US3791848A - A method of improving the adherence of a metal deposit to a polyimide surface - Google Patents

A method of improving the adherence of a metal deposit to a polyimide surface Download PDF

Info

Publication number
US3791848A
US3791848A US00255124A US3791848DA US3791848A US 3791848 A US3791848 A US 3791848A US 00255124 A US00255124 A US 00255124A US 3791848D A US3791848D A US 3791848DA US 3791848 A US3791848 A US 3791848A
Authority
US
United States
Prior art keywords
polyimide
ethylene diamine
etching
frosted
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00255124A
Inventor
Angelo M De
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Electric Co Inc filed Critical Western Electric Co Inc
Application granted granted Critical
Publication of US3791848A publication Critical patent/US3791848A/en
Assigned to AT & T TECHNOLOGIES, INC., reassignment AT & T TECHNOLOGIES, INC., CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE JAN. 3,1984 Assignors: WESTERN ELECTRIC COMPANY, INCORPORATED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching

Definitions

  • etching composition and a method utilizing such a composition for etching a surface of a polyimide comprises exposing the polyimide surface to an etching composition comprising an aqueous solution of a basic compound and ethylene diamine.
  • the ethylene diamine synergistically increases the etching rate of the polyimide.
  • the ethylene diamine is present in an amount in excess of its degree of solubility the etching of the polyimide results in a frosted or matte finish thereof.
  • This invention relates to a method of etching a polyimide surface, and more particularly, to a method of etching a polyimide surface to produce a matte finish thereof.
  • Electroless deposition refers to a chemical deposition of an adherent metal coating on a conductive, non-conductive or semi-conductive substrate in the absence of an external electrical source. While there are several methods of applying this metallic coating by the combined use of electroless and electrolytic precedures, it was not until quite recently that processes were developed which can provide even minimal adhesion of the conductive coating to the plastic. This is because overall adhesion is 'governed by the bond strength between the plastic substrate and the electroless copper layer. Even with these improved processes, reasonable adhesion can be obtained with only a very few plastics, and then only when great care is taken in all of the steps for the preparation and plating of the plastic substrate.
  • Kapton a polyimide polymer made from the anhydride of pyromelittic acid and 4,4 diamino-diphenyl ether and is represented by the general formula where n is an integer ranging from 150 to 650. Kapton has an average molecular weight ranging from 60,000
  • Adhesion is defined as the attraction which exists between molecules at an interface. [See Adhesion, D. D. Eley, Ed., University Press, Oxford (1961)]. As stated in Goldie, Metallic Coating of Plastics, Vol. 1 (Electrochemical Publications Limited, 1969), there are various categories of adhesion. The adhesion of printing inks to .plastics involves one type, whereas use of adhesives on plastics involves another and electroplating of plastic involves yet another. A method of improving adhesive properties ofa polyimide surface with respect to a selected deposited species thereon, including in part, printing inks, adhesives and electroplated metals, especially in aqueous form is needed.
  • a method extensively employed to improve the adhesive properties of plastics includes the use of chemical roughening agents or etchants thereof.
  • Various basic compounds typical of which are revealed in U. S. Pat. No. 3,361,589, are capable of acting as etchants for polyimides.
  • the etched surface produced by most of the basic polyimide etchants is smooth" to the naked eye.
  • An etched surface which is frosted or of a matte finish to the eye is preferred, rather than the above-described smooth finish. Such a frosted or matte finish would enhance the adhesive properties of cuted is therefore needed.
  • the present invention is directed to a method of etching a polyimide surface and, more particularly, to
  • etching a polyimide surface to improve adhesive properties thereof with respect to a species deposited thereon.
  • the method includes etching a polyimide surface with an etching composition which comprises an aqueous solution comprising a basic compound and ethylene diamine.
  • an etching composition which comprises an aqueous solution comprising a basic compound and ethylene diamine.
  • suitable etching which improves the adhesive properties of the polyimide, occurs when the finish of the polyimide surface becomes frosted or matte to the naked eye.
  • Such a frosted or matte finished surface is produced when the etching composition is in the form of a dispersion, wherein the ethylene diamine is present in an amount in excess of its degree of solubility, which is defined as a concentration of a saturated solution at a given temperature.
  • a suitable species e.g., a printing-ink, an aqueous solution, an electroless metal deposit, etc., destined to be retained on the etched polyimide surface, may now be deposited thereon.
  • FIG. 1 is a general flow chart of the novel process of the invention
  • FIG. 2 is a flow chart of the process of the invention directed to an electroless metal deposition
  • FIG. 3 is a flow chart of the process of the invention directed to a photosensitive electroless metal deposition.
  • a polyimide substrate is selected.
  • a suitable polyv imide includes any polyimide of a polyamide-acid having the formula Hooo coon /R ⁇ o NR L H 0 w Mm.
  • n is a positive integer sufficient to provide the polyamide acid with an inherent viscosity of at least 0.1.
  • Typical of such a-polyimide is Kapton.
  • Kapt0n is a polyimide formed from pyromellitic dianhydride o 0 II I ⁇ O q and 4,4-diamino-diphenyl ether 7 and which has a generalformula where n is an integer ranging from to650, and
  • a surface of the polyimide e.g., Kapton, etc., is
  • a suitable etching for the polyimide class of polymers comprises a suitable basic compound and ethylene diamine contained in a suitable carrier medium, e.g., alcohols of 1-4 carbons (methanol, ethanol, etc.).
  • a preferred carrier is water.
  • the concentration of the basic compound and the ethylene diamine respectively is determined by the type and degree of etching desired.
  • the concentration of the basic compound may range over a broad spectrum, depending again upon the degree of etching and the rate of etching desired.
  • a practical and operational concentration ranges from I mole to moles/liter of water.
  • a synergism is obtained whereby the rate of etch by the basic etchant, e.g., the aqueous NaOH solution, is increased.
  • the amount of ethylene diamine necessary ,for this synergism ranges from a minimum, e.g., approximately 20 weight percent of the total solution in a 1N aqueous NaOH solution at C, 0.67 weight percent of the total solution in a ION aqueous NaOH solution at 25C, which may be easily determined experimentally by one skilled in the art using conventional techniques, to a maximum representing saturation of the basic solution at a particular temperature, e.g., approximately 6.2 to 7.6 weight percent of the total solution of ethylene diamine in a 10 normal aqueous NaOH solution at a temperature of 25C.
  • the polyimide surface is to be etched to a matte-free finish, it may be either immersed in the basic compound ethylene diamine solution or alternatively, it may be first immersed in ethylene diamine, whereafter it is immersed in an aqueous. solution comprising the basic compound, e.g., NaOH.
  • the ethylene diamine is first absorbed onto the polyimide surface whereafter it penetrates the polymer in depth and opens up or expands, in a spatial sense, the crosslinking network of the polymer. Subsequently upon exposure to the basic solution, e.g., aqueous NaOH, the ethylene diamine either combines therewith to cause the increased etch rate or else provides swelled [spatially expanded] sites which are more rapidly etched by the basic solution.
  • the above explanation is in the nature of a hypothesis and the invention is not to be restricted thereby.
  • the period of exposure therein should be sufficient to allow the absorption of the ethylene diamine on the surface.
  • Such exposure typically, is in the range of several seconds, e.g., approximately 30 seconds at a temperature of 25C.
  • etching the polyimide surface in this manner leads to a resultant basic compound-polyimide etching reation product which is not readily analyzable or identifiable.
  • This reaction product does not have the appearance of products resulting from etching the polyimide with the various suitable basic compounds alone or the basic compounds combined with the ethylene diamine.
  • the synergistic etching of polyimides, e.g., Kapton, etc., with the aqueous etching solution, comprising the suitable base and ethylene diamine, may be carried out over a board temperature spectrum, whereby an etched matte-free finish is obtained.
  • a practical, operational temperature ranges from 20C to the boiling point of the etching solution.
  • concentration of the basic compound and the ethylene diamine and the temperature employed should be selected as to give a desired etch within a reasonable time.
  • concentration, temperature and time parameters are all interdependent and that variations in temperature will produce variations in the other parameters, whereby optimum results will be attained.
  • the various parameters and their interdependency are well known in the art and their interactions between one another is also well known or can be easily ascertained experimentally by one skilled in the art.
  • an adequate and a preferred etching of a polyimide surface occurs when a frosted or matte finish is obtained.
  • a surface is obtained only when the ethylene diamine is present, in the aqueous solution of the suitable basic compound, in an amount in excess of saturation, i.e., only when the ethylene diamine is in excess of its degree of solubility.
  • an ethylene diamine concentration of at least 7.6 weight percent of the total weight of the solution is required at a temperature of 25C.
  • an ethylene diamine concentration of at least 1.8 weight percent of the total weight of the solution is required ata temperature of 25C.
  • a two-phase system comprising (l) an aqueous phase containing ethylene diamine and the suitable base, e.g., NaOH, and (2) an ethylene diamine phase, immiscible with the aqueous phase, is obtained.
  • the two-phase system should be in the form of a dispersion whereby the ethylene diamine is dispersed throughout the aqueous phase. This is preferred since it leads to a uniformly frosted polyimide surface rather than one which may be spotty.
  • the dispersion may be attained by standard means well known in the art, including, in part, mechanical stirring or agitation, ultrasonic cavitation, and chemical additives, such as surfactants.
  • the polyimide surface destined to be frosted is immersed in the two-phase dispersion 7 for a period of time sufficient'to attain an adequate etch, as evidenced by the frosted or matte finish thereof.
  • an adequately etched surface typically exhibits pores or pits of la or less in diameter, which typically have a depth of 10p. of less.
  • the frosted surface is then subjected to a deposition. of a suitable species thereon.
  • the frosted surface may'first be subjected to an optional treatment or step which comprises removing essentially all traces of a deposit residing on the etched surface.
  • the deposit comprises the etchant and- /or an etchant-polyimide reaction product which forms.
  • the removal may be best accomplished by rinsing the frosted surface with water or any other suitable cleaning agent for approximately 1 minute.
  • the rinsing may extend beyond one minute since thereis not adverse affect from long duration rinsing with water and in fact long duration rinsing withwater, e.g., typically, about minutes with water maintained at atemperature of C, 5 minutes with water at a temperature of 60C, is preferred when an electroless metal deposit is to be deposited on the frosted surface.
  • removal'step may involve in whole or in part a mechanical removal, e.g., by doctor blading, of the etchant and- /or etchant-polyimide reaction product which forms or remains on the frosted surface. It is to be understood and stressed that although the removal step is preferred, where .traces of the etchant and/or etchantpolyimide reaction product can be tolerated on the frosted surface of the polyimide, this removal step may be eliminated.
  • a suitable selected species is then deposited on the frosted polyimide surface, which may or may not have traces of the etchant and/or etchant-polyimide reaction product thereon.
  • a suitable species may be any of a multitude of materials, well known in the art, which can be deposited upona polyimide type-polymer and comprises in part conventionalaqueous or organic based paints, lacquers, inks and adhesives, aqueous or nonaqueous solutions of inorganic salts, aqueous or nonaqueous electroless metal deposition solutions, e.g., sensitizers and activators, and the metal deposits resulting therefrom, metals, etc.
  • the suitable species may be deposited or applied to the frosted or matte surface by any standard means known in the art including dipping, brushing, spray coating, spin coating, vapor depositing, electroless depositing with or without electrodepositing, sputtering, etc.
  • the selected species is an electrolessly deposited metal
  • a standard technique may be employed.
  • FIG. 2 typical standard method of electroless deposition is outlined in the flow diagram of FIG. 2. It is, of course, understood that any conventional electroless metal deposition technique may be employed and the outline in FIG. 2 is illustrative only and not restrictive.
  • the frosted polyimide surface is thoroughly rinsed with water, typically about 5 minutes with water maintained at 60C, to remove essentially all traces of the etchant and/or etchant-polyimide reaction product which forms. It is, of course, understood that the removal or cleaning step may be carried out with any suitable agent, including a mechanical one.
  • the rinsing is to avoidcontaminating a sensitizing, an activating and an electroless metal plating solution to which the frosted polyimide'surface is destined to be subjected. Contamination, particularly of the plating bath, is undesirable because the stability of such plating baths is frequently adversely affected by such a condition.
  • the frosted polyimide surface is sensitized.
  • Sensitization consists of depositing or absorbing on the frosted surface a sensitizing species, e.g., Sn ion, which is readily oxidized.
  • a sensitizing species e.g., Sn ion
  • the rinsed, frosted surface is dipped into a standard sensitizing solution, e.g., aqueous stannous chloride with a supporting medium such as HC 1, ethanol, ethanol and caustic, or ethanol and hydroquinone.
  • a standard sensitizing solution e.g., aqueous stannous chloride with a supporting medium such as HC 1, ethanol, ethanol and caustic, or ethanol and hydroquinone.
  • the sensitized surface After sensitizing the frosted surface, the sensitized surface is rinsed, then activated. It is to be noted that it is important that the sensitized frosted surface be rinsed thoroughly in a cleaning medium, e.g., deionizedwater, after sensitizing. If such is not done, thereis a possibility that excess sensitizer'on the roughened surface will cause reduction of an activating species, e.g., Pd to which the sensitized surface is destined to be exposed, in non'adherent form on the frosted surface.
  • a cleaning medium e.g., deionizedwater
  • Activation relates to providing a deposit of a catalytic metal, e.g., Pd, over the frosted surface of the polyimide substrate in sufficient quantities to successfully catalyze a plating reaction once the frosted surfacee is introduced into an electroless plating bath.
  • the sensitized, frosted surface is exposed to a'solution containing the activating surface, e.g., a noble metal ion, wherein the sensitizing species is readily oxidized and the noble metal ion, e.g., Pd, is reduced to the metal, e.g., Pd, which in turn is deposited on the frosted surface.
  • the deposited activating metal, e.g., Pd acts as a catalyst for localized further plating.
  • the activated polyimide surface is immersed in a standard electroless plating bath containing a metal ion, e.g., Cu, destined to be reduced by the catalytic metal species, e.g., Pd.
  • the metal ion, e.g., Cu is reduced by the catalytic metal, e.g., Pd, and is electrolessly deposited on the frosted surface.
  • the electroless baths the electroless plating conditions and procedures are well known in the art and will not be elaborated herein. Reference is again made to Metallic Coatingof Plastics, previously referred to, for some typical examples of electroless baths and plating parameters.
  • the electroless metal deposition may then be subjected to a conventional electroplating bath whereby the electroless metal deposit is built up.
  • a preferred method of electrolessly depositing a metal on the abraded polymeric surface is the method revealed in DeAngelo et al., Ser. No. 719,976, filed Apr. 9, 1968, and now U.S. Pat. No. 3,562,005, as-
  • the method entails applying a photopromotor solution to the frosted polyimide surface, utilizing procedures revealed in M. A. DeAngelo et al. It is to be noted that the frosted surface is treated, prior to the photopromoter coating, so as to remove a portion of the deposit, representing essentially all traces of the etchant and/or etchant polyimide reaction product which forms, from the surface.
  • a photopromoter is defined as a substance which, upon being exposed to appropriate radiation, either (a) dissipates chemical energy already possessed thereby or (b) stores chemical energy not previously possessed thereby.
  • the substance When the substance possesses or has stored chemical energy it is capable of promoting, other than as a catalyst, a chemical reaction whereby it, the photopromoter, undergoes a chemical change in performing its function (unlike a catalyst).
  • the resultant photopromoter-covered, frosted polyimide surface may then be rinsed with deionized water (depending on the type of photopromoter employed), and is then dried.
  • the photopromoter-coated surface is then selectively exposed to a source of ultraviolet radiation, through a suitable mask, to form at least one region which is capable of reducing a precious metal from a precious metal salt, e.g., PdClg.
  • the region so capable is exposed to the precious metal salt, e.g., PdClz, whereby the precious metal salt is reduced to the precious metal, e.g., ,Pd, which in turn is deposited thereon.
  • the precious metal-deposited region is then exposed to a suitable electroless metal plating bath, e.g., copper, wherein the metal, e.g., copper, is plated on the region, forming an adherent metal deposit on the frosted polyimide surface.
  • the electroless metal deposit may then be subjected to a conventional electroplating bath treatment.
  • a suitable photopromoter solution may be either a positive type or a negative type as discussed in DeAngelo et al.
  • a suitable mask, either positive or negative depending on whether the photopromoter is positive or negative, is one as discussed in DeAngelo et al. and typically comprises a quarts body having a radiation opaque pattern thereon.
  • the ultraviolet radiation source is a source of short wavelength radiation (less than 3,000A, and typically about 1,800A to about EXAMPLE 1 A.
  • Kapton film which is a polyimide made from the anhydride of pyromellitic acid and 4,4 diamino-diphenyl ether, and is represented as having a general formula B.
  • Example .l-A The procedure of Example .l-A was repeated except that the etching solution comprised 2.1 weight percent, of the total weight of the resultant solution, of anhydrous ethylene diamine, commercially obtained, in the ION aqueous NaOH solution. After 10 minutes there was a loss of 0.2 mil of'thickness. There was no pitting or frosting observed.
  • Example [-8 The procedure of Example [-8 was repeated except that 4.3 weight percent of the total weight of the resultant solution, of ethylene diamine was used. After 10 minutes there was a loss of 0.5 mil of thickness.
  • Example [-8 The procedure of Example [-8 was repeated except that 7.6 weight percent, of the total weight of the resultant solution, of ethylene diamine was used. A two-phase system resulted. The Kapton film was immersed in the two-phase system without agitation thereof. After 10 minutes there was a loss of 0.7 mil of thickness. The resultant Kaptonsurface was frosted or had a matte finish.
  • Example I-D The procedure of Example I-D was repeated except that 9.1 weight percent, of the total weight of the resultant solution, of ethylene diamine was employed. After 10 minutes a loss of 0.8 mil was obtained. The resultant Kapton surface was frosted.
  • Example ID The procedure of Example ID was repeated except that 16.8 weight percent, of the total weight of the resultant solution, of ethylene diamine was employed.
  • EXAMPLE II A. For comparision purposes a 2 mil thick Kapton film was immersed in a percent ethylene diamine solution, commercially obtained, at a temperature of 25C. After 10 minutes there was no etching of the Kapton film.
  • Example Il-A For comparison purposes the procedure of Example Il-A was followed except the solution was an aqueous lON-NaOH solution. After 10 minutes 0.1 mil of the film was removed.
  • Example lI-A The procedure of Example lI-A was followed except that the film was first immersed in the ethylene diamine for 10 minutes, followed by a water rinse for 15 seconds. The film was then immersed in the solution of Example "-8 for 10 minutes at 25C. A removal of 0.2 mil of the Kapton film resulted. There was no observable frosting. A film or residue representing a polyimide-etchant reaction product was observed. The reaction product was unknown and was not readily analyz- 1 mine for 2 minutes. A removal of approximately 0.16 7
  • Example II-C The procedure of Example II-C was followed except that the film was immersed in the ethylene diamine for 30 seconds at a temperature of 25C. A removal of approximately 0.15 mil of the film resulted.
  • Example ll-C The procedure of Example ll-C was followed except that the film was immersed in the ethylene diamine for 30 minutes at a temperature of 25C. A removal of approximately 0.5 mil of the film resulted.
  • Example lV-A The procedure of Example lV-A was repeated except that the etching solution comprised 20.17 weight percent, of the total weight of the resultant etching solution, of anhydrous ethylene diamine, commercially obtained, in the IN aqueous NaOH solution. After 30 minutes there was a lo ss o f 0.l mil of t hickness. There was no pitting or frosting observed.
  • Example lV-B The procedure of Example lV-B was repeated except that'22 weight percent, of the total weight of the resultant etching solution, of ethylene diamine was used. After minutes there was a loss of 0.1 mil of thickness. There was no pitting or frosting observed.
  • EXAMPLE v A For comparison purposes, a 2 mil thick Kapton film was immersed in a lSN-NaOH aqueous solution maintained at a temperature of 25C. After 30 minutes there was a loss of about 0.2 mil of thickness. There was no pitting or frosting observed.
  • Example V-A The procedure of Example V-A was repeated except that the etching solution comprised 1.8 weight percent, of the total weight of the resultant etching solution, of anhydrous ethylene diamine, commercially obtained, in the lSN aqueous NaOl-l solution. After 10 minutes there was a lossof about 0.5 mil of thickness. There appeared a very slight frosting of the polyimide surface.
  • Example V-B The procedure of Example V-B was repeated except that 3.1 weight percent, of the total weight of the resultant solution, of anhydrous ethylene diamine was used. After 10 minutes there was a loss of about 0.1
  • the resultant Kapton surface was frosted or had a matte finish.
  • R is a divalent radical containing at least two carbon atoms, the amide groups of adjacent polyamide-acid units each attached-to separate carbon atoms of said divalent radical; and n is a positive integer sufficient to provide said polyamide acid with an inherent viscosity of at least 0.1, which consists essentially of the steps of:
  • step (a) above treating the polyimide surface with an aqueous etchant solution consisting essentially of l.
  • a basic compound selected from the group consisting of a carbonate, hydroxide, cyanide, borate, phosphate, pyrophosphate, sulfite, sultide and silicate of an alkali metal; a carbonate, hydroxide, cyanide, borate and sulfide of ammonia; .alkali metal alkoxides where the alkylate portion has 1 through 4 carbons; and a where R and R are each alkyl of one through four carbons, R is selected from thegroup consisting of alkyl of one through 18 carbons and alkenyl of one through 18 carbons; and R is selected from the group consist- .ing of alkyl of one through 18 carbons, alkenyl of one through 18 carbons, phenyl, alkylphenyl where the alkyl portion has one through 18 carbons, benzyl and alkylbenzyl where the alkyl portion has one through l8 carbons; and i 2. ethylene diamine in an amount in excess
  • step (a') the polyimide surface comprises a polyimide made from the anhydride of pyromellitic acid and 4,4 diamino-diphenyl ether, having a general formula 13 14 O ing a weight average molecular weight of 60,000 to l l 150,000.
  • said basic compound comprises an alkali hydroxide.
  • n is an integer ranging from 150 to 650, and hav- L 566-PT UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,791,8LL8 Dated February 12, 197A lnventor(s) DeAngelo It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Abstract

An etching composition and a method utilizing such a composition for etching a surface of a polyimide is disclosed. The method comprises exposing the polyimide surface to an etching composition comprising an aqueous solution of a basic compound and ethylene diamine. The ethylene diamine synergistically increases the etching rate of the polyimide. When the ethylene diamine is present in an amount in excess of its degree of solubility the etching of the polyimide results in a frosted or matte finish thereof.

Description

United States Patent DeAngelo Feb. 12, 1974 [54] METHOD OF IMPROVING THE 2,016,111 5/1970 France ADHERENCE OF A METAL DEPOSIT TO A 1,160.675 8/1969 Great Britain POLYIMIDE SURFACE Michael Anthony DeAngelo, Hamilton Twp., Mercer County, NJ.
Inventor:
[73] Assignee: Western Electric Company,
Incorporated, New York, N.Y.
[22] Filed: May 19, 1972 [2]] Appl. No.: 255,124
Related US. Application Data Continuation-in-part of Ser. No. 152,792, June 14, 1971, abandoned.
[52] US. Cl.117/47 A, 117/130 E, 1l7/138.8 R, 117/160 R, 156/2, 156/3, 204/30, 252/79.4, 252/79.5
ETCH A POLYIMIDE SURFACE WITH AN ETCHANT COMPRIS- ING A BASIC COMPOUND AND ETHYLENE DIAMINE DEPOSIT A SELECTED SPECIES ON THE ETCHED SURFACE OTHER PUBLICATIONS Developing Patterns in Polyimide Films-Anderson p. 1834, Vol. 10, No. 12, May 1968 IBM Disclosure Bul letin Metallization of KTFR, Hall et al. p. 533, Vol. 10, No. 5, Oct. 1967 IBM Disclosure Bulletin Improved Adhesion Between Polyimide Surfaces, p. 518, Vol. 13, No. 2, July 1970, IBM Disclosure Bulletin Primary Examiner-William D. Martin Assistant ExaminerWilliam R. Trenor Attorney, Agent, or FirmW. M. Kain; J. Rosenstock [57] ABSTRACT An etching composition and a method utilizing such a composition for etching a surface of a polyimide is disclosed. The method comprises exposing the polyimide surface to an etching composition comprising an aqueous solution of a basic compound and ethylene diamine. The ethylene diamine synergistically increases the etching rate of the polyimide. When the ethylene diamine is present in an amount in excess of its degree of solubility the etching of the polyimide results in a frosted or matte finish thereof.
6 Claims, 3 Drawing Figures 1 ITRACES OF THE ETCHANT :AND/OR AN ETCHANT- POLYIMIDE REACTION I PRODUCT PAIENIEIIFEBIZIQYI 3.791.848 sum 1 OF 2 ETCH A POLYIMIDE SURFACE 5 g 1 WITH AN ETCHANT COMPRIS- me A BASIC COMPOUND AND ETHYLENE DIAMINE iREMovE ESSENTIALLY ALL :TRAcEs OF THE VETCHANT {AND/OR AN ETCHANT- POLYIMIDE REACTION LEBPPPEI DEPOSIT A SELECTED SPECIES I 4 ON THE ETCHED SURFACE ETCH A POLYIMIDE' SURFACE WITH AN ETCHANT COMPRISING A BASIC COMPOUND AND ETHYLENE DIAMINE REMOVE 'ESSENTIALLY ALL TRACES OF THE ETCHANT AND/OR AN ETCHANT POLYIMIDE REACTION PRODUCT I SENSITIZE THE ETCHED SURFACE I ACTIVATE THE SENSITIZED SURFACE I IMMERSE THE- SENSITIZED SURFACE IN AN ELECTRO- LESS METAL DEPOSITION BATH TO DEPOSIT AN ELECTROLESS METAL THEREON IMMERSE THE ELECTROLESS METAL DEPOSITED SURFACE IN AN ELECTROPLATING BATH J g. E
PATENTEMM 3.791.848
' sum 2 or z ETCH A POLYIMIDE SUBSTRATE WITH AN ETCHANT COM- PRISING A BASIC COMPOUND AND ETHYLENE DIAMINE REMOVE ESSENTIALLY ALL TRACES OF THE ETCHANT AND/OR AN ETCHANT- POLYIMI DE REACTION PRODUCT COAT THE ETCHED SURFACE WITH A SUITABLE "3 PHOTOPROMOTOR T 55'':
l D R Y SELECTIVELY EXPOSE THE FHOTOPROMOTOR COATED SURFACE TO A SUITABLE SOURCE OF ULTRAVIOLET LIGHT EXPOSE THE PHOTOPROM OTOR COATED SURFACE TO A PRECIOUS METAL -SALT TO REDUCE A PRECIOUS METAL THEREON IMMERSE TH PRECIOUS METAL I REDUCED SURFACE IN AN ELECTROLESS I META DEPOSITION BATH To DEPOSIT AN ELECTROLESS METAL ,THEREON IMMERSE THE ELECTROLES S METAL DEPOSITED SURFACE IN AN ELECTROPLATING BATH A METHOD OF IMPROVING THE ADHERENCE OF A METAL DEPOSIT TO A POLYIMIDE SURFACE Thisapplication is a contin'uation-in-part of my copending application Ser. No. 152,792, filed June 14, 5 1971, now abandoned BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method of etching a polyimide surface, and more particularly, to a method of etching a polyimide surface to produce a matte finish thereof.
2. Discussion of the Prior Art During the past few years, the markets for metal plated plastic parts have grown rapidly as manufacturers have begun to appreciate the beautiful appearance of such parts when platedwith bright, metallic finishes, and to take advantage of the economies in cost and weight afforded by substituting molded plastic parts for metal. Furthermore, such plated finishes are not as susceptible to pitting and corrosion because there is no galvanic reaction between the plastic substrate and the plated metal.
Because plastic materials do not conduct electricity, it is common practice to provide a conductive layer, such as copper, by electroless deposition so that an'addition'al thickness of metals, particularly copper, nickel and chromium, can be electrolytically plated onto the electroless copper layer. Electroless deposition refers to a chemical deposition of an adherent metal coating on a conductive, non-conductive or semi-conductive substrate in the absence of an external electrical source. While there are several methods of applying this metallic coating by the combined use of electroless and electrolytic precedures, it was not until quite recently that processes were developed which can provide even minimal adhesion of the conductive coating to the plastic. This is because overall adhesion is 'governed by the bond strength between the plastic substrate and the electroless copper layer. Even with these improved processes, reasonable adhesion can be obtained with only a very few plastics, and then only when great care is taken in all of the steps for the preparation and plating of the plastic substrate.
In the printed circuit field, extensive use is being made of substrates comprising polyimidesOne type of polyimide that is especially preferred as a substrate is the polyimide sold under the trademark Kapton (Du- Pont). Kaptonis a polyimide polymer made from the anhydride of pyromelittic acid and 4,4 diamino-diphenyl ether and is represented by the general formula where n is an integer ranging from 150 to 650. Kapton has an average molecular weight ranging from 60,000
Difficulties have been encountered heretofore in attempting to deposit a layer'of metal or metal ions upon polyimides, such as Kapton, in that this type of material, like many. other plastics is not normally receptive to the aqueous solutions employed in metal plating processes. Prior efforts to overcome this deficiency have not been particularly successful. Moreover, the adhesion properties at the surface of this particular type of plastic is low thereby leading to metal deposits thereon which are easily flaked or stripped during normal usage. This makes it highly desirable that some way be found to activate polyimide substrates so as to increase their adhesive properties at their surfaces and to render their surfaces hydrophilic while, at the same time, retaining their normal strength and their other desirable physical properties.
In the present state of the art, various methods are available for rendering the surface of a polymer or a plastic material hydrophilic. One method in common practice in plating plastic materials entails mechanical roughening of the surface of the plastic. Initially, this surface roughening is accomplished by some form of mechanical deglazing, such as scrubbing with anabrasive slurry, wet tumbling, dry rolling or abrasive (sand) blasting. However, the mechanical deglazing process is extremely costly in that many parts have to be finished by hand, and, in the case of relatively small parts, or parts with complex contours, it is very difficult to abrade the surface uniformly by conventional means. Another disadvantage to mechanical abrading is that it is hard to control and many problems are encountered when the surface abrasion is carried too far. Of greatest disadvantage, however, is in the formation of printed circuits utilizing a photoimaging process, such as the photoselective metal deposition process revealed in DeAngelo et al., Ser. No. 719,976, filed Apr. 1968, now U.S. Pat. No. 3,562,005, assigned to the assignee hereof. The photoimaging process inherently requires a high pattern resolution. This resolution is limited by the topography of the surface on which the pattern is generated. When mechanical deglazing is employed, e.g., by sand blasting, the resolution of the pattern may suffer because of the mechanically roughened-surface.
Adhesion is defined as the attraction which exists between molecules at an interface. [See Adhesion, D. D. Eley, Ed., University Press, Oxford (1961)]. As stated in Goldie, Metallic Coating of Plastics, Vol. 1 (Electrochemical Publications Limited, 1969), there are various categories of adhesion. The adhesion of printing inks to .plastics involves one type, whereas use of adhesives on plastics involves another and electroplating of plastic involves yet another. A method of improving adhesive properties ofa polyimide surface with respect to a selected deposited species thereon, including in part, printing inks, adhesives and electroplated metals, especially in aqueous form is needed.
A method extensively employed to improve the adhesive properties of plastics includes the use of chemical roughening agents or etchants thereof. Various basic compounds, typical of which are revealed in U. S. Pat. No. 3,361,589, are capable of acting as etchants for polyimides. However, it has been found that the type of etching resulting from such basic etchants does not lead to a large adhesion enhancement of a selected species desposited thereon. The etched surface produced by most of the basic polyimide etchants is smooth" to the naked eye. An etched surface which is frosted or of a matte finish to the eye is preferred, rather than the above-described smooth finish. Such a frosted or matte finish would enhance the adhesive properties of duced is therefore needed.
SUMMARY OF THE INVENTION The present invention is directed to a method of etching a polyimide surface and, more particularly, to
etching a polyimide surface to improve adhesive properties thereof with respect to a species deposited thereon.
The method includes etching a polyimide surface with an etching composition which comprises an aqueous solution comprising a basic compound and ethylene diamine. .A suitable etching, which improves the adhesive properties of the polyimide, occurs when the finish of the polyimide surface becomes frosted or matte to the naked eye. Such a frosted or matte finished surface is produced when the etching composition is in the form of a dispersion, wherein the ethylene diamine is present in an amount in excess of its degree of solubility, which is defined as a concentration of a saturated solution at a given temperature. A suitable species, e.g., a printing-ink, an aqueous solution, an electroless metal deposit, etc., destined to be retained on the etched polyimide surface, may now be deposited thereon.
DESCRIPTIONOF THE DRAWING The present invention will be more readily understood by reference to the following drawing taken in conjunction with the detailed description, wherein:
FIG. 1 is a general flow chart of the novel process of the invention;
FIG. 2 is a flow chart of the process of the invention directed to an electroless metal deposition; and
FIG. 3 is a flow chart of the process of the invention directed to a photosensitive electroless metal deposition.
DETAILED DESCRIPTION The present invention is described primarily in terms of improving the adherence of a metal deposit, deposited from an electroless plating bath, upon a polyimide surface. However, it will be understood that such description is exemplary only and'is for purposes of exposition and not for purposes of limitation. It will be readily appreciated that the inventive concept described is equally applicable to improve adhesion between the polyimide surface and other conventional species well known in the art which may be utilized in cementing, printing and metallizing the polyimide surface.
A polyimide substrate is selected. A suitable polyv imide includes any polyimide of a polyamide-acid having the formula Hooo coon /R\ o NR L H 0 w Mm.
atoms of said divalent radical; and n is a positive integer sufficient to provide the polyamide acid with an inherent viscosity of at least 0.1. Typical of such a-polyimide is Kapton. Kapt0nis a polyimide formed from pyromellitic dianhydride o 0 II I \O q and 4,4-diamino-diphenyl ether 7 and which has a generalformula where n is an integer ranging from to650, and
which has an average molecular weight ranging from 60,000 to 250,000. The above polyimides and their preparation are fully described in Edwards, U. S. Pat. No. 3,179,614, incorporated by reference hereinto.
A surface of the polyimide, e.g., Kapton, etc., is
treated with a suitable etchant thereof for a period of time sufficient to obtain an adequate etching or roughening. Generally an adequate etching of the surface, in the case of clear polymeric materials, such as the polyimide Kapton, for purposes of improving adhesive properties of the surface, occurs when the surface becomes uniformly translucent or frosted to the naked eye. Typically, such frosted surfaces have pores or pits of 1p. or less in diameter and typically exhibit a depth of 10p. or less. 7 A suitable etching for the polyimide class of polymers comprises a suitable basic compound and ethylene diamine contained in a suitable carrier medium, e.g., alcohols of 1-4 carbons (methanol, ethanol, etc.). A preferred carrier, however, is water. Some suitable basic compounds are those revealed in Lindsey, US. Pat. No. 3,361,589, and incorporated by reference hereinto. Specifically, these are (l a carbonate,.hydroxide, cyanide, borate, phosphate, pyrophosphate, sulfite, sulfide or silicate of an alkali metal including sodium, potassium, lithium, rubidium and cesium; (2) a carbonate, hydroxide, cyanide, borate or sulfide of ammonia; (3) an alkoxide of an alkali metal and (4) quarternary ammonium hydroxides having a general formula where R and R are the same or different alkly radicals of one through four carbons, R is alkyl of one through 18 carbons or alkenyl of one through 18 carbons and R is alkyl of one through 18 carbons, alkenyl of l through 18 carbons, phenyl, alkylphenyl where the alkyl portion'has one through 18 carbons, benzyl or alkylbenzyl where the alkyl portion has one through 18 carbons. However, a preferred basic compound is the hydroxide of the alkali metals, including sodium, potassium, lithium, rubidium and cesium.
The concentration of the basic compound and the ethylene diamine respectively, is determined by the type and degree of etching desired. The concentration of the basic compound may range over a broad spectrum, depending again upon the degree of etching and the rate of etching desired. Typically, for NaOH, a practical and operational concentration ranges from I mole to moles/liter of water. It is to be noted and stressed that adding ethylene diamine to an aqueous solution of a suitablebasic compound results in an unexpected synergism in the etch rate of the selected polyimide, e.g., Kapton etc, Ethylene-diamine by itself has no effect on the polyimide with respect to the etching thereof. However, upon adding ethylene diamine to a suitable basic etchant of the polyimide, e.g., an aqueous NaOH solution, a synergism is obtained whereby the rate of etch by the basic etchant, e.g., the aqueous NaOH solution, is increased. The amount of ethylene diamine necessary ,for this synergism ranges from a minimum, e.g., approximately 20 weight percent of the total solution in a 1N aqueous NaOH solution at C, 0.67 weight percent of the total solution in a ION aqueous NaOH solution at 25C, which may be easily determined experimentally by one skilled in the art using conventional techniques, to a maximum representing saturation of the basic solution at a particular temperature, e.g., approximately 6.2 to 7.6 weight percent of the total solution of ethylene diamine in a 10 normal aqueous NaOH solution at a temperature of 25C.
With respect to the saturation limit of ethylene diamine, it is of course understood that using less concentrated' aqueous basic solutions allows more ethylene diamine to go into solution with, of course, the converse being true. In this regard, also, it should be noted that It is to be noted that where the polyimide surface is to be etched to a matte-free finish, it may be either immersed in the basic compound ethylene diamine solution or alternatively, it may be first immersed in ethylene diamine, whereafter it is immersed in an aqueous. solution comprising the basic compound, e.g., NaOH. In this regard, it is hypothesized that the ethylene diamine is first absorbed onto the polyimide surface whereafter it penetrates the polymer in depth and opens up or expands, in a spatial sense, the crosslinking network of the polymer. Subsequently upon exposure to the basic solution, e.g., aqueous NaOH, the ethylene diamine either combines therewith to cause the increased etch rate or else provides swelled [spatially expanded] sites which are more rapidly etched by the basic solution. Some support to the above hypothesis resides in the fact that water rinsing of the ethylene diamine exposed or treated polyimide surface does not prevent the synergistic effect. However. it is to be understood that the above explanation is in the nature of a hypothesis and the invention is not to be restricted thereby. Where the polyimide surface is first immersed in an ethylene diamine solution, the period of exposure therein should be sufficient to allow the absorption of the ethylene diamine on the surface. Such exposure, typically, is in the range of several seconds, e.g., approximately 30 seconds at a temperature of 25C. It is also to be noted that surprisingly, etching the polyimide surface in this manner leads to a resultant basic compound-polyimide etching reation product which is not readily analyzable or identifiable. This reaction product does not have the appearance of products resulting from etching the polyimide with the various suitable basic compounds alone or the basic compounds combined with the ethylene diamine.
The synergistic etching of polyimides, e.g., Kapton, etc., with the aqueous etching solution, comprising the suitable base and ethylene diamine, may be carried out over a board temperature spectrum, whereby an etched matte-free finish is obtained. A practical, operational temperature ranges from 20C to the boiling point of the etching solution. It is, of course, understood, that the concentration of the basic compound and the ethylene diamine and the temperature employed should be selected as to give a desired etch within a reasonable time. It is also to be understood and stressed that the concentration, temperature and time parameters are all interdependent and that variations in temperature will produce variations in the other parameters, whereby optimum results will be attained. In this regard, the various parameters and their interdependency are well known in the art and their interactions between one another is also well known or can be easily ascertained experimentally by one skilled in the art.
As stated previously, an adequate and a preferred etching of a polyimide surface, for improving the adhesive properties thereof, occurs when a frosted or matte finish is obtained. Such a surface is obtained only when the ethylene diamine is present, in the aqueous solution of the suitable basic compound, in an amount in excess of saturation, i.e., only when the ethylene diamine is in excess of its degree of solubility. Typically, for a 10 molar aqueous NaOH solution, an ethylene diamine concentration of at least 7.6 weight percent of the total weight of the solution is required at a temperature of 25C. Typically, for a l5 molar aqueous NaOH solution, an ethylene diamine concentration of at least 1.8 weight percent of the total weight of the solution is required ata temperature of 25C. When such is the situation, a two-phase system comprising (l) an aqueous phase containing ethylene diamine and the suitable base, e.g., NaOH, and (2) an ethylene diamine phase, immiscible with the aqueous phase, is obtained. Preferably, the two-phase system should be in the form of a dispersion whereby the ethylene diamine is dispersed throughout the aqueous phase. This is preferred since it leads to a uniformly frosted polyimide surface rather than one which may be spotty. The dispersion may be attained by standard means well known in the art, including, in part, mechanical stirring or agitation, ultrasonic cavitation, and chemical additives, such as surfactants.
Referring to FIG. 1, the polyimide surface destined to be frosted is immersed in the two-phase dispersion 7 for a period of time sufficient'to attain an adequate etch, as evidenced by the frosted or matte finish thereof. As mentioned above, an adequately etched surface, having improved adhesive properties, typically exhibits pores or pits of la or less in diameter, which typically have a depth of 10p. of less. After the-polyimide, e.g., Kapton, etc., has been etched,-whereby a frosted or.mat te finish is obtained, the frosted surface is then subjected to a deposition. of a suitable species thereon. The frosted surface may'first be subjected to an optional treatment or step which comprises removing essentially all traces of a deposit residing on the etched surface. The deposit comprises the etchant and- /or an etchant-polyimide reaction product which forms. The removal may be best accomplished by rinsing the frosted surface with water or any other suitable cleaning agent for approximately 1 minute. In this regard, it is to be noted that the rinsing may extend beyond one minute since thereis not adverse affect from long duration rinsing with water and in fact long duration rinsing withwater, e.g., typically, about minutes with water maintained at atemperature of C, 5 minutes with water at a temperature of 60C, is preferred when an electroless metal deposit is to be deposited on the frosted surface. It is also to be understood that removal'step may involve in whole or in part a mechanical removal, e.g., by doctor blading, of the etchant and- /or etchant-polyimide reaction product which forms or remains on the frosted surface. It is to be understood and stressed that although the removal step is preferred, where .traces of the etchant and/or etchantpolyimide reaction product can be tolerated on the frosted surface of the polyimide, this removal step may be eliminated.
A suitable selected species is then deposited on the frosted polyimide surface, which may or may not have traces of the etchant and/or etchant-polyimide reaction product thereon. A suitable species may be any of a multitude of materials, well known in the art, which can be deposited upona polyimide type-polymer and comprises in part conventionalaqueous or organic based paints, lacquers, inks and adhesives, aqueous or nonaqueous solutions of inorganic salts, aqueous or nonaqueous electroless metal deposition solutions, e.g., sensitizers and activators, and the metal deposits resulting therefrom, metals, etc. The suitable species may be deposited or applied to the frosted or matte surface by any standard means known in the art including dipping, brushing, spray coating, spin coating, vapor depositing, electroless depositing with or without electrodepositing, sputtering, etc.
Where the selected species is an electrolessly deposited metal, a standard technique may be employed. A
typical standard method of electroless deposition is outlined in the flow diagram of FIG. 2. It is, of course, understood that any conventional electroless metal deposition technique may be employed and the outline in FIG. 2 is illustrative only and not restrictive. The frosted polyimide surface is thoroughly rinsed with water, typically about 5 minutes with water maintained at 60C, to remove essentially all traces of the etchant and/or etchant-polyimide reaction product which forms. It is, of course, understood that the removal or cleaning step may be carried out with any suitable agent, including a mechanical one. The rinsing is to avoidcontaminating a sensitizing, an activating and an electroless metal plating solution to which the frosted polyimide'surface is destined to be subjected. Contamination, particularly of the plating bath, is undesirable because the stability of such plating baths is frequently adversely affected by such a condition.
After rinsing, the frosted polyimide surface is sensitized. Sensitization consists of depositing or absorbing on the frosted surface a sensitizing species, e.g., Sn ion, which is readily oxidized. Conventionally, the rinsed, frosted surface is dipped into a standard sensitizing solution, e.g., aqueous stannous chloride with a supporting medium such as HC 1, ethanol, ethanol and caustic, or ethanol and hydroquinone. It is to be understood that the sensitizing solutions and the conditions and procedures of sensitizing are well known in the art and will not be elaborated herein. Such sensitizers and procedures may be found, in part, in Metallic Coating of Plastics, William Goldie, Electrochemical Publications Limited, 1968.
After sensitizing the frosted surface, the sensitized surface is rinsed, then activated. it is to be noted that it is important that the sensitized frosted surface be rinsed thoroughly in a cleaning medium, e.g., deionizedwater, after sensitizing. If such is not done, thereis a possibility that excess sensitizer'on the roughened surface will cause reduction of an activating species, e.g., Pd to which the sensitized surface is destined to be exposed, in non'adherent form on the frosted surface. Activation relates to providing a deposit of a catalytic metal, e.g., Pd, over the frosted surface of the polyimide substrate in sufficient quantities to successfully catalyze a plating reaction once the frosted surfacee is introduced into an electroless plating bath. The sensitized, frosted surface is exposed to a'solution containing the activating surface, e.g., a noble metal ion, wherein the sensitizing species is readily oxidized and the noble metal ion, e.g., Pd, is reduced to the metal, e.g., Pd, which in turn is deposited on the frosted surface. The deposited activating metal, e.g., Pd, acts as a catalyst for localized further plating. Again, it is to be understood that the various activating metal ions and their solutions, the conditions and procedures of activation are well known in the art and will not be elaborated herein. Such activators and procedures may be found, in part, in Metallic Coating ofPlastics, previously referred to.
After the activating step, the activated polyimide surfaceis immersed in a standard electroless plating bath containing a metal ion, e.g., Cu, destined to be reduced by the catalytic metal species, e.g., Pd. The metal ion, e.g., Cu, is reduced by the catalytic metal, e.g., Pd, and is electrolessly deposited on the frosted surface. Again it is to be pointed out that the electroless baths, the electroless plating conditions and procedures are well known in the art and will not be elaborated herein. Reference is again made to Metallic Coatingof Plastics, previously referred to, for some typical examples of electroless baths and plating parameters. It is to be noted that in some cases, it is possible to go directly from the sensitizing step to the electroless plating solution exposure step. It is also noted that the electroless metal deposition may then be subjected to a conventional electroplating bath whereby the electroless metal deposit is built up.
A preferred method of electrolessly depositing a metal on the abraded polymeric surface is the method revealed in DeAngelo et al., Ser. No. 719,976, filed Apr. 9, 1968, and now U.S. Pat. No. 3,562,005, as-
9 signed to the assignee hereof and incorporated by reference hereinto. Referring to FIG. 3, the method entails applying a photopromotor solution to the frosted polyimide surface, utilizing procedures revealed in M. A. DeAngelo et al. It is to be noted that the frosted surface is treated, prior to the photopromoter coating, so as to remove a portion of the deposit, representing essentially all traces of the etchant and/or etchant polyimide reaction product which forms, from the surface. A photopromoter is defined as a substance which, upon being exposed to appropriate radiation, either (a) dissipates chemical energy already possessed thereby or (b) stores chemical energy not previously possessed thereby. When the substance possesses or has stored chemical energy it is capable of promoting, other than as a catalyst, a chemical reaction whereby it, the photopromoter, undergoes a chemical change in performing its function (unlike a catalyst). The resultant photopromoter-covered, frosted polyimide surface may then be rinsed with deionized water (depending on the type of photopromoter employed), and is then dried. The photopromoter-coated surface is then selectively exposed to a source of ultraviolet radiation, through a suitable mask, to form at least one region which is capable of reducing a precious metal from a precious metal salt, e.g., PdClg. The region so capable is exposed to the precious metal salt, e.g., PdClz, whereby the precious metal salt is reduced to the precious metal, e.g., ,Pd, which in turn is deposited thereon. The precious metal-deposited region is then exposed to a suitable electroless metal plating bath, e.g., copper, wherein the metal, e.g., copper, is plated on the region, forming an adherent metal deposit on the frosted polyimide surface. The electroless metal deposit may then be subjected to a conventional electroplating bath treatment.
A suitable photopromoter solution may be either a positive type or a negative type as discussed in DeAngelo et al. A suitable mask, either positive or negative depending on whether the photopromoter is positive or negative, is one as discussed in DeAngelo et al. and typically comprises a quarts body having a radiation opaque pattern thereon. The ultraviolet radiation source is a source of short wavelength radiation (less than 3,000A, and typically about 1,800A to about EXAMPLE 1 A. For comparison purposes, a 2 mil thick Kapton film, which is a polyimide made from the anhydride of pyromellitic acid and 4,4 diamino-diphenyl ether, and is represented as having a general formula B. The procedure of Example .l-A was repeated except that the etching solution comprised 2.1 weight percent, of the total weight of the resultant solution, of anhydrous ethylene diamine, commercially obtained, in the ION aqueous NaOH solution. After 10 minutes there was a loss of 0.2 mil of'thickness. There was no pitting or frosting observed.
C. The procedure of Example [-8 was repeated except that 4.3 weight percent of the total weight of the resultant solution, of ethylene diamine was used. After 10 minutes there was a loss of 0.5 mil of thickness.
D. The procedure of Example [-8 was repeated except that 7.6 weight percent, of the total weight of the resultant solution, of ethylene diamine was used. A two-phase system resulted. The Kapton film was immersed in the two-phase system without agitation thereof. After 10 minutes there was a loss of 0.7 mil of thickness. The resultant Kaptonsurface was frosted or had a matte finish.
E. The procedure of Example I-D was repeated except that 9.1 weight percent, of the total weight of the resultant solution, of ethylene diamine was employed. After 10 minutes a loss of 0.8 mil was obtained. The resultant Kapton surface was frosted.
F. The procedure of Example ID was repeated except that 16.8 weight percent, of the total weight of the resultant solution, of ethylene diamine was employed.
' After 10 minutes a loss of approximately 1.0 mil was obtained. The resultant Kapton surface was frosted.
EXAMPLE II A. For comparision purposes a 2 mil thick Kapton film was immersed in a percent ethylene diamine solution, commercially obtained, at a temperature of 25C. After 10 minutes there was no etching of the Kapton film.
B. For comparison purposes the procedure of Example Il-A was followed except the solution was an aqueous lON-NaOH solution. After 10 minutes 0.1 mil of the film was removed.
C. The procedure of Example lI-A was followed except that the film was first immersed in the ethylene diamine for 10 minutes, followed by a water rinse for 15 seconds. The film was then immersed in the solution of Example "-8 for 10 minutes at 25C. A removal of 0.2 mil of the Kapton film resulted. There was no observable frosting. A film or residue representing a polyimide-etchant reaction product was observed. The reaction product was unknown and was not readily analyz- 1 mine for 2 minutes. A removal of approximately 0.16 7
mil of the film resulted.
F. The procedure of Example II-C was followed except that the film was immersed in the ethylene diamine for 30 seconds at a temperature of 25C. A removal of approximately 0.15 mil of the film resulted.
G. The procedure of Example ll-C was followed except that the film was immersed in the ethylene diamine for 30 minutes at a temperature of 25C. A removal of approximately 0.5 mil of the film resulted.
EXAMPLE [[1 Y EXAMPLE IV A. For comparison purposes, a 2 mil thick Kapton film was immersed in a l.0N- NaOH aqueous solution maintainedat a temperature of 25C. After 30 minutes there was no etching of the polyimide film.
B. The procedure of Example lV-A was repeated except that the etching solution comprised 20.17 weight percent, of the total weight of the resultant etching solution, of anhydrous ethylene diamine, commercially obtained, in the IN aqueous NaOH solution. After 30 minutes there was a lo ss o f 0.l mil of t hickness. There was no pitting or frosting observed.
C. The procedure of Example lV-B was repeated except that'22 weight percent, of the total weight of the resultant etching solution, of ethylene diamine was used. After minutes there was a loss of 0.1 mil of thickness. There was no pitting or frosting observed.
EXAMPLE v A. For comparison purposes, a 2 mil thick Kapton film was immersed in a lSN-NaOH aqueous solution maintained at a temperature of 25C. After 30 minutes there was a loss of about 0.2 mil of thickness. There was no pitting or frosting observed.
B. The procedure of Example V-A was repeated except that the etching solution comprised 1.8 weight percent, of the total weight of the resultant etching solution, of anhydrous ethylene diamine, commercially obtained, in the lSN aqueous NaOl-l solution. After 10 minutes there was a lossof about 0.5 mil of thickness. There appeared a very slight frosting of the polyimide surface.
C. The procedure of Example V-B was repeated except that 3.1 weight percent, of the total weight of the resultant solution, of anhydrous ethylene diamine was used. After 10 minutes there was a loss of about 0.1
mil. The resultant Kapton surface was frosted or had a matte finish.
It is to be understood that the above-described embodiments are simply illustrative of the principles of the invention. Various other modifications and changes may be devised by those skilled in the art which will embody the principles of the invention and fall within the spirit and scope thereof.
What is claimed is:
1. In an improved method of improving the adherence of an electroless metal deposit to a surface of a .polyimide of a polyamide-acid having the formula HOOC c0011 rr f tr 0 o H where the arrows denote isomerism; R is an organic tetravalent radical containing at least two carbon atoms,
no more than 2 carbonyl groups of each polyamideacid unit being attached to any one carbon atom of said tetravalent radical; R is a divalent radical containing at least two carbon atoms, the amide groups of adjacent polyamide-acid units each attached-to separate carbon atoms of said divalent radical; and n is a positive integer sufficient to provide said polyamide acid with an inherent viscosity of at least 0.1, which consists essentially of the steps of:
a. sensitizing the surface to form a sensitized surface;
b. activating the sensitized surface to form an activated surface; and c. exposing the activated surface to a suitable electroless bathto-dep'osit the electroless metal thereon, the improvement comprising: a prior to step (a) above, treating the polyimide surface with an aqueous etchant solution consisting essentially of l. a basic compound selected from the group consisting of a carbonate, hydroxide, cyanide, borate, phosphate, pyrophosphate, sulfite, sultide and silicate of an alkali metal; a carbonate, hydroxide, cyanide, borate and sulfide of ammonia; .alkali metal alkoxides where the alkylate portion has 1 through 4 carbons; and a where R and R are each alkyl of one through four carbons, R is selected from thegroup consisting of alkyl of one through 18 carbons and alkenyl of one through 18 carbons; and R is selected from the group consist- .ing of alkyl of one through 18 carbons, alkenyl of one through 18 carbons, phenyl, alkylphenyl where the alkyl portion has one through 18 carbons, benzyl and alkylbenzyl where the alkyl portion has one through l8 carbons; and i 2. ethylene diamine in an amount in excess of saturation of said aqueous solution, to etch the surface.
2. The method as defined in claim 1 which further comprises removing a deposit residing on said etched surface, said deposit being one of the group consisting of said etchant, an etchant-polyimide reaction product and mixtures thereof.
3. The method as defined in claim 1 wherein said ethylene diamine is present in an amount in excess of its degree of solubility.
4. The method as defined in claim 1 wherein in step (a') the polyimide surface comprises a polyimide made from the anhydride of pyromellitic acid and 4,4 diamino-diphenyl ether, having a general formula 13 14 O ing a weight average molecular weight of 60,000 to l l 150,000. 5. The method as defined in claim 1 wherein said basic compound comprises an alkali hydroxide.
1| 5 6. The method as defined in claim 1 wherein said 0 0 11 basic compound comprises NaOH.
where n is an integer ranging from 150 to 650, and hav- L 566-PT UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,791,8LL8 Dated February 12, 197A lnventor(s) DeAngelo It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the specification, Column 2 line M3,. "Adhesion" should read --Adhesion--; line 63, 'desposited" should read -deposited--. Column 3, line 2,1"therein" should read --thereon--. Column L, line 65, "alkly" should read alkyl-. Column 6, line 22, 'board" should read --broad-- Column 7, lines 25 and 26, "removal" should read the removal-. Column 8, line 31, "surfacee" should read -surface--; line 3%, "surface" should read -.--specie's--. Column 9, line B, "quarts" should read -quartz--. I
Signed and sealed this 11th day of June 19714..
(SEMI) Atteat:
EmwARD nmmrcnsmm. '7 4 I c; MARSHALL mun Attesting Officer Commissioner of Patents

Claims (6)

  1. 2. ethylene diamine in an amount in excess of saturation of said aqueous solution, to etch the surface.
  2. 2. The method as defined in claim 1 which further comprises removing a deposit residing on said etched surface, said deposit being one of the group consisting of said etchant, an etchant-polyimide reaction product and mixtures thereof.
  3. 3. The method as defined in claim 1 wherein said ethylene diamine is present in an amount in excess of its degree of solubility.
  4. 4. The method as defined in claim 1 wherein in step (a1) the polyimide surface comprises a polyimide made from the anhydride of pyromellitic acid and 4,4'' diamino-diphenyl ether, having a general formula
  5. 5. The method as defined in claim 1 wherein said basic compound comprises an alkali hydroxide.
  6. 6. The method as defined in claim 1 wherein said basic compound comprises NaOH.
US00255124A 1972-05-19 1972-05-19 A method of improving the adherence of a metal deposit to a polyimide surface Expired - Lifetime US3791848A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25512472A 1972-05-19 1972-05-19

Publications (1)

Publication Number Publication Date
US3791848A true US3791848A (en) 1974-02-12

Family

ID=22966933

Family Applications (1)

Application Number Title Priority Date Filing Date
US00255124A Expired - Lifetime US3791848A (en) 1972-05-19 1972-05-19 A method of improving the adherence of a metal deposit to a polyimide surface

Country Status (1)

Country Link
US (1) US3791848A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871930A (en) * 1973-12-19 1975-03-18 Texas Instruments Inc Method of etching films made of polyimide based polymers
US3881049A (en) * 1971-12-08 1975-04-29 Kalle Ag Process for depositing copper layers on shaped articles of a polyimide
US3937857A (en) * 1974-07-22 1976-02-10 Amp Incorporated Catalyst for electroless deposition of metals
US3954570A (en) * 1974-11-11 1976-05-04 Amp Incorporated Sensitized polyimides and circuit elements thereof
US4113551A (en) * 1976-11-19 1978-09-12 International Business Machines Corporation Polycrystalline silicon etching with tetramethylammonium hydroxide
US4131698A (en) * 1977-12-16 1978-12-26 Rca Corporation Pretreatment of polyvinyl chloride plastics for electroless deposition
US4143186A (en) * 1976-09-20 1979-03-06 Amp Incorporated Process for electroless copper deposition from an acidic bath
DE3149919A1 (en) * 1981-12-11 1983-06-23 Schering Ag, 1000 Berlin Und 4619 Bergkamen METHOD FOR ADHESIVELY METALLIZING POLYIMIDE
DE3316041A1 (en) * 1982-05-06 1983-11-10 National Semiconductor Corp., 95051 Santa Clara, Calif. METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS BY ETCHES AND ETCHING AGENTS
US4426253A (en) 1981-12-03 1984-01-17 E. I. Du Pont De Nemours & Co. High speed etching of polyimide film
DE3328765A1 (en) * 1983-08-05 1985-02-14 Schering AG, 1000 Berlin und 4709 Bergkamen SOLUTION FOR PRE-TREATING POLYIMIDE
US4532152A (en) * 1982-03-05 1985-07-30 Elarde Vito D Fabrication of a printed circuit board with metal-filled channels
US4568412A (en) * 1984-11-01 1986-02-04 E. I. Dupont De Nemours And Company Surface conductive polyimide
US4725504A (en) * 1987-02-24 1988-02-16 Polyonics Corporation Metal coated laminate products made from textured polyimide film
US4775449A (en) * 1986-12-29 1988-10-04 General Electric Company Treatment of a polyimide surface to improve the adhesion of metal deposited thereon
US4806395A (en) * 1987-02-24 1989-02-21 Polyonics Corporation Textured polyimide film
US4832799A (en) * 1987-02-24 1989-05-23 Polyonics Corporation Process for coating at least one surface of a polyimide sheet with copper
US4894124A (en) * 1988-02-16 1990-01-16 Polyonics Corporation Thermally stable dual metal coated laminate products made from textured polyimide film
US4992144A (en) * 1987-02-24 1991-02-12 Polyonics Corporation Thermally stable dual metal coated laminate products made from polyimide film
EP0414560A2 (en) * 1989-08-25 1991-02-27 Kabushiki Kaisha Toshiba Method of manufacturing polyimide thin film and method of manufacturing liquid crystal orientation film of polyimide
US5019425A (en) * 1987-11-25 1991-05-28 Schering Aktiengesellschaft Process for the pre-treatment of synthetic materials
US5183692A (en) * 1991-07-01 1993-02-02 Motorola, Inc. Polyimide coating having electroless metal plate
US5183534A (en) * 1990-03-09 1993-02-02 Amoco Corporation Wet-etch process and composition
US5242713A (en) * 1988-12-23 1993-09-07 International Business Machines Corporation Method for conditioning an organic polymeric material
US5326643A (en) * 1991-10-07 1994-07-05 International Business Machines Corporation Adhesive layer in multi-level packaging and organic material as a metal diffusion barrier
US5350487A (en) * 1993-05-03 1994-09-27 Ameen Thomas J Method of etching polyimide
US5355019A (en) * 1992-03-04 1994-10-11 At&T Bell Laboratories Devices with tape automated bonding
US5443865A (en) * 1990-12-11 1995-08-22 International Business Machines Corporation Method for conditioning a substrate for subsequent electroless metal deposition
EP0456972B1 (en) * 1990-05-15 1995-11-08 International Business Machines Corporation Surface modification of a polyimide
US5569493A (en) * 1994-11-14 1996-10-29 Hughes Aircraft Company Preparation of cured cyanate ester resins and composites for metal plating
US5739268A (en) * 1994-11-14 1998-04-14 Hughes Aircraft Preparation of cyanate ester polymers and composites for metal plating
US5861192A (en) * 1995-08-03 1999-01-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of improving adhesive property of polyimide film and polymidefilm having improved adhesive property
US6605534B1 (en) 2000-06-28 2003-08-12 International Business Machines Corporation Selective deposition of a conductive material
US6689698B2 (en) * 2001-11-13 2004-02-10 Chartered Semiconductor Manufacturing Limited Method for etching a silicided poly using fluorine-based reactive ion etching and sodium hydroxide based solution immersion
US6923919B2 (en) * 2000-07-18 2005-08-02 3M Innovative Properties Company Liquid crystal polymers for flexible circuits
US20050238812A1 (en) * 2002-06-04 2005-10-27 Bhangale Sunil M Method for electroless metalisation of polymer substrate
US20070120089A1 (en) * 2005-11-28 2007-05-31 3M Innovative Properties Company Polymer etchant and method of using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869267A (en) * 1957-02-28 1959-01-20 Turco Products Inc Method of etching aluminum and aluminum alloys
US3033703A (en) * 1958-12-08 1962-05-08 Photocircuits Corp Electroless plating of copper
US3179614A (en) * 1961-03-13 1965-04-20 Du Pont Polyamide-acids, compositions thereof, and process for their preparation
US3361589A (en) * 1964-10-05 1968-01-02 Du Pont Process for treating polyimide surface with basic compounds, and polyimide surface having thin layer of polyamide acid
US3394023A (en) * 1967-02-09 1968-07-23 Thin Film Inc Process for converting water-repellent surfaces of plastic into water-attractive surfaces
GB1160675A (en) * 1964-12-08 1969-08-06 Schjeldahl Co G T Method for Etching Articles of Polymide
FR2016111A1 (en) * 1968-07-11 1970-05-08 Degussa
DE2012123A1 (en) * 1969-03-13 1970-09-17 Ampex Corp., Redwood City, Calif. (V.St.A.) Process for electroless plating of organic plastics
US3686016A (en) * 1970-08-19 1972-08-22 Crown City Plating Co Conditioning of propylene polymers for electroless plating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869267A (en) * 1957-02-28 1959-01-20 Turco Products Inc Method of etching aluminum and aluminum alloys
US3033703A (en) * 1958-12-08 1962-05-08 Photocircuits Corp Electroless plating of copper
US3179614A (en) * 1961-03-13 1965-04-20 Du Pont Polyamide-acids, compositions thereof, and process for their preparation
US3361589A (en) * 1964-10-05 1968-01-02 Du Pont Process for treating polyimide surface with basic compounds, and polyimide surface having thin layer of polyamide acid
GB1160675A (en) * 1964-12-08 1969-08-06 Schjeldahl Co G T Method for Etching Articles of Polymide
US3394023A (en) * 1967-02-09 1968-07-23 Thin Film Inc Process for converting water-repellent surfaces of plastic into water-attractive surfaces
FR2016111A1 (en) * 1968-07-11 1970-05-08 Degussa
US3702285A (en) * 1968-07-11 1972-11-07 Degussa Process for the pretreatment of plastic for the purpose of adhesive metallization
DE2012123A1 (en) * 1969-03-13 1970-09-17 Ampex Corp., Redwood City, Calif. (V.St.A.) Process for electroless plating of organic plastics
US3686016A (en) * 1970-08-19 1972-08-22 Crown City Plating Co Conditioning of propylene polymers for electroless plating

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Developing Patterns in Polyimide Films Anderson p. 1834, Vol. 10, No. 12, May 1968 IBM Disclosure Bulletin *
Improved Adhesion Between Polyimide Surfaces, p. 518, Vol. 13, No. 2, July 1970, IBM Disclosure Bulletin *
Metallization of KTFR, Hall et al. p. 533, Vol. 10, No. 5, Oct. 1967 IBM Disclosure Bulletin *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881049A (en) * 1971-12-08 1975-04-29 Kalle Ag Process for depositing copper layers on shaped articles of a polyimide
US3871930A (en) * 1973-12-19 1975-03-18 Texas Instruments Inc Method of etching films made of polyimide based polymers
US3937857A (en) * 1974-07-22 1976-02-10 Amp Incorporated Catalyst for electroless deposition of metals
US3954570A (en) * 1974-11-11 1976-05-04 Amp Incorporated Sensitized polyimides and circuit elements thereof
US4143186A (en) * 1976-09-20 1979-03-06 Amp Incorporated Process for electroless copper deposition from an acidic bath
US4113551A (en) * 1976-11-19 1978-09-12 International Business Machines Corporation Polycrystalline silicon etching with tetramethylammonium hydroxide
US4131698A (en) * 1977-12-16 1978-12-26 Rca Corporation Pretreatment of polyvinyl chloride plastics for electroless deposition
US4426253A (en) 1981-12-03 1984-01-17 E. I. Du Pont De Nemours & Co. High speed etching of polyimide film
US4517254A (en) * 1981-12-11 1985-05-14 Schering Aktiengesellschaft Adhesive metallization of polyimide
DE3149919A1 (en) * 1981-12-11 1983-06-23 Schering Ag, 1000 Berlin Und 4619 Bergkamen METHOD FOR ADHESIVELY METALLIZING POLYIMIDE
US4532152A (en) * 1982-03-05 1985-07-30 Elarde Vito D Fabrication of a printed circuit board with metal-filled channels
DE3316041C2 (en) * 1982-05-06 1992-09-17 National Semiconductor Corp., Santa Clara, Calif., Us
DE3316041A1 (en) * 1982-05-06 1983-11-10 National Semiconductor Corp., 95051 Santa Clara, Calif. METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS BY ETCHES AND ETCHING AGENTS
DE3348416C2 (en) * 1982-05-06 1993-10-07 Nat Semiconductor Corp Etching solution for forming etching patterns in a polyimide or a polyimide iso-indroquinazolinedione insulation layer of a semiconductor component
DE3328765A1 (en) * 1983-08-05 1985-02-14 Schering AG, 1000 Berlin und 4709 Bergkamen SOLUTION FOR PRE-TREATING POLYIMIDE
US4568412A (en) * 1984-11-01 1986-02-04 E. I. Dupont De Nemours And Company Surface conductive polyimide
US4775449A (en) * 1986-12-29 1988-10-04 General Electric Company Treatment of a polyimide surface to improve the adhesion of metal deposited thereon
US4725504A (en) * 1987-02-24 1988-02-16 Polyonics Corporation Metal coated laminate products made from textured polyimide film
US4806395A (en) * 1987-02-24 1989-02-21 Polyonics Corporation Textured polyimide film
US4832799A (en) * 1987-02-24 1989-05-23 Polyonics Corporation Process for coating at least one surface of a polyimide sheet with copper
US4992144A (en) * 1987-02-24 1991-02-12 Polyonics Corporation Thermally stable dual metal coated laminate products made from polyimide film
US5019425A (en) * 1987-11-25 1991-05-28 Schering Aktiengesellschaft Process for the pre-treatment of synthetic materials
US4894124A (en) * 1988-02-16 1990-01-16 Polyonics Corporation Thermally stable dual metal coated laminate products made from textured polyimide film
US5242713A (en) * 1988-12-23 1993-09-07 International Business Machines Corporation Method for conditioning an organic polymeric material
EP0414560A2 (en) * 1989-08-25 1991-02-27 Kabushiki Kaisha Toshiba Method of manufacturing polyimide thin film and method of manufacturing liquid crystal orientation film of polyimide
EP0414560B1 (en) * 1989-08-25 1995-01-18 Kabushiki Kaisha Toshiba Method of manufacturing polyimide thin film and method of manufacturing liquid crystal orientation film of polyimide
US5183534A (en) * 1990-03-09 1993-02-02 Amoco Corporation Wet-etch process and composition
EP0456972B1 (en) * 1990-05-15 1995-11-08 International Business Machines Corporation Surface modification of a polyimide
US5443865A (en) * 1990-12-11 1995-08-22 International Business Machines Corporation Method for conditioning a substrate for subsequent electroless metal deposition
US5183692A (en) * 1991-07-01 1993-02-02 Motorola, Inc. Polyimide coating having electroless metal plate
US5599582A (en) * 1991-10-07 1997-02-04 International Business Machines Corporation Adhesive layer in multi-level packaging and organic material as a metal diffusion barrier
US5326643A (en) * 1991-10-07 1994-07-05 International Business Machines Corporation Adhesive layer in multi-level packaging and organic material as a metal diffusion barrier
US5569739A (en) * 1991-10-07 1996-10-29 International Business Machines Corporation Adhesive layer in multi-level packaging and organic material as a metal diffusion barrier
US5582858A (en) * 1991-10-07 1996-12-10 International Business Machines Corporation Adhesive layer in multi-level packaging and organic material as a metal diffusion barrier
US5355019A (en) * 1992-03-04 1994-10-11 At&T Bell Laboratories Devices with tape automated bonding
US5350487A (en) * 1993-05-03 1994-09-27 Ameen Thomas J Method of etching polyimide
US5739268A (en) * 1994-11-14 1998-04-14 Hughes Aircraft Preparation of cyanate ester polymers and composites for metal plating
US5569493A (en) * 1994-11-14 1996-10-29 Hughes Aircraft Company Preparation of cured cyanate ester resins and composites for metal plating
US5861192A (en) * 1995-08-03 1999-01-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of improving adhesive property of polyimide film and polymidefilm having improved adhesive property
US6605534B1 (en) 2000-06-28 2003-08-12 International Business Machines Corporation Selective deposition of a conductive material
US6923919B2 (en) * 2000-07-18 2005-08-02 3M Innovative Properties Company Liquid crystal polymers for flexible circuits
US6689698B2 (en) * 2001-11-13 2004-02-10 Chartered Semiconductor Manufacturing Limited Method for etching a silicided poly using fluorine-based reactive ion etching and sodium hydroxide based solution immersion
US20050238812A1 (en) * 2002-06-04 2005-10-27 Bhangale Sunil M Method for electroless metalisation of polymer substrate
US20070120089A1 (en) * 2005-11-28 2007-05-31 3M Innovative Properties Company Polymer etchant and method of using same

Similar Documents

Publication Publication Date Title
US3791848A (en) A method of improving the adherence of a metal deposit to a polyimide surface
US3821016A (en) Method of forming an adherent metallic pattern on a polyimide surface
US3758332A (en) Method of metal coating an epoxy surface
US3808028A (en) Method of improving adhesive properties of a surface comprising a cured epoxy
US3925578A (en) Sensitized substrates for chemical metallization
EP0288491B1 (en) Selective metallization process, additive method for manufacturing printed circuit boards, and composition for use therein
JP4729255B2 (en) Metallization of non-conductive surfaces using silver catalyst and electroless metal composition
US4424241A (en) Electroless palladium process
JP2675841B2 (en) Electroplating method
US4121015A (en) Cured epoxy polymer having improved adhesive properties
JPS6321752B2 (en)
CA1229266A (en) Process for preparing a substrate for subsequent electroless deposition of a metal
JPH028476B2 (en)
US4008343A (en) Process for electroless plating using colloid sensitization and acid rinse
US4042730A (en) Process for electroless plating using separate sensitization and activation steps
US4233344A (en) Method of improving the adhesion of electroless metal deposits employing colloidal copper activator
US4035227A (en) Method for treating plastic substrates prior to plating
JPH07197266A (en) Direct plating method by metallization of copper oxide (i) colloid
US3674550A (en) Method of electroless deposition of a substrate and sensitizing solution therefor
US3340164A (en) Method of copper plating anodized aluminum
US6852152B2 (en) Colloidal seed formulation for printed circuit board metallization
US3769061A (en) Pre-etch treatment of acrylonitrile-butadiene-styrene resins for electroless plating
US3425946A (en) Electroless plating composition
US3632388A (en) Preactivation conditioner for electroless metal plating system
JP2019026933A (en) Chromium-free etching solution for chemical resistant polymer material

Legal Events

Date Code Title Description
AS Assignment

Owner name: AT & T TECHNOLOGIES, INC.,

Free format text: CHANGE OF NAME;ASSIGNOR:WESTERN ELECTRIC COMPANY, INCORPORATED;REEL/FRAME:004251/0868

Effective date: 19831229

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)