US3799653A - Multi-layer anti-reflection coating - Google Patents

Multi-layer anti-reflection coating Download PDF

Info

Publication number
US3799653A
US3799653A US00354433A US35443373A US3799653A US 3799653 A US3799653 A US 3799653A US 00354433 A US00354433 A US 00354433A US 35443373 A US35443373 A US 35443373A US 3799653 A US3799653 A US 3799653A
Authority
US
United States
Prior art keywords
layer
index
thickness
coating
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00354433A
Inventor
H Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIPPON KOGAKU KK
BIPPON KOGAKU KK JA
Original Assignee
BIPPON KOGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIPPON KOGAKU KK filed Critical BIPPON KOGAKU KK
Application granted granted Critical
Publication of US3799653A publication Critical patent/US3799653A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • a non-absorbing, substantially colorless, multi-layer anti-reflection coating for use on a substrate having an index of refraction of 1.43 to 2.00 comprises a first layer of a low-index filming material deposited on the substrate and having a thickness less than M4, a second layer of a high-index filming material deposited on the first layer and having a thickness of less than 1/4, a third layer of a low-index filming material deposited on the second layer and having a thickness approximately between 5 M16 and 7A/l6, a fourth layer of a high-index filming material deposited on the third layer and having a thickness of less than M4, a fifth layer of a low-index filming material deposited on the fourth layer and having a thickness of less than M4, a
  • A is a selected wavelength of near ultraviolet range to near infrared range.
  • Such a property may be applied to a three-layer coating of the construction substrate M4 M2 M4 medium. If the layer adjacent the substrate is replaced by a three-layer coating of equivalent refractive index and the refractive index of the substrate-adjacent layer of the new three-layer is selected to be the most suitable one for the substrate, then there may be provided an anti-reflection coating which will never be affected by the refractive index of the substrate. This is disclosed in US. Pat. No. 3,432,225 (1969) and U8. Pat. No. 3,565,509 (I971).
  • An anti-reflection coating will now be considered in terms of its properties as a multi-layer coating, with the construction of such coating regarded as a fundamental periodic layer.
  • the wavelength range from a non-transmissive band to the next non-transmissive band is referred to as the periodic width of the fundamental periodic layer.
  • the uppermost layer of the fundamental periodic layer which is adjacent the medium is composed of a filming material having a lowest possible refractive index, such as magnesium fluoride (MgF lithium fluoride (LiF) or cryolite (Na AlF and that an intermediate layer adjacent the uppermost layer is composed of a filming material such as zirconium oxide (ZrO titanium oxide (TiO or scandium oxide (sc,o,,).
  • a filming material having a lowest possible refractive index such as magnesium fluoride (MgF lithium fluoride (LiF) or cryolite (Na AlF
  • an intermediate layer adjacent the uppermost layer is composed of a filming material such as zirconium oxide (ZrO titanium oxide (TiO or scandium oxide (sc,o,,).
  • the periodic width of the fundamental periodic layer may be improved by increasing the thickness of such layer.
  • performance is superior for perpendicular incident rays but inferior for oblique incident rays. That is, the angular characteristic is deteriorated.
  • the periodic width of the fundamental periodic layer could be increased by slightly increasing the thickness of the layer if the refractive index whose wave number range (lo', I+0') is in the vicinity of 0- 0.3 035 could be greatly increased or decreased with respect to the refractive index in the center range (the center means that wave number equals I).
  • the present invention aims at improving the antireflection coating of the conventional type of the form substrate 4/4 M2 M4 medium to increase the periodic band width of the fundamental periodic layer.
  • a non-absorbing, substantially colorless, multi-layer anti-reflection coating for use on a substrate having an index of refraction of 1.43 to 2.00 which comprises a first layer of a low-index filming material deposited on the substrate and having a thickness of less than M4, a second layer ofa high-index filming material deposited on the first layer and having a thickness of less than M4,
  • the high-index filming material may be one of ZrO TIOZ, Nd203, C602, T803, TIzOa, PI gOu, Tazoa' rgou and lnO and the low-index filming material is one of MgF SiO,, Na;,AlF, and UP.
  • the low-index filming materials of the first, third, fifth and seventh layers are identical and the high-index filming materials of the second, fourth and sixth layers are identical.
  • the low-index filming material may preferably be MgF, and the high-index filming material may preferably be ZrO,.
  • FIG. 1 is a diagram showing the manner in which may be provided for the wave number 0.7 by substituting for the substrate-adjacent layer in a conventional threelayer coating of the form substrate M4 k/Z M4 medium;
  • FIG. 2 is a similar diagram for the wave number 1.3;
  • FIG. 3 is a diagram showing the manner in which improvement may be provided for the wave number 0.7 by substituting for the intermediate layer in said threelayer coating;
  • FIG. 4 is a similar diagram for the wave number 1.3;
  • FIG. 5 is a graph illustrating the spectral characteristics provided by a five-layer coating of the form substrate A/4 M4 M4 M2 M4 medium and having the numerical data as given in Table I;
  • FIG. 6 is a graph illustrating the spectral characteristics provided by a seven-layer coating of the present invention having the numerical data as given in Table II.
  • the intermediate layer has nothing to do with the overall reflection factor in the center wavelength range, that is, the intermediate layer becomes an absent-layer, and therefore the refractive index of the substrate-adjacent layer can be determined by determining the residual reflection factor to be left in the center wavelength range and by determining the refractive index of the substrate.
  • the refractive index of the intermediate layer which has so far been irrelevant, can be readily obtained by determining the refractive index of the substrate-adjacent layer determined by the center wavelength range; by determining the refractive index of the uppermost layer adjacent the medium; and by determining the residual reflection factor allowed in the marginal wavelength range. This is disclosed in detail by French Pat. No. 1,005,866 (1952).
  • the coating employs the basic form substrate )t/4 M2 M4 medium in which the refractive indices are 1.4, 2.0 and 1.52 for the uppermost layer, the intermediate layer and the substrate, respectively.
  • the refractive index of the substrate is herein assumed to be 1.52 but the refractive index may be less than 1.52.
  • FIG. 1 shows the implementation of the method (2) for the wave number 0.7
  • FIG. 2 shows the implementation of the method (2) for the wave number 1.3
  • FIG. 3 shows the implementation of the method (1) for the wave number 0.7
  • FIG. 4 shows the implementation of the method (1) for the wave number 1.3.
  • reflection is represented according to the vector expression.
  • the circle centered at the base point 0 of the vector represents the range within which the reflection factor R is within 0.3%. In other words, if the end of the composite vector lies within such circle, the overall reflection is within 0.3%.
  • the vectors designated by a show a case where the refractive index of the substrate-adjacent layer in the three-layer coating is varied, and the ends of those vectors are passed by a dashed line p.
  • the vector designated by B shows a case where improvements have been made by assuming 3 M2 and order of 1.5 (1.50 1.59) for the thickness and refractive index of the intermediate layer, respectively. Similarly, in FIG.
  • the solid line vectors commencing at 0 represent the conventional antireflection coating of the form substrate M4 1 ⁇ /2 M4 medium.
  • the dashed line p shows a case where the refractive index of the substrate-adjacent layer is varied, and it is seen in this case that the residual reflection factor R is much greater than 0.3%.
  • the vector designated by B shows a case where the refractive index of the intermediate layer is varied, and in this case the residual reflection factor R is approximately 0.3%.
  • the dotted line i shows a case where the substrate-adjacent layer has a refractive index of approximately 2.5 and a thickness of 3 M4. This is also the case with FIG. 4. In both of FIGS. 3 and 4, the residual reflection factor R can be made approximately 0.3%.
  • the improvement provided by the method (1) is preferable in view of the possible deterioration of the angular characteristic resulting from the increase in the thickness of the coating.
  • n is the refractive index of the uppermost layer
  • n is that of the substrate-adjacent layer
  • n is that of the substrate.
  • the refractive index of the substrateadjacent layer in the center range determines the refractive index of the substrateadjacent layer in the center range. If, for example, the refractive indices of the substrate, the uppermost layer and the intermediate layer are 1.52, 1.39 and 20, respectively, then it will be seen that the lowermost layer has a refractive index of 2.5 and a thickness of 3M4 in the marginal range of wave number (0.7, 1.3) and has a refractive index of 1.67 and a thickness of 3M4 in the center range.
  • this means that the M4 layer adjacentthe substrate may be replaced by a layer of the abovedescribed refractive index and a thickness of 3M4.
  • the fact that the refractive indices in the visible marginal range and in the near ultraviolet and near infrared ranges are variable with respect to the refractive index in the center wavelength range must be taken into account, and it is desirable that the spectral characteristics represented by the equivalent thickness and the equivalent refractive index should have a symmetrical property about the center wavelength in the wavelength range.
  • an assembly must be formed by a symmetrical coating having a thickness substantially equivalent to p )t/4 where p is an integer.
  • the electric field in the multi-layer coating may be expressed by the product of the characteristic matrices in the respective layers forming the coating.
  • the nature of such characteristic matrices makes the refractive index symmetrical to some extent, but a multi-layer coating which is symmetrical about its thickness can be replaced by a certain equivalent singlelayer coating within a range which satisfies the relation given below.
  • suffixes a, b and c are used to represent the substrate-adjacent layer, the intermediate layer and the medium-adjacent layer in an ordinary threelayer coating, then cos g. m 5111 g.) cos g nb sln jn. sin 9. cos 9. jn sin g cos g.,
  • n is the refractive index
  • d is the thickness of the coating
  • v' is the imaginary number unit
  • N is the equivalent refractive index of the symmetrical three-layer coating
  • N* is referred to as the pseudo-equivalent refractive index of a pseudo-symmetrical three-layer coating.
  • N*D* be the pseudoequivalent thickness of the pseudo-symmetrical threelayer coating.
  • the degree of freedom can be increased in the combination of the limited existing filming materials which are physico-chemically stable. It will thus be seen that, even in one and the same filming material, the degree of freedom of the expression of the equivalent refractive index can be increased by utilizing the difference in refractive index arising from the control of such factors as the degree of vacuum and temperature. As is apparent especially from formula (4) above, it can be uniformly increased or decreased by An/n X l00(%) for the respective wavelengths. in the marginal wavelength range as shown in FIGS.
  • the refractive index greatly different from that in the center wavelength range can determine the construction of a three-layer coating which satisfies the required conditions by relating it with the non-transmissive band in such marginal wavelength range.
  • n, and n be the refractive indices of the substrateadjacent layer and the next layer and d and d, be the thickness of three layers, respectively. Then, under the condition that "u u "a v there is obtained and equation:
  • g shows the relation between n, and n, by equation (6).
  • the value of the ideal refractive index of the substrate-adjacent layer is obtained by the equation (1'), considering the residual reflective index R within the center wavelength range.
  • n,, and n are determined from the A five-layer coating of the form substrate M4,n above two relations (6) and (6) or from the relation M4,n M411 M2,n M4,n medium may be made (6), (6) and (4).
  • a five-layer into a nine-layer coating by substituting a symmetrical anti-reflection cbating of the form substrate M4 M4 three-layer coating for the substrate-adjacent layer M4 M2 M4 medium, which is a wide-band anti- (M4,n layer) and the third layer (M4,n layer), respecreflection coating effective for a wider range than the tively.
  • substrate M4 M2 M4 medium expressed as: substrate -n,, -n,, -n,;, --n, -n;,, n n
  • the nine-layer coating may be tive index of the substrate. made into a seven-layer coating.
  • Such seven-layer coating can be realized by employa ing a low-index material such as magnesium fluoride f j ,33 7 3g (MgF lithium fluoride (LiF), silicon oxide $10, or x/2 n, 2.0 r, 2.1 cryolite and a high-index material such as titanium in H :3; oxide (TiO zirconium, tantalum oxide (TaO inx/4 R; 1264 ii; 1:53 dium oxide (lnO or the like. subsrae Jl iL-fi. flfillL According to the present invention, each thickness of The Spectral characteristics Provided thereby are the first to seventh successive layers beginning with the trated in FIG.
  • a low-index material such as magnesium fluoride f j ,33 7 3g (MgF lithium fluoride (LiF), silicon oxide $10, or x/2 n, 2.0 r, 2.1 cryolite
  • a high-index material such as titanium in H :3;
  • the lent refractive index and equivalent thickness of the thicknesses of the respective layers for the various symmetrical coating are determined by the theory of types of substrate shown in Table II are linearly correequivalent coating, the thickness of the respective thin lated with one another, it will be apparent that the layers are primarily determined by that equivalent same result can be achieved not only for a substrate of thickness so that no more room is left to consider the optical glass but also for a substrate of single crystal dispersion of the refractive index.
  • the variasuch as CaF MgO or the like or for a substrate of any tion in the refractive index can be brought into considother refractive index.
  • a non-absorbing, substantially colorless, multilayer anti-reflection coating for use on a substrate having an index of refraction of 1.43 to 2.00 comprising:
  • a third layer of a low-index filming material deposited on said second layer and having a thickness approximately between 5 k/l6 and 7 M16;
  • a fourth layer of a high-index filming material deposited on said third layer and having a thickness of less than M4;
  • a fifth layer of a lowindex filming material deposited on said fourth layer and having a thickness of less than M4;
  • a sixth layer of a high-index filming material deposited on said fifth layer and having a thickness of more than M2;
  • a seventh layer of a low-index filming material deposited on said sixth layer and having a thickness of approximate 1V4;
  • A is a selected wavelength of near ultraviolet range to near infrared range.

Abstract

A non-absorbing, substantially colorless, multi-layer antireflection coating for use on a substrate having an index of refraction of 1.43 to 2.00 comprises a first layer of a low-index filming material deposited on the substrate and having a thickness less than lambda /4, a second layer of a high-index filming material deposited on the first layer and having a thickness of less than lambda /4, a third layer of a low-index filming material deposited on the second layer and having a thickness approximately between 5 lambda /16 and 7 lambda /16, a fourth layer of a high-index filming material deposited on the third layer and having a thickness of less than lambda /4, a fifth layer of a low-index filming material deposited on the fourth layer and having a thickness of less than lambda /4, a sixth layer of a high-index filming material deposited on the fifth layer and having a thickness of more than lambda /2, and a seventh layer of a low-index filming material deposited on the sixth layer and having a thickness of lambda /4, wherein lambda is a selected wavelength of near ultraviolet range to near infrared range.

Description

United States Patent [191 Ikeda Mar. 26, 1974 MULTI-LAYER ANTI-REFLECTION COATING [75] Inventor: Hideo Ikeda, Kamakura, Japan [73] Assignee: Bippon Kogaku K.K., Tokyo, Japan [22] Filed: Apr. 25, 1973 21 Appl. No.1 354,433
[30] Foreign Application Priority Data OTHER PUBLICATIONS Young et al., Applied Optics, Vol. 5, No. 1, January, 1966, pp. 77-80.
Primary Examiner-Ronald J. Stern Attorney, Agent, or Firm-Shapiro and Shapiro 5 7 1 ABSTRACT A non-absorbing, substantially colorless, multi-layer anti-reflection coating for use on a substrate having an index of refraction of 1.43 to 2.00 comprises a first layer of a low-index filming material deposited on the substrate and having a thickness less than M4, a second layer of a high-index filming material deposited on the first layer and having a thickness of less than 1/4, a third layer of a low-index filming material deposited on the second layer and having a thickness approximately between 5 M16 and 7A/l6, a fourth layer of a high-index filming material deposited on the third layer and having a thickness of less than M4, a fifth layer of a low-index filming material deposited on the fourth layer and having a thickness of less than M4, a
sixth layer of a high-index filming material deposited on the fifth layer and having a thickness of more than M2, and a seventh layer of a low-index filming material deposited on the sixth layer and having a thickness of A/4, wherein A is a selected wavelength of near ultraviolet range to near infrared range.
4 Claims, 6 Drawing Figures PAIENTED 826 I974 SHEEI 2 OF 5,
FIG. 3
Pmminmzsmm 3 799653 SHEET 3 BF 5 FIG. 4
PATENTEU R25 I974 SHEET b UF 5 FIG. 5
MULTI-LAYER ANTI-REFLECTION COATING BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an anti-reflection coating comprising seven thin layers.
2. Description of the Prior Art It is known from German Pat. No. 742,463 (I943), for example, that a multi-layer coating comprising in combination two or three different stable materials deposited into thin layers of less than M4 in thickness, where k is the wavelength of light, can be equivalently expressed as a single-layer coating having a value of refractive index between the maximum and the minimum refractive index of the deposited materials and within the range over which the refractive indices of the existing filming materials vary with the variation in the wavelength of light, if the wavelength range is represented by the concept of wave number range (1-0', 1+0), where (r A,/)\ for the standard wavelength )t, (usually 5500A). Especially, it was taught by L. I. Epstein that a multi-layer coating of symmetrical construction can be replaced by a single-layer coating of equivalent refractive index according to the theory of equivalent coating. I
Such a property may be applied to a three-layer coating of the construction substrate M4 M2 M4 medium. If the layer adjacent the substrate is replaced by a three-layer coating of equivalent refractive index and the refractive index of the substrate-adjacent layer of the new three-layer is selected to be the most suitable one for the substrate, then there may be provided an anti-reflection coating which will never be affected by the refractive index of the substrate. This is disclosed in US. Pat. No. 3,432,225 (1969) and U8. Pat. No. 3,565,509 (I971).
Nowadays, with the diversified usages of photographic lenses, the developments of optical instruments, the adaptation of photosensitive materials for a wider band and the specialized usages of such photosensitive materials, it has become essential to reduce the reflection factor over a wide range from near ultraviolet to near infrared. In order to provide an antireflection coating with such a property, it would be insufficient to express the refractive index of each layer in a three-layer coating of the form substrate M4 M2 M4 medium simply by using the concept of alternate layers, inasmuch as variations in the refractive indices of the existing filming materials with respect to wavelength must at least be taken into consideration. An anti-reflection coating will now be considered in terms of its properties as a multi-layer coating, with the construction of such coating regarded as a fundamental periodic layer. For the convenience of description, the wavelength range from a non-transmissive band to the next non-transmissive band is referred to as the periodic width of the fundamental periodic layer.
Here it is assumed that the uppermost layer of the fundamental periodic layer which is adjacent the medium is composed of a filming material having a lowest possible refractive index, such as magnesium fluoride (MgF lithium fluoride (LiF) or cryolite (Na AlF and that an intermediate layer adjacent the uppermost layer is composed of a filming material such as zirconium oxide (ZrO titanium oxide (TiO or scandium oxide (sc,o,,).
Generally, the periodic width of the fundamental periodic layer may be improved by increasing the thickness of such layer. With this method, however, performance is superior for perpendicular incident rays but inferior for oblique incident rays. That is, the angular characteristic is deteriorated.
In this case, the periodic width of the fundamental periodic layer could be increased by slightly increasing the thickness of the layer if the refractive index whose wave number range (lo', I+0') is in the vicinity of 0- 0.3 035 could be greatly increased or decreased with respect to the refractive index in the center range (the center means that wave number equals I).
SUMMARY OF THE INVENTION The present invention aims at improving the antireflection coating of the conventional type of the form substrate 4/4 M2 M4 medium to increase the periodic band width of the fundamental periodic layer.
According to the present invention, there is provided a non-absorbing, substantially colorless, multi-layer anti-reflection coating for use on a substrate having an index of refraction of 1.43 to 2.00 which comprises a first layer of a low-index filming material deposited on the substrate and having a thickness of less than M4, a second layer ofa high-index filming material deposited on the first layer and having a thickness of less than M4,
a third layer of a low-index filming material deposited on the second layer and having a thickness approximately between 5k/l6 and 7k/16, a fourth layer of a high-index filming material deposited on the third layer and having a thickness of less than M4, a fifth layer of a low-index filming material deposited on the fourth layer and having a thickness of less than M4, a sixth layer ofa high-index filming material deposited on the fifth layer and having a thickness of more than M2, and a seventh layer of a low-index filming material deposited on the sixth layer and having a thickness of M4, wherein X is a selected wavelength of near ultraviolet range to near infrared range.
The high-index filming material may be one of ZrO TIOZ, Nd203, C602, T803, TIzOa, PI gOu, Tazoa' rgou and lnO and the low-index filming material is one of MgF SiO,, Na;,AlF, and UP. The low-index filming materials of the first, third, fifth and seventh layers are identical and the high-index filming materials of the second, fourth and sixth layers are identical.
The low-index filming material may preferably be MgF,, and the high-index filming material may preferably be ZrO,.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will become fully apparent from the following detailed description thereof taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a diagram showing the manner in which may be provided for the wave number 0.7 by substituting for the substrate-adjacent layer in a conventional threelayer coating of the form substrate M4 k/Z M4 medium;
FIG. 2 is a similar diagram for the wave number 1.3;
FIG. 3 is a diagram showing the manner in which improvement may be provided for the wave number 0.7 by substituting for the intermediate layer in said threelayer coating;
FIG. 4 is a similar diagram for the wave number 1.3;
FIG. 5 is a graph illustrating the spectral characteristics provided by a five-layer coating of the form substrate A/4 M4 M4 M2 M4 medium and having the numerical data as given in Table I; and
FIG. 6 is a graph illustrating the spectral characteristics provided by a seven-layer coating of the present invention having the numerical data as given in Table II.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The principles underlying the present invention will first be described in detail.
When the refractive index of the uppermost layer adjacent the medium in a coating of the conventional type substrate M4 M2 M4 medium is considered to be limited to physico-chemically stable materials such as MgF LiF, cryolite, etc., the intermediate layer has nothing to do with the overall reflection factor in the center wavelength range, that is, the intermediate layer becomes an absent-layer, and therefore the refractive index of the substrate-adjacent layer can be determined by determining the residual reflection factor to be left in the center wavelength range and by determining the refractive index of the substrate.
Further, the refractive index of the intermediate layer, which has so far been irrelevant, can be readily obtained by determining the refractive index of the substrate-adjacent layer determined by the center wavelength range; by determining the refractive index of the uppermost layer adjacent the medium; and by determining the residual reflection factor allowed in the marginal wavelength range. This is disclosed in detail by French Pat. No. 1,005,866 (1952).
In order to further enhance the anti-reflection effect of the anti-reflection coating of the described type which is determined by the above-described method, there are the following two alternative methods typically in the case of the reflection factor for the wave number range of (0.7, 1.3) ((7 =0.3).
1. To replace the substrate-adjacent layer by a layer of a higher refractive index than that of the intermediate layer and having a thickness of M4 mk/2, where m=1, 2, 3 and so on.
2. To replace the intermediate layer by a layer of a lower refractive index than that of the uppermost layer adjacent the mediumand having a thickness of N2 mk, where m=l, 2,3 and so on.
The implementation of these two methods will be discussed with reference to FIGS. 1 to 4.
In these figures, the coating employs the basic form substrate )t/4 M2 M4 medium in which the refractive indices are 1.4, 2.0 and 1.52 for the uppermost layer, the intermediate layer and the substrate, respectively. The refractive index of the substrate is herein assumed to be 1.52 but the refractive index may be less than 1.52.
FIG. 1 shows the implementation of the method (2) for the wave number 0.7; FIG. 2 shows the implementation of the method (2) for the wave number 1.3; FIG. 3 shows the implementation of the method (1) for the wave number 0.7; and FIG. 4 shows the implementation of the method (1) for the wave number 1.3.
In these figures, reflection is represented according to the vector expression.
The circle centered at the base point 0 of the vector represents the range within which the reflection factor R is within 0.3%. In other words, if the end of the composite vector lies within such circle, the overall reflection is within 0.3%. Referring to FIG. 1, the vectors designated by a show a case where the refractive index of the substrate-adjacent layer in the three-layer coating is varied, and the ends of those vectors are passed by a dashed line p. The vector designated by B shows a case where improvements have been made by assuming 3 M2 and order of 1.5 (1.50 1.59) for the thickness and refractive index of the intermediate layer, respectively. Similarly, in FIG. 2, the solid line vectors commencing at 0 represent the conventional antireflection coating of the form substrate M4 1\/2 M4 medium. The dashed line p shows a case where the refractive index of the substrate-adjacent layer is varied, and it is seen in this case that the residual reflection factor R is much greater than 0.3%. The vector designated by B shows a case where the refractive index of the intermediate layer is varied, and in this case the residual reflection factor R is approximately 0.3%. Also similarly, in FIG. 3, the dotted line i shows a case where the substrate-adjacent layer has a refractive index of approximately 2.5 and a thickness of 3 M4. This is also the case with FIG. 4. In both of FIGS. 3 and 4, the residual reflection factor R can be made approximately 0.3%.
Although the two methods are available as described above, it will be seen that the improvement provided by the method (1) is preferable in view of the possible deterioration of the angular characteristic resulting from the increase in the thickness of the coating.
When, according to the method (1 the reflection in the center range is eliminated in a coating of the form substrate- 5X73 )7?- M4 L medl am; there is established the relation as suggested by A.F. Turner:
where n is the refractive index of the uppermost layer, n is that of the substrate-adjacent layer and n, is that of the substrate.
Where some residual reflection factor R is left in the center range, the equation (1) will become:
(1'). which determines the refractive index of the substrateadjacent layer in the center range. If, for example, the refractive indices of the substrate, the uppermost layer and the intermediate layer are 1.52, 1.39 and 20, respectively, then it will be seen that the lowermost layer has a refractive index of 2.5 and a thickness of 3M4 in the marginal range of wave number (0.7, 1.3) and has a refractive index of 1.67 and a thickness of 3M4 in the center range.
In a coating of the form substrate )t/4 M2 i\/4 medium, this means that the M4 layer adjacentthe substrate may be replaced by a layer of the abovedescribed refractive index and a thickness of 3M4.
Nevertheless, among the existing filming materials which are physico-chemically stable, there can be found no material whose refractive index is greatly variable with the great wavelength variation as shown in the foregoing example (such as a material having a variation of the refractive index for the wavelength by utilizing the great variation in the equivalent refractive index expressed according to the theory of equivalent coating introduced by Herpin and in the equivalent refractive index expressed by the non-transmissive band. In such case, the fact that the refractive indices in the visible marginal range and in the near ultraviolet and near infrared ranges are variable with respect to the refractive index in the center wavelength range must be taken into account, and it is desirable that the spectral characteristics represented by the equivalent thickness and the equivalent refractive index should have a symmetrical property about the center wavelength in the wavelength range. This means that an assembly must be formed by a symmetrical coating having a thickness substantially equivalent to p )t/4 where p is an integer.
From such a theory, it is possible to satisfy the abovedescribed property by a construction employing a combination of layers ofp M4 where p is an integer and to overcome the limitations existing in the conventional form substrate M4 M2 M4 medium.
Generally, however, it is not so simple to find the filming materials whose refractive indices are suitable as the respective layer required to provide said construction.
Such a problem may be satisfied by a method which will be described hereinafter. By introducing a characteristic matrix IM which expresses the electric and magnetic fields in the interior of the coating in terms of the matrix, the electric field in the multi-layer coating may be expressed by the product of the characteristic matrices in the respective layers forming the coating. The nature of such characteristic matrices makes the refractive index symmetrical to some extent, but a multi-layer coating which is symmetrical about its thickness can be replaced by a certain equivalent singlelayer coating within a range which satisfies the relation given below. If suffixes a, b and c are used to represent the substrate-adjacent layer, the intermediate layer and the medium-adjacent layer in an ordinary threelayer coating, then cos g. m 5111 g.) cos g nb sln jn. sin 9. cos 9. jn sin g cos g.,
j (cos no S111 g jn sin g cos g,
where g,, 2 1r n d /A, M/A,
where It represents a, b or c, n is the refractive index, d is the thickness of the coating, and] is the imaginary number unit v' 1).
If there is a very little difference between the magnitudes of n,, and n the following rewriting may be possible:
n, n (l An/n If the An/n, is of the order of 0.05,
i sin 0,
cos g,
n i A1 0 cos g sin 9 IME nc+An n,
0 n $111 cos y,
cos X cos g S111 g i sin gr) jn sin 9 cos g This may further be simplified as follows, by multiplying the respective matrices by each other:
where If N is the equivalent refractive index of the symmetrical three-layer coating,
where the sign means approximately equal to. Such N* is referred to as the pseudo-equivalent refractive index of a pseudo-symmetrical three-layer coating. Further, let ND be the equivalent thickness of the three-layer coating and N*D* be the pseudoequivalent thickness of the pseudo-symmetrical threelayer coating. Then, there is established the relation:
These relations mean that the degree of freedom can be increased in the combination of the limited existing filming materials which are physico-chemically stable. It will thus be seen that, even in one and the same filming material, the degree of freedom of the expression of the equivalent refractive index can be increased by utilizing the difference in refractive index arising from the control of such factors as the degree of vacuum and temperature. As is apparent especially from formula (4) above, it can be uniformly increased or decreased by An/n X l00(%) for the respective wavelengths. in the marginal wavelength range as shown in FIGS. 3 and 4, the refractive index greatly different from that in the center wavelength range can determine the construction of a three-layer coating which satisfies the required conditions by relating it with the non-transmissive band in such marginal wavelength range. In the symmetrical three-layer coating fonning a 3M4 layer, let n, and n be the refractive indices of the substrateadjacent layer and the next layer and d and d, be the thickness of three layers, respectively. Then, under the condition that "u u "a v there is obtained and equation:
lcos g l n /(n 11,) 2: whale gH fl u u/ JX J/ HL where MA oand it represents a wavelength in the wavelength range given as l.25 a' and 0.7 o-. Thus,
g shows the relation between n, and n, by equation (6). Meanwhile, the value of the ideal refractive index of the substrate-adjacent layer is obtained by the equation (1'), considering the residual reflective index R within the center wavelength range. The equivalent rewith the aid ofa variation M which is derived from the fractive index N to the ideal refractive index may be exrelation that d,,=d,;tAd. Of course, Ad=0 means the pressed, as follows: provision of a symmetrical coating.
Hunt Sin 2g COS gt From this fact, it follows that the aforesaid basic form (n.-'-' COS gar-nit SlIT' g 11) Sin g, f five-layer oatlng can be expressed in terms ofa sev- N 11,, (6) en-layer type of coating by uslng two different types of """f' physico-chemically stable materials.
COS Sm- Sm An example of this will be shown below.
The values of n,, and n, are determined from the A five-layer coating of the form substrate M4,n above two relations (6) and (6) or from the relation M4,n M411 M2,n M4,n medium may be made (6), (6) and (4). There is thus provided a five-layer into a nine-layer coating by substituting a symmetrical anti-reflection cbating of the form substrate M4 M4 three-layer coating for the substrate-adjacent layer M4 M2 M4 medium, which is a wide-band anti- (M4,n layer) and the third layer (M4,n layer), respecreflection coating effective for a wider range than the tively. If the refractive index alone is considered with conventional three-layer anti reflection coating of the the thickness neglected, such nine-layer coating may be form substrate M4 M2 M4 medium. expressed as: substrate -n,, -n,, -n,;, --n, -n;,, n n
Some examples of the numerical data are given in the n n medium. Here, by establishing the relations Table I below, where n represents the refractive index that n =n =ng=n =7| and n =n =n =n and by subof the medium (air), and n, to u represent the refracstituting single layers for the two third and fourth layers tive indices of the successive layers beginning with the (ri and ri and the two seventh and eighth layers (n uppermost or first layer, and n, represents the refracand m.) respectively, the nine-layer coating may be tive index of the substrate. made into a seven-layer coating.
Table I Such seven-layer coating can be realized by employa ing a low-index material such as magnesium fluoride f j ,33 7 3g (MgF lithium fluoride (LiF), silicon oxide $10, or x/2 n, 2.0 r, 2.1 cryolite and a high-index material such as titanium in H :3; oxide (TiO zirconium, tantalum oxide (TaO inx/4 R; 1264 ii; 1:53 dium oxide (lnO or the like. subsrae Jl iL-fi. flfillL According to the present invention, each thickness of The Spectral characteristics Provided thereby are the first to seventh successive layers beginning with the trated in FIG. 5 in which the ordinate is the refractive 35 uppermost medium dj layer ranges as f n index and the abscissa is wave length. The above forms the basic form of the present invention. LQWSM' 5th 4th However, such basic form would encounter the prob- X A 7X 5) X X k 55 0 9X 7x lems which will be described hereinafter. Firstly, there R Us? FE s 32 ET; To" 333 are not always to be found filming materials required 40 to provide the most suitable construction for several Table II below shows numerical data where ZrO different refractive indices of the substrate. Moreover, (refractive index 2.0) is employed as the high-index even if such combination was selected, the use of four material and MgF, (refractive index 1.39) as the lowto five different filming materials would raise inconveindex material. In Table II, the thicknesses are all exniences in practice and also, it would be difficult to pressed in the unit of standard wavelength ()t,), and the maintain a sufficient physico-chemical stability in these first to seventh layers mean the successive layers beginfilming materials. ning with the uppermost layer. The spectral character- To overcome such difficulties, a combination of only istics provided by the combination as shown in Table two stable filming materials may be used by utilizing II are illustrated in FIG. 6. the fact that such combination can express any desired When a combination of other materials is desired it refractive index between the values of the refractive incan readily be provided by expressing the equivalent dices of the two materials. refractive indices by the use of other materials accord- Acc'ording to the present invention, once the equivaing to the relation shown in Table II. Also, since the lent refractive index and equivalent thickness of the thicknesses of the respective layers for the various symmetrical coating are determined by the theory of types of substrate shown in Table II are linearly correequivalent coating, the thickness of the respective thin lated with one another, it will be apparent that the layers are primarily determined by that equivalent same result can be achieved not only for a substrate of thickness so that no more room is left to consider the optical glass but also for a substrate of single crystal dispersion of the refractive index. However, the variasuch as CaF MgO or the like or for a substrate of any tion in the refractive index can be brought into considother refractive index.
TABLE II Layers 7th 6th bth 4th 3rd 2nd 1st 0.023 As 0343M 0.042313; 0.114 As 0.508 to 0.240 As eration by introducing the asymmetry with respect to the thickness. For example, in the case of a three-layer coating of (n m d )(n,,,n,,d,)(n,,n,,d where n,,d,,, etc. are optical thicknesses, asymmetry may be introduced I claim:
l. A non-absorbing, substantially colorless, multilayer anti-reflection coating for use on a substrate having an index of refraction of 1.43 to 2.00 comprising:
a first layer of a low-index filming material deposited on the substrate and having a thickness of less than M a second layer ofa high-index filming material deposited on said first layer and having a thickness of less than M4;
a third layer ofa low-index filming material deposited on said second layer and having a thickness approximately between 5 k/l6 and 7 M16;
a fourth layer of a high-index filming material deposited on said third layer and having a thickness of less than M4;
a fifth layer of a lowindex filming material deposited on said fourth layer and having a thickness of less than M4;
a sixth layer of a high-index filming material deposited on said fifth layer and having a thickness of more than M2; and
a seventh layer ofa low-index filming material deposited on said sixth layer and having a thickness of approximate 1V4;
wherein A is a selected wavelength of near ultraviolet range to near infrared range.
2. A coating according to claim I, wherein the highindex filming material is one of ZrO TiO Nd O CeO TaO T50 Pr O Ta O Pr O and lnO, and the low-index filming material is one of MgF SiO Na AlF and LiF.
3. A coating according to claim 1, wherein the lowindex filming materials of said first, third, fifth and seventh layers are identical and the high-index filming materials of said second, fourth and sixth layers are identical.
4. A coating according to claim 3, wherein the lowindex filming material is MgF and the high-index filming material is ZrO

Claims (3)

  1. 2. A coating according to claim 1, wherein the high-index filming material is one of ZrO2, TiO2, Nd2O3, CeO2, TaO3, Ti2O3, Pr6O11, Ta2O3.Pr6O11 and InO, and the low-index filming material is one of MgF2, SiO2, Na3AlF6 and LiF.
  2. 3. A coating according to claim 1, wherein the low-index filming materials of said first, third, fifth and seventh layers are identical and the high-index filming materials of said second, fourth and sixth layers are identical.
  3. 4. A coating according to claim 3, wherein the low-index filming material is MgF2 and the high-index filming material is ZrO2.
US00354433A 1972-04-26 1973-04-25 Multi-layer anti-reflection coating Expired - Lifetime US3799653A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4203172A JPS5310861B2 (en) 1972-04-26 1972-04-26

Publications (1)

Publication Number Publication Date
US3799653A true US3799653A (en) 1974-03-26

Family

ID=12624779

Family Applications (1)

Application Number Title Priority Date Filing Date
US00354433A Expired - Lifetime US3799653A (en) 1972-04-26 1973-04-25 Multi-layer anti-reflection coating

Country Status (5)

Country Link
US (1) US3799653A (en)
JP (1) JPS5310861B2 (en)
CH (1) CH593494A5 (en)
FR (1) FR2182079A1 (en)
GB (1) GB1417779A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922068A (en) * 1973-06-18 1975-11-25 Minolta Camera Kk Multi-layer anti-reflection coating with high and low index material
US4196246A (en) * 1976-06-23 1980-04-01 Nippon Kogaku K.K. Anti-reflection film for synthetic resin base
US4313647A (en) * 1975-12-23 1982-02-02 Mamiya Koki Kabushiki Kaisha Nonreflective coating
US4988164A (en) * 1988-04-25 1991-01-29 Olympus Optical Co., Ltd. Anti-reflection film for synthetic resin optical elements
US5362552A (en) * 1993-09-23 1994-11-08 Austin R Russel Visible-spectrum anti-reflection coating including electrically-conductive metal oxide layers
US5662395A (en) * 1995-06-07 1997-09-02 Nova Solutions, Inc. Underdesk computer desk structure with antireflecting viewing window
US6157042A (en) * 1998-11-03 2000-12-05 Lockheed Martin Corporation Optical cavity enhancement infrared photodetector
US20040062507A1 (en) * 2002-09-27 2004-04-01 Mitsubish Denki Kabushiki Kaisha Semiconductor optical device
US20040108461A1 (en) * 2002-12-05 2004-06-10 Lockheed Martin Corporation Bias controlled multi-spectral infrared photodetector and imager
US20040108564A1 (en) * 2002-12-05 2004-06-10 Lockheed Martin Corporation Multi-spectral infrared super-pixel photodetector and imager
EP1542044A1 (en) 2003-12-11 2005-06-15 JDS Uniphase Corporation Trim retarders incorporating negative birefringence
US20060024509A1 (en) * 2004-07-30 2006-02-02 Eurokera S.N.C. Plate made of a glass material for a device of the fireplace insert or stove type
US20060268207A1 (en) * 2005-05-25 2006-11-30 Jds Uniphase Corporation Tilted C-Plate Retarder Compensator And Display Systems Incorporating The Same
US20070064163A1 (en) * 2005-09-09 2007-03-22 Jds Uniphase Corporation Optimally Clocked Trim Retarders
US20070070276A1 (en) * 2003-12-11 2007-03-29 Jds Uniphase Corporation Grating trim retarders
US20070085972A1 (en) * 2005-10-18 2007-04-19 Jds Uniphase Corporation Electronically Compensated LCD Assembly
US20070146868A1 (en) * 2005-12-26 2007-06-28 Epson Toyocom Corporation Broadband antireflection coating
US20080084535A1 (en) * 2006-01-12 2008-04-10 Essilor International (Compagnie Generale D'optiqu Collection Of Ophthalmic Lens Pairs And Ophthalmic Lenses Having Residual Reflections Exhibiting Colors Of Different Intensity
US20080192335A1 (en) * 2005-06-14 2008-08-14 Carl Zeiss Smt Ag Optical Element with an Antireflection Coating, Projection Objective, and Exposure Apparatus Comprising Such an Element
US20080252800A1 (en) * 2007-04-10 2008-10-16 Jds Uniphase Corporation Twisted Nematic xLCD Contrast Compensation With Tilted-Plate Retarders
US20100134910A1 (en) * 2007-08-14 2010-06-03 Seung Hun Chae Optical film and method of manufacturing the same
US20100149642A1 (en) * 2008-12-15 2010-06-17 Hon Hai Precision Industry Co., Ltd. Antireflection film and optical element having same
CN105378511A (en) * 2013-07-05 2016-03-02 埃西勒国际通用光学公司 Optical article having red residual reflection colour
US9391700B1 (en) 2015-06-16 2016-07-12 Sunlight Photonics Inc. Integrated optical receiver skin
US9841616B1 (en) 2014-08-22 2017-12-12 Sunlight Photonics Inc. Mobile system incorporating flexible and tunable anti-reflective skin and method of use
US11042047B1 (en) 2014-08-22 2021-06-22 Sunlight Aerospace Inc. Mobile system incorporating flexible and tunable optically reflective skin and method of use

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173368A (en) * 1988-09-14 1992-12-22 Pilkington Visioncare Holdings, Inc. Solution-applied antireflective coatings
US5104692A (en) * 1990-04-20 1992-04-14 Pilkington Visioncare Holdings, Inc. Two-layer antireflective coating applied in solution
US5091244A (en) * 1990-08-10 1992-02-25 Viratec Thin Films, Inc. Electrically-conductive, light-attenuating antireflection coating
US5407733A (en) * 1990-08-10 1995-04-18 Viratec Thin Films, Inc. Electrically-conductive, light-attenuating antireflection coating
JP2005274527A (en) * 2004-03-26 2005-10-06 Cimeo Precision Co Ltd Cover glass for clock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432225A (en) * 1964-05-04 1969-03-11 Optical Coating Laboratory Inc Antireflection coating and assembly having synthesized layer of index of refraction
US3565509A (en) * 1969-03-27 1971-02-23 Bausch & Lomb Four layered antireflection coatings
US3737210A (en) * 1972-03-31 1973-06-05 Bausch & Lomb Multilayer filter based on substitution of herpin equivalent layers in a antireflection coating formula

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432225A (en) * 1964-05-04 1969-03-11 Optical Coating Laboratory Inc Antireflection coating and assembly having synthesized layer of index of refraction
US3565509A (en) * 1969-03-27 1971-02-23 Bausch & Lomb Four layered antireflection coatings
US3737210A (en) * 1972-03-31 1973-06-05 Bausch & Lomb Multilayer filter based on substitution of herpin equivalent layers in a antireflection coating formula

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Young et al., Applied Optics, Vol. 5, No. 1, January, 1966, pp. 77 80. *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922068A (en) * 1973-06-18 1975-11-25 Minolta Camera Kk Multi-layer anti-reflection coating with high and low index material
US4313647A (en) * 1975-12-23 1982-02-02 Mamiya Koki Kabushiki Kaisha Nonreflective coating
US4196246A (en) * 1976-06-23 1980-04-01 Nippon Kogaku K.K. Anti-reflection film for synthetic resin base
US4988164A (en) * 1988-04-25 1991-01-29 Olympus Optical Co., Ltd. Anti-reflection film for synthetic resin optical elements
US5362552A (en) * 1993-09-23 1994-11-08 Austin R Russel Visible-spectrum anti-reflection coating including electrically-conductive metal oxide layers
US5662395A (en) * 1995-06-07 1997-09-02 Nova Solutions, Inc. Underdesk computer desk structure with antireflecting viewing window
US6157042A (en) * 1998-11-03 2000-12-05 Lockheed Martin Corporation Optical cavity enhancement infrared photodetector
US6970633B2 (en) * 2002-09-27 2005-11-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical device
US20040062507A1 (en) * 2002-09-27 2004-04-01 Mitsubish Denki Kabushiki Kaisha Semiconductor optical device
US20040108461A1 (en) * 2002-12-05 2004-06-10 Lockheed Martin Corporation Bias controlled multi-spectral infrared photodetector and imager
US6897447B2 (en) 2002-12-05 2005-05-24 Lockheed Martin Corporation Bias controlled multi-spectral infrared photodetector and imager
US20040108564A1 (en) * 2002-12-05 2004-06-10 Lockheed Martin Corporation Multi-spectral infrared super-pixel photodetector and imager
US7135698B2 (en) 2002-12-05 2006-11-14 Lockheed Martin Corporation Multi-spectral infrared super-pixel photodetector and imager
EP1542044A1 (en) 2003-12-11 2005-06-15 JDS Uniphase Corporation Trim retarders incorporating negative birefringence
US20050128391A1 (en) * 2003-12-11 2005-06-16 Jds Uniphase Corporation Trim retarders incorporating negative birefringence
US8164721B2 (en) 2003-12-11 2012-04-24 Tan Kim L Grating trim retarders
US20070070276A1 (en) * 2003-12-11 2007-03-29 Jds Uniphase Corporation Grating trim retarders
US7170574B2 (en) 2003-12-11 2007-01-30 Jds Uniphase Corporation Trim retarders incorporating negative birefringence
US20060024509A1 (en) * 2004-07-30 2006-02-02 Eurokera S.N.C. Plate made of a glass material for a device of the fireplace insert or stove type
US7449244B2 (en) * 2004-07-30 2008-11-11 Eurokera S.N.C. Plate made of a glass material for a device of the fireplace insert or stove type
US20060268207A1 (en) * 2005-05-25 2006-11-30 Jds Uniphase Corporation Tilted C-Plate Retarder Compensator And Display Systems Incorporating The Same
US8237876B2 (en) 2005-05-25 2012-08-07 Kim Leong Tan Tilted C-plate retarder compensator and display systems incorporating the same
US20080192335A1 (en) * 2005-06-14 2008-08-14 Carl Zeiss Smt Ag Optical Element with an Antireflection Coating, Projection Objective, and Exposure Apparatus Comprising Such an Element
US9684252B2 (en) 2005-06-14 2017-06-20 Carl Zeiss Smt Gmbh Optical element with an antireflection coating, projection objective, and exposure apparatus comprising such an element
US8049964B2 (en) * 2005-06-14 2011-11-01 Carl Zeiss Smt Gmbh Optical element with an antireflection coating, projection objective, and exposure apparatus comprising such an element
US20070064163A1 (en) * 2005-09-09 2007-03-22 Jds Uniphase Corporation Optimally Clocked Trim Retarders
US7714945B2 (en) 2005-09-09 2010-05-11 Jds Uniphase Corporation Optimally clocked trim retarders
US20070085972A1 (en) * 2005-10-18 2007-04-19 Jds Uniphase Corporation Electronically Compensated LCD Assembly
US7671946B2 (en) 2005-10-18 2010-03-02 Jds Uniphase Corporation Electronically compensated LCD assembly
US20070146868A1 (en) * 2005-12-26 2007-06-28 Epson Toyocom Corporation Broadband antireflection coating
US20080084535A1 (en) * 2006-01-12 2008-04-10 Essilor International (Compagnie Generale D'optiqu Collection Of Ophthalmic Lens Pairs And Ophthalmic Lenses Having Residual Reflections Exhibiting Colors Of Different Intensity
US7452076B2 (en) 2006-01-12 2008-11-18 Essilor International (Compagnie Generale D'optique) Collection of ophthalmic lens pairs and ophthalmic lenses having residual reflections exhibiting colors of different intensity
US20080252800A1 (en) * 2007-04-10 2008-10-16 Jds Uniphase Corporation Twisted Nematic xLCD Contrast Compensation With Tilted-Plate Retarders
US8072561B2 (en) 2007-04-10 2011-12-06 Jds Uniphase Corporation Twisted nematic xLCD contrast compensation with tilted-plate retarders
EP2179311B1 (en) * 2007-08-14 2015-09-16 LG Chem, Ltd. Optical film and method of manufacturing the same
US20100134910A1 (en) * 2007-08-14 2010-06-03 Seung Hun Chae Optical film and method of manufacturing the same
US8767297B2 (en) 2007-08-14 2014-07-01 Lg Chem, Ltd. Optical film and method of adjusting wavelength dispersion characteristics of the same
US9448349B2 (en) 2007-08-14 2016-09-20 Lg Chem, Ltd. Optical film and method of adjusting wavelength dispersion characteristics of the same
US7924501B2 (en) * 2008-12-15 2011-04-12 Hon Hai Precision Industry Co., Ltd. Antireflection film and optical element having same
US20100149642A1 (en) * 2008-12-15 2010-06-17 Hon Hai Precision Industry Co., Ltd. Antireflection film and optical element having same
CN105378511A (en) * 2013-07-05 2016-03-02 埃西勒国际通用光学公司 Optical article having red residual reflection colour
CN105378511B (en) * 2013-07-05 2018-07-06 依视路国际公司 Optical article with red residual reflectivity color
US9841616B1 (en) 2014-08-22 2017-12-12 Sunlight Photonics Inc. Mobile system incorporating flexible and tunable anti-reflective skin and method of use
US11042047B1 (en) 2014-08-22 2021-06-22 Sunlight Aerospace Inc. Mobile system incorporating flexible and tunable optically reflective skin and method of use
US9391700B1 (en) 2015-06-16 2016-07-12 Sunlight Photonics Inc. Integrated optical receiver skin

Also Published As

Publication number Publication date
JPS5310861B2 (en) 1978-04-17
DE2321159B2 (en) 1976-11-18
DE2321159A1 (en) 1973-10-31
GB1417779A (en) 1975-12-17
JPS495051A (en) 1974-01-17
CH593494A5 (en) 1977-12-15
FR2182079A1 (en) 1973-12-07

Similar Documents

Publication Publication Date Title
US3799653A (en) Multi-layer anti-reflection coating
JP4958594B2 (en) Antireflection film, optical element and optical system
US7773301B2 (en) Antireflection film
US4313647A (en) Nonreflective coating
US3829197A (en) Antireflective multilayer coating on a highly refractive substrate
US5332618A (en) Antireflection layer system with integral UV blocking properties
JP4630915B2 (en) Antireflection film, optical member, optical system
JP6051710B2 (en) Antireflection film, optical member using the same, and optical instrument
US20060109545A1 (en) Optical element with antireflection film
JP2008242000A (en) Optical filter
US5033831A (en) Color-corrected lens triplets with liquid lens elements
JP2007333806A (en) Antireflection film and optical member
CN109154679B (en) Projection lens
US4921760A (en) Anti-reflection coating of optical part made of synthetic resin
US4929071A (en) Long-focus color-corrected petzval-type optical objective
JP2001100002A (en) Antireflection film and optical member using same
JPS6051081B2 (en) Aspheric anti-reflection coating
US11846754B2 (en) Optical lens with antireflective film, projection lens, and projection lens optical system
JPWO2018216310A1 (en) Optical element and projection lens
JP2002267801A (en) Antireflection film and optical member which uses the same
US20030179455A1 (en) Fingerprint resistant anti-reflection coatings for plastic substrates
JP6236776B2 (en) Antireflection film, optical member using the same, and optical instrument
JPH07244202A (en) Dual wavelength anti-reflection film
JP6361095B2 (en) Antireflection film, optical member using the same, and optical instrument
JPH05232317A (en) Polarization beam splitter