US3802203A - High pressure jet-grouting method - Google Patents

High pressure jet-grouting method Download PDF

Info

Publication number
US3802203A
US3802203A US00195196A US19519671A US3802203A US 3802203 A US3802203 A US 3802203A US 00195196 A US00195196 A US 00195196A US 19519671 A US19519671 A US 19519671A US 3802203 A US3802203 A US 3802203A
Authority
US
United States
Prior art keywords
grouting
jet
discharging
ground
injecting tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00195196A
Inventor
Y Ichise
A Yamakado
S Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3802203A publication Critical patent/US3802203A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/46Concrete or concrete-like piles cast in position ; Apparatus for making same making in situ by forcing bonding agents into gravel fillings or the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ

Abstract

A method and apparatus for high pressure jet-grouting which comprise inserting an injecting tube into the ground which has a nozzle disposed for directing a jet of a chemical containing a ground hardening agent at an angle inclined to the axial direction of the injecting tube. The jet of the chemical hardening agent is discharged through the nozzle at a velocity of 100-450 m/sec and at a pressure of 50-1000 kg/cm2.

Description

United States Patent 1191 Ichise et al.
1451 Apr. 9, 1974 1 1 HIGH PRESSURE JET-GROUTING METHOD [75] Inventors: Yoshio Ichise; Akio Yamakado, both of Tokyo; Shoji Takano, Yokohama,
all of Japan [73] Assignee: Yoshio Ichise, Tokyo, Japan [22] Filed: Nov. 3, 1971 21 Appl. No.: 195,196
[30] Foreign Application Priority Data Nov. 12, 1970 Japan 45-99168 [52] US. Cl 61/36 R [51] Int. Cl E02d 3/00 [58] Field of Search 61/36 A, 36 R, 63, 35
[56] References Cited UNITED STATES PATENTS 1,411,057 3/1922 Miller 61/36 R 2,196,211 4/1940 Martman 61/36 R 2,403,643 7/1946 Dresser 61/36 R 3,243,962 4/1966 Ratliff 61/36 R 3,303,656 2/1967 Landau 61/11 3,391,544 7/1968 Daczko 61/63 3,608,318 9/1971 Levy et al. 61/36 R Primary Examiner-Mervin Stein Assistant ExaminerAlexander Grosz Attorney, Agent, or Firm-Meyer, Tilberry & Body [5 7] ABSTRACT A method and apparatus for high pressure jet-grouting which comprise inserting an injecting tube. into the ground which has a nozzle disposed for directing a jet of a chemical containing a ground hardening agent at an angle inclined to the axial direction of the injecting tube. The jet of the chemical hardening agent is discharged through the nozzle at a velocity of 100-450 m/sec and at a pressure of 50-1000 kg/cm 17 Claims, 6 Drawing Figures PAIENTEDAPR 9l974 3302.203
' snmi nrs FIGQI' INVENTORS.
YOSHIO ICHISE AKIO YAMAKADO BY SHOJI TAKANO ATTORNEYS.
PATENTEDAPR 9 m4 3.802.203
sum 2 or 3 INVENTOR. YOSHIO ICHISE AKIO YAMAKADO SHOJI TAKANO ATTORNEYS.
PATENTEBAPR 9 I974 $802,203
sum 3 or 3 FIG. 4
INVENTORS. YOSHIO ICHISE AKIO YAMAKADO SHOJI TAKANO HIGH PRESSURE JET-GROUTING METHOD DISCLOSURE The present invention relates to high pressure grouting in an area of ground, a suitable chemical being injected for stabilizing the ground. More particularly the invention relates to forming a panel-like watershielding or water-impervious wall having a relatively thin thickness.
I-leretofore, in order to shut off the surface water of stratum consisting of sedimentary ground or catacleastic formation ground newer than tertiary period, a method has been employed to build a water shielding wall by injecting a chemical for ground hardening into the ground. In the prior method, injecting tubes were inserted into the ground at fixed intervals and were axially displaced. A chemical hardening agent as then injected through the tubes into the ground under pressure in the range of, for example, l30 kg/cm in order to permeate the ground.
However, in an attempt to build elongated watershielding walls that could be made by using a single injection process, the injection pressure was elevated to a higher level than the above mentioned permeation pressure. As a result, the chemical ran away in the direction where escape was made easy on the basis of the quality of the ground itself so that a water-shielding wall of an undesirable lumpy type having concave and convex portions was obtained. The above also resulted in the use of a quantity of chemical beyond expectation and in the formation of a wall of non-uniform thickness which had a tendency to be washed away.
In forming water-shielding walls in both the perpendicular and horizontal directions to extend across an area of the ground, it has, therefore, been previously necessary to employ a plurality of the injecting tubes. This conventional method has had the inherent drawbacks that an efficiency of execution of work is not improved, the cost is increased and reliability in the execution of work is not obtained.
The present invention contemplates a new and improved method and apparatus which overcomes all of the above referred problems and others and provides a method and apparatus for high pressure jet grouting which is simple, efficient, and provides an improved finished work product.
In accordance with the present invention, there is provided a new method of high pressure jet grouting. The method comprises the steps of: inserting an injecting tube into the ground; providing a grouting flow nozzle in said injecting tube at an angle inclined to the axial direction of said tube; and discharging a jet of grouting through said nozzle at high pressure.
In accordance with another aspect of the present invention, the method further includes the step of discharging a jet of compressed air with the jet of grouting.
In accordance with another aspect of the present invention, the method also includes the steps of lifting and rotating the injecting tube during the discharging step.
In accordance with still another aspect of the present invention, there is provided an apparatus for high velocity grouting. The apparatus includes an injecting tube having a nozzle disposed therein at an angle inclined to the axis of the injecting tube for injecting a jet of grouting into the ground. Means are also provided for continuously supplying a grouting material to the nozzle at high pressure.
The principal object of the present invention is the provision of a new and improved method and apparatus for high pressure jet-grouting.
Another object of the present invention is the provision of a new and improved method for high pressure jet grouting in which a panel like hardened layer of thin thickness may be formed from a predetermined amount of a grouting chemical.
Another object of the present invention is the provision of a new and improved method and apparatus for high pressure jet grouting which reduces the number of separate pieces of equipment required.
Still another object of the present invention is the provision of a new and improved method and apparatus for high pressure jet grouting which is readily adaptable to use in forming a plurality of different styles of underground water shielding walls.
Yet another object of the present invention is the provision of a new and improved method and apparatus for high pressure jet grouting which is simple and economical to employ.
The invention may take physical form in certain parts and arrangements of parts, a preferred embodiment of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein: I
FIG. 1 is a cross sectional view showing a schematic arrangement wherein a water-shielding wall is formed in the vertical direction;
FIG. 2 is a schematic horizontal cross sectional view of continuous water-shielding wall extending vertically,
view (A) showing a liner wall and view (B) showing a bent wall;
FIG. 3 is a cross sectional view showing a horizontally extending water-shielding wall;
FIG. 4 is a cross sectional view of the tip of an injection tube according to the invention; and,
FIG. 5 is a plan view of the arrangement shown in FIG. 4.
Referring now to the drawings wherein the showings are for the purposes of illustrating the preferred embodiment of the invention only and not for purposes of limiting same, the FIGURES show a chemical jet nozzle area generally designated 3 which is coaxially threadably received in one end of an elongated injecting tube 2. Threadably received on nozzle 3 and coaxial therewith is a water jet nozzle generally designated 4.
In jet nozzle 4, water is passed, under pressure, through tube 6 extending inside of and along injecting tube 2 to a jet opening 5. A one-way valve 7 disposed between tube 6 and jet opening 5 assures the prevention of counterflow. This valve may be of a general type previously known.
In the preferred embodiment of the invention, jet nozzle area 3 includes a pair of coaxial jet nozzles 8, 9 for supplying two liquid chemicals as will hereinafter become more fully apparent. Jet nozzle 8 is generally centrally located and communicates with tube 11 to receive a continuous supply of the main chemical liquid or ground hardening agent A. Jet nozzle 9 is disposed about and opens to the periphery of nozzle 8 and communicates with tube 12 to receive a continuous supply of a chemical liquid or ground hardening accelerator B for intermixing with liquid A as will hereinafter be described.
Jet nozzle area 3 alsoincludes a third coaxial jet nozzle disposed about both of nozzles 8,- 9. Nozzle 10 is employed to direct a continuous flow of compressed air outwardly to the periphery of the liquid discharges from nozzles 8, 9 and communicates with tube 13 in order to receive the desired supply of compressed air.
A suitable method in inserting injecting tube 2 into the ground 1 is to first bore a hole and then insert the tube, or alternatively a jet of water discharged from jet opening 5 of jet nozzle 4 could be utilized to bore a hole and insert the tube in one operation.
The injection of the chemical may be carried out when the injecting tube reaches the predetermined depth under the surface. The chemical or grouting suitable may be drawn from the acrylamide series. However, a solution such as from the water glass series, lignin series or acrylates which have relatively shorter coagulation time may also be used. While in the preferred embodiment, the chemical is referred to as a two-liquid type; a one-liquid type may also beused with satisfactory results. In the claims, the general term grouting used to describe the material jetted into the ground is intended to include any and all types of grouting, chemicals, ground hardening agents, etc. usable in accordance with the invention.
The chemical or grouting is discharged at high pressure produced by a high pressure pump or other suitable means (not shown). Also, the compressed air is compressed to a high pressure by means of the pump and is discharged from the jet opening of the jet nozzle. In the case of a one-liquid type chemical, the high pressure jet of chemical from jet nozzle 8 carries a jet force so that the grouting can move forward following cutting of the sand and clay of the ground.
In the case of a two-liquid type chemical, the liquids mix while the sand and clay is being cut away and the mixture fills the excavated gap and subsequently hardens. The compressed air which has been discharged from nozzle 10 acts to exclude underground water and can substantially increase the jet distance of the jet flow of the chemical.
The pressure and flow rate of the liquid chemical and the pressure of the compressed air to be used in excavating the ground are different from each other according to the difference between the soft silt formation, conglomerate formation or cataclastic formation; however, the cutting length by the jet is usually found to be from 1 to 8 meters.
In order to provide such a cutting length, the pressure of the chemical is set to 50-1000 kg/cm and the velocity of the jet of the chemical becomes 100-450 m/sec. The pressure of the chemical may be set to 1,000 kg/cm but if it is set to below 50 kg/cm, the cutting effect may not be obtained. Also, the pressure of the compressed air may be set to a pressure that can exclude the underground water, and according to the depths involved the pressure may range from 3-7 kg/cm.
An example of the results obtained using the concepts of the subject invention is as follows. Injecting tube 2 was inserted into ground of loam formation in which underground water occurred following use of the jet water method for inserting the injecting tube. The grouting chemical was a resin solution from the acrylic series and was fed to jet nozzle area 3 at a pressure of 200 kg/cm by means of a plunger pump in order to be discharged from the associated nozzle at a jet velocity of m/sec. The compressed air discharged from nozzle 10 was supplied at a pressure of 5 kg/cm About 1 hour following discharge and when the ground around the cutting gap was excavated, the chemical hardened substance has set to form a member having a thickness of between 9-15 mm and 700 mm long in the discharge direction.
Under similar condition and when injecting tube 2 was raised or withdrawn from its initial position at a low speed during discharge, a wall having a thickness of 7-18 mm was formed within the ground. This wall was integrally formed and continuous through the ground and is believed to have sufficient watershielding properties.
As explained in the foregoing, when the chemical containing the ground hardening agent is discharged at a high-rate from its nozzle and the compressed air is discharged from its nozzle, the ground cutting function can be improved. Thus, a relatively long, thin wall can be provided.
When the injection operation is repeated using a plurality of injecting tubes 2 spaced along a line in the ground and by using the lifting method as hereinabove described, a continuous water-shielding wall 14 as shown in FIGS. 1 and 2 can be formed. (A) and '(B) of FIG. 2 show the condition where the respective watershielding walls are formed either linearly or in folded form.
When the injecting tube 2 is rotated and the injection is carried out as shown in FIG. 3, a horizontal watershielding wall 15 or a continuous supporting layer of such walls is formed. Furthermore, when the rotation and lifting of the injecting tube 2 are simultaneously carried out, a column-like body is formed.
The invention has been described with reference to the preferred embodiment. Obviously, modifications and alterations will occur to others upon the reading and understanding of this specification. It is our intention to include all such modification and alteration insofar as they come within the scope of the appended claims or the equivalents thereof.
Having thus described our invention, we now claim:
1. A method of high pressure jet-grouting comprising the steps of inserting an injecting tube into the ground, discharging a jet of compressed air with a jet of grouting through a grouting flow nozzle inclined to the axial direction of said tube at a pressure high enough to cut the ground, and cutting the ground with said jet of grouting whereby the cut is filled with said grouting.
2. A method according to claim 1 in which the step of discharging said compressed air comprises discharging said air at a pressure in the range of between 3 to 7 kg/cm 3. A method according to claim 1 further including the step of drawing said injecting tube from its position in the ground during said discharging steps.
4. A method according to claim 1 further including the step of rotating said injecting tube about its axial direction and drawing said injecting tube from its position in the ground during said discharging step.
5. A method according to claim 1 wherein said step of discharging grouting comprises discharging said grouting at a pressure in the range of between 50 to 1,000 kg/cm 6. A method according to claim 1 wherein said step of discharging grouting comprises discharging said grouting at a velocity in the range of between 100 to 450 m/sec.
7. A method according to claim 1 including the step of boring a hole in the ground for receiving said injecting tube.
8. A method according to claim 2 further including rotating said injecting tube about its axial direction during said discharging step.
9. A method of high pressure jet-grouting comprising the steps of inserting an injecting tube into the ground and discharging a jet of compressed air together with a jet of grouting through flow nozzles inclined to the axial direction of said tube and cutting the ground with said jets of air and grouting whereby the cut is filled with said grouting.
10. A method according to claim 9 wherein the pressure of the compressed air and grouting jet cuts the ground for a distance of between 1 to 8 meters.
11. A method according to claim 9 wherein said jet of compressed air is discharged outwardly around the periphery of said jet of grouting.
12. A method according to claim 9 wherein said jet of compressed air is discharged at a pressure in the range of 3 to 7 kg/cm 13. A method according to claim 9 further including discharging two jets of grouting with one jet of grouting being discharged outwardly around the periphery of the other jet of grouting.
14. A method according to claim 13 wherein said jet of compressed air is discharged outwardly around the periphery of the outermost of said two jets of grouting.
15. A method according to claim 9 further including the step of rotating said injecting tube about its axial direction during said discharging step.
16. A method according to claim 9 further including drawing said injecting tube from its position in the ground during said discharging step.
17. A method according to claim 9 further including the step of rotating said injecting tube about its axial direction and drawing said injecting tube from its position in the ground during said discharging step.

Claims (16)

  1. 2. A method according to claim 1 in which the step of discharging said compressed air comprises discharging said air at a pressure in the range of between 3 to 7 kg/cm2.
  2. 3. A method according to claim 1 further including the step of drawing said injecting tube from its position in the ground during said discharging steps.
  3. 4. A method according to claim 1 further including the step of rotating said injecting tube about its axial direction and drawing said injecting tube from its position in the ground during said discharging step.
  4. 5. A method according to claim 1 wherein said step of discharging grouting comprises discharging said grouting at a pressure in the range of between 50 to 1,000 kg/cm2.
  5. 6. A method according to claim 1 wherein said step of discharging grouting comprises discharging said grouting at a velocity in the range of between 100 to 450 m/sec.
  6. 7. A method according to claim 1 including the step of boring a hole in the ground for receiving said injecting tube.
  7. 8. A method according to claim 2 further including rotating said injecting tube about its axial direction during said discharging step.
  8. 9. A method of high pressure jet-grouting comprising the steps of inserting an injecting tube into the ground and discharging a jet of compressed air together with a jet of grouting through flow nozzles inclined to the axial direction of said tube and cutting the ground with said jets of air and grouting whereby the cut is filled with said grouting.
  9. 10. A method according to claim 9 wherein the pressure of the compressed air and grouting jet cuts the ground for a distance of between 1 to 8 meters.
  10. 11. A method according to claim 9 wherein said jet of compressed air is discharged outwardly around the periphery of said jet of grouting.
  11. 12. A method according to claim 9 wherein said jet of compressed air Is discharged at a pressure in the range of 3 to 7 kg/cm2.
  12. 13. A method according to claim 9 further including discharging two jets of grouting with one jet of grouting being discharged outwardly around the periphery of the other jet of grouting.
  13. 14. A method according to claim 13 wherein said jet of compressed air is discharged outwardly around the periphery of the outermost of said two jets of grouting.
  14. 15. A method according to claim 9 further including the step of rotating said injecting tube about its axial direction during said discharging step.
  15. 16. A method according to claim 9 further including drawing said injecting tube from its position in the ground during said discharging step.
  16. 17. A method according to claim 9 further including the step of rotating said injecting tube about its axial direction and drawing said injecting tube from its position in the ground during said discharging step.
US00195196A 1970-11-12 1971-11-03 High pressure jet-grouting method Expired - Lifetime US3802203A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45099168A JPS514003B1 (en) 1970-11-12 1970-11-12

Publications (1)

Publication Number Publication Date
US3802203A true US3802203A (en) 1974-04-09

Family

ID=14240103

Family Applications (1)

Application Number Title Priority Date Filing Date
US00195196A Expired - Lifetime US3802203A (en) 1970-11-12 1971-11-03 High pressure jet-grouting method

Country Status (5)

Country Link
US (1) US3802203A (en)
JP (1) JPS514003B1 (en)
AU (1) AU459462B2 (en)
GB (1) GB1358431A (en)
HK (1) HK69379A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971222A (en) * 1974-05-28 1976-07-27 Robert Burke Soil stabilization
FR2363668A1 (en) * 1976-09-02 1978-03-31 Konoike Const SOIL STABILIZATION METHOD USING A CONSOLIDATION SUSPENSION CONTAINING AIR BUBBLES
US4084648A (en) * 1976-02-12 1978-04-18 Kajima Corporation Process for the high-pressure grouting within the earth and apparatus adapted for carrying out same
EP0125490A1 (en) * 1983-04-19 1984-11-21 FONDEDILE S.p.A Method for making a concrete or similar pile on site
DE3501128A1 (en) * 1985-01-15 1986-07-17 Gkn Keller Gmbh, 6050 Offenbach SEALING AND THEIR MANUFACTURING METHOD FOR THE CREATION OF STRENGTHABLE, DEGRADABLE GROUND DIMENSIONS FOR THE EXECUTION OF UNDERGROUND CONSTRUCTIONS, LIKE CAVITY BUILDINGS OR THE LIKE.
EP0335709A2 (en) * 1988-03-31 1989-10-04 Kabushiki Kaisha Little Rock Shaft construction method
US4958962A (en) * 1989-06-28 1990-09-25 Halliburton Company Methods of modifying the structural integrity of subterranean earth situs
EP0513461A1 (en) * 1991-05-14 1992-11-19 Compagnie Du Sol Method and apparatus for creating thin walls in the ground
EP0539630A1 (en) * 1991-10-31 1993-05-05 Beheersmaatschappij Verstraeten B.V. Method of providing a foundation pile with enlarged base in the ground
US5436396A (en) * 1992-06-22 1995-07-25 Sandvik Rock Tools, Inc. Stabilizing compositions and methods for stabilizing subterranean formations
US5542782A (en) * 1991-06-24 1996-08-06 Halliburton Nus Environmental Corp. Method and apparatus for in situ installation of underground containment barriers under contaminated lands
US5560739A (en) * 1993-11-16 1996-10-01 Kabushiki Kaisha Ask Kenkyusho Method of forming a modified ground in an earthen foundation
US5765965A (en) * 1991-06-24 1998-06-16 Halliburton Nus Corporation Apparatus for in situ installation of underground containment barriers under contaminated lands
US5957624A (en) * 1991-06-24 1999-09-28 Lockheed Martin Idaho Technologies Company Apparatus and method for in Situ installation of underground containment barriers under contaminated lands
US5967700A (en) * 1995-12-04 1999-10-19 Gunther; Johan M. Lime/cement columnar stabilization of soils
US6120214A (en) * 1999-01-20 2000-09-19 Layne Christensen Company Process for constructing reinforced subterranean columns
US6357968B1 (en) 2000-01-12 2002-03-19 Sandia Corporation Method and apparatus for constructing an underground barrier wall structure
US6685398B1 (en) 2002-10-18 2004-02-03 Johan M. Gunther Method to form in-situ pilings with diameters that can differ from axial station to axial station
US20040175242A1 (en) * 2003-03-04 2004-09-09 Yong-Hyun Kim Soft ground improvement system
US6834720B1 (en) * 2001-12-03 2004-12-28 Sandia Corporation Method and apparatus for injecting particulate media into the ground
US20070228804A1 (en) * 2006-03-29 2007-10-04 Howard Concrete Pumping, Inc. Remote mine seal spray nozzle assembly, system and methods of use
GB2430212B (en) * 2005-09-19 2008-02-13 Charles Michael De Fran Hedges Nozzle for apparatus for producing a containment barrier
CN102757104A (en) * 2012-07-30 2012-10-31 山东省水利科学研究院 Process for performing permeable reactive barrier in medium-coarse sand stratum
CN102900068A (en) * 2011-07-28 2013-01-30 辽宁江宁招标咨询服务有限公司 Mixing ejector
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US8662160B2 (en) 2008-08-20 2014-03-04 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9360643B2 (en) 2011-06-03 2016-06-07 Foro Energy, Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
CN106145335A (en) * 2015-04-08 2016-11-23 北京建工环境修复股份有限公司 A kind of discontinuous permeable reactive wall repairs the system and method for polluted underground water
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
CN108797570A (en) * 2017-04-27 2018-11-13 上海工程机械厂有限公司 A kind of mixing pile drilling machine
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534906A (en) * 1976-07-05 1978-01-18 Youji Kashiwara Tire chain winding stand
JPS5981603U (en) * 1982-11-26 1984-06-01 大阪工業株式会社 Wheel support for tire chain installation
DE3407382C2 (en) * 1984-02-29 1994-08-04 Zueblin Ag Process for producing an approximately horizontal sealing layer and device for carrying out the process
GB2156877B (en) * 1984-02-29 1988-02-10 Zueblin Ag Method and apparatus for the subsequent underground sealing of dumps
JPS6146175U (en) * 1984-08-25 1986-03-27 正 壁谷 Automobile tire chain rack
IT1231295B (en) * 1988-11-18 1991-11-28 Nit Co Ltd METHOD TO MODIFY THE SOIL WITH A HARDENING MATERIAL MIXED AND INJECTED AT A VERY HIGH PRESSURE AND EQUIPMENT FOR THE MODIFICATION OF THE SOIL.
JP4313773B2 (en) * 2005-03-14 2009-08-12 株式会社エヌ・アイ・ティ Ground hardening material injection method and its equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1411057A (en) * 1921-04-30 1922-03-28 Miller Elias Newton Sealing device for wells
US2196211A (en) * 1938-05-28 1940-04-09 John P Hartman Method and apparatus for grouting
US2403643A (en) * 1944-02-25 1946-07-09 George L Dresser Method of and apparatus for introducing grout into subsoil
US3243962A (en) * 1961-04-17 1966-04-05 George R Ratliff Method and apparatus for treating soil
US3303656A (en) * 1962-12-21 1967-02-14 Richard E Landau Method and apparatus for constructing columns of material in soil
US3391544A (en) * 1966-12-05 1968-07-09 Intrusion Prepakt Inc Means and method of forming concrete piles
US3608318A (en) * 1969-05-12 1971-09-28 Phillips Petroleum Co Method and apparatus for injecting relatively water-impervious dikes in relatively permeable earth formations,and forming earth-filled tanks and canals therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1411057A (en) * 1921-04-30 1922-03-28 Miller Elias Newton Sealing device for wells
US2196211A (en) * 1938-05-28 1940-04-09 John P Hartman Method and apparatus for grouting
US2403643A (en) * 1944-02-25 1946-07-09 George L Dresser Method of and apparatus for introducing grout into subsoil
US3243962A (en) * 1961-04-17 1966-04-05 George R Ratliff Method and apparatus for treating soil
US3303656A (en) * 1962-12-21 1967-02-14 Richard E Landau Method and apparatus for constructing columns of material in soil
US3391544A (en) * 1966-12-05 1968-07-09 Intrusion Prepakt Inc Means and method of forming concrete piles
US3608318A (en) * 1969-05-12 1971-09-28 Phillips Petroleum Co Method and apparatus for injecting relatively water-impervious dikes in relatively permeable earth formations,and forming earth-filled tanks and canals therewith

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971222A (en) * 1974-05-28 1976-07-27 Robert Burke Soil stabilization
US4084648A (en) * 1976-02-12 1978-04-18 Kajima Corporation Process for the high-pressure grouting within the earth and apparatus adapted for carrying out same
FR2363668A1 (en) * 1976-09-02 1978-03-31 Konoike Const SOIL STABILIZATION METHOD USING A CONSOLIDATION SUSPENSION CONTAINING AIR BUBBLES
US4133179A (en) * 1976-09-02 1979-01-09 Konoike Construction Co., Ltd. Soil stabilizing method using air bubbled solidifying suspension
US4601613A (en) * 1983-04-19 1986-07-22 Fondedile S.P.A. Method for making a concrete or similar pillar on site, and resulting pillar
EP0125490A1 (en) * 1983-04-19 1984-11-21 FONDEDILE S.p.A Method for making a concrete or similar pile on site
DE3501128A1 (en) * 1985-01-15 1986-07-17 Gkn Keller Gmbh, 6050 Offenbach SEALING AND THEIR MANUFACTURING METHOD FOR THE CREATION OF STRENGTHABLE, DEGRADABLE GROUND DIMENSIONS FOR THE EXECUTION OF UNDERGROUND CONSTRUCTIONS, LIKE CAVITY BUILDINGS OR THE LIKE.
DE3501128C3 (en) * 1985-01-15 1998-11-12 Keller Grundbau Gmbh Sealing for the execution of underground structures
EP0335709A2 (en) * 1988-03-31 1989-10-04 Kabushiki Kaisha Little Rock Shaft construction method
EP0335709A3 (en) * 1988-03-31 1991-02-06 Kabushiki Kaisha Little Rock Shaft construction method
US4958962A (en) * 1989-06-28 1990-09-25 Halliburton Company Methods of modifying the structural integrity of subterranean earth situs
EP0513461A1 (en) * 1991-05-14 1992-11-19 Compagnie Du Sol Method and apparatus for creating thin walls in the ground
WO1992020873A1 (en) * 1991-05-14 1992-11-26 Compagnie Du Sol Method and device for constructing thin walls in the ground
US5957624A (en) * 1991-06-24 1999-09-28 Lockheed Martin Idaho Technologies Company Apparatus and method for in Situ installation of underground containment barriers under contaminated lands
US5542782A (en) * 1991-06-24 1996-08-06 Halliburton Nus Environmental Corp. Method and apparatus for in situ installation of underground containment barriers under contaminated lands
US5765965A (en) * 1991-06-24 1998-06-16 Halliburton Nus Corporation Apparatus for in situ installation of underground containment barriers under contaminated lands
EP0539630A1 (en) * 1991-10-31 1993-05-05 Beheersmaatschappij Verstraeten B.V. Method of providing a foundation pile with enlarged base in the ground
US5436396A (en) * 1992-06-22 1995-07-25 Sandvik Rock Tools, Inc. Stabilizing compositions and methods for stabilizing subterranean formations
US5560739A (en) * 1993-11-16 1996-10-01 Kabushiki Kaisha Ask Kenkyusho Method of forming a modified ground in an earthen foundation
US5967700A (en) * 1995-12-04 1999-10-19 Gunther; Johan M. Lime/cement columnar stabilization of soils
US6120214A (en) * 1999-01-20 2000-09-19 Layne Christensen Company Process for constructing reinforced subterranean columns
US6357968B1 (en) 2000-01-12 2002-03-19 Sandia Corporation Method and apparatus for constructing an underground barrier wall structure
US6834720B1 (en) * 2001-12-03 2004-12-28 Sandia Corporation Method and apparatus for injecting particulate media into the ground
US6685398B1 (en) 2002-10-18 2004-02-03 Johan M. Gunther Method to form in-situ pilings with diameters that can differ from axial station to axial station
US20040175242A1 (en) * 2003-03-04 2004-09-09 Yong-Hyun Kim Soft ground improvement system
US6902352B2 (en) * 2003-03-04 2005-06-07 Yong-Hyun Kim Soft ground improvement system
GB2430212B (en) * 2005-09-19 2008-02-13 Charles Michael De Fran Hedges Nozzle for apparatus for producing a containment barrier
US20070228804A1 (en) * 2006-03-29 2007-10-04 Howard Concrete Pumping, Inc. Remote mine seal spray nozzle assembly, system and methods of use
US7682107B2 (en) * 2006-03-29 2010-03-23 Howard Concrete Pumping, Inc. Remote mine seal spray nozzle assembly, system and methods of use
US8820434B2 (en) 2008-08-20 2014-09-02 Foro Energy, Inc. Apparatus for advancing a wellbore using high power laser energy
US9284783B1 (en) 2008-08-20 2016-03-15 Foro Energy, Inc. High power laser energy distribution patterns, apparatus and methods for creating wells
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US8511401B2 (en) 2008-08-20 2013-08-20 Foro Energy, Inc. Method and apparatus for delivering high power laser energy over long distances
US10036232B2 (en) 2008-08-20 2018-07-31 Foro Energy Systems and conveyance structures for high power long distance laser transmission
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US8636085B2 (en) 2008-08-20 2014-01-28 Foro Energy, Inc. Methods and apparatus for removal and control of material in laser drilling of a borehole
US8662160B2 (en) 2008-08-20 2014-03-04 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US8701794B2 (en) 2008-08-20 2014-04-22 Foro Energy, Inc. High power laser perforating tools and systems
US8869914B2 (en) 2008-08-20 2014-10-28 Foro Energy, Inc. High power laser workover and completion tools and systems
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US8757292B2 (en) 2008-08-20 2014-06-24 Foro Energy, Inc. Methods for enhancing the efficiency of creating a borehole using high power laser systems
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US8936108B2 (en) 2008-08-20 2015-01-20 Foro Energy, Inc. High power laser downhole cutting tools and systems
US8997894B2 (en) 2008-08-20 2015-04-07 Foro Energy, Inc. Method and apparatus for delivering high power laser energy over long distances
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US11060378B2 (en) * 2008-08-20 2021-07-13 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US8826973B2 (en) 2008-08-20 2014-09-09 Foro Energy, Inc. Method and system for advancement of a borehole using a high power laser
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9327810B2 (en) 2008-10-17 2016-05-03 Foro Energy, Inc. High power laser ROV systems and methods for treating subsea structures
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US8879876B2 (en) 2010-07-21 2014-11-04 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9784037B2 (en) 2011-02-24 2017-10-10 Daryl L. Grubb Electric motor for laser-mechanical drilling
US9360643B2 (en) 2011-06-03 2016-06-07 Foro Energy, Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
CN102900068A (en) * 2011-07-28 2013-01-30 辽宁江宁招标咨询服务有限公司 Mixing ejector
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
CN102757104A (en) * 2012-07-30 2012-10-31 山东省水利科学研究院 Process for performing permeable reactive barrier in medium-coarse sand stratum
CN106145335A (en) * 2015-04-08 2016-11-23 北京建工环境修复股份有限公司 A kind of discontinuous permeable reactive wall repairs the system and method for polluted underground water
CN106145335B (en) * 2015-04-08 2019-04-30 北京建工环境修复股份有限公司 A kind of discontinuous permeable reactive wall repairs the system and method for polluted underground water
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
CN108797570A (en) * 2017-04-27 2018-11-13 上海工程机械厂有限公司 A kind of mixing pile drilling machine
CN108797570B (en) * 2017-04-27 2023-08-15 上海工程机械厂有限公司 Stirring pile drilling machine

Also Published As

Publication number Publication date
JPS514003B1 (en) 1976-02-07
GB1358431A (en) 1974-07-03
AU459462B2 (en) 1975-03-27
AU3493971A (en) 1973-05-03
HK69379A (en) 1979-10-05

Similar Documents

Publication Publication Date Title
US3802203A (en) High pressure jet-grouting method
US4057969A (en) Method and device for obtaining a water-tight shield in the soil with the use of nozzles
US4786212A (en) Process and apparatus for reinforcing a predeterminable area in the ground
US3608317A (en) Formation and backfill of cavities in soil by jetting
JPH07238532A (en) Method and device for soil improvement
ES8503764A1 (en) Method for making a concrete or similar pile on site.
JP2004346734A (en) Device for injecting quick setting agent using high-speed jet fluid
US4304507A (en) Method for producing a continuous wall
JP3357648B2 (en) Cavitation jet ground hardened layer formation method and device by differential pressure confluence
JPH04115014A (en) Method of improving foundation by filling hardener by use of high pressure jet water
KR800000650B1 (en) Method of forming continuous underground walls on weak footing
JP3188646B2 (en) Method and apparatus for mixing aggregate, solidified material and liquid
JPH01247611A (en) Construction and device for foundation improvement with the joint use of agitator and jet
JPS55165314A (en) Method and device for chemical grouting for improvement of ground
JP2863157B1 (en) Hardening material injection method in sandy ground
JPS57133918A (en) Improvement of ground
JPS60495B2 (en) Method for creating underground hardened objects
EP1099799B1 (en) Apparatus and method for producing a high pressure grouted foundation pile
JP3812059B2 (en) Ground improvement method
JPH06146260A (en) Forming method of columnar body in ground and device therefor
JP2585137B2 (en) Ground improvement method using solidified columns and drilling equipment for ground improvement
JPS589207B2 (en) Chichiyuukou Kabutsutaino Zouseikohou
KR19980082227A (en) Two-component hardener injection method and its apparatus
KR860001186B1 (en) Apparatus for hardening the soft soil
JPH05321511A (en) Construction method for underground vessel in weak ground