 taken together with the preceding fugure, depict a series of views illustrating the method of enabling the observer to circumscribe and range a target using a preferred type of stadia while automatically setting the aiming indicia for firing, whether or not the observer is aware of the actual distance to the target;
  • FIG. 6 depicts another preferred type of reticle for automatic range compensation, this design providing a pair of horizontal cross hairs which provide stadia, these intersecting with a vertical cross hair, one cross hair or aim point being at optic center and the other above optic center.
  • the upper cross hairs provide an eccentric aim point for automatic ranging and the other an aim point for conventional aiming.
  • FIG. 7 depicts a ring scale with indicia markings correlating the range to target as determined by stadia, which would allow the use of the reticle on arms having vastly different trajectories.
  • the ring scale is marked according to decrease from maximum range.
  • FIG. 1 there is shown a variable power telescopic gun sight or telescope 10 mounted via clamps 8 8 on a rifle 9, the latter per se forming no part of the present invention.
  • the telescope 10 includes the conventional barrel 11, an eyepiece 12, an objective 13 and an adjustment ring 14, provided with a handle 15 to facilitate adjustment and operation of internal linkage (not shown) which actuates a zoom element within the telescope so that the target image can be made to look larger or smaller in proportion to the field.
  • the optical system which is depicted schematically by reference to FIG. 2, also includes the conventional objective lens, ocular lens and erectors and magnifiers which constitute a zoom system.
  • the reticle, with its eccentric aim point, and the stadia or rangefinder are located within the rear focus of the optical system rather than within the front focus.
  • Reticle 20 with its eccentric aim point 21 above optical center 22, with stadia or rangefinder, in combination with the conventional optic system described, constitutes the apparatus features of the present invention.
  • a preferred type of reticle which can be illustrated by reference to FIG. 3, comprises a reticle cell, preferably a disk 20 constituted of any suitable transparent material such as plastic or glass, the disk being generally flat or of piano form.
  • the transparent reticle disk 20 is scribed with a vertical line 25 and horizontal line 24, or indicia marks, which intersect to provide an eecentric aim point 21, or point which lies above the optic center 22 which is also generally the geometric center of the disk.
  • a diaganol line or indicia mark 23 joins horizontal line 24 at a 45 angle, and the segment of horizontal line 24 lying below diaganol line 23 is scribed with numerals or other indicia representative of the vertical distances between lines 23, 24 at any given point on the horizontal scale. (Horizontal distances can also be measured between the point of intersection of lines 23, 24 and a point located on the horizontal scale.)
  • the vertical distances between lines 23, 24 define stadia and, at a preselected magnification, are a measure of distances between corresponding points within the field of view.
  • a target of known height, at such magnification is framed between a pair of verticaly aligned points lying on lines 23, 24 respectively, therefore, the distance to the target is known, and it has been conventional to provide means whereby such range could be read from a scale.
  • the eccentric aim point is automatically moved downwardly, in the optic sense, in response to power increases, or conversely upwardly in response to power decreases such that at the moment the target is framed the aim point is set for sighting and firing.
  • FIGS. 3 through 5 The technique of sighting and firing is best illustrated by reference to FIGS. 3 through 5, wherein it is assumed that both the telescope and rifle have been zeroed at maximum magnification to frame and strike a target at 400 yards distance, and that the scribed numerals along horizontal line 24, lying vertically below points on line 23, are read in inches.
  • the observer sights in on a circle or bulls eye known by him to be inches in diameter as shown in FIG. 3.
  • the target does not fit between lines 23, 24 at the 15-inch scale, but is too small. Magnification is too low, e. g., 4 power. The observer knows, therefore, that the target is far away and that if a shot were fired that it would fall too low.
  • the power is therefore increased, e.g., to 8 power, the full power of the telescope, until the target fits the l5-inch scale as shown by reference to FIG. 4.
  • the range is known or can be easily determined, but this is immaterial, for the aim point 21 is, in the optic sense moved downwardly in the field, a distance shown by the difference between the arrows, compensating for bullet trajectory so that the muzzle of the rifle is raised when the shot is fired as shown by reference to FIG. 5.
  • a preferred type of reticle design is also described by reference to FIG. 6.
  • a parallel pair of horizontal cross hairs 26,27 form stadia, the lower cross hair 27 being located at optical center.
  • the point of intersection of vertical cross hair 28 forms an off-set air point for automatic range compensation, the distance between the cross hairs 26,27 being used to span an object of known dimension.
  • the compensation is generaliy from about 4 to 30 inches above optical center at 100 yards, and preferably from about 4 to 17 inches above optical center at 100 yards. For most sporting purposes, compensation of from about 6 to 12 inches above optical center at 100 yards on lowest available magnification is most preferred.
  • the point of intersection of cross hairs 27,28 forms an aim point for conventional firing.
  • a power selector ring scribed with an indicia scale representative of a range of values between a maximum compensated range at full magnification (M and a minimum range at low magnification (M,).
  • M could be conveniently assigned a value of I .0 and M L a value of 0.33.
  • the power is linear within this range and hence the witness mark could be used to clearly indicate the range of values representative of distances in terms of fractional units between minimum and maximum range, or fractional power units between 3X and 9X.
  • the present invention is based on the recognition that, in the optic sense, when the magnification of a variable power telescope with a non-magnifying reticle is changed, all points outside the optical center of the image will appear to shift inversely with power change in a one-to-one ratio, e.g., points 6 inches apart at 4 power become 2 inches apart at 12 power.
  • the change in an aim point located above optic center, in conjunction with stadia which will also appear to move downwardly with increases in range, although linear with respect to range, can be correlated with a given segment of a curve representative of the trajectory of a bullet, the net change required being dependent on range, velocity, and the ballistic coefiicient of the bullet.
  • the reticle movement is selected such that at some low power relative to range and stadia it is zeroed for tra-.
  • the low power magnification M is zeroed at Ni /M of the maximum range and the higher power, M is zeroed at the maximum range, and between these two ranges bullet drop is approximated very closely by the off-set reticle.
  • the best trajectory fit by the reticle is obtained with a high power to low power ratio of 1.5 to 3.0.
  • the power ratio is immaterial as all or only a portion of the full power can .be selected to compensate between the two zero ranges. After a balance of maximum possible range to allowable error has been made, the excess power ratio may be used to extend the range finding capability and decrease hold-over normally required.
  • the degree of off-set may be found by trial and error or by calculation, and for most sporting purposes will be 2 to 8 minutes of angle above the optic center at the higher magnification.
  • This off-set is fitted to the trajectory by the distance of off-set, or the trajectory may be fitted to the off-set by allowing the span value of the stadia and the maximum range to become variables.
  • the movement of the reticle from minimum zeroed range (X,) to maximum zeroed range (X is linear and continuous with range changes. Therefore, the reti-. cle describes a straight line between the two points at which zero occurs, the actual trajectory is a curve and at mid-ranges lies slightly above that line described by the reticle movement between the two zero points.
  • the error introduced is greatest at the mid-point of minimum range and maximum range, e.g., at 300 yards if the X is 200 and X is 400 yards, this error being generally no more than I to 4 inches up to distances of 400 or more yards for high velocity arms having muzzle velocities ranging upward of about 2,700 feet per second which fire bullets having 0.30 or greater ballistic coefficient (Ingalls).
  • the error is generally less than the precision of the rifle.
  • the M IM 2.0 the minimum range 200 yards, maximum range 400 yards. If the variable powers M and M were 4 and 8, then at 200 yards the shot would have been made at 4 power, at 400 yards on 8 power, at 300 yards at 300/400 times the M (or times 8X) on 6 power, etc.
  • the desired distance to off-set the reticle, (Q), at highest desired magnification, in inches at 100 yards, is defined by the formula:
  • the reticle used to circumscribe the full field of view is preferably of circular design, though the horizontal length can also be greater than its vertical length (height).
  • the reticle is preferably constructed as a unitary member, and includes both the aim point and the stadia, or rangefinder.
  • the aim point can comprise essentially any kind of indicia, cross hairs, a dot, an open juncture between converging lines, and the like.
  • the rangefinder can be any type of device normally used for measuring distance, but preferably the rangefinder is as described, though it can be located virtually anywhere within the field away from the optic center.
  • a variable power telescopic gun sight for mounting on a gun wherein is included the combination of a barrel with enclosed objective lens, ocular lens, zoom system comprised of erectors and magnifiers, which provide a front focus and rear focus, and means mounted on the barrel for changing the magnifying power of the telescope, the improvement comprising locating a reticle, with stadia and a fixed aim point physically located above the optic center of the telescope, at the rear focus between the ocular lens and the zoom system whereby power increases will cause the aim point to appear to move downwardly toward the optic center of the telescope and thereby automatically compensate for the trajectory of a bullet fired from the gun.
  • the aim point of the reticle is off-set above the optic center of the telescope by a distance sufficient to correlate a linear bullet trajectory, at high magnifying power, where the gun is zeroed, at maximum compensated range for the gun and, at lower magnifying power, where the gun is also zeroed, with a range defined by the formula M /M of maximum; wherein M equals the power of the telescope at low power and M equals the power of the telescope at high power magnification.
  • the telescope contains a reticle cell having a vertical cross hair and a pair of parallel horizontal cross hairs, one located above optic center and the other at optic center, the pair of horizontal cross hairs also defining stadia as well as an off-set aim point and a conventional aim point, respectively.
  • one of the lines is horizontal, and provided with indicia indicative of the height of a target within the field of the telescope.
  • a variable power telescopic gun sight for mounting on a gun wherein is included the combination of a barrel with objective lens, ocular lens, zoom system comprised of erectors and magnifiers, which provide a front focus and rear focus, a reticle located at the rear focus between the ocular lens and the zoom system, stadia, and means for changing the power of the telescope, a method for correlating the trajectory of a bullet fired from the gun comprising physically locating a fixed aim point within the rear focus above the optic center at a distance such that, at high power, the aim point will be zeroed at the maximum range of impact of the bullet and at low power the aim point will be zeroed at a range defined by the formula M /M of maximum range; wherein M equals the power of the telescope at low power and M equals the power of the scope at high power magnification.

Abstract

In a variable power telescope gun sight, provided with stadia and aim point at the rear focus between the ocular lens and zoom system, an aim point is located above the optic center and correlated with bullet trajectory. The distance of off set of the aim point is such that, at minimum power, the aim point is zeroed relative to the stadia for impact at minimum range, this usually being the point blank range of the projectile, and at some higher power relative to an increase in range the projectile is again zeroed, in that the projectile impact and the aim point coincide. The novel telescopic sight and method of its use are based on the observations that (1) between approximately 1/3 and 2/3 maximum range and maximum range the trajectory of a high velocity bullet is substantially linear, (2) that as magnification is increased the aim point will appear to move downwardly toward optic center and (3) that the low power and some higher power of the telescope, respectively, can be correlated with a zero at the minimum and maximum range, respectively, with reference to the stadia. Correlated in such manner, changes in magnification, in the optic sense automatically set the aim point for firing without any necessity of the observer knowing the actual distance to the target.

Description

nited States Patent [191 Spence Jan. 1, 1974 METHOD AND APPARATUS FOR AUTOMATIC RANGING WITH VARIABLE POWER TELESCOPIC GUN SIGHT [76] Inventor: Mack L. Spence, 716 Dawes Dr.,
Denham Springs, La. 70726 [22] Filed: Nov. 8, 1971 [21] Appl. No.: 196,698
[52] US. Cl 356/21, 350/10, 33/246 [51] Int. Cl. G010 3/20 [58] Field of Search 356/20, 21; 350/10; 33/246 [56] References Cited UNITED STATES PATENTS 2,811,894 11/1957 Braker 33/246 X 3,684,376 8/1972 Lessard 356/21 3,492,733 2/1970 Leatherwood 350/10 X 3,213,539 10/1965 Burris 350/10 X 3,386,330 6/1968 Burris et al. 356/21 3,506,330 4/1970 Allen 356/21 X 2,734,273 2/1956 Blindenbacher et a1 356/21 3,431,652 3/1969 Leatherwood 356/21 UX Primary ExaminerDavid Schonberg Assistant ExaminerPaul K. Godwin AttorneyLlewellyn A. Proctor [57] ABSTRACT In a variable power telescope gun sight, provided with stadia and aim point at the rear focus between the ocular lens and zoom system, an aim point is located above the optic center and correlated with bullet trajectory. The distance of off set of the aim point is such that, at minimum power, the aim point is zeroed relative to the stadia for impact at minimum range, this usually being the point blank range of the projectile, and at some higher power relative to an increase in range the projectile is again zeroed, in that the projectile impact and the aim point coincide. The novel telescopic sight and method of its use are based on the observations that (1) between approximately 15 and 34; maximum range and maximum range the trajectory of a high velocity bullet is substantially linear, (2) that as magnification is increased the aim point will appear to move downwardly toward optic center and (3) that the low power and some higher power of the telescope, respectively, can be correlated with a zero at the minimum and maximum range, respectively, with reference to the stadia. Correlated in such manner, changes in magnification, in the optic sense automatically set the aim point for firing without any necessity of the observer knowing the actual distance to the target.
7 Claims, 7 Drawing Figures ERECTORS 81 MAGNIFIERS FRONT OPTICAL m T k LENS ZOOM SYSTEM RETlCLE OCCULAR LENS j PATENIEBJAN 1W4 ERECTORS 8x FRONT FOCUS MAGNIFIERS RETICLE +-2| 22 2O OPTICAL m \M OBJECTIVE CENTER OCCULAR LENS ZOOM SYSTEM LENS INVENTOR. MACK L. SPENCE 1 Y E n N (k R o (w m N Q L L V x m Y B METHOD AND APPARATUS FOR AUTOMATIC RANGING WITH VARIABLE POWER TELESCOPIC GUN SIGHT Apparatus and method for automatic adjustment of the aim point of a variable power telescope with changes in magnification, with consequent changes in the bullet trajectory, without any necessity of the observer knowing the actual distance to the target. The aim point appears to move downwardly with increasing magnification, this allowing power increases as range increases, as is desirable for precision of aim.
Telescopic gun sights have been long known in the art, and it has become commonplace for sportsmen to mount such devices on small fire-arms, particularly rifles. In the standard telescopic gun sight there are two points of focus at which a reticle, or device which carries an aim point, e.g., cross hairs, can be located, viz., at the front focus or rear focus. In variable power telescopes it has now become most desirable to locate the reticle at the point of rear focus so that as power is increased, the apparent size or thickness of the reticle is not magnified, such as would tend to obscure the target.
Recently introduced telescopes which include a variable power or zoom element include the above described improvement in reticle location, and also builtin rangefinders of various types. In most telescopes now on the market, various indicia defining an aim point, e.g., the point where the vertical and horizontal lines of cross hairs intersect, is located within the telescope at the exact optical center (the point which does not move when power is changed). In most commercial variable power telescopes, once the range has been determined by use of the built-in rangefinder, the observer holds over the target to compensate for the difference between the range at which the telescope and rifle are zeroed and that estimated for the range of the target, and then fires.
A telescope with a built-in rangefinder of the above type, now in wide commercial use, is described in US. Pat. No. 3,386,330. In the telescope described therein, a target of known size is precisely circumscribed between stadia wires, and by change of power or magnification, the distance of the target from the observer can be read from a scale. Knowing the range, the observer can then select the magnification desired and then hold over the target to compensate for the difference between the range at which the telescope and rifle are zeroed and the distance to the target as determined by the known ballistics of the type of cartridge used, and then fire. The aim point is the optical center of the telescope sight which is held over the target by an amount esti mated to compensate for the trajectory of the bullet, or bullet drop. The. time required for adjustments of power, to estimate range, return to a desired magnification and mentally compute hold-over obviously have their limitations.
Devices are now described, e.g., in US. Pat. Nos. 3,340,614 and 3,492,733 which automatically adjust the trajectory of the bullet simultaneously with power changes, i.e., the steps of changing the power for framing a target between a pair of stadia automatically adjusts the trajectory for firing without any necessity of the observer knowing the actual distance to the target. Telescopic sights have thus been pivotally mounted in relation to a gun barrel so that power adjustments made in framing a target between a pair of stadia raises or lowers the telescope with relationship to the barrel to align the optical center of the telescope upon the target after the adjustments are completed. Hold-over is unnecessary, and after the target is so framed, and the mechanical adjustment for trajectory thus made, a pair of stationary cross hairs, one horizontal and one vertical, which cross at the optical center of the telescope, is then sighted upon the target, and the gun fired.
US. Pat. No. 3,431,632 also described a telescopic gun sight wherein power adjustments automatically compensate for bullet trajectory without there being any necessity of the observer knowing the actual distance between himself and the target. In the device described, a scale ring is used to elevate and vertically space a pair of movable horizontal cross hairs to circumscribe a target of known size. The aim point defined by the lower horizontal cross hair and a fixed vertical cross hair is automatically set at the proper elevation to fix upon the circumscribed target. The above patents are technically superb, however, they require major modification to current design of telescopes or mounts and the non-stationary mounting gives rise to accidental displacement by rough service or the introduction of foreign particles between cam and stationary mount stud.
The telescopic gun sight embodied by the present invention obviates many of these disadvantages and provides further improvements over these and other known prior art telescopic sighting devices.
Among the objects of this invention are:
To provide a new and improved variable power telescopic gun sight which contains a rangefinder, or stadia, and means for changing magnification power while simultaneously automatically adjusting the reticle or aim point to compensate for the trajectory of the bullet, whether or not the actual distance to the target is known.
To provide a variable power telescope of the character described wherein the reticle or aim point is located in a vertical plane above the optic center of the telescope, and an exact relationship is provided between the eccentric reticle or aim point and an external ring which operates to produce magnification or power changes such that increases in magnification causes the reticle or aim point to move downwardly toward the optic center of the telescope thereby optically compensating for the bullet trajectory at increased ranges, whether or not the actual distance to the target is known.
To provide a telescopic gun sight of the character described wherein the relationship between the external ring which operates power magnification changes and the reticle can be easily adjusted to match the type of ammunition used.
To provide a more durable telescopic gun sight of simple structure, particularly one wherein there are no complicated mechanical adjustments to be made by changing the alignment between the telescope and the gun barrel during ranging and firing.
To provide a new and improved reticle with rangefinder of design particularly useful for fitting to targets of various known sizes (from small game to that of elk or moose size), adapted for rapid and efficient use by the observer, capable of both vertical and horizontal measurement.
These and other objects are achieved in accordance with the present invention which embodies improvements in telescopic gun sights, comprising the usual combination of a telescopic tube which contains objective lens, ocular lens, erectors and magnifiers for effecting change in magnification (i.e., a zoom system) and a power change mechanism or adjusting means for changing the magnification or power. In the improved combination, a reticle with aim point directly above the optic center, with respect to image, is located within the rear focus of the lens system, with stadia as used for estimating distance. The aim point is correlated, empirically or by calculation, with the trajectory of the gun on which the telescope is used, as determined by ballistics data, such that as magnification or power is increased relative to the stadia the aim point moves vertically downwardly to track the path of the bullet in flight as it falls due to the influence of gravity.
By locating the reticle within the rear focus between the ocular lens and the erectors and magnifiers of a variable power telescope, with an eccentric aim point directly above optic center, it is thus found that the aim point moves, in an optical sense, vertically downwardly with respect to the field as power is increased. By correlation between the paths defined by this optical change and bullet trajectory, which of course is also downward, with the combination of stadia, or rangefinder, a target can be ranged with the desirable quality of allowing power increases as range is increased. The degree of displacement of the aim point is such that as magnification is increased on a linear relationship with range, which can be read from the rangefinder, if desired, but whether or not the observer has any knowledge of the actual distance to the target, compensation is automatically made for the range and the aim point is centered directly on the target.
The invention, and its principle of operation, will be more fully understood by reference to the following detailed description of a specific embodiment, and to the attached drawings to which reference is made in the description. Subscripts are used to show a plurality of similar parts or components.
In the drawings:
FIG. 1 depicts a side elevation view of a variable power telescopic gun sight in accordance with this invention mounted on a rifle;
FIG. 2 depicts schematically the optical system of a standard variable power telescopic gun sight as embodied in this invention;
FIG. 3 depicts the essentials (the full field not being shown) of a preferred type of reticle cell or reticle disk which includes both aim point and stadia as embodied by the present invention;
FIGS. 4 and 5, taken together with the preceding fugure, depict a series of views illustrating the method of enabling the observer to circumscribe and range a target using a preferred type of stadia while automatically setting the aiming indicia for firing, whether or not the observer is aware of the actual distance to the target; and
FIG. 6 depicts another preferred type of reticle for automatic range compensation, this design providing a pair of horizontal cross hairs which provide stadia, these intersecting with a vertical cross hair, one cross hair or aim point being at optic center and the other above optic center. The upper cross hairs provide an eccentric aim point for automatic ranging and the other an aim point for conventional aiming.
FIG. 7 depicts a ring scale with indicia markings correlating the range to target as determined by stadia, which would allow the use of the reticle on arms having vastly different trajectories. In this case the ring scale is marked according to decrease from maximum range.
Referring to FIG. 1 there is shown a variable power telescopic gun sight or telescope 10 mounted via clamps 8 8 on a rifle 9, the latter per se forming no part of the present invention. The telescope 10 includes the conventional barrel 11, an eyepiece 12, an objective 13 and an adjustment ring 14, provided with a handle 15 to facilitate adjustment and operation of internal linkage (not shown) which actuates a zoom element within the telescope so that the target image can be made to look larger or smaller in proportion to the field.
The optical system, which is depicted schematically by reference to FIG. 2, also includes the conventional objective lens, ocular lens and erectors and magnifiers which constitute a zoom system. In accordance with this invention the reticle, with its eccentric aim point, and the stadia or rangefinder are located within the rear focus of the optical system rather than within the front focus. Reticle 20 with its eccentric aim point 21 above optical center 22, with stadia or rangefinder, in combination with the conventional optic system described, constitutes the apparatus features of the present invention. The method and principles of circumscribing and ranging a target using a preferred type of stadia or rangefinder which in the optic sense automatically sets the aim point 21 for firing, whether or not the observer is actually aware of the distance to the target, is hereinafter described.
A preferred type of reticle, which can be illustrated by reference to FIG. 3, comprises a reticle cell, preferably a disk 20 constituted of any suitable transparent material such as plastic or glass, the disk being generally flat or of piano form. The transparent reticle disk 20 is scribed with a vertical line 25 and horizontal line 24, or indicia marks, which intersect to provide an eecentric aim point 21, or point which lies above the optic center 22 which is also generally the geometric center of the disk. A diaganol line or indicia mark 23 joins horizontal line 24 at a 45 angle, and the segment of horizontal line 24 lying below diaganol line 23 is scribed with numerals or other indicia representative of the vertical distances between lines 23, 24 at any given point on the horizontal scale. (Horizontal distances can also be measured between the point of intersection of lines 23, 24 and a point located on the horizontal scale.)
The vertical distances between lines 23, 24 define stadia and, at a preselected magnification, are a measure of distances between corresponding points within the field of view. When a target of known height, at such magnification, is framed between a pair of verticaly aligned points lying on lines 23, 24 respectively, therefore, the distance to the target is known, and it has been conventional to provide means whereby such range could be read from a scale. In accordance with the present invention, however, it is unnecessary to actually know the distance to the target. Instead, the eccentric aim point is automatically moved downwardly, in the optic sense, in response to power increases, or conversely upwardly in response to power decreases such that at the moment the target is framed the aim point is set for sighting and firing.
The technique of sighting and firing is best illustrated by reference to FIGS. 3 through 5, wherein it is assumed that both the telescope and rifle have been zeroed at maximum magnification to frame and strike a target at 400 yards distance, and that the scribed numerals along horizontal line 24, lying vertically below points on line 23, are read in inches. The observer sights in on a circle or bulls eye known by him to be inches in diameter as shown in FIG. 3. The target does not fit between lines 23, 24 at the 15-inch scale, but is too small. Magnification is too low, e. g., 4 power. The observer knows, therefore, that the target is far away and that if a shot were fired that it would fall too low. The power is therefore increased, e.g., to 8 power, the full power of the telescope, until the target fits the l5-inch scale as shown by reference to FIG. 4. The range is known or can be easily determined, but this is immaterial, for the aim point 21 is, in the optic sense moved downwardly in the field, a distance shown by the difference between the arrows, compensating for bullet trajectory so that the muzzle of the rifle is raised when the shot is fired as shown by reference to FIG. 5.
A preferred type of reticle design is also described by reference to FIG. 6. A parallel pair of horizontal cross hairs 26,27 form stadia, the lower cross hair 27 being located at optical center. The point of intersection of vertical cross hair 28 forms an off-set air point for automatic range compensation, the distance between the cross hairs 26,27 being used to span an object of known dimension. The compensation is generaliy from about 4 to 30 inches above optical center at 100 yards, and preferably from about 4 to 17 inches above optical center at 100 yards. For most sporting purposes, compensation of from about 6 to 12 inches above optical center at 100 yards on lowest available magnification is most preferred. The point of intersection of cross hairs 27,28 forms an aim point for conventional firing.
Referring to FIG. 7, there is shown a power selector ring scribed with an indicia scale representative of a range of values between a maximum compensated range at full magnification (M and a minimum range at low magnification (M,). For example, in utilizing a scope where maximum magnification is three times the power at minimum magnifieation, i.e., in a 3X-9X variable power telescope, M could be conveniently assigned a value of I .0 and M L a value of 0.33. The power is linear within this range and hence the witness mark could be used to clearly indicate the range of values representative of distances in terms of fractional units between minimum and maximum range, or fractional power units between 3X and 9X.
The present invention is based on the recognition that, in the optic sense, when the magnification of a variable power telescope with a non-magnifying reticle is changed, all points outside the optical center of the image will appear to shift inversely with power change in a one-to-one ratio, e.g., points 6 inches apart at 4 power become 2 inches apart at 12 power. The change in an aim point located above optic center, in conjunction with stadia which will also appear to move downwardly with increases in range, although linear with respect to range, can be correlated with a given segment of a curve representative of the trajectory of a bullet, the net change required being dependent on range, velocity, and the ballistic coefiicient of the bullet. Thus, the reticle movement is selected such that at some low power relative to range and stadia it is zeroed for tra-.
inches jectory and at some higher power relative to range increase it is also zeroed by the downward movement of the aim point. Thus, the low power magnification M is zeroed at Ni /M of the maximum range and the higher power, M is zeroed at the maximum range, and between these two ranges bullet drop is approximated very closely by the off-set reticle. The best trajectory fit by the reticle is obtained with a high power to low power ratio of 1.5 to 3.0. The power ratio, however, is immaterial as all or only a portion of the full power can .be selected to compensate between the two zero ranges. After a balance of maximum possible range to allowable error has been made, the excess power ratio may be used to extend the range finding capability and decrease hold-over normally required.
The degree of off-set may be found by trial and error or by calculation, and for most sporting purposes will be 2 to 8 minutes of angle above the optic center at the higher magnification. This off-set is fitted to the trajectory by the distance of off-set, or the trajectory may be fitted to the off-set by allowing the span value of the stadia and the maximum range to become variables. The movement of the reticle from minimum zeroed range (X,) to maximum zeroed range (X is linear and continuous with range changes. Therefore, the reti-. cle describes a straight line between the two points at which zero occurs, the actual trajectory is a curve and at mid-ranges lies slightly above that line described by the reticle movement between the two zero points. The error introduced is greatest at the mid-point of minimum range and maximum range, e.g., at 300 yards if the X is 200 and X is 400 yards, this error being generally no more than I to 4 inches up to distances of 400 or more yards for high velocity arms having muzzle velocities ranging upward of about 2,700 feet per second which fire bullets having 0.30 or greater ballistic coefficient (Ingalls). The error is generally less than the precision of the rifle.
The following parameters are typical for a 0.30-06 caliber rifle when zeroed at 200 yards:
Range, in
Yards 200 250 300 350 400 Actual Bullet Path, inches +1.8 0 3.3 7.8 -13.4 22.4 Reticle Movement, inches 0 0 5.5 l1.1 l6.6 22.4- Error in Aim.
In the above case the M IM 2.0, the minimum range 200 yards, maximum range 400 yards. If the variable powers M and M were 4 and 8, then at 200 yards the shot would have been made at 4 power, at 400 yards on 8 power, at 300 yards at 300/400 times the M (or times 8X) on 6 power, etc.
It is apparent that various modifications and changes can be made without departing the spirit of the present invention. The exact amount of off-set of the aim point above optic center can thus be determined empirically or by actual calculation.
Thus, an approximate calculation of these parameters is had by the following formulas:
l. The desired distance to off-set the reticle, (Q), at highest desired magnification, in inches at 100 yards, is defined by the formula:
Q L/ H 4 M 3) 2] 11 D/ wherein: A 1.049 where M IM 2 and 0.960 where M H/ M L 3 V muzzle velocity in thousands of feet per second B 0.50 K (I 0.6/V)B B =0.l8l5 K (1 l.2/V)B K l/CV M highest magnification M lowest magnification C ballistic coefficient (lngalls) Q off-set required at highest magnification, inches at one hundred yards X M maximum desired range for automatic compensation in hundreds of yards 2. The point bland range, (X the minimum range of automatic compensation and also the range at which the rangefinder span is calibrated at minimum magnification, in hundreds of yards, is given by the formula:
XL (ML/MM) X XM 3. Reticle movement, (T), in inches, from one range setting to another is described by the following equation, the limits of the range being defined as X to X wherein:
X, base or zero range in hundreds of yards X range in hundreds of yards for which movement is desired from the base range The reticle used to circumscribe the full field of view is preferably of circular design, though the horizontal length can also be greater than its vertical length (height). The reticle is preferably constructed as a unitary member, and includes both the aim point and the stadia, or rangefinder. The aim point can comprise essentially any kind of indicia, cross hairs, a dot, an open juncture between converging lines, and the like. The rangefinder can be any type of device normally used for measuring distance, but preferably the rangefinder is as described, though it can be located virtually anywhere within the field away from the optic center.
It is also feasible to grind ocular lens such that the optic center does not correspond with the geometric center, and thus the off-set or eccentric aim point may appear centered.
[t is apparent that these and other various changes, such as in the absolute or relative dimension of the parts, materials used, use of constant off-set for manufacturing purposes with allowance of maximum range variance to fit ballistics data, and the like, can be made without departing the spirit and scope of the invention, as will be apparent to those skilled in the art.
Having described the invention, what is claimed is:
1. In a variable power telescopic gun sight for mounting on a gun wherein is included the combination of a barrel with enclosed objective lens, ocular lens, zoom system comprised of erectors and magnifiers, which provide a front focus and rear focus, and means mounted on the barrel for changing the magnifying power of the telescope, the improvement comprising locating a reticle, with stadia and a fixed aim point physically located above the optic center of the telescope, at the rear focus between the ocular lens and the zoom system whereby power increases will cause the aim point to appear to move downwardly toward the optic center of the telescope and thereby automatically compensate for the trajectory of a bullet fired from the gun.
2. The apparatus of claim 1 wherein the aim point of the reticle is off-set above the optic center of the telescope by a distance sufficient to correlate a linear bullet trajectory, at high magnifying power, where the gun is zeroed, at maximum compensated range for the gun and, at lower magnifying power, where the gun is also zeroed, with a range defined by the formula M /M of maximum; wherein M equals the power of the telescope at low power and M equals the power of the telescope at high power magnification.
3. The apparatus of claim 2 wherein the telescope contains a reticle cell having a vertical cross hair and a pair of parallel horizontal cross hairs, one located above optic center and the other at optic center, the pair of horizontal cross hairs also defining stadia as well as an off-set aim point and a conventional aim point, respectively.
4. The apparatus of claim 1 wherein the stadia are comprised of a pair of lines which adjoin one to the other at an angle of 45.
5. The apparatus of claim 4 wherein one of the lines is horizontal, and provided with indicia indicative of the height of a target within the field of the telescope.
6. In a variable power telescopic gun sight for mounting on a gun wherein is included the combination of a barrel with objective lens, ocular lens, zoom system comprised of erectors and magnifiers, which provide a front focus and rear focus, a reticle located at the rear focus between the ocular lens and the zoom system, stadia, and means for changing the power of the telescope, a method for correlating the trajectory of a bullet fired from the gun comprising physically locating a fixed aim point within the rear focus above the optic center at a distance such that, at high power, the aim point will be zeroed at the maximum range of impact of the bullet and at low power the aim point will be zeroed at a range defined by the formula M /M of maximum range; wherein M equals the power of the telescope at low power and M equals the power of the scope at high power magnification.
7. The method of claim 6 wherein at minimum power the telescope ranges from about one-fourth to about one-half of its maximum power.

Claims (7)

1. In a variable power telescopic gun sight for mounting on a gun wherein is included the combination of a barrel with enclosed objective lens, ocular lens, zoom system comprised of erectors and magnifiers, which provide a front focus and rear focus, and means mounted on the barrel for changing the magnifying power of the telescope, the improvement comprising locating a reticle, with stadia and a fixed aim point physically located above the optic center of the telescope, at the rear focus between the ocular lens and the zoom system whereby power increases will cause the aim point to appear to move downwardly toward the optic center of the telescope and thereby automatically compensate for the trajectory of a bullet fired from the gun.
2. The apparatus of claim 1 wherein the aim point of the reticle is off-set above the optic center of the telescope by a distance sufficient to correlate a linear bullet trajectory, at high magnifying power, where the gun is zeroed, at maximum compensated range for the gun and, at lower magnifying power, where the gun is also zeroed, with a range defined by the formula ML/MH of maximum; wherein ML equals the power of the telescope at low power and MH equals the power of the telescope at high power magnification.
3. The apparatus of claim 2 wherein the telescope contains a reticle cell having a vertical cross hair and a pair of parallel horizontal cross hairs, one located above optic center and the other at optic center, the pair of horizontal cross hairs also defining stadia as well as an off-set aim point and a conventional aim point, respectively.
4. The apparatus of claim 1 wherein the stadia are comprised of a pair of lines which adjoin one to the other at an angle of 45*.
5. The apparatus of claim 4 wherein one of the lines is horizontal, and provided with indicia indicative of the height of a target within the field of the telescope.
6. In a variable power telescopic gun sight for mounting on a gun wherein is included the combination of a barrel with objective lens, ocular lens, zoom system comprised of erectors and magnifiers, which provide a front focus and rear focus, a reticle located at the rear focus between the ocular lens and the zoom system, stadia, and means for changing the power of the telescope, a method for correlating the trajectory of a bullet fired from the gun comprising physically locating a fixed aim point within the rear focus above the optic center at a distance such that, at high power, the aim point will be zeroed at the maximum range of impact of the bullet and at low power the aim point will be zeroed at a range defined by the formula ML/MH of maximum range; wherein ML equals the power of the telescope at low power and MH equals the power of the scope at high power magnification.
7. The method of claim 6 wherein at minimum power the telescope ranges from about one-fourth to about one-half of its maximum power.
US00196698A 1971-11-08 1971-11-08 Method and apparatus for automatic ranging with variable power telescopic gun sight Expired - Lifetime US3782822A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19669871A 1971-11-08 1971-11-08

Publications (1)

Publication Number Publication Date
US3782822A true US3782822A (en) 1974-01-01

Family

ID=22726484

Family Applications (1)

Application Number Title Priority Date Filing Date
US00196698A Expired - Lifetime US3782822A (en) 1971-11-08 1971-11-08 Method and apparatus for automatic ranging with variable power telescopic gun sight

Country Status (1)

Country Link
US (1) US3782822A (en)

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948587A (en) * 1974-01-28 1976-04-06 Rubbert Paul E Reticle and telescopic gunsight system
US3991500A (en) * 1975-08-22 1976-11-16 The United States Of America As Represented By The Secretary Of The Army Firearm sight with dialable range control
US4193666A (en) * 1977-05-17 1980-03-18 Thomson-Csf Display collimator system including a standby reticle arrangement
US4285137A (en) * 1980-01-15 1981-08-25 Jennie Fred L Trajectory compensating device
US4497548A (en) * 1980-12-05 1985-02-05 Burris Company Variable-power riflescope with range-compensating reticle and a field stop diaphram centered off the optical axis
US4576451A (en) * 1982-01-08 1986-03-18 Hakko Seiki Kabushiki Kaisha Aiming telescope
EP0234180A1 (en) * 1985-12-18 1987-09-02 Walter Basta Telescopic sight with automatic elevation adjustment by means of an electric motor
US4806007A (en) * 1987-11-06 1989-02-21 Armson, Inc. Optical gun sight
US5283689A (en) * 1991-07-15 1994-02-01 Carlough Warren A Optical sighting device
US5521757A (en) * 1991-09-03 1996-05-28 Olson; Kevin Adjustment lever for attachment to a scope adjustment ring
US5616903A (en) * 1995-01-26 1997-04-01 The Brunton Company Electronic rangefinder apparatus
US5617257A (en) * 1995-07-11 1997-04-01 The United States Of America As Represented By The Secretary Of The Navy Variable focus adapter
WO1999030101A1 (en) * 1997-12-08 1999-06-17 Sammut Dennis J Improved gunsight and reticle therefor
US6005711A (en) * 1998-01-21 1999-12-21 Leupold & Stevens, Inc. Variable optical power telescopic sight with side focus control
US6266911B1 (en) * 1998-10-14 2001-07-31 Asahi Kogaku Kogyo Kabushiki Kaisha Autofocusing apparatus of a sighting telescope
US6269580B1 (en) * 1998-10-14 2001-08-07 Asahi Kogaku Kogyo Kabushiki Kaisha Motor-driven focusing apparatus of a sighting telescope
US6275337B1 (en) * 1998-10-20 2001-08-14 Tenebraex Corporation Method for viewing through reflections from a reflective surface without affecting point of impact
WO2001067024A1 (en) * 2000-03-06 2001-09-13 Horus Vision, Llc Improved gunsight and reticle therefor
AU740979B2 (en) * 1997-12-08 2001-11-15 Horus Vision, Llc Improved gunsight and reticle therefor
US6508026B1 (en) * 1999-11-02 2003-01-21 Simmons Outdoor Corporation Rifle scope with side indicia
US6516699B2 (en) 1997-12-08 2003-02-11 Horus Vision, Llc Apparatus and method for calculating aiming point information for rifle scopes
US6591537B2 (en) * 1998-09-14 2003-07-15 Thomas D. Smith Reticle for telescopic gunsight and method for using
US6615531B1 (en) 2002-03-04 2003-09-09 Larry Holmberg Range finder
US20040196451A1 (en) * 2003-04-07 2004-10-07 Honda Motor Co., Ltd. Position measurement method, an apparatus, a computer program and a method for generating calibration information
US20040201886A1 (en) * 2003-04-05 2004-10-14 Skinner Stanley J. Reticle for correcting parallax shift in aiming telescopes
US20050021282A1 (en) * 1997-12-08 2005-01-27 Sammut Dennis J. Apparatus and method for calculating aiming point information
US6886287B1 (en) 2002-05-18 2005-05-03 John Curtis Bell Scope adjustment method and apparatus
US20050195385A1 (en) * 2002-03-04 2005-09-08 Larry Holmberg Range finder
US20050219690A1 (en) * 2004-04-06 2005-10-06 Asia Optical Co., Inc. Riflescope and the laser rangefinder used therein
US20060026887A1 (en) * 2004-02-23 2006-02-09 Verdugo Edward A Reticule
US20060107579A1 (en) * 2004-11-22 2006-05-25 Thomas Mark A Zoom scope with continuous main body
US20060107580A1 (en) * 2004-11-22 2006-05-25 Thomas Mark A Scope with improved windage/elevation system
US7100320B2 (en) 2004-02-23 2006-09-05 Verdugo Edward A Reticule
US20060201047A1 (en) * 2005-03-08 2006-09-14 Lowrey John W Iii Riflescope with image stabilization
US20060254115A1 (en) * 2004-11-22 2006-11-16 Thomas Mark A Optical sight with side focus adjustment
US20060262391A1 (en) * 2005-01-26 2006-11-23 Mark Thomas Scope with improved magnification system
US20060260171A1 (en) * 2005-05-20 2006-11-23 Cole Brand D Multiple nomograph system for solving ranging and ballistic problems in firearms
US20070022651A1 (en) * 2004-02-23 2007-02-01 Verdugo Edward A Reticule
US20070044364A1 (en) * 1997-12-08 2007-03-01 Horus Vision Apparatus and method for calculating aiming point information
US20070157503A1 (en) * 2006-01-06 2007-07-12 Larry Holmberg Device mount
US20080000465A1 (en) * 2006-06-30 2008-01-03 Larry Holmberg Adaptor for device mount
US20080000463A1 (en) * 2006-06-30 2008-01-03 Larry Holmberg Crossbow device mount
US20080001057A1 (en) * 2006-06-30 2008-01-03 Larry Holmberg Device mount
US20080087784A1 (en) * 2006-10-17 2008-04-17 Larry Holmberg Device mount with stabilizing function
US20080164392A1 (en) * 2007-01-05 2008-07-10 Larry Holmberg Device mount system for a weapon
US20080216222A1 (en) * 2006-04-14 2008-09-11 Jason Farber Microflush Urinal With Oscillating Nozzle
EA010824B1 (en) * 2007-01-12 2008-12-30 Научно-Производственное Республиканское Унитарное Предприятие "Лэмт" Optical sight
US20090141346A1 (en) * 2006-08-08 2009-06-04 Leica Camera Ag Telescope with variable magnification
US20090199702A1 (en) * 2003-11-04 2009-08-13 Leupold & Stevens, Inc. Ballistic range compensation for projectile weapon aiming based on ammunition classification
US20090237556A1 (en) * 1999-03-08 2009-09-24 Larry Holmberg Camera with weather cover
US20090235570A1 (en) * 1997-12-08 2009-09-24 Horus Vision Apparatus and method for calculating aiming point information
US20090255162A1 (en) * 2002-03-04 2009-10-15 Larry Holmberg Range finder for weapons
US7624528B1 (en) 2002-05-18 2009-12-01 John Curtis Bell Scope adjustment method and apparatus
US7739822B1 (en) 2007-01-09 2010-06-22 Larry Holmberg Method and device for mounting an accessory to a firearm
US7780363B1 (en) 2008-01-17 2010-08-24 Larry Holmberg Device for mounting imaging equipment to a bow and method of recording a hunt
US20100313462A1 (en) * 2009-06-16 2010-12-16 Lary Holmberg Electronic device mount system for weapons
US20110113672A1 (en) * 2009-11-19 2011-05-19 Larry Holmberg Remote controlled decoy
US20110132983A1 (en) * 2009-05-15 2011-06-09 Horus Vision Llc Apparatus and method for calculating aiming point information
US8156680B2 (en) 2002-03-04 2012-04-17 Larry Holmberg Device mounting system for a weapon
US8161674B2 (en) 2009-06-16 2012-04-24 Larry Holmberg Electronic device mount system with strap
US8172139B1 (en) 2010-11-22 2012-05-08 Bitterroot Advance Ballistics Research, LLC Ballistic ranging methods and systems for inclined shooting
US20130109475A1 (en) * 2010-07-15 2013-05-02 Takashi Hamano Game system, control method therefor, and a storage medium storing a computer program
US8468930B1 (en) 2002-05-18 2013-06-25 John Curtis Bell Scope adjustment method and apparatus
US20130170027A1 (en) * 2012-01-04 2013-07-04 Victoria J. Peters Optical rangefinder and reticle system for variable optical power sighting devices
US20130201551A1 (en) * 2010-04-22 2013-08-08 Andreas Obrebski Optical arrangement for changing a magnification or a refractive power
US8516735B2 (en) 2012-01-16 2013-08-27 Anthony Ilacqua Adjustment mechanism for firearm scope zoom
US8656625B2 (en) 2010-12-29 2014-02-25 Larry Holmberg Accessory mount
US8656624B2 (en) 2010-12-29 2014-02-25 Larry Holmberg Universal device mount
US8701330B2 (en) 2011-01-01 2014-04-22 G. David Tubb Ballistic effect compensating reticle and aim compensation method
US20140166751A1 (en) * 2011-01-19 2014-06-19 Horus Vision Llc Apparatus and method for calculating aiming point information
US8893423B2 (en) 2011-05-27 2014-11-25 G. David Tubb Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition
US8959824B2 (en) 2012-01-10 2015-02-24 Horus Vision, Llc Apparatus and method for calculating aiming point information
US9121672B2 (en) 2011-01-01 2015-09-01 G. David Tubb Ballistic effect compensating reticle and aim compensation method with sloped mil and MOA wind dot lines
US9164269B1 (en) * 2014-07-07 2015-10-20 Lucida Research Llc Telescopic gun sight with rotating optical adjustment mechanism
US9310165B2 (en) 2002-05-18 2016-04-12 John Curtis Bell Projectile sighting and launching control system
US9429745B2 (en) 2011-08-02 2016-08-30 Leupold & Stevens, Inc. Variable reticle for optical sighting devices responsive to optical magnification adjustment
US20160356572A1 (en) * 2014-10-23 2016-12-08 Lucida Research Llc Telescopic Gun Sight with Tilted Viewing Axis
WO2018200935A1 (en) * 2017-04-28 2018-11-01 Aaron Davidson Adjustable lever for magnification selector ring, riflescope incorporating same and related methods
US20180356626A1 (en) * 2017-06-13 2018-12-13 Supas Ltd Optical instrument
US10254082B2 (en) 2013-01-11 2019-04-09 Hvrt Corp. Apparatus and method for calculating aiming point information
US10302395B1 (en) 2018-04-11 2019-05-28 Darrell Holland Quick aim reticle
US10823532B2 (en) 2018-09-04 2020-11-03 Hvrt Corp. Reticles, methods of use and manufacture
US10907934B2 (en) 2017-10-11 2021-02-02 Sig Sauer, Inc. Ballistic aiming system with digital reticle
US10976135B1 (en) 2018-04-11 2021-04-13 Darrell Holland Quick aim reticle
US11041694B1 (en) 2018-04-11 2021-06-22 Darrell Holland Quick aim reticle
US11125533B1 (en) 2020-04-08 2021-09-21 Darrell Holland Quick aim reticle
US11454473B2 (en) 2020-01-17 2022-09-27 Sig Sauer, Inc. Telescopic sight having ballistic group storage
US11480411B2 (en) 2011-01-01 2022-10-25 G. David Tubb Range-finding and compensating scope with ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions
US11592266B2 (en) * 2019-12-11 2023-02-28 Dimitri Mikroulis Firearm magnifier, system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734273A (en) * 1956-02-14 Measurement indicating means for
US2811894A (en) * 1954-12-31 1957-11-05 Benjamin V B Braker Telescopic sight for direct fire gunnery
US3213539A (en) * 1963-03-04 1965-10-26 Redfield Gun Sight Company Adjustable reticle assembly for optical sighting devices
US3386330A (en) * 1964-06-22 1968-06-04 Redfield Gun Sight Company Optical range-finding device
US3431652A (en) * 1966-09-21 1969-03-11 James M Leatherwood Rangefinder and automatic reticle setter
US3492733A (en) * 1968-04-23 1970-02-03 James M Leatherwood Variable power sighting scope
US3506330A (en) * 1967-07-18 1970-04-14 Ralph G Allen Telescopic rangefinding gunsight automatic elevation adjustment
US3684376A (en) * 1970-09-10 1972-08-15 Donald E Lessard Ranger-finder in a telescopic sight

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734273A (en) * 1956-02-14 Measurement indicating means for
US2811894A (en) * 1954-12-31 1957-11-05 Benjamin V B Braker Telescopic sight for direct fire gunnery
US3213539A (en) * 1963-03-04 1965-10-26 Redfield Gun Sight Company Adjustable reticle assembly for optical sighting devices
US3386330A (en) * 1964-06-22 1968-06-04 Redfield Gun Sight Company Optical range-finding device
US3431652A (en) * 1966-09-21 1969-03-11 James M Leatherwood Rangefinder and automatic reticle setter
US3506330A (en) * 1967-07-18 1970-04-14 Ralph G Allen Telescopic rangefinding gunsight automatic elevation adjustment
US3492733A (en) * 1968-04-23 1970-02-03 James M Leatherwood Variable power sighting scope
US3684376A (en) * 1970-09-10 1972-08-15 Donald E Lessard Ranger-finder in a telescopic sight

Cited By (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948587A (en) * 1974-01-28 1976-04-06 Rubbert Paul E Reticle and telescopic gunsight system
US3991500A (en) * 1975-08-22 1976-11-16 The United States Of America As Represented By The Secretary Of The Army Firearm sight with dialable range control
US4193666A (en) * 1977-05-17 1980-03-18 Thomson-Csf Display collimator system including a standby reticle arrangement
US4285137A (en) * 1980-01-15 1981-08-25 Jennie Fred L Trajectory compensating device
US4497548A (en) * 1980-12-05 1985-02-05 Burris Company Variable-power riflescope with range-compensating reticle and a field stop diaphram centered off the optical axis
US4576451A (en) * 1982-01-08 1986-03-18 Hakko Seiki Kabushiki Kaisha Aiming telescope
EP0234180A1 (en) * 1985-12-18 1987-09-02 Walter Basta Telescopic sight with automatic elevation adjustment by means of an electric motor
AT394457B (en) * 1985-12-18 1992-04-10 Basta Walter RIFLE SCOPE WITH AUTOMATIC ELEVATION DEVICE FOR SNIPER RIFLES
US4806007A (en) * 1987-11-06 1989-02-21 Armson, Inc. Optical gun sight
US5283689A (en) * 1991-07-15 1994-02-01 Carlough Warren A Optical sighting device
US5521757A (en) * 1991-09-03 1996-05-28 Olson; Kevin Adjustment lever for attachment to a scope adjustment ring
US5616903A (en) * 1995-01-26 1997-04-01 The Brunton Company Electronic rangefinder apparatus
US5617257A (en) * 1995-07-11 1997-04-01 The United States Of America As Represented By The Secretary Of The Navy Variable focus adapter
US7937878B2 (en) 1997-12-08 2011-05-10 Horus Vision Llc Apparatus and method for calculating aiming point information
US20110089238A1 (en) * 1997-12-08 2011-04-21 Horus Vision Llc Apparatus and Method for Calculating Aiming Point Information
US9068794B1 (en) 1997-12-08 2015-06-30 Horus Vision, Llc; Apparatus and method for aiming point calculation
US6032374A (en) * 1997-12-08 2000-03-07 Sammut; Dennis J. Gunsight and reticle therefor
AU721875B2 (en) * 1997-12-08 2000-07-13 Horus Vision, Llc Improved gunsight and reticle therefor
WO1999030101A1 (en) * 1997-12-08 1999-06-17 Sammut Dennis J Improved gunsight and reticle therefor
US20070044364A1 (en) * 1997-12-08 2007-03-01 Horus Vision Apparatus and method for calculating aiming point information
US8966806B2 (en) 1997-12-08 2015-03-03 Horus Vision, Llc Apparatus and method for calculating aiming point information
US7832137B2 (en) 1997-12-08 2010-11-16 Horus Vision, Llc Apparatus and method for calculating aiming point information
AU740979B2 (en) * 1997-12-08 2001-11-15 Horus Vision, Llc Improved gunsight and reticle therefor
US6453595B1 (en) 1997-12-08 2002-09-24 Horus Vision, Llc Gunsight and reticle therefor
AU753308B2 (en) * 1997-12-08 2002-10-17 Horus Vision, Llc Improved gunsight and reticle therefor
US7856750B2 (en) 1997-12-08 2010-12-28 Horus Vision Llc Apparatus and method for calculating aiming point information
US6516699B2 (en) 1997-12-08 2003-02-11 Horus Vision, Llc Apparatus and method for calculating aiming point information for rifle scopes
US8707608B2 (en) * 1997-12-08 2014-04-29 Horus Vision Llc Apparatus and method for calculating aiming point information
US5920995A (en) * 1997-12-08 1999-07-13 Sammut; Dennis J. Gunsight and reticle therefor
US6681512B2 (en) 1997-12-08 2004-01-27 Horus Vision, Llc Gunsight and reticle therefor
US9335123B2 (en) 1997-12-08 2016-05-10 Horus Vision, Llc Apparatus and method for aiming point calculation
AU772865B2 (en) * 1997-12-08 2004-05-13 Horus Vision, Llc Apparatus and method for calculating aiming point information for rifle scopes
US20090235570A1 (en) * 1997-12-08 2009-09-24 Horus Vision Apparatus and method for calculating aiming point information
US8109029B1 (en) 1997-12-08 2012-02-07 Horus Vision, Llc Apparatus and method for calculating aiming point information
US20120137567A1 (en) * 1997-12-08 2012-06-07 Horus Vision Llc Apparatus and method for aiming point calculation
US20050021282A1 (en) * 1997-12-08 2005-01-27 Sammut Dennis J. Apparatus and method for calculating aiming point information
US8230635B2 (en) * 1997-12-08 2012-07-31 Horus Vision Llc Apparatus and method for calculating aiming point information
US8656630B2 (en) * 1997-12-08 2014-02-25 Horus Vision Llc Apparatus and method for aiming point calculation
US6005711A (en) * 1998-01-21 1999-12-21 Leupold & Stevens, Inc. Variable optical power telescopic sight with side focus control
US6591537B2 (en) * 1998-09-14 2003-07-15 Thomas D. Smith Reticle for telescopic gunsight and method for using
US6269580B1 (en) * 1998-10-14 2001-08-07 Asahi Kogaku Kogyo Kabushiki Kaisha Motor-driven focusing apparatus of a sighting telescope
US6266911B1 (en) * 1998-10-14 2001-07-31 Asahi Kogaku Kogyo Kabushiki Kaisha Autofocusing apparatus of a sighting telescope
US6275337B1 (en) * 1998-10-20 2001-08-14 Tenebraex Corporation Method for viewing through reflections from a reflective surface without affecting point of impact
US8059196B2 (en) 1999-03-08 2011-11-15 Larry Holmberg Camera for mounting
US20090244326A1 (en) * 1999-03-08 2009-10-01 Larry Holmberg Camera with mounting rail
US20100128166A1 (en) * 1999-03-08 2010-05-27 Larry Holmberg Camera for mounting
US8045038B2 (en) 1999-03-08 2011-10-25 Larry Holmberg Video camera with mount
US7880793B2 (en) 1999-03-08 2011-02-01 Larry Holmberg Camera with mounting rail
US7965337B2 (en) 1999-03-08 2011-06-21 Larry Holmberg System for mounting camera on bow
US9143663B2 (en) 1999-03-08 2015-09-22 Larry Holmberg Camera for mounting
US9521300B2 (en) 1999-03-08 2016-12-13 Larry Holmberg Camera for mounting
US20090244362A1 (en) * 1999-03-08 2009-10-01 Larry Holmberg System for mounting camera on bow
US20090237556A1 (en) * 1999-03-08 2009-09-24 Larry Holmberg Camera with weather cover
US8035735B2 (en) 1999-03-08 2011-10-11 Larry Holmberg Camera with weather cover
US8717496B2 (en) 1999-03-08 2014-05-06 Larry Holmberg Rail mount
US8717497B2 (en) 1999-03-08 2014-05-06 Larry Holmberg Camera for mounting
US6508026B1 (en) * 1999-11-02 2003-01-21 Simmons Outdoor Corporation Rifle scope with side indicia
WO2001067024A1 (en) * 2000-03-06 2001-09-13 Horus Vision, Llc Improved gunsight and reticle therefor
US20040194364A1 (en) * 2002-03-04 2004-10-07 Larry Holmberg Range finder
US7982858B2 (en) 2002-03-04 2011-07-19 Larry Holmberg Range finder
US20100071247A1 (en) * 2002-03-04 2010-03-25 Larry Holmberg Range finder
US7100321B2 (en) 2002-03-04 2006-09-05 Larry Holmberg Range finder
US8240077B2 (en) 2002-03-04 2012-08-14 Larry Holmberg Range finder for weapons
US6615531B1 (en) 2002-03-04 2003-09-09 Larry Holmberg Range finder
US20040079018A1 (en) * 2002-03-04 2004-04-29 Larry Holmberg Range finder
US8156680B2 (en) 2002-03-04 2012-04-17 Larry Holmberg Device mounting system for a weapon
US8656629B2 (en) 2002-03-04 2014-02-25 Larry Holmberg Range finder for weapons
US7643132B2 (en) 2002-03-04 2010-01-05 Larry Holmberg Range finder
US20050115141A1 (en) * 2002-03-04 2005-06-02 Larry Holmberg Range finder
US20090255162A1 (en) * 2002-03-04 2009-10-15 Larry Holmberg Range finder for weapons
US20050195385A1 (en) * 2002-03-04 2005-09-08 Larry Holmberg Range finder
US6988331B2 (en) 2002-03-04 2006-01-24 Larry Holmberg Range finder
US8468930B1 (en) 2002-05-18 2013-06-25 John Curtis Bell Scope adjustment method and apparatus
US7703719B1 (en) 2002-05-18 2010-04-27 John Curtis Bell Scope adjustment method and apparatus
US7624528B1 (en) 2002-05-18 2009-12-01 John Curtis Bell Scope adjustment method and apparatus
US6886287B1 (en) 2002-05-18 2005-05-03 John Curtis Bell Scope adjustment method and apparatus
US9310165B2 (en) 2002-05-18 2016-04-12 John Curtis Bell Projectile sighting and launching control system
US20040201886A1 (en) * 2003-04-05 2004-10-14 Skinner Stanley J. Reticle for correcting parallax shift in aiming telescopes
US6865022B2 (en) * 2003-04-05 2005-03-08 Stanley J. Skinner Reticle for correcting parallax shift in aiming telescopes
US20040196451A1 (en) * 2003-04-07 2004-10-07 Honda Motor Co., Ltd. Position measurement method, an apparatus, a computer program and a method for generating calibration information
US7627197B2 (en) * 2003-04-07 2009-12-01 Honda Motor Co., Ltd. Position measurement method, an apparatus, a computer program and a method for generating calibration information
US20090199702A1 (en) * 2003-11-04 2009-08-13 Leupold & Stevens, Inc. Ballistic range compensation for projectile weapon aiming based on ammunition classification
US8286384B2 (en) * 2003-11-04 2012-10-16 Leupold & Stevens, Inc. Ballistic range compensation for projectile weapon aiming based on ammunition classification
US10295307B2 (en) 2003-11-12 2019-05-21 Hvrt Corp. Apparatus and method for calculating aiming point information
US9869530B2 (en) 2003-11-12 2018-01-16 Hvrt Corp. Apparatus and method for calculating aiming point information
US20080098640A1 (en) * 2003-11-12 2008-05-01 Sammut Dennis J Apparatus And Method For Calculating Aiming Point Information
US9459077B2 (en) 2003-11-12 2016-10-04 Hvrt Corp. Apparatus and method for calculating aiming point information
US10731948B2 (en) 2003-11-12 2020-08-04 Hvrt Corp. Apparatus and method for calculating aiming point information
US20070022651A1 (en) * 2004-02-23 2007-02-01 Verdugo Edward A Reticule
US20060026887A1 (en) * 2004-02-23 2006-02-09 Verdugo Edward A Reticule
US7434345B2 (en) 2004-02-23 2008-10-14 Verdugo Edward A Reticule
US7100320B2 (en) 2004-02-23 2006-09-05 Verdugo Edward A Reticule
US20050219690A1 (en) * 2004-04-06 2005-10-06 Asia Optical Co., Inc. Riflescope and the laser rangefinder used therein
US20060107580A1 (en) * 2004-11-22 2006-05-25 Thomas Mark A Scope with improved windage/elevation system
US20060254115A1 (en) * 2004-11-22 2006-11-16 Thomas Mark A Optical sight with side focus adjustment
US20060107579A1 (en) * 2004-11-22 2006-05-25 Thomas Mark A Zoom scope with continuous main body
US20100309462A1 (en) * 2005-01-26 2010-12-09 Leupold & Stevens, Inc. Scope with improved magnification system
US20100060982A1 (en) * 2005-01-26 2010-03-11 Leupold & Stevens, Inc. Scope with improved magnification system
US7684114B2 (en) 2005-01-26 2010-03-23 Leupold & Stevens, Inc. Scope with improved magnification system
US20060262391A1 (en) * 2005-01-26 2006-11-23 Mark Thomas Scope with improved magnification system
US8049959B2 (en) 2005-01-26 2011-11-01 Leupold & Stevens, Inc. Scope with improved magnification system
US20060201047A1 (en) * 2005-03-08 2006-09-14 Lowrey John W Iii Riflescope with image stabilization
US8074394B2 (en) * 2005-03-08 2011-12-13 Lowrey Iii John William Riflescope with image stabilization
US20060260171A1 (en) * 2005-05-20 2006-11-23 Cole Brand D Multiple nomograph system for solving ranging and ballistic problems in firearms
US7325353B2 (en) 2005-05-20 2008-02-05 Cole Brand D Multiple nomograph system for solving ranging and ballistic problems in firearms
US20080010891A1 (en) * 2005-05-20 2008-01-17 Cole Brand D Multiple nomograph systems for use in solving ranging & ballistic problems associated with firearms
US7748155B2 (en) 2005-05-20 2010-07-06 Brand D Cole Systems and methods applying density altitude to ballistic trajectory compensation for small arms
US20100018103A1 (en) * 2006-01-06 2010-01-28 Larry Holmberg Method of attaching device to weapon
US7574824B2 (en) 2006-01-06 2009-08-18 Larry Holmberg Device mount for a firearm
US8046950B2 (en) 2006-01-06 2011-11-01 Larry Holmberg Method of attaching device to weapon
US20070157502A1 (en) * 2006-01-06 2007-07-12 Larry Holmberg Device mount for a firearm
US7661221B2 (en) 2006-01-06 2010-02-16 Larry Holmberg Device mount
US20070157503A1 (en) * 2006-01-06 2007-07-12 Larry Holmberg Device mount
US20080216222A1 (en) * 2006-04-14 2008-09-11 Jason Farber Microflush Urinal With Oscillating Nozzle
US7647922B2 (en) 2006-06-30 2010-01-19 Larry Holmberg Adaptor for device mount
US20080000465A1 (en) * 2006-06-30 2008-01-03 Larry Holmberg Adaptor for device mount
US20080000463A1 (en) * 2006-06-30 2008-01-03 Larry Holmberg Crossbow device mount
US8065994B2 (en) 2006-06-30 2011-11-29 Larry Holmberg Adaptor for device mount
US20080001057A1 (en) * 2006-06-30 2008-01-03 Larry Holmberg Device mount
US7886733B2 (en) 2006-06-30 2011-02-15 Larry Holmberg Method of mounting an autonomous electronic device on to a crossbow
US20090183353A1 (en) * 2006-06-30 2009-07-23 Larry Holmberg Method of mounting an autonomous electronic device on to a crossbow
US7506643B2 (en) 2006-06-30 2009-03-24 Larry Holmberg Crossbow device mount
US20090141346A1 (en) * 2006-08-08 2009-06-04 Leica Camera Ag Telescope with variable magnification
US7684115B2 (en) 2006-08-08 2010-03-23 Leica Camera Ag Telescope with variable magnification
US7594352B2 (en) 2006-10-17 2009-09-29 Larry Holmberg Device mount with stabilizing function
US7926220B2 (en) 2006-10-17 2011-04-19 Larry Holmberg Stabilizing device mount and method
US20080087784A1 (en) * 2006-10-17 2008-04-17 Larry Holmberg Device mount with stabilizing function
US7891131B2 (en) 2007-01-05 2011-02-22 Larry Holmberg Device mount system for a weapon
US20080164392A1 (en) * 2007-01-05 2008-07-10 Larry Holmberg Device mount system for a weapon
US7739822B1 (en) 2007-01-09 2010-06-22 Larry Holmberg Method and device for mounting an accessory to a firearm
EA010824B1 (en) * 2007-01-12 2008-12-30 Научно-Производственное Республиканское Унитарное Предприятие "Лэмт" Optical sight
US7780363B1 (en) 2008-01-17 2010-08-24 Larry Holmberg Device for mounting imaging equipment to a bow and method of recording a hunt
US20110132983A1 (en) * 2009-05-15 2011-06-09 Horus Vision Llc Apparatus and method for calculating aiming point information
US10502529B2 (en) 2009-05-15 2019-12-10 Hvrt Corp. Apparatus and method for calculating aiming point information
US8991702B1 (en) 2009-05-15 2015-03-31 Horus Vision, Llc Apparatus and method for calculating aiming point information
US8353454B2 (en) 2009-05-15 2013-01-15 Horus Vision, Llc Apparatus and method for calculating aiming point information
US9574850B2 (en) 2009-05-15 2017-02-21 Hvrt Corp. Apparatus and method for calculating aiming point information
US9250038B2 (en) 2009-05-15 2016-02-02 Horus Vision, Llc Apparatus and method for calculating aiming point information
US10948265B2 (en) 2009-05-15 2021-03-16 Hvrt Corp. Apparatus and method for calculating aiming point information
US8893971B1 (en) 2009-05-15 2014-11-25 Horus Vision, Llc Apparatus and method for calculating aiming point information
US8905307B2 (en) 2009-05-15 2014-12-09 Horus Vision Llc Apparatus and method for calculating aiming point information
US11421961B2 (en) 2009-05-15 2022-08-23 Hvrt Corp. Apparatus and method for calculating aiming point information
US10060703B2 (en) 2009-05-15 2018-08-28 Hvrt Corp. Apparatus and method for calculating aiming point information
US8161674B2 (en) 2009-06-16 2012-04-24 Larry Holmberg Electronic device mount system with strap
US8024884B2 (en) 2009-06-16 2011-09-27 Larry Holmberg Electronic device mount system for weapons
US20100313462A1 (en) * 2009-06-16 2010-12-16 Lary Holmberg Electronic device mount system for weapons
US20110113672A1 (en) * 2009-11-19 2011-05-19 Larry Holmberg Remote controlled decoy
US9158097B2 (en) * 2010-04-22 2015-10-13 Andreas Obrebski Optical arrangement for changing a magnification or a refractive power
US20130201551A1 (en) * 2010-04-22 2013-08-08 Andreas Obrebski Optical arrangement for changing a magnification or a refractive power
US20130109475A1 (en) * 2010-07-15 2013-05-02 Takashi Hamano Game system, control method therefor, and a storage medium storing a computer program
US8172139B1 (en) 2010-11-22 2012-05-08 Bitterroot Advance Ballistics Research, LLC Ballistic ranging methods and systems for inclined shooting
US9835413B2 (en) 2010-11-22 2017-12-05 Leupold & Stevens, Inc. Ballistic ranging methods and systems for inclined shooting
US8656624B2 (en) 2010-12-29 2014-02-25 Larry Holmberg Universal device mount
US8656625B2 (en) 2010-12-29 2014-02-25 Larry Holmberg Accessory mount
US8701330B2 (en) 2011-01-01 2014-04-22 G. David Tubb Ballistic effect compensating reticle and aim compensation method
US9581415B2 (en) 2011-01-01 2017-02-28 G. David Tubb Ballistic effect compensating reticle and aim compensation method
US9121672B2 (en) 2011-01-01 2015-09-01 G. David Tubb Ballistic effect compensating reticle and aim compensation method with sloped mil and MOA wind dot lines
US10180307B2 (en) 2011-01-01 2019-01-15 G. David Tubb Ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions
US11480411B2 (en) 2011-01-01 2022-10-25 G. David Tubb Range-finding and compensating scope with ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions
US10371485B2 (en) 2011-01-01 2019-08-06 G. David Tubb Reticle and ballistic effect compensation method having gyroscopic precession compensated wind dots
US9557142B2 (en) 2011-01-01 2017-01-31 G. David Tubb Ballistic effect compensating reticle and aim compensation method with leveling reference and spin-drift compensated wind dots
US20140166751A1 (en) * 2011-01-19 2014-06-19 Horus Vision Llc Apparatus and method for calculating aiming point information
US8893423B2 (en) 2011-05-27 2014-11-25 G. David Tubb Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition
US9175927B2 (en) 2011-05-27 2015-11-03 G. David Tubb Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition
US9429745B2 (en) 2011-08-02 2016-08-30 Leupold & Stevens, Inc. Variable reticle for optical sighting devices responsive to optical magnification adjustment
US8705173B2 (en) * 2012-01-04 2014-04-22 Leupold & Stevens, Inc. Optical rangefinder and reticle system for variable optical power sighting devices
US20130170027A1 (en) * 2012-01-04 2013-07-04 Victoria J. Peters Optical rangefinder and reticle system for variable optical power sighting devices
TWI560425B (en) * 2012-01-04 2016-12-01 Leupold & Stevens Inc Optical rangefinder and reticle system for variable optical power sighting devices
US11181342B2 (en) 2012-01-10 2021-11-23 Hvrt Corp. Apparatus and method for calculating aiming point information
US10488153B2 (en) 2012-01-10 2019-11-26 Hvrt Corp. Apparatus and method for calculating aiming point information
US11391542B2 (en) 2012-01-10 2022-07-19 Hvrt Corp. Apparatus and method for calculating aiming point information
US9255771B2 (en) 2012-01-10 2016-02-09 Horus Vision Llc Apparatus and method for calculating aiming point information
US10488154B2 (en) 2012-01-10 2019-11-26 Hvrt Corp. Apparatus and method for calculating aiming point information
US8959824B2 (en) 2012-01-10 2015-02-24 Horus Vision, Llc Apparatus and method for calculating aiming point information
US9612086B2 (en) * 2012-01-10 2017-04-04 Hvrt Corp. Apparatus and method for calculating aiming point information
US10451385B2 (en) 2012-01-10 2019-10-22 Hvrt Corp. Apparatus and method for calculating aiming point information
US8516735B2 (en) 2012-01-16 2013-08-27 Anthony Ilacqua Adjustment mechanism for firearm scope zoom
US11255640B2 (en) 2013-01-11 2022-02-22 Hvrt Corp. Apparatus and method for calculating aiming point information
US10458753B2 (en) 2013-01-11 2019-10-29 Hvrt Corp. Apparatus and method for calculating aiming point information
US10254082B2 (en) 2013-01-11 2019-04-09 Hvrt Corp. Apparatus and method for calculating aiming point information
US11656060B2 (en) 2013-01-11 2023-05-23 Hvrt Corp. Apparatus and method for calculating aiming point information
US10895434B2 (en) 2013-01-11 2021-01-19 Hvrt Corp. Apparatus and method for calculating aiming point information
US20160018188A1 (en) * 2014-07-07 2016-01-21 Omid S. Jahromi Telescopic gun sight with tilting optical adjustment mechanism
US9164269B1 (en) * 2014-07-07 2015-10-20 Lucida Research Llc Telescopic gun sight with rotating optical adjustment mechanism
US9644920B2 (en) * 2014-07-07 2017-05-09 Lucida Research Llc Telescopic gun sight with tilting optical adjustment mechanism
US10254083B2 (en) * 2014-10-23 2019-04-09 Lucida Research Llc Telescopic gun sight with tilted viewing axis
US20160356572A1 (en) * 2014-10-23 2016-12-08 Lucida Research Llc Telescopic Gun Sight with Tilted Viewing Axis
US20160356575A1 (en) * 2014-10-23 2016-12-08 Lucida Research Llc Prismatic Eyepiece Attachment for Telescopic Gun Sights
WO2018200935A1 (en) * 2017-04-28 2018-11-01 Aaron Davidson Adjustable lever for magnification selector ring, riflescope incorporating same and related methods
US10663713B2 (en) * 2017-06-13 2020-05-26 SUPAS Ltd. Optical instrument
US20180356626A1 (en) * 2017-06-13 2018-12-13 Supas Ltd Optical instrument
US11287218B2 (en) * 2017-10-11 2022-03-29 Sig Sauer, Inc. Digital reticle aiming method
US20220221251A1 (en) * 2017-10-11 2022-07-14 Sig Sauer, Inc. Digital reticle system
US10907934B2 (en) 2017-10-11 2021-02-02 Sig Sauer, Inc. Ballistic aiming system with digital reticle
US11725908B2 (en) * 2017-10-11 2023-08-15 Sig Sauer, Inc. Digital reticle system
US10302395B1 (en) 2018-04-11 2019-05-28 Darrell Holland Quick aim reticle
US11041694B1 (en) 2018-04-11 2021-06-22 Darrell Holland Quick aim reticle
US10976135B1 (en) 2018-04-11 2021-04-13 Darrell Holland Quick aim reticle
US10895433B2 (en) 2018-09-04 2021-01-19 Hvrt Corp. Reticles, methods of use and manufacture
US11293720B2 (en) 2018-09-04 2022-04-05 Hvrt Corp. Reticles, methods of use and manufacture
US10823532B2 (en) 2018-09-04 2020-11-03 Hvrt Corp. Reticles, methods of use and manufacture
US11592266B2 (en) * 2019-12-11 2023-02-28 Dimitri Mikroulis Firearm magnifier, system and method
US11454473B2 (en) 2020-01-17 2022-09-27 Sig Sauer, Inc. Telescopic sight having ballistic group storage
US11125533B1 (en) 2020-04-08 2021-09-21 Darrell Holland Quick aim reticle

Similar Documents

Publication Publication Date Title
US3782822A (en) Method and apparatus for automatic ranging with variable power telescopic gun sight
US11391542B2 (en) Apparatus and method for calculating aiming point information
US4965439A (en) Microcontroller-controlled device for surveying, rangefinding and trajectory compensation
US6681512B2 (en) Gunsight and reticle therefor
US6032374A (en) Gunsight and reticle therefor
US4263719A (en) Optical sighting devices
US4497548A (en) Variable-power riflescope with range-compensating reticle and a field stop diaphram centered off the optical axis
US8286384B2 (en) Ballistic range compensation for projectile weapon aiming based on ammunition classification
US3749494A (en) Gun sighting and ranging mechanism
US5181323A (en) Hunting scope for determining accurate trajectory of a weapon
US10101124B2 (en) Scope adapted for short and long range zeroing
US4375725A (en) Optical sight
US20180306554A1 (en) Scope adapted for short and long range zeroing
JP7263373B2 (en) Apparatus and method for computing aimpoint information
US20210033370A1 (en) Turret cap apparatus and method for calculating aiming point information
US20200232765A1 (en) Scope adapted for short and long range zeroing
US20220113117A1 (en) Reticle for multi-role viewing optic
US20230296377A1 (en) Ranging reticle for an optical device
US2906160A (en) Automatic gunsight
AU753308B2 (en) Improved gunsight and reticle therefor