US3807390A - Fiber optic catheter - Google Patents

Fiber optic catheter Download PDF

Info

Publication number
US3807390A
US3807390A US00312099A US31209972A US3807390A US 3807390 A US3807390 A US 3807390A US 00312099 A US00312099 A US 00312099A US 31209972 A US31209972 A US 31209972A US 3807390 A US3807390 A US 3807390A
Authority
US
United States
Prior art keywords
catheter
ball
fiber optic
distal end
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00312099A
Inventor
D Ostrowski
M Polanyi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Optical Corp
Warner Lambert Technologies Inc
Original Assignee
American Optical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Optical Corp filed Critical American Optical Corp
Priority to US00312099A priority Critical patent/US3807390A/en
Priority to DE2348402A priority patent/DE2348402C2/en
Priority to JP13444373A priority patent/JPS576933B2/ja
Application granted granted Critical
Publication of US3807390A publication Critical patent/US3807390A/en
Assigned to WARNER LAMBERT COMPANY, A CORP. OF DEL. reassignment WARNER LAMBERT COMPANY, A CORP. OF DEL. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AMERICAN OPTICAL CORPORATION,
Assigned to WARNER LAMBERT TECHNOLOGIES, INC., A CORP OF TX. reassignment WARNER LAMBERT TECHNOLOGIES, INC., A CORP OF TX. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WARNER LAMBERT COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/155Devices specially adapted for continuous or multiple sampling, e.g. at predetermined intervals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/15003Source of blood for venous or arterial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150992Blood sampling from a fluid line external to a patient, such as a catheter line, combined with an infusion line; blood sampling from indwelling needle sets, e.g. sealable ports, luer couplings, valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/153Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0228Operational features of calibration, e.g. protocols for calibrating sensors using calibration standards
    • A61B2560/0233Optical standards

Definitions

  • a flexible fiber optic catheter insertable into the cardiovascular system for monitoring blood oxygen saturation.
  • the catheter has a distal cage for preventing its end face from contacting vessel walls or the endocardium during use.
  • the cage is terminated with a smoothly surfaced ball which is adapted to provide fixed reflections of light directed thereon from the catheter when in air or placed in a clear sterile solution for calibration prior to use.
  • catheter calibration has required that the distel end of the catheter be placed in a sterile suspension medium such as milk-of-magnesia which will give a fixed ratio of reflections of wavelengths of light such as 805mu and 660mu or others which may be used for blood oxygen saturation or dye dilution testing.
  • This method of calibrating in-vivo catheters is potentially dangerous to patients since portions of the suspension medium clinging to the catheter may become introduced into the patients blood stream.
  • These inclusions in not being isotonic with blood and embolic are potentially dangerous to the patient and, leastwise, may adversely affect the accuracy of oxygen saturation determinations and/or other measurements taken with the in-vivo catheter and its associated equipment.
  • This invention makes it possible to calibrate in-vivo catheters without the subsequent danger of introducing extraneous matter into the blood stream and further provides an improved catheter tip design offering minimal obstruction and resistance to a flow of blood therethrough and maximum exposure of all of its external surfaces for cleaning and sterilization.
  • the objectives of this invention are accomplished by providing the fiber optic catheter in this case with a forwardly directed cage protecting its end face against coming into contact with or close enough relationship to the blood vessel walls or endocardium to cause problems of errors in oxygen saturation determination or other tests being conducted by intravascular and intracardiac fiber optic catherization.
  • This cage uniquely comprises a dual pronged configuration, e.g., a single loop or wire, having a ball tip of a diametral size approximating the thickness of the catheter.
  • the ball is formed of a substance which will provide a fixed ratio of reflections of wavelengths of light emitted from the catheter face when the catheter tip is in air or in a clear sterile solution after sterilization.
  • the fixed ratio of reflections may be used to calibrate the catheter and its associated instrumentation so that absolute readings of oxygen saturation, for example, or other accurate measurements may be obtained.
  • FIG. 1 is an illustration, in perspective, of a fiber optic catheter and system of a type useful in performing in-vivo testing of blood wherein the catheter incorporates a preferred embodiment of the invention
  • FIG. 2 is a greatly enlarged fragmentary view, in perspective, of the distal end portion of the catheter of FIG. 1 showing the embodiment of the invention in greater detail;
  • FIG. 3 is a fragmentary longitudinal cross-sectional view of the portion of the catheter shown in FIG. 2.
  • Fiber optic catheter 10 comprises a length of standard cardiac catheter tubing 12 containing a bundle 14 of efferent and afferent light-conducting fibers 16 (FIGS. 2 and 3).
  • tube 18 which may Be disposed centrally of bundle 16 or to one side thereof as illustrated in FIG. 2.
  • Tube 18 which may be used for monitoring blood pressure or withdrawing samples of blood or introducing a medication is conventional.
  • optical fibers 16 are also conventional in cathqters of.this-type.
  • optical fibers 16 some of iichsconductl.light...efferently...throughQcatheter 10 toward its distal end and, .others of which receive and conduct light affere ntlytoward I I fibers in bugdia g y be randomly intermixed adjacent the distal enH fcatITETe FIiIIT and respectively individually s eparated into branches 20 and 22 at the proximzr''fia of catheter 10 (FIG. l). Alternatively, they may be retained in separately bundled relationship throughout the entire length of catheter 10.
  • Those interested in greater details of fiber optic catheter constructions and/or the construction and function of individual fibers may refer to US. Pat. Nos. 3,068,742 and 3,068,739.
  • light from lamp 24 is introduced into the optical fibers contained in one branch 20 of the catheter for conductance through the catheter and emission outwardly thereof at its face 26 directly into blood within a vessel or heart chamber of the cardiovascular system into which the catheter is inserted for this purpose.
  • This light upon entering the blood becomes diffusely reflected thereby back toward and partially into face 26 for reception by afferent fibers therein which convey the reflected light back through catheter 10 to and outwardly of branch 22. It is then received by a photodetector 28 from which a measurement of its intensity may be made.
  • the filters 30 and 32 may be replaced by a suitable dichroic beam splitter placed so as to receive the light returned by catheter through branch 22 and direct preselected individual wavelengths of this light along separate paths to two or more photoelectric detectors similar to detector 28 from which interpretation of the ratio of intensities of the different wavelengths of light may be accomplished for determination of blood oxygen saturation.
  • a suitable dichroic beam splitter placed so as to receive the light returned by catheter through branch 22 and direct preselected individual wavelengths of this light along separate paths to two or more photoelectric detectors similar to detector 28 from which interpretation of the ratio of intensities of the different wavelengths of light may be accomplished for determination of blood oxygen saturation.
  • a fixed ratio of reflections of light emitted from face 26 of catheter 10 is accomplished in air or in a clear saline solution or the like, i.e., without contamination of the catheter by nonisotonic mediums such as milk-of-magnesia, as follows:
  • Catheter tubing 12 is longitudinally slotted adjacent face 26 at diametrically opposite sides to receive each of the free ends 36 of a two pronged, hairpin-like cage 38 which extends forwardly from the slotted catheter tubing 12 beyond face 26.
  • a ball 40 at the end of cage 38 is grooved and set into place or previously molded over the looped end 42 of cage 38.
  • the ball 40 may be formed of metal and cemented or soltered in place or, preferably, molded of a white pigmented epoxy which will not degrade or deteriorate when exposed to gas sterilization, e.g., ethylene oxide gas. In either case, ball 40 is highly polished or otherwise smoothly finished and is preferably of a diameter approximately equal to the diametral thickness of catheter tubing 12. Ends 36 of cage 38 are permanently fixed to catheter 10 preferably with a binding wire or cord 44 wrapped therearound in a circumferential slot extending about catheter tubing 12. Once ends 36 of the cage are secured in place, the slots are filled with a suitable cement preferably of the epoxy type which forms a smooth outer sur face flush and continuous with the main outer surface of catheter tubing 12. All potentially sharp edges of the catheter are removed by rounding and/or polishing and all corners between face 26 and cage 38 as well as between ball 40 and the wire legs of the cage are open and readily accessible for cleaning and sterilization.
  • a white pigmented epoxy which will not degrade or deteriorate when exposed to gas sterilization,
  • the distal end of the catheter is inserted into the cardiovascular system with the smoothly finished ball 40 functioning to guide the catheter thercinto with minimal friction and/0r irritation to vascular walls of the endocardium while keeping face 26 of the catheter sufficiently spaced therefrom to permit a free flow of blood across face 26 at all times.
  • catheter 12 Prior to use or reuse of catheter 12 it must, in either case, be sterilized, e.g., by exposure to ethylene oxide gas, and then calibrated in conjunction with the electro-optical system with which it may be used for performing oxygen saturation or dye dilution measurements.
  • This calibration, with the cage 38 of the present invention may be performed simply in a clean air environment by directing light of wavelengths intended to be used for testing through afferent fibers 16 of bundle 14 which light becomes emitted from face 26 and reflected from ball 40 as shown by arrows in FIG. 3 reversely upon face 26. All directions of reflection being fixed and constant, calibration of the catheter and its associated instrumentation according to the ratio of light wavelengths (e.g., 805mu and 660mu) returned through the catheter may be accomplished.
  • the instrument measuring meter may be set to read zero at this time or, alternatively, set to read a percentage of blood oxygen saturation, e.g., percent which is known to reflect the same ratio of light wavelengths.
  • This calibration in either case, is performed without contamination of the catheter by the heretofore requirement that it be placed in a non-isotonic medium. It should be understood that calibration of catheter 10 with ball 40 of cage 38 may be accomplished within a clear isotonic liquid such as a saline solution if desired.
  • catheter 10 being adaptable to calibration without immersion of its distal end in an extraneous calibrating medium, its cage 38 construction, having only two posts 48, uniquely renders this catheter relative to conventional catheters, more readily adaptable to cleaning and complete sterilization and less resistant to the circulation of blood through its cage with a corresponding lessening of tendencies for clotting.
  • a fiber optic catheter for use in measuring amounts of diffuse reflection of light in blood, said catheter having a multiplicity of light-conducting fibers and a catheter tubing surrounding said fibers, the fibers all being intimately juxtaposed adjacent the distal end of said catheter with corresponding end faces thereof exposed at said distal end and separated into a pair of branches adjacent the opposite proximal end of said catheter, corresponding fibers of each branch being intimately juxtaposed and respective end faces thereof exposed; wherein the improvement comprises;
  • a rigid ball disposed forwardly of said exposed faces of said fibers at said distal end of said catheter and spaced away therefrom a distance greater than a maximum distance of penetration of light into blood whereby light emitted from said exposed faces of said fibers will be prevented from reaching said ball when said distal end of said catheter is placed in blood, said ball further being formed of a substance which characteristically reflects a fixed ratio of at least two preselected wavelengths of light directed thereupon from said exposed faces of said fibers at said distal end of said catheter when said distal end including said exposed faces and said ball is disposed in air and clear liquids; and
  • a pair of slender posts supporting said ball in said spaced relationship with said fiber faces, said posts respectively extending from approximately diametrically opposed sides of said ball in a direction longitudinally of said catheter tubing and being secured to said distal end of said catheter for completing the configuration of a cage permitting a free flow of blood between said ball and adjacent fiber faces when said catheter distal end is placed in said blood for testing thereof, said cage further preventing contact of said exposed fiber ends with walls of means containing said blood.
  • a fiber optic catheter according to claim 1 in combination with means for introducing light into said exposed end faces of one of said branches and photoelectric means for receiving light emitted from said exposed faces of the other of said branches.
  • a fiber optic catheter in the combination according to claim 9 further including means for determining ratios of amounts of light of two preselected wavelengths returned through said catheter from said distal end to one of said branches at said proximal end.

Abstract

A flexible fiber optic catheter insertable into the cardiovascular system for monitoring blood oxygen saturation. The catheter has a distal cage for preventing its end face from contacting vessel walls or the endocardium during use. The cage is terminated with a smoothly surfaced ball which is adapted to provide fixed reflections of light directed thereon from the catheter when in air or placed in a clear sterile solution for calibration prior to use.

Description

United Star Ostrowski et al.
[451 Apr. 30, 1974 FIBER OPTIC CATHETER Inventors: David Ostrowski, Dudley; Michael L. Polanyi, Webster, both of Mass.
American Optical Corporation, Southbridge, Mass.
Filed: Dec. 4, 1972 Appl. No.: 312,099
Assignee:
US. Cl...... 128/2.05 R, 128/2 L, 128/DIG. 16, 350/96 B, 356/41 Int. Cl A6lb 5/02 Field of Search 128/2.05 R, 2.05 D, 2.05 F, 128/2 L, DIG. 9, DIG. 16; 356/41; 350/96 B, 175 SL References Cited UNITED STATES PATENTS Hugenholtz et al. 128/2 L 3,123,066 3/1964 Brumlcy 128/2 L 3,461,856 8/1969 l28/2.05 R X 3,498,286 3/1970 Polanyi et al. 128/2 L 3,674,013 7/ l 972 Polzmyi 1211/2115 D Primary ExaminerLucie H. Laudenslager Attorney, Agent, or Firm-William C. Nealon ABSTRACT A flexible fiber optic catheter insertable into the cardiovascular system for monitoring blood oxygen saturation. The catheter has a distal cage for preventing its end face from contacting vessel walls or the endocardium during use. The cage is terminated with a smoothly surfaced ball which is adapted to provide fixed reflections of light directed thereon from the catheter when in air or placed in a clear sterile solution for calibration prior to use.
10 Claims, 3 Drawing Figures R ma ze/2.0%
FIBER omc CATHETER BACKGROUND OF THE INVENTION Heretofore, catheter calibration has required that the distel end of the catheter be placed in a sterile suspension medium such as milk-of-magnesia which will give a fixed ratio of reflections of wavelengths of light such as 805mu and 660mu or others which may be used for blood oxygen saturation or dye dilution testing. This method of calibrating in-vivo catheters, however, is potentially dangerous to patients since portions of the suspension medium clinging to the catheter may become introduced into the patients blood stream. These inclusions in not being isotonic with blood and embolic, are potentially dangerous to the patient and, leastwise, may adversely affect the accuracy of oxygen saturation determinations and/or other measurements taken with the in-vivo catheter and its associated equipment.
This invention makes it possible to calibrate in-vivo catheters without the subsequent danger of introducing extraneous matter into the blood stream and further provides an improved catheter tip design offering minimal obstruction and resistance to a flow of blood therethrough and maximum exposure of all of its external surfaces for cleaning and sterilization.
SUMMARY OF THE INVENTION The objectives of this invention are accomplished by providing the fiber optic catheter in this case with a forwardly directed cage protecting its end face against coming into contact with or close enough relationship to the blood vessel walls or endocardium to cause problems of errors in oxygen saturation determination or other tests being conducted by intravascular and intracardiac fiber optic catherization. This cage uniquely comprises a dual pronged configuration, e.g., a single loop or wire, having a ball tip of a diametral size approximating the thickness of the catheter. The ball is formed of a substance which will provide a fixed ratio of reflections of wavelengths of light emitted from the catheter face when the catheter tip is in air or in a clear sterile solution after sterilization. By such means, the fixed ratio of reflections may be used to calibrate the catheter and its associated instrumentation so that absolute readings of oxygen saturation, for example, or other accurate measurements may be obtained. With calibration performed in a clean air environment or a clear saline solution which is isotonic with body fluids, such hazards as contamination of patients blood or the creation of embolisms therein by residue of conventional calibrating suspension mediums is avoided.
Details of the invention will be more readily understood by reference to the following description taken in conjunction with the accompanying drawings.
DESCRIPTION OF THE DRAWINGS FIG. 1 is an illustration, in perspective, of a fiber optic catheter and system of a type useful in performing in-vivo testing of blood wherein the catheter incorporates a preferred embodiment of the invention;
FIG. 2 is a greatly enlarged fragmentary view, in perspective, of the distal end portion of the catheter of FIG. 1 showing the embodiment of the invention in greater detail; and
FIG. 3 is a fragmentary longitudinal cross-sectional view of the portion of the catheter shown in FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Fiber optic catheter 10 comprises a length of standard cardiac catheter tubing 12 containing a bundle 14 of efferent and afferent light-conducting fibers 16 (FIGS. 2 and 3).
Included with theb u nglg l4 of light-condu cting fibers 16 is tube 18 which may Be disposed centrally of bundle 16 or to one side thereof as illustrated in FIG. 2. Tube 18 which may be used for monitoring blood pressure or withdrawing samples of blood or introducing a medication is conventional. Also conventional in cathqters of.this-type are optical fibers 16, some of iichsconductl.light...efferently...throughQcatheter 10 toward its distal end and, .others of which receive and conduct light affere ntlytoward I I fibers in bugdia g y be randomly intermixed adjacent the distal enH fcatITETe FIiIIT and respectively individually s eparated into branches 20 and 22 at the proximzr''fia of catheter 10 (FIG. l). Alternatively, they may be retained in separately bundled relationship throughout the entire length of catheter 10. Those interested in greater details of fiber optic catheter constructions and/or the construction and function of individual fibers may refer to US. Pat. Nos. 3,068,742 and 3,068,739.
In determining oxygen saturation of blood in-vivo with catheter 10, for example, light from lamp 24 is introduced into the optical fibers contained in one branch 20 of the catheter for conductance through the catheter and emission outwardly thereof at its face 26 directly into blood within a vessel or heart chamber of the cardiovascular system into which the catheter is inserted for this purpose. This light, upon entering the blood becomes diffusely reflected thereby back toward and partially into face 26 for reception by afferent fibers therein which convey the reflected light back through catheter 10 to and outwardly of branch 22. It is then received by a photodetector 28 from which a measurement of its intensity may be made.
To the extent that catheter 10 and its function in de termining oxygen saturation of blood have been thus far described, the catheter and its associated light source and photoelectric detector 28 are conventional and explained in detail in the aforementioned US. Pat. Nos. 3,068,742 and 3,068,739. As is also explained in these patents, typical wavelengths of light useful in performing in-vivo oxygen saturation determinations are 805mu and 660mu which may be alternately or intermitently supplied to branch 20 of catheter 10 by positioning suitable light filters 30 and 32 in the path of light from lamp 24. Filters 30 and 32 may be supported in a rotating disc 34 as illustrated in FIG. 1 or in a sliding mechanism as shown and described in the aforementioned U.S. patents. Alternatively, the filters 30 and 32 may be replaced by a suitable dichroic beam splitter placed so as to receive the light returned by catheter through branch 22 and direct preselected individual wavelengths of this light along separate paths to two or more photoelectric detectors similar to detector 28 from which interpretation of the ratio of intensities of the different wavelengths of light may be accomplished for determination of blood oxygen saturation. This latter arrangement of beam splitting and individual photoelectric detection of different wavelengths of light may be found in U.S. Pat. No. 3,296,922.
In order to render catheter and its associated electro-optical system capable of affording absolute and/or accurate measurement of oxygen saturation or dye dilution in-vivo with each application of catheter 10 to the body, calibration of the catheter and its associated electro-optical instrumentation is required as is explained in U.S. Pat. Nos. 3,068,742; 3,068,739; and 3,296,922. This calibration, accordingly, requires that a portion of light directed through and emitted from face 26 of catheter 10 be returned therethrough with a fixed ratio of reflections. e.g.. SO Srnu/mu. This. has been accomplished heretofore by placing face 26 of catheter 10 in a suspension medium of. for example. milk-of-magnesia whereupon a zero or other preselected meter reading of an electro-optical measuring system used in conjunction with catheter 10 may be established as a reference for interpreting readings of blood oxygen saturation or dye concentration in-vivo.
According to the present invention, a fixed ratio of reflections of light emitted from face 26 of catheter 10 is accomplished in air or in a clear saline solution or the like, i.e., without contamination of the catheter by nonisotonic mediums such as milk-of-magnesia, as follows: Catheter tubing 12 is longitudinally slotted adjacent face 26 at diametrically opposite sides to receive each of the free ends 36 of a two pronged, hairpin-like cage 38 which extends forwardly from the slotted catheter tubing 12 beyond face 26. A ball 40 at the end of cage 38 is grooved and set into place or previously molded over the looped end 42 of cage 38. The ball 40 may be formed of metal and cemented or soltered in place or, preferably, molded of a white pigmented epoxy which will not degrade or deteriorate when exposed to gas sterilization, e.g., ethylene oxide gas. In either case, ball 40 is highly polished or otherwise smoothly finished and is preferably of a diameter approximately equal to the diametral thickness of catheter tubing 12. Ends 36 of cage 38 are permanently fixed to catheter 10 preferably with a binding wire or cord 44 wrapped therearound in a circumferential slot extending about catheter tubing 12. Once ends 36 of the cage are secured in place, the slots are filled with a suitable cement preferably of the epoxy type which forms a smooth outer sur face flush and continuous with the main outer surface of catheter tubing 12. All potentially sharp edges of the catheter are removed by rounding and/or polishing and all corners between face 26 and cage 38 as well as between ball 40 and the wire legs of the cage are open and readily accessible for cleaning and sterilization.
In use, the distal end of the catheter is inserted into the cardiovascular system with the smoothly finished ball 40 functioning to guide the catheter thercinto with minimal friction and/0r irritation to vascular walls of the endocardium while keeping face 26 of the catheter sufficiently spaced therefrom to permit a free flow of blood across face 26 at all times.
Prior to use or reuse of catheter 12 it must, in either case, be sterilized, e.g., by exposure to ethylene oxide gas, and then calibrated in conjunction with the electro-optical system with which it may be used for performing oxygen saturation or dye dilution measurements. This calibration, with the cage 38 of the present invention may be performed simply in a clean air environment by directing light of wavelengths intended to be used for testing through afferent fibers 16 of bundle 14 which light becomes emitted from face 26 and reflected from ball 40 as shown by arrows in FIG. 3 reversely upon face 26. All directions of reflection being fixed and constant, calibration of the catheter and its associated instrumentation according to the ratio of light wavelengths (e.g., 805mu and 660mu) returned through the catheter may be accomplished. The instrument measuring meter may be set to read zero at this time or, alternatively, set to read a percentage of blood oxygen saturation, e.g., percent which is known to reflect the same ratio of light wavelengths.
This calibration, in either case, is performed without contamination of the catheter by the heretofore requirement that it be placed in a non-isotonic medium. It should be understood that calibration of catheter 10 with ball 40 of cage 38 may be accomplished within a clear isotonic liquid such as a saline solution if desired.
When the catheter is inserted into the cardiovascular system wherein the space between ball 40 and face 26 is filled with blood, ball 40 has no effect upon the reflection of light from the blood back into face 26. The density of blood prevents light, especially 805 and 660mu wavelengths, from penetrating appreciably thereinto before diffuse reflection. The spacing between face '26 and ball 40 is considerably greater than a distance in blood capable of being penetrated by light and especially, even greater than a distance through which light might be directed and returned by reflection in blood.
In addition to catheter 10 being adaptable to calibration without immersion of its distal end in an extraneous calibrating medium, its cage 38 construction, having only two posts 48, uniquely renders this catheter relative to conventional catheters, more readily adaptable to cleaning and complete sterilization and less resistant to the circulation of blood through its cage with a corresponding lessening of tendencies for clotting.
We claim:
1. A fiber optic catheter for use in measuring amounts of diffuse reflection of light in blood, said catheter having a multiplicity of light-conducting fibers and a catheter tubing surrounding said fibers, the fibers all being intimately juxtaposed adjacent the distal end of said catheter with corresponding end faces thereof exposed at said distal end and separated into a pair of branches adjacent the opposite proximal end of said catheter, corresponding fibers of each branch being intimately juxtaposed and respective end faces thereof exposed; wherein the improvement comprises;
a rigid ball disposed forwardly of said exposed faces of said fibers at said distal end of said catheter and spaced away therefrom a distance greater than a maximum distance of penetration of light into blood whereby light emitted from said exposed faces of said fibers will be prevented from reaching said ball when said distal end of said catheter is placed in blood, said ball further being formed of a substance which characteristically reflects a fixed ratio of at least two preselected wavelengths of light directed thereupon from said exposed faces of said fibers at said distal end of said catheter when said distal end including said exposed faces and said ball is disposed in air and clear liquids; and
a pair of slender posts supporting said ball in said spaced relationship with said fiber faces, said posts respectively extending from approximately diametrically opposed sides of said ball in a direction longitudinally of said catheter tubing and being secured to said distal end of said catheter for completing the configuration of a cage permitting a free flow of blood between said ball and adjacent fiber faces when said catheter distal end is placed in said blood for testing thereof, said cage further preventing contact of said exposed fiber ends with walls of means containing said blood.
2. A fiber optic catheter according to claim 1 wherein said fibers of each of said branches are randomely intermixed adjacent said distal end of said catheter.
3. A fiber optic cather according to claim 1 wherein said fibers in said branches are maintained in correspondingly separated relationship throughout the length of said catheter.
4. A fiber optic catheter according to claim 1 wherein said pair of slender posts comprise oppositely disposed extensions of a looped length of Wire and said ball is affixed to the intermediate looped portion of said wire.
5. A fiber optic catheter according to claim 1 wherein said ball is formed of a white pigmented plastic material.
6. A fiber optic catheter according to claim 1 wherein said ball is formed of metal.
7. A fiber optic catheter according to claim 4 wherein said ball is molded over said looped intermediate portion of said length of wire.
8. A fiber optic catheter according to claim 1 wherein said slender posts are at least partially imbedded in said catheter tubing and said tubing is smoothly finished thereover.
9. A fiber optic catheter according to claim 1 in combination with means for introducing light into said exposed end faces of one of said branches and photoelectric means for receiving light emitted from said exposed faces of the other of said branches.
10. A fiber optic catheter in the combination according to claim 9 further including means for determining ratios of amounts of light of two preselected wavelengths returned through said catheter from said distal end to one of said branches at said proximal end.

Claims (10)

1. A fiber optic catheter for use in measuring amounts of diffuse reflection of light in blood, said catheter having a multiplicity of light-conducting fibers and a catheter tubing surrounding said fibers, the fibers all being intimately juxtaposed adjacent the distal end of said catheter with corresponding end faces thereof exposed at said distal end and separated into a pair of branches adjacent the opposite proximal end of said catheter, corresponding fibers of each branch being intimately juxtaposed and respective end faces thereof exposed; wherein the improvement comprises; a rigid ball disposed forwardly of said exposed faces of said fibers at said distal end of said catheter and spaced away therefrom a distance greater than a maximum distance of penetration of light into blood whereby light emitted from said exposed faces of said fibers will be prevented from reaching said ball when said distal end of said catheter is placed in blood, said ball further being formed of a substance which characteristically reflects a fixed ratio of at least two preselected wavelengths of light directed thereupon from said exposed faces of said fibers at said distal end of said catheter when said distal end including said exposed faces and said ball is disposed in air and clear liquids; and a pair of slender posts supporting said ball in said spaced relationship with said fiber faces, said posts respectively extending from approximately diametrically opposed sides of said ball in a direction longitudinally of said catheter tubing and being secured to said distal end of said catheter for completing the configuration of a cage permitting a free flow of blood between said ball and adjacent fiber faces when said catheter distal end is placed in said blood for testing thereof, said cage further preventing contact of said exposed fiber ends with walls of means containing said blood.
2. A fiber optic catheter according to claim 1 wherein said fibers of each of said branches are randomely intermixed adjacent said distal end of said catheter.
3. A fiber optic cather according to claim 1 wherein said fibers in said branches are maintained in correspondingly separated relationship throughout the length of said catheter.
4. A fiber optic catheter according to claim 1 wherein said pair of slender posts comprise oppositely disposed extensions of a looped length of wire and said ball is affixed to the intermediate looped portion of said wire.
5. A fiber optic catheter according to claim 1 wherein said ball is formed of a white pigmented plastic material.
6. A fiber optic catheter according to claim 1 wherein said ball is formed of metal.
7. A fiber optic catheter according to claim 4 wherein said ball is molded over said looped intermediate portion of said length of wire.
8. A fiber optic catheter according to claim 1 wherein said slender posts are at least partially imbedded in said catheter tubing and said tubing is smoothly finished thereover.
9. A fiber optic catheter according to claim 1 in combination with means for introducing light into said exposed end faces of one of said branches and photoelectric means for receiving light emitted from said exposed faces of the other of said branches.
10. A fiber optic catheter in the combination according to claim 9 further including means for determining ratios of amounts of light of two preselected wavelengths returned through said catheter from said distal end to one of said branches at said proximal end.
US00312099A 1972-12-04 1972-12-04 Fiber optic catheter Expired - Lifetime US3807390A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US00312099A US3807390A (en) 1972-12-04 1972-12-04 Fiber optic catheter
DE2348402A DE2348402C2 (en) 1972-12-04 1973-09-24 Fiber optic catheter
JP13444373A JPS576933B2 (en) 1972-12-04 1973-12-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00312099A US3807390A (en) 1972-12-04 1972-12-04 Fiber optic catheter

Publications (1)

Publication Number Publication Date
US3807390A true US3807390A (en) 1974-04-30

Family

ID=23209881

Family Applications (1)

Application Number Title Priority Date Filing Date
US00312099A Expired - Lifetime US3807390A (en) 1972-12-04 1972-12-04 Fiber optic catheter

Country Status (3)

Country Link
US (1) US3807390A (en)
JP (1) JPS576933B2 (en)
DE (1) DE2348402C2 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016871A (en) * 1975-03-06 1977-04-12 Peter Schiff Electronic synchronizer-monitor system for controlling the timing of mechanical assistance and pacing of the heart
US4042823A (en) * 1976-03-17 1977-08-16 The United States Of America As Represented By The Secretary Of The Navy Optical scanner
NL7702288A (en) * 1976-03-05 1977-09-07 American Optical Corp FIBER OPTICAL PROBE.
FR2409743A1 (en) * 1977-11-28 1979-06-22 Usa OPTICAL FIBER PH PROBE
US4322164A (en) * 1976-10-18 1982-03-30 Oximetrix, Inc. Sterilizable, disposable optical scattering reference medium and container assembly
WO1983003344A1 (en) * 1982-03-30 1983-10-13 Us Commerce Fiber optic p¿o2? probe
EP0093927A1 (en) * 1982-04-29 1983-11-16 Firma Carl Zeiss Spectral measuring device for use in blood vessels
GB2136120A (en) * 1983-03-10 1984-09-12 Shionogi & Co Photoelectric brain scanner and its use
EP0279316A2 (en) * 1987-02-09 1988-08-24 Sumitomo Electric Industries Limited Mechanism for bending elongated body
US4772093A (en) * 1985-12-12 1988-09-20 Microvasive, Inc. Fiber-optic image-carrying device
US4796633A (en) * 1985-06-25 1989-01-10 American Hospital Supply Corporation Method and apparatus for in vitro calibration of oxygen saturation monitor
US4819632A (en) * 1986-05-19 1989-04-11 Davies David H Retrolasing catheter and method
US4830013A (en) * 1987-01-30 1989-05-16 Minnesota Mining And Manufacturing Co. Intravascular blood parameter measurement system
EP0366840A1 (en) * 1986-12-16 1990-05-09 BAXTER INTERNATIONAL INC. (a Delaware corporation) Optical catheter calibration apparatus and method
US4934369A (en) * 1987-01-30 1990-06-19 Minnesota Mining And Manufacturing Company Intravascular blood parameter measurement system
US4951669A (en) * 1987-01-30 1990-08-28 Minnesota Mining And Manufacturing Company Blood parameter measurement system
US4989606A (en) * 1987-01-30 1991-02-05 Minnesota Mining And Manufactoring Company Intravascular blood gas sensing system
US4994059A (en) * 1986-05-09 1991-02-19 Gv Medical, Inc. Laser catheter feedback system
US5005573A (en) * 1990-07-20 1991-04-09 Buchanan Dale C Endotracheal tube with oximetry means
US5048525A (en) * 1987-01-30 1991-09-17 Minnesota Mining And Manufacturing Company Blood parameter measurement system with compliant element
US5048524A (en) * 1989-03-03 1991-09-17 Camino Laboratories, Inc. Blood parameter measurement
US5149965A (en) * 1990-04-23 1992-09-22 Temple University Precision radiography scaling device
US5175016A (en) * 1990-03-20 1992-12-29 Minnesota Mining And Manufacturing Company Method for making gas sensing element
US5195963A (en) * 1990-02-09 1993-03-23 Minnesota Mining And Manufacturing Company Method and system for monitoring of blood constituents in vivo
WO1993012710A1 (en) * 1991-12-24 1993-07-08 Medicina Ltd Gastric probe
US5265606A (en) * 1990-07-23 1993-11-30 C. R. Bard, Inc. System and technique for measuring blood characteristics by centering a sensor in an artery
US5284138A (en) * 1991-07-09 1994-02-08 C. R. Bard, Inc. Apparatus and method for positioning a sensor away from the blood vessel wall
US5335658A (en) * 1992-06-29 1994-08-09 Minnesota Mining And Manufacturing Company Intravascular blood parameter sensing system
US5351693A (en) * 1991-11-08 1994-10-04 Baxter International Inc. Ultrasound probe for use with transport catheter and method of making same
US5462052A (en) * 1987-01-30 1995-10-31 Minnesota Mining And Manufacturing Co. Apparatus and method for use in measuring a compositional parameter of blood
US6099514A (en) * 1996-08-13 2000-08-08 Oratec Interventions, Inc. Method and apparatus for delivering or removing material from the interior of an intervertebral disc
US6271920B1 (en) 1997-12-19 2001-08-07 Chromatics Color Sciences International, Inc. Methods and apparatus for color calibration and verification
US20040015061A1 (en) * 2002-07-16 2004-01-22 Clifford Currier Central venous catheter having a soft tip and fiber optics
US20040015138A1 (en) * 2002-07-16 2004-01-22 Clifford Currier Multiple lumen catheter having a soft tip
US20040127963A1 (en) * 1999-01-25 2004-07-01 Uchida Andy H. Intervertebral decompression
EP1459691A1 (en) * 1996-10-23 2004-09-22 Oratec Interventions, Inc. Method and apparatus for treating intervertebral discs
WO2004093669A1 (en) * 2003-04-24 2004-11-04 Koninklijke Philips Electronics N.V. Catheter head
US20040260182A1 (en) * 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
US20060009740A1 (en) * 2001-08-28 2006-01-12 Michael Higgins Multiple lumen catheter having a soft tip
US20070265503A1 (en) * 2006-03-22 2007-11-15 Hansen Medical, Inc. Fiber optic instrument sensing system
US20080218770A1 (en) * 2007-02-02 2008-09-11 Hansen Medical, Inc. Robotic surgical instrument and methods using bragg fiber sensors
US20080285909A1 (en) * 2007-04-20 2008-11-20 Hansen Medical, Inc. Optical fiber shape sensing systems
US20090137952A1 (en) * 2007-08-14 2009-05-28 Ramamurthy Bhaskar S Robotic instrument systems and methods utilizing optical fiber sensor
US20100161060A1 (en) * 2008-12-23 2010-06-24 Benvenue Medical, Inc. Tissue Removal Tools And Methods Of Use
US8780339B2 (en) 2009-07-15 2014-07-15 Koninklijke Philips N.V. Fiber shape sensing systems and methods
US8989528B2 (en) 2006-02-22 2015-03-24 Hansen Medical, Inc. Optical fiber grating sensors and methods of manufacture
US9161773B2 (en) 2008-12-23 2015-10-20 Benvenue Medical, Inc. Tissue removal tools and methods of use
US9358076B2 (en) 2011-01-20 2016-06-07 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US10130427B2 (en) 2010-09-17 2018-11-20 Auris Health, Inc. Systems and methods for positioning an elongate member inside a body
WO2019036714A1 (en) * 2017-08-18 2019-02-21 The General Hospital Corporation Systems and methods for brillouin spectroscopy and imaging of tissues
US10314605B2 (en) 2014-07-08 2019-06-11 Benvenue Medical, Inc. Apparatus and methods for disrupting intervertebral disc tissue
US10667720B2 (en) 2011-07-29 2020-06-02 Auris Health, Inc. Apparatus and methods for fiber integration and registration
US10994076B1 (en) 2019-07-25 2021-05-04 Circulatech, Llc Methods and devices to prevent obstructions in medical tubes
US11471145B2 (en) 2018-03-16 2022-10-18 Spinal Elements, Inc. Articulated instrumentation and methods of using the same
US11564811B2 (en) 2015-02-06 2023-01-31 Spinal Elements, Inc. Graft material injector system and method
US11583327B2 (en) 2018-01-29 2023-02-21 Spinal Elements, Inc. Minimally invasive interbody fusion
US11771483B2 (en) 2017-03-22 2023-10-03 Spinal Elements, Inc. Minimal impact access system to disc space
US11903572B2 (en) 2021-09-14 2024-02-20 Nuvasive, Inc. Surgical instruments, systems, and methods with optical sensors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108485A (en) * 1978-02-13 1979-08-25 Inoue Japax Res Light illuminator
JP2653792B2 (en) * 1986-07-18 1997-09-17 ハウメディカ・インコーポレーテッド Blood velocity measurement wire guide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123066A (en) * 1964-03-03 brumley
US3335715A (en) * 1964-09-18 1967-08-15 American Optical Corp Fiber optic catheter
US3461856A (en) * 1965-10-23 1969-08-19 American Optical Corp Oximeters
US3498286A (en) * 1966-09-21 1970-03-03 American Optical Corp Catheters
US3674013A (en) * 1970-09-30 1972-07-04 American Optical Corp Fiberoptic catheter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068742A (en) * 1959-06-15 1962-12-18 American Optical Corp Means for performing colorimetry
US3069739A (en) * 1959-12-10 1962-12-25 John P Jorgenson Cable clamps
US3296922A (en) * 1963-04-22 1967-01-10 American Optical Corp Apparatus for determining oxygen saturation of blood
JPS5040462Y2 (en) 1971-04-02 1975-11-18

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123066A (en) * 1964-03-03 brumley
US3335715A (en) * 1964-09-18 1967-08-15 American Optical Corp Fiber optic catheter
US3461856A (en) * 1965-10-23 1969-08-19 American Optical Corp Oximeters
US3498286A (en) * 1966-09-21 1970-03-03 American Optical Corp Catheters
US3674013A (en) * 1970-09-30 1972-07-04 American Optical Corp Fiberoptic catheter

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016871A (en) * 1975-03-06 1977-04-12 Peter Schiff Electronic synchronizer-monitor system for controlling the timing of mechanical assistance and pacing of the heart
NL7702288A (en) * 1976-03-05 1977-09-07 American Optical Corp FIBER OPTICAL PROBE.
DE2705370A1 (en) * 1976-03-05 1977-09-08 American Optical Corp REFLECTION STANDARD FOR FIBER OPTIC PROBE
US4050450A (en) * 1976-03-05 1977-09-27 American Optical Corporation Reflection standard for fiber optic probe
US4042823A (en) * 1976-03-17 1977-08-16 The United States Of America As Represented By The Secretary Of The Navy Optical scanner
US4322164A (en) * 1976-10-18 1982-03-30 Oximetrix, Inc. Sterilizable, disposable optical scattering reference medium and container assembly
FR2409743A1 (en) * 1977-11-28 1979-06-22 Usa OPTICAL FIBER PH PROBE
WO1983003344A1 (en) * 1982-03-30 1983-10-13 Us Commerce Fiber optic p¿o2? probe
EP0093927A1 (en) * 1982-04-29 1983-11-16 Firma Carl Zeiss Spectral measuring device for use in blood vessels
GB2136120A (en) * 1983-03-10 1984-09-12 Shionogi & Co Photoelectric brain scanner and its use
US4796633A (en) * 1985-06-25 1989-01-10 American Hospital Supply Corporation Method and apparatus for in vitro calibration of oxygen saturation monitor
US4772093A (en) * 1985-12-12 1988-09-20 Microvasive, Inc. Fiber-optic image-carrying device
US4994059A (en) * 1986-05-09 1991-02-19 Gv Medical, Inc. Laser catheter feedback system
US4819632A (en) * 1986-05-19 1989-04-11 Davies David H Retrolasing catheter and method
EP0366840A1 (en) * 1986-12-16 1990-05-09 BAXTER INTERNATIONAL INC. (a Delaware corporation) Optical catheter calibration apparatus and method
US4934369A (en) * 1987-01-30 1990-06-19 Minnesota Mining And Manufacturing Company Intravascular blood parameter measurement system
US4928694A (en) * 1987-01-30 1990-05-29 Minnesota Mining And Manufacturing Company Intravascular blood parameter measurement system
US4951669A (en) * 1987-01-30 1990-08-28 Minnesota Mining And Manufacturing Company Blood parameter measurement system
US4989606A (en) * 1987-01-30 1991-02-05 Minnesota Mining And Manufactoring Company Intravascular blood gas sensing system
US5462052A (en) * 1987-01-30 1995-10-31 Minnesota Mining And Manufacturing Co. Apparatus and method for use in measuring a compositional parameter of blood
US5048525A (en) * 1987-01-30 1991-09-17 Minnesota Mining And Manufacturing Company Blood parameter measurement system with compliant element
US4830013A (en) * 1987-01-30 1989-05-16 Minnesota Mining And Manufacturing Co. Intravascular blood parameter measurement system
EP0279316A3 (en) * 1987-02-09 1988-09-07 Sumitomo Electric Industries Limited Mechanism for bending elongated body
EP0279316A2 (en) * 1987-02-09 1988-08-24 Sumitomo Electric Industries Limited Mechanism for bending elongated body
US5048524A (en) * 1989-03-03 1991-09-17 Camino Laboratories, Inc. Blood parameter measurement
US5195963A (en) * 1990-02-09 1993-03-23 Minnesota Mining And Manufacturing Company Method and system for monitoring of blood constituents in vivo
US5345932A (en) * 1990-02-09 1994-09-13 Minnesota Mining And Manufacturing Company Method and system for monitoring of blood constituents in vivo
US5175016A (en) * 1990-03-20 1992-12-29 Minnesota Mining And Manufacturing Company Method for making gas sensing element
US5284775A (en) * 1990-03-20 1994-02-08 Minnesota Mining And Manufacturing Company Gas sensing element and method for making same
US5149965A (en) * 1990-04-23 1992-09-22 Temple University Precision radiography scaling device
US5005573A (en) * 1990-07-20 1991-04-09 Buchanan Dale C Endotracheal tube with oximetry means
US5265606A (en) * 1990-07-23 1993-11-30 C. R. Bard, Inc. System and technique for measuring blood characteristics by centering a sensor in an artery
US5284138A (en) * 1991-07-09 1994-02-08 C. R. Bard, Inc. Apparatus and method for positioning a sensor away from the blood vessel wall
US5351693A (en) * 1991-11-08 1994-10-04 Baxter International Inc. Ultrasound probe for use with transport catheter and method of making same
WO1993012710A1 (en) * 1991-12-24 1993-07-08 Medicina Ltd Gastric probe
GB2276939A (en) * 1991-12-24 1994-10-12 Medicina Ltd Gastric probe
US5335658A (en) * 1992-06-29 1994-08-09 Minnesota Mining And Manufacturing Company Intravascular blood parameter sensing system
US5421328A (en) * 1992-06-29 1995-06-06 Minnesota Mining And Manufacturing Company Intravascular blood parameter sensing system
US7282061B2 (en) 1996-08-13 2007-10-16 Oratec Interventions, Inc. Method of treating intervertebral disc
US7267683B2 (en) 1996-08-13 2007-09-11 Oratec Interventions, Inc. Method for treating intervertebral discs
US6547810B1 (en) 1996-08-13 2003-04-15 Oratec Interventions, Inc. Method for treating intervertebral discs
US20030181964A1 (en) * 1996-08-13 2003-09-25 Oratec Interventions, Inc. a Delaware corporation Method and apparatus for treating annular fissures in intervertebral discs
US7400930B2 (en) 1996-08-13 2008-07-15 Oratec Interventions, Inc. Method for treating intervertebral discs
US20080091252A1 (en) * 1996-08-13 2008-04-17 Oratec Interventions, Inc., A California Corporation Method for treating intervertebral disc
US20040102824A1 (en) * 1996-08-13 2004-05-27 Sharkey Hugh R. Method for treating intervertebral discs
US20080051859A1 (en) * 1996-08-13 2008-02-28 Oratec Interventions, Inc. Method for treating intervertebral discs
US7647123B2 (en) 1996-08-13 2010-01-12 Oratec Interventions, Inc. Method for treating intervertebral discs
US8187312B2 (en) 1996-08-13 2012-05-29 Neurotherm, Inc. Method for treating intervertebral disc
US8226697B2 (en) 1996-08-13 2012-07-24 Neurotherm, Inc. Method for treating intervertebral disc
US6099514A (en) * 1996-08-13 2000-08-08 Oratec Interventions, Inc. Method and apparatus for delivering or removing material from the interior of an intervertebral disc
US8128619B2 (en) 1996-08-13 2012-03-06 Neurotherm, Inc. Method for treating intervertebral discs
US6997941B2 (en) 1996-08-13 2006-02-14 Oratec Interventions, Inc. Method and apparatus for treating annular fissures in intervertebral discs
EP1459691A1 (en) * 1996-10-23 2004-09-22 Oratec Interventions, Inc. Method and apparatus for treating intervertebral discs
US6271920B1 (en) 1997-12-19 2001-08-07 Chromatics Color Sciences International, Inc. Methods and apparatus for color calibration and verification
US7449019B2 (en) 1999-01-25 2008-11-11 Smith & Nephew, Inc. Intervertebral decompression
US20040127963A1 (en) * 1999-01-25 2004-07-01 Uchida Andy H. Intervertebral decompression
US20060009740A1 (en) * 2001-08-28 2006-01-12 Michael Higgins Multiple lumen catheter having a soft tip
US7029467B2 (en) 2002-07-16 2006-04-18 Edwards Lifesciences Corporation Multiple lumen catheter having a soft tip
US6999809B2 (en) 2002-07-16 2006-02-14 Edwards Lifesciences Corporation Central venous catheter having a soft tip and fiber optics
US20040015138A1 (en) * 2002-07-16 2004-01-22 Clifford Currier Multiple lumen catheter having a soft tip
US20040015061A1 (en) * 2002-07-16 2004-01-22 Clifford Currier Central venous catheter having a soft tip and fiber optics
US20070010727A1 (en) * 2003-04-24 2007-01-11 Van Beek Michael C Catheter head
CN100443043C (en) * 2003-04-24 2008-12-17 皇家飞利浦电子股份有限公司 Catheter head
US7486978B2 (en) 2003-04-24 2009-02-03 Koninklijke Philips Electronics N.V. Catheter head
WO2004093669A1 (en) * 2003-04-24 2004-11-04 Koninklijke Philips Electronics N.V. Catheter head
US20040260182A1 (en) * 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
US8989528B2 (en) 2006-02-22 2015-03-24 Hansen Medical, Inc. Optical fiber grating sensors and methods of manufacture
US20070265503A1 (en) * 2006-03-22 2007-11-15 Hansen Medical, Inc. Fiber optic instrument sensing system
US20080218770A1 (en) * 2007-02-02 2008-09-11 Hansen Medical, Inc. Robotic surgical instrument and methods using bragg fiber sensors
US8515215B2 (en) 2007-04-20 2013-08-20 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US8811777B2 (en) 2007-04-20 2014-08-19 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US20110172680A1 (en) * 2007-04-20 2011-07-14 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US8050523B2 (en) 2007-04-20 2011-11-01 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US20080285909A1 (en) * 2007-04-20 2008-11-20 Hansen Medical, Inc. Optical fiber shape sensing systems
US8818143B2 (en) 2007-04-20 2014-08-26 Koninklijke Philips Electronics N.V. Optical fiber instrument system for detecting twist of elongated instruments
US8705903B2 (en) 2007-04-20 2014-04-22 Koninklijke Philips N.V. Optical fiber instrument system for detecting and decoupling twist effects
US9500472B2 (en) 2007-08-14 2016-11-22 Koninklijke Philips Electronics N.V. System and method for sensing shape of elongated instrument
US9726476B2 (en) 2007-08-14 2017-08-08 Koninklijke Philips Electronics N.V. Fiber optic instrument orientation sensing system and method
US20090137952A1 (en) * 2007-08-14 2009-05-28 Ramamurthy Bhaskar S Robotic instrument systems and methods utilizing optical fiber sensor
US8864655B2 (en) 2007-08-14 2014-10-21 Koninklijke Philips Electronics N.V. Fiber optic instrument shape sensing system and method
US10907956B2 (en) 2007-08-14 2021-02-02 Koninklijke Philips Electronics Nv Instrument systems and methods utilizing optical fiber sensor
US11067386B2 (en) 2007-08-14 2021-07-20 Koninklijke Philips N.V. Instrument systems and methods utilizing optical fiber sensor
US9186047B2 (en) 2007-08-14 2015-11-17 Koninklijke Philips Electronics N.V. Instrument systems and methods utilizing optical fiber sensor
US9186046B2 (en) 2007-08-14 2015-11-17 Koninklijke Philips Electronics N.V. Robotic instrument systems and methods utilizing optical fiber sensor
US9500473B2 (en) 2007-08-14 2016-11-22 Koninklijke Philips Electronics N.V. Optical fiber instrument system and method with motion-based adjustment
US9404734B2 (en) 2007-08-14 2016-08-02 Koninklijke Philips Electronics N.V. System and method for sensing shape of elongated instrument
US9441954B2 (en) 2007-08-14 2016-09-13 Koninklijke Philips Electronics N.V. System and method for calibration of optical fiber instrument
US20100161060A1 (en) * 2008-12-23 2010-06-24 Benvenue Medical, Inc. Tissue Removal Tools And Methods Of Use
US9161773B2 (en) 2008-12-23 2015-10-20 Benvenue Medical, Inc. Tissue removal tools and methods of use
US8470043B2 (en) 2008-12-23 2013-06-25 Benvenue Medical, Inc. Tissue removal tools and methods of use
US8780339B2 (en) 2009-07-15 2014-07-15 Koninklijke Philips N.V. Fiber shape sensing systems and methods
US11213356B2 (en) 2010-09-17 2022-01-04 Auris Health, Inc. Systems and methods for positioning an elongate member inside a body
US10555780B2 (en) 2010-09-17 2020-02-11 Auris Health, Inc. Systems and methods for positioning an elongate member inside a body
US10130427B2 (en) 2010-09-17 2018-11-20 Auris Health, Inc. Systems and methods for positioning an elongate member inside a body
US10350390B2 (en) 2011-01-20 2019-07-16 Auris Health, Inc. System and method for endoluminal and translumenal therapy
US9358076B2 (en) 2011-01-20 2016-06-07 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US10667720B2 (en) 2011-07-29 2020-06-02 Auris Health, Inc. Apparatus and methods for fiber integration and registration
US11419518B2 (en) 2011-07-29 2022-08-23 Auris Health, Inc. Apparatus and methods for fiber integration and registration
US10314605B2 (en) 2014-07-08 2019-06-11 Benvenue Medical, Inc. Apparatus and methods for disrupting intervertebral disc tissue
US11224453B2 (en) 2014-07-08 2022-01-18 Spinal Elements, Inc. Apparatus and methods for disrupting intervertebral disc tissue
US11564811B2 (en) 2015-02-06 2023-01-31 Spinal Elements, Inc. Graft material injector system and method
US11771483B2 (en) 2017-03-22 2023-10-03 Spinal Elements, Inc. Minimal impact access system to disc space
WO2019036714A1 (en) * 2017-08-18 2019-02-21 The General Hospital Corporation Systems and methods for brillouin spectroscopy and imaging of tissues
US11576571B2 (en) 2017-08-18 2023-02-14 The General Hospital Corporation Systems and methods for Brillouin spectroscopy and imaging of tissues
IL272581B1 (en) * 2017-08-18 2024-03-01 Massachusetts Gen Hospital Systems and methods for brillouin spectroscopy and imaging of tissues
US11583327B2 (en) 2018-01-29 2023-02-21 Spinal Elements, Inc. Minimally invasive interbody fusion
US11471145B2 (en) 2018-03-16 2022-10-18 Spinal Elements, Inc. Articulated instrumentation and methods of using the same
US10994076B1 (en) 2019-07-25 2021-05-04 Circulatech, Llc Methods and devices to prevent obstructions in medical tubes
US11903572B2 (en) 2021-09-14 2024-02-20 Nuvasive, Inc. Surgical instruments, systems, and methods with optical sensors

Also Published As

Publication number Publication date
DE2348402A1 (en) 1974-06-06
JPS576933B2 (en) 1982-02-08
DE2348402C2 (en) 1984-08-23
JPS4988384A (en) 1974-08-23

Similar Documents

Publication Publication Date Title
US3807390A (en) Fiber optic catheter
US4050450A (en) Reflection standard for fiber optic probe
EP0073558A2 (en) Fiber optic pH probe for tissue measurements
US4785814A (en) Optical probe for measuring pH and oxygen in blood and employing a composite membrane
US5048524A (en) Blood parameter measurement
Polanyi et al. In vivo oximeter with fast dynamic response
US8059274B2 (en) Low-loss polarized light diversion
US3866599A (en) Fiberoptic catheter
JP3679800B2 (en) Glucose fluorescence test method
US5127408A (en) Apparatus for intravascularly measuring oxidative metabolism in body organs and tissues
US3349762A (en) Blood flow indicator and process
US4730622A (en) Pressure and oxygen saturation catheter
US20030097048A1 (en) Referencing optical catheters
US6746407B2 (en) Method of measuring transcutaneous access blood flow
EP0091390A1 (en) Fiber optic PO2 probe
JPS62102737A (en) Optical catheter scale apparatus
JPH0257239A (en) Probe for optical sensor
Mook et al. Fibre optic reflection photometry on blood
US5271398A (en) Intra-vessel measurement of blood parameters
JP2004113799A (en) Catheter system
US6155984A (en) Method and apparatus for measuring cardiac output through an arterial cannula
EP1202757B1 (en) Microdialysis probe
McCarthy et al. Fiberoptic monitoring of cardiac output and hepatic dye clearance in dogs.
JPS6120806B2 (en)
Wahr et al. Continuous intravascular blood gas monitoring

Legal Events

Date Code Title Description
AS Assignment

Owner name: WARNER LAMBERT COMPANY, 201 TABOR ROAD, MORRIS PLA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN OPTICAL CORPORATION,;REEL/FRAME:004034/0681

Effective date: 19820513

Owner name: WARNER LAMBERT TECHNOLOGIES, INC.; 6373 STEMMONS F

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WARNER LAMBERT COMPANY;REEL/FRAME:004034/0700

Effective date: 19820514