US3808772A - Apparatus for forming and filling containers - Google Patents

Apparatus for forming and filling containers Download PDF

Info

Publication number
US3808772A
US3808772A US00192216A US19221671A US3808772A US 3808772 A US3808772 A US 3808772A US 00192216 A US00192216 A US 00192216A US 19221671 A US19221671 A US 19221671A US 3808772 A US3808772 A US 3808772A
Authority
US
United States
Prior art keywords
web
molding
containers
filling
carriage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00192216A
Inventor
A Turtschan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GANZHORN U STIRN KG
Original Assignee
GANZHORN U STIRN KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GANZHORN U STIRN KG filed Critical GANZHORN U STIRN KG
Application granted granted Critical
Publication of US3808772A publication Critical patent/US3808772A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/421Heating or cooling of preforms, specially adapted for thermoforming
    • B29C51/425Heating or cooling of preforms, specially adapted for thermoforming using movable heating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/18Thermoforming apparatus
    • B29C51/20Thermoforming apparatus having movable moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
    • B65B9/042Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material for fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/007Using fluid under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/04Combined thermoforming and prestretching, e.g. biaxial stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films

Definitions

  • the machine includes stations which heat the web,'mold the web 72 i 4 8 AM5 B723 541 3 2 8 4 5 3 4 4 i 8 3 ,5 w m 5 W 1: I 2 L. 4 4 m 1 l n 8 N UMMO 5 W 3 "mm oo Imu n "3 u u nn m, m43 “.r; "89 mm-M2 ot 1 W J S M UmF .11.] 2 8 555 ers, cover and seal the filled containers, and separate the containers, successively.
  • the web is grasped at its edges and conveyed from a roll.
  • Synchroniiing drive means cyclically move the heating, container molding, and severing apparatus in the direction of web conveyance, and into engagement with the web.
  • the filling nozzles move with the newly formed containers while filling.
  • This invention relates to a filling machine, and more particularly to a filling machine of the kind in which the containers to be filled are delivered to continuously associated filling apparatus and sealingapparatus.
  • a filling machine has been known in which the filling outlets or nozzles move, during the filling-process in the same direction as the containers to be filled.
  • the containers are placed on a continuously moving conveyer.
  • the containers are delivered to the conveyer by means of a feeder device, and when filled, and possibly sealed, are again removed at the outlet from the machine.
  • containers are produced separate from the filling machine. They must be conveyed from the place of production, possibly after intermediate storage, to the filling machine and must be loaded into the magazine of the machine subsequently to be placed on the conveyor for filling.
  • the transporting of the containers which are very light and sensitive is quite expensive, particularly if the containers require inordinate amounts of space.
  • the filling of the magazines must be supervised and it is not infrequent that stoppages at the magazine result in disturbances in the operation of the entire filling machine. From the point of view of hygiene, it would likewise be desirable if transportation between the container making apparatus, which may be located in a completely different plant, and the filling machine could be eliminated.
  • this invention has an object to facilitate production of containers directly on the filling machine, without any intermediate storage or conveying, without thereby adversely affecting the continuous passage of the containers in the area of filling.
  • the objects of the invention are attained by the association of the filling machine with container molding apparatus shaping containers from a web of material.
  • the web of material moves continuously in the zone of the molding machine and the molding apparatus is provided with a drive which moves the mold parts parallel to and at equal speed with the web, over at least an associated distance corresponding to the molding time.
  • the drive returns the .mold parts, following the molding operation to begin a further cycle.
  • the molding apparatus for producing the containers can be directly integrated with the filling machine.
  • the containers are produced only shortly prior to filling so that contamination need not be feared.
  • continuous travel of the containers through the entire filling machine, including the molding apparatus can be maintained so that no adverse effects are created by otherwise necessary speed-ups or delays whereby the output of a machine can be considerably reduced.
  • the latter applies especially to the filling of thin liquids (fruit juices, etc.) particularly susceptible to being splashed out by accelerations and decelerations.
  • the movement to and fro of the molding apparatus is preferably effected in a straight line.
  • the containers formed from the web of material travel continuously and remain joined together by the web of material through the filling, and possibly sealing, operations.
  • the containers are simply formed out of the material web but are not initially separated from it. This considerably simplifies the conveying mechanism which, in effect, includes the very web of material and the containers themselves.
  • molding parts male or female molds
  • several molding units may be arranged successively in the direction of travel. It may be of special advantage if the number of molding units arranged in succession in the direction of the web of material does not equal the number of the filling nozzles, and if applicable, sealing arrangements. Thispermits the length of the distance to he travelled through by the molding units and by the filling, and sealing, units to differ according to the number of units employed, Hence, the cadences of the individual processes (molding, filling, sealing, etc.) may differ, and it is not necessary that the slowest station determine the number of cycles of all other stations.
  • the molding apparatus preferably employs blow molding or vacuum molding arrangements whereby an air pressure differential across the web forces the web into conformity with a mold.
  • a carriage displaced on straight guide rails may carry the molding apparatus.
  • the carriage supports an upper mo'ld part and lower mold part which move with the carriage and are moved toward and away from one another and across the path of travel of the web.
  • the upper and lower mold parts carry the molding units.
  • the upper part and the lower part move towards each other and into cooperation at the start of the associated running distance of the molding apparatus and move apart to a retracted position away from the web at the end of the associated running distance in order to release the moldedcontainers. In this retracted position the carriage executes its return.
  • the molding station will be preceded by a heating device which, preferably, comprises at least two plates to be heated and pressed against the web on opposite sides.
  • the heating device is carried along at the speed of the web during the time in which the plates are pressed against the web. Even though different manners of heating of the material web might be contemplated, for example radiation, this heating method was found to be especially suitable.
  • a further advantage results from pushpull operation of themolding and heating devices whereby inertia forces generated can be compensated.
  • the filling machine may be provided with an endless, moving conveyer seizing the web at its edges in the filling zone.
  • an endless, moving conveyer seizing the web at its edges in the filling zone.
  • FIG. 1 is a diagrammatical side view of a filling machine according to the invention.
  • FIG. 2 is the diagrammatic plane view of the machine in FIG. 1.
  • FIG. 3 is an enlarged side view of a part of the machine in FIG. 1.
  • FIG. 4 is a diagrammatic cross section through the line IV-IV in FIG. 3;
  • FIG. 5 is a diagrammatic illustration of the drive for the molding and heating arrangements in which the parts shown above the line y have been displaced for clarity.
  • the filling machine shown in FIGS. 1 to 4 has a frame 11 on which are arranged successively in the conveying direction shown by arrow 12 the following sections: a delivery or stock roll 13 for a material web 14, a heating station 15, a molding station 16, a filling station 17, a sealing station 18, a separating station 19, and a conveyer 20 for removal of containers 21, which are formed and filled by the FIG. 1 apparatus.
  • the filling station 17 is provided with measuring or dosing pumps 23 arranged on a carriage 22.
  • the pumps 23 are supplied from a stationary supply container 24 and mete out measured quantities of flowable fill to the newly formed containers 21, via the filling outlets or nozzles 25.
  • Flowable fill is meant to include any medium that canv be dispensed in doses or measured quantities.
  • the preferred embodiment of FIG. 1 is especially suitable for the filling or decanting of either a thin liq uid such as fruit juice or a pasty substance with a consistency like that of cream or yoghurt.
  • the carriage 22 is movable parallel to the web of material 14. The actual filling of a container by the releasing of the fill is accomplished while the carriage moves in the conveying direction shown by arrow 12 at the same speed as the material web 14 and while the nozzles 25 are situated above the containers 21 formed in the web material. After filling has been completed, the carriage 22, pumps 23, and nozzles 25 return, opposite the conveying direction to begin a new cycle.
  • four rows of containers 21 are formed along the web 14.
  • Two rows of filling nozzles 25 extend across the web 14.
  • the number of filling nozzles in line can be selected in accordance with both the filling speed and the velocity of the material web.
  • the sealing station 18 and the separating station 19 can be constructed conventionally. However, care must be taken that these stations, too, move at equal speed and in the same direction as the material web 14 by the use of appropriate carriages like the carriage 30.
  • the sealing station 18 includes a covering unit 27 and sealing apparatus 28.
  • the covering unit 27 supplies a cover onto the now-filled containers.
  • the cover may be an additional web of thermoplastic material.
  • the cover then is sealed to the containers by the apparatus 28 which may be, for example, a heat sealing arrangement.
  • the filled and sealed containers 21 then are punched out of the web 14 at the separating station 19.
  • FIGS. 3 and 4 show in detail the heating station and the molding station.
  • the molding station 16 is provided with a carriage 30 running on slide rails 31 and displaceable parallel to the material web 14.
  • the slide rails 31 consist of round guide columns arranged in frame carriers 32.
  • the carriage 30 supports an upper mold part 33 and a lower mold part 34 of the molding station 16.
  • the mold parts 33, 34 are movable toward and away from each other. This movement is achieved by means of a crank mechanism which is controlled by a shaft 35 and is provided with a two armed lever 36 as well as the connecting levers 37, 38.
  • the connecting lever 37 causes the movement of the lower mold part 34 while the lever 38 acts on a yoke 39 which, via connecting rods 40, is coupled with an upper yoke 41 carrying the upper mold part 33.
  • the material web 14 consists of a thermoplastic foil which is molded by the apparatus of the molding station 16 in blow or vacuum molding method.
  • the upper mold part 33 is provided with pre-expansion dies 42. Movably supported from the upper yoke 41, a frame 43 surrounds the dies 42. The frame 43 and the dies 42 are relatively movable by means of a compressed air cylinder 46.
  • the lower part 34 of the mold 16 is provided with mold cavities 44 which are concave molds for the exact outer shape of the containers to be molded.
  • blow molding is used. Therefore. the frame 43 is sealed, in suitable fashion, with respect to the guide rods 45 supporting the dies 42 and movably retaining the frame 43.
  • the pre-expansion dies have blow openings from which emerges the air to finish forming the containers.
  • the lower mold cavities are ventilated by means of thin bores, not shown.
  • the upper and lower mold parts define sixteen molding units, four rows of four each The units work simultaneously so that during any given cycle of the molding station 16, a total of 16 containers is formed.
  • the heating station 15 Preceding the molding station in the direction of advance is arranged the heating station 15. It consists of two heated plates, 47 and 48, movable towards each other by means of a lever arrangement which essentially corresponds to the lever arrangement 35, 36, 37, and 38 of the molding station 16. These plates touch the material web 14 on either side as they are moved towards each other by the rotation of shaft 35'.
  • the plates 47, 48 are attached by means of guides 49 to a carriage 50 running on the slide rails 31 and fastened to the frame supports 32.
  • FIG. 3 shows, in broken lines, a circulating conveyer 52 which runs over the rollers 53 and seizes the edge of and guides the material web 14, by means of its upper run. Cooperation of the conveyer and web continues over almost the entire length of the filling machine.
  • the conveyer 52 may be a pair of belts with protrusions perforating the material web 14 in the edge area to grasp the web and thereby to take it along positively, or, for example, the
  • conveyer 52 may be a pair of known clip chain arrangements in which the clips hold the material web 14 in the edge areas. By either arrangement, one ensures that the web of material, which is frequently quite likely to stretch, runs in precise synchronization with the individual stations which act in association. It is possible, and advantageous, to compensate transverse expansion or shrinking of the material web by varying the space between the two edge grasping belts of the conveyer 52. For example, in the event of cross expansion due to the effect of heat, sagging of the material web can be prevented by having the belts run in slightly divergent directions.
  • FIG. 5 is a diagram of the drive for the carriage 30 of the molding station 16. A like drive for the heating station may be used. Longitudinal movement of the carriage 30 on the slide rails 31 is obtained by means of a drum cam, rotated, for example, by a motor M.
  • a drum cam rotated, for example, by a motor M.
  • the drum cam 54 is shown above the carriage 30, whereas more practically, the cam is located behindthe carriage 30, as viewed in FIG. 5. That is to say all of elements of FIG. 5 above the axis y would be swung 90 about the axis into the plane of the paper.
  • the drum cam 54 has a guide slot 55 which forms an endless curved guide groove for the roller about the circumference of the drum. When the drum 54 rotates, the carriage 30 moves to and fro in the direction of the double arrow 57 and parallel the conveying direction.
  • the vertical motions, which impart closing and opening movements to the mold parts, are controlled by a revolving disc cam 58.
  • the cam 58 rotates with the same number of rotations as the drum cam 54.
  • the disc cam 58 drives a lever 59 which, intermediate its ends, has a fulcrum on the frame 11 and a roller at its cam follower end.
  • the other lever end is attached to a guide plate 60.
  • a further support lever 61 attached to the guide plate maintains the guide plate parallel to the carriage during movement.
  • the guide plate has a slot 62 which receives a roller 63.
  • the roller 63 is connected with the shaft 35 and actuates the shaft.
  • the shaft 35 controls theopening and closing of the mold parts.
  • FIG. 5 shows the drive of the disc cam 58 independent from the drive of the drum cam 54.
  • the motor M which is part of the drive 68, may be coupled to the shaft 66 via a transmission 67 and a belt or chain. Or the shaft 66 may be driven directly to control similar carriage drives 68 via the belt and gearing 67.
  • the driving device 68, of FIG. 4 appears only as a block.
  • the web 14 advances to between the plates 47, 48 of the heating station 15.
  • the edges of the web 14 are seized by the conveyer belts 52 and are carried forward.
  • the plates 47, 48 close as a result of the swinging of the shaft 35 in clockwise direction.
  • the plates come to rest against and heat the web 14.
  • the carriage moves downstream at precisely the same velocity as the material web, the two being preferably commonly driven.
  • the plates 47, 48 separate'again.
  • the material web 14, which is now heated advances into the molding station 16 with constant speed.
  • the plates 47, 48 remain opened while the carriage 50 again runs back upstream.
  • the pre-expansion dies 42 are lowered by means of the compressed air cylinder 46.
  • the material is pressed into the molding cavities 44 corresponding to their outside shape.
  • the dies 42 do not yet cause the displaced web portions to correspond to the final shape determined by the mold cavities, since the dies are smaller than the subsequent interior shape of the containers. These dies merely effect the initial mechanical shaping of the containers.
  • compressed air is forced into the container interior via the blow nozzles 71 in the pre-expansion dies.
  • the heated material is forced to the walls of the mold cavities 44, thereby acquiring its final shape.
  • the air present in the mold cavities may escapethrough the bores mentioned above.
  • the lower mold part 34 may be cooled in order to achieve fast hardening or stabilization of the soft synthetic material.
  • the carriage has, of course, been moving to the right at the same speed as the material web 14. Shortly before arrival at the downstream reversing point, the mold parts open due to the swing of the shaft counterclockwise. The containers are thus freed from the mold cavities 44 and continue advancing as the carriage stops and returns upstream to mold further containers from the web.
  • the return of the carriage 30 in the direction counter to the direction of conveying need not be effected with constant speed but can be executed, for example, with constant acceleration over half of the return path and then with constant deceleration so that, as a whole, thereturn is effected faster than downstream travel.
  • the nowfilled containers are closed by the placement of a cover foil conventionally over all. This foil then is sealed on. Only afterwards the containers are punched out by the punching station which also travels with the containers.
  • the punching apparatus which separates the containers from the web may be like web cutting or punching apparatus well known in the art, but is preferably driven by a drive like that discussed above in relation to FIG. 5.
  • the machine can be adopted easily to meet varying requirements. For example, if molding requires double as much time as filling, one provides, for example, for double the number of molding units arranged in series.
  • the slowest station i.e., the station which takes the longest time to act on the web or coritainers, thus does not determine the cycle speed of the entire machine.
  • the through put speed of the entire operation can therefore be multiplied, without any branching, by simple increasing of the units or assemblies at each station which act on the web or containers.
  • the molding station can be easily adjusted to the molding methods required in each case.
  • the contact heating method described may be replaced by radiation heating.
  • the carriages 30 and may be moved by means of an entirely common drive moving both carriages at the same time and in the same direction, or even by carrying the heating plates and the mold parts on one carriage.
  • the driving provisions which move the carriages linearly should be adjusted to operate in a push-pull or out of phase relationship in which the acceleration of one carriage in one direction substantially offsets the acceleration of the other carriage in the other direction. If two drum cams are employed, adjustment of the relative rotary positions thereof, one to the other, may lend the desired result.
  • Combined container forming and filling apparatus comprising:
  • thermoplastic material means for continuously conveying a web of thermoplastic material along a path at a selected and substantially constant speed
  • heating means for heating the web
  • heater driving means for driving the heating means along said path parallel to and at equal speed with the web for a distance sufficient to afi'ord adequate time for softening of the thermoplastic material as the web moves and then returning the heating means in the direction opposite the direction of web movement;
  • molding means located along said path downstream from said heating means for molding containers in the web;
  • mold driving means for driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction opposite the direction of web movement after containers have been molded in the web, said mold driving means and said heater driving means being adapted to operate in push-pull out of phase relationship so as to reduce acceleration forces in the apparatus;
  • filling means located along said path downstream from said molding means for filling the containers formed in the web.
  • the means for conveying comprises means for moving the molded containers past the filling means continuously and without interruption as the containers are formed, the filling means comprising at least one fill dispensing outlet adapted to dispense fill into containers, and means for moving the outlet with the moving container during dispensing and for returning the outlet thereafter.
  • the molding means comprises a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, the number of molding units arranged in the conveying direction differing from the number of filling outlets in the conveying direction, and the length of distance travelled by the mold units and outlets during operation being a function of the number of mold units and outlets, respectively.
  • Combined container forming and filling apparatus including means for filling containers formed by the apparatus, means for continuously conveying a web of material along a path at a selected speed, molding means located along said path for molding containers in the web, and means for first driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction opposite the direction of web movement after containers have been molded in the web, said molding means comprising:
  • slide rails attached to said apparatus for guiding the carriage for linear movement
  • Combined container forming and filling apparatus including means for filling containers formed by the apparatus, means for continuously conveying a web of thermoplastic material along a path at a selected speed, molding means located along said path for molding containers in the web, means for first driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction.
  • thermoplastic material means for heating the web upstream of the molding means to cause softening .of the thermoplastic material, and means for driving the heating means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for softening of the thermoplastic material as the web moves and then returning the heating means in the direction opposite the direction of web movement, said heating means comprising:
  • a heating means carriage means for guiding the heating means carriage for linear movement by said heating means driving means; at least one heating plate carried by said carriage and movable into and out of engagement with the web, and plate motive means for first moving the plate toward the web as the carriage begins movement in the direction of conveying and for then moving the plate away from the web as the carriage approaches the limit of travel downstream, whereby the retracted plate is then returned upstream by the carriage.
  • said molding means includes means movable linearly with and opposite movement of the web to carry the molding means, said mold driving means being coupled in driving relation to said linearly movable means.
  • said linearly movable means comprises a carriage
  • the apparatus further including slide rails guiding the carriage for linear movement by said driving means, upper and lower mold parts carried by said carriage movable toward and away from each other and disposed above and below the path of web travel, respectively, the apparatus further including motive means for first moving the mold parts toward each other and into engagement with the web as the carriage begins movement in the direction of conveyance and for then moving the mold parts away from each other as the carriage approaches the limit of travel downstream, whereby the separated mold parts are then returned upstream by the carriage.
  • the means for filling is adapted to fill the moving containers molded in the web, the means for continuously conveying comprising means for moving the molded containers past the filling means continuously and without interruption as the containers are formed.
  • Apparatus according to claim 8 including means for closing and sealing the containers immediately after filling thereof by said filling means and as the containers move.
  • said molding means comprises a plurality of mold units, each for molding a separate container, arranged transversely of the conveying direction and across the web, whereby rows of containers are formed across the moving web.
  • said molding means further including a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, whereby a plurality of rows of containers are formed along the web simultaneously and affording additional time for the molding of each container as the web travels a predetermined distance.
  • said molding means comprises a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, whereby a plurality of containers are formed along the web simultaneously to afford additional time forthe molding of each container as the web travels a predetermined distance.
  • Apparatus according to claim 13 wherein the molding means comprises means for applying an air pressure differential across the web to cause the web to be shaped by the molding means.
  • the means for continuously conveying includes means for cooperating with the web throughout the combined forming and filling apparatus to impart substantially constant spaced speed movement to the web and formed containers'throughout the apparatus.
  • the means for cooperating and moving includes an endless conveyer member having means for engaging the web at least at one longitudinal web edge to draw the web through the combined apparatus.

Abstract

A combined container making and filling machine, and associated process. Operating on a continuously moving web of thermoplastic material, the machine includes stations which heat the web, mold the web into connected containers, fill the connected containers, cover and seal the filled containers, and separate the containers, successively. The web is grasped at its edges and conveyed from a roll. Synchronizing drive means cyclically move the heating, container molding, and severing apparatus in the direction of web conveyance, and into engagement with the web. The filling nozzles move with the newly formed containers while filling.

Description

[451 May 7,1974
United States Patent 1191 Turtschan 3,075,329 1/1963 Swezey et a1. 53/184 3,475,878 11/1969 53/184 X APPARATUS FOR FORMING AND FILLING CONTAINERS [75] Inventor: Alfons Turtschan, Schwalbisch Hall,
Germany Primary Examiner-Robert L. Spruill [73] Assignee: Ganzhorn U. Stim Attorney, Agent, or Firm-Brumbaugh, Graves, Donohue & Raymond Kommanditgescllschaft, Schwabisch Hall, Germany ABSTRACT 22 Filed:
Oct. 26, 1971 PP -F 192,216 A combined container making and filling machine, and associated process. Operating on a continuously Foreign Application Priority Data Oct. 27, 1970 Germany............................
moving web of thermoplastic material, the machine includes stations which heat the web,'mold the web 72 i 4 8 AM5 B723 541 3 2 8 4 5 3 4 4 i 8 3 ,5 w m 5 W 1: I 2 L. 4 4 m 1 l n 8 N UMMO 5 W 3 "mm oo Imu n "3 u u nn m, m43 ".r; "89 mm-M2 ot 1 W J S M UmF .11.] 2 8 555 ers, cover and seal the filled containers, and separate the containers, successively. The web is grasped at its edges and conveyed from a roll. Synchroniiing drive means cyclically move the heating, container molding, and severing apparatus in the direction of web conveyance, and into engagement with the web. The filling nozzles move with the newly formed containers while filling.
7 References Cited UNITED STATES PATENTS 18 Claims, 5 Drawing Figures 3,397,508 8/1968 Stroop 53/184 minimum "(I974 3.808772 sum 3 [1F 4 PATENTEDHAY mm- 3 808 SHEET Ls 0F 4 .772
APPARATUS FOR FORMING AND FILLING CONTAINERS BACKGROUND OF THE INVENTION This invention relates to a filling machine, and more particularly to a filling machine of the kind in which the containers to be filled are delivered to continuously associated filling apparatus and sealingapparatus.
A filling machine has been known in which the filling outlets or nozzles move, during the filling-process in the same direction as the containers to be filled. The containers are placed on a continuously moving conveyer. The containers are delivered to the conveyer by means of a feeder device, and when filled, and possibly sealed, are again removed at the outlet from the machine.
In such known techniques, containers are produced separate from the filling machine. They must be conveyed from the place of production, possibly after intermediate storage, to the filling machine and must be loaded into the magazine of the machine subsequently to be placed on the conveyor for filling. The transporting of the containers which are very light and sensitive is quite expensive, particularly if the containers require inordinate amounts of space. The filling of the magazines must be supervised and it is not infrequent that stoppages at the magazine result in disturbances in the operation of the entire filling machine. From the point of view of hygiene, it would likewise be desirable if transportation between the container making apparatus, which may be located in a completely different plant, and the filling machine could be eliminated.
SUMMARY OF THE INVENTION It is therefor an important object of this invention to create a filling machine and method of the type referred to above in which the disadvantages mentioned do not occur. Specifically, this invention has an object to facilitate production of containers directly on the filling machine, without any intermediate storage or conveying, without thereby adversely affecting the continuous passage of the containers in the area of filling.
In accordance with the invention, the objects of the invention are attained by the association of the filling machine with container molding apparatus shaping containers from a web of material. The web of material moves continuously in the zone of the molding machine and the molding apparatus is provided with a drive which moves the mold parts parallel to and at equal speed with the web, over at least an associated distance corresponding to the molding time. The drive returns the .mold parts, following the molding operation to begin a further cycle.
Accordingly, the molding apparatus for producing the containers can be directly integrated with the filling machine. The containers are produced only shortly prior to filling so that contamination need not be feared. Most important, in spite of immediate incorporation of the forming device, continuous travel of the containers through the entire filling machine, including the molding apparatus, can be maintained so that no adverse effects are created by otherwise necessary speed-ups or delays whereby the output of a machine can be considerably reduced. The latter applies especially to the filling of thin liquids (fruit juices, etc.) particularly susceptible to being splashed out by accelerations and decelerations.
The movement to and fro of the molding apparatus is preferably effected in a straight line. In accordance with a further preferred characteristic of the invention, the containers formed from the web of material travel continuously and remain joined together by the web of material through the filling, and possibly sealing, operations. Thus, the containers are simply formed out of the material web but are not initially separated from it. This considerably simplifies the conveying mechanism which, in effect, includes the very web of material and the containers themselves.
Several molding parts (male or female molds) can be disposed in the molding apparatus transverse to the direction of moving of the material web to form several containers across the web. Similarly, several molding units may be arranged successively in the direction of travel. It may be of special advantage if the number of molding units arranged in succession in the direction of the web of material does not equal the number of the filling nozzles, and if applicable, sealing arrangements. Thispermits the length of the distance to he travelled through by the molding units and by the filling, and sealing, units to differ according to the number of units employed, Hence, the cadences of the individual processes (molding, filling, sealing, etc.) may differ, and it is not necessary that the slowest station determine the number of cycles of all other stations. Increased numbers of slower units permits efficient use of faster units. For example, if the filling of a container requires only half of the molding time, the number of molding units in line may be doubled, the filling units may be run at optimum speed, increasing the output. On the other hand, only half as many filling units as molding units can be provided with resulting economic machine construction.
The molding apparatus preferably employs blow molding or vacuum molding arrangements whereby an air pressure differential across the web forces the web into conformity with a mold. A carriage displaced on straight guide rails may carry the molding apparatus. The carriage supports an upper mo'ld part and lower mold part which move with the carriage and are moved toward and away from one another and across the path of travel of the web. The upper and lower mold parts carry the molding units. The upper part and the lower part move towards each other and into cooperation at the start of the associated running distance of the molding apparatus and move apart to a retracted position away from the web at the end of the associated running distance in order to release the moldedcontainers. In this retracted position the carriage executes its return.
If a hot molding material web is used, the molding station will be preceded by a heating device which, preferably, comprises at least two plates to be heated and pressed against the web on opposite sides. The heating device is carried along at the speed of the web during the time in which the plates are pressed against the web. Even though different manners of heating of the material web might be contemplated, for example radiation, this heating method was found to be especially suitable. A further advantage results from pushpull operation of themolding and heating devices whereby inertia forces generated can be compensated.
To convey the web, the filling machine may be provided with an endless, moving conveyer seizing the web at its edges in the filling zone. By this means, and a common drive, absolute synchronism of the web and the individual moving units is ensured by a simple means. Similarly, the several movable units may be driven from a single synchronizing drive shaft or the like, via appropriate individual drive means including arms and levers. Smooth, synchronous operation is assured by simple economical construction.
Further advantages and characteristics of the invention will become apparent from the claims and the description together with the drawings. The drawings rep resent an example of an embodiment of the invention which is explained in detail below.
In the drawings:
FIG. 1 is a diagrammatical side view of a filling machine according to the invention.
FIG. 2 is the diagrammatic plane view of the machine in FIG. 1.
FIG. 3 is an enlarged side view of a part of the machine in FIG. 1.
FIG. 4 is a diagrammatic cross section through the line IV-IV in FIG. 3; and
FIG. 5 is a diagrammatic illustration of the drive for the molding and heating arrangements in which the parts shown above the line y have been displaced for clarity.
DESCRIPTION OF PREFERRED EMBODIMENT The filling machine shown in FIGS. 1 to 4 has a frame 11 on which are arranged successively in the conveying direction shown by arrow 12 the following sections: a delivery or stock roll 13 for a material web 14, a heating station 15, a molding station 16, a filling station 17, a sealing station 18, a separating station 19, and a conveyer 20 for removal of containers 21, which are formed and filled by the FIG. 1 apparatus.
Coming from the feed roll 13, the material web 14 runs continuously through the entire filling machine as far as the separating station 19. The heating and molding stations 15 and 16 will later be described in detail. The filling station 17 is provided with measuring or dosing pumps 23 arranged on a carriage 22. The pumps 23 are supplied from a stationary supply container 24 and mete out measured quantities of flowable fill to the newly formed containers 21, via the filling outlets or nozzles 25. Flowable fill is meant to include any medium that canv be dispensed in doses or measured quantities. The preferred embodiment of FIG. 1 is especially suitable for the filling or decanting of either a thin liq uid such as fruit juice or a pasty substance with a consistency like that of cream or yoghurt.
The carriage 22 is movable parallel to the web of material 14. The actual filling of a container by the releasing of the fill is accomplished while the carriage moves in the conveying direction shown by arrow 12 at the same speed as the material web 14 and while the nozzles 25 are situated above the containers 21 formed in the web material. After filling has been completed, the carriage 22, pumps 23, and nozzles 25 return, opposite the conveying direction to begin a new cycle.
In the example shown, four rows of containers 21 are formed along the web 14. Two rows of filling nozzles 25 extend across the web 14. As will be explained further, the number of filling nozzles in line can be selected in accordance with both the filling speed and the velocity of the material web.
The sealing station 18 and the separating station 19 can be constructed conventionally. However, care must be taken that these stations, too, move at equal speed and in the same direction as the material web 14 by the use of appropriate carriages like the carriage 30. The sealing station 18 includes a covering unit 27 and sealing apparatus 28. The covering unit 27 supplies a cover onto the now-filled containers. The cover may be an additional web of thermoplastic material. The cover then is sealed to the containers by the apparatus 28 which may be, for example, a heat sealing arrangement. The filled and sealed containers 21 then are punched out of the web 14 at the separating station 19.
FIGS. 3 and 4 show in detail the heating station and the molding station. The molding station 16 is provided with a carriage 30 running on slide rails 31 and displaceable parallel to the material web 14. In the example shown, the slide rails 31 consist of round guide columns arranged in frame carriers 32. The carriage 30 supports an upper mold part 33 and a lower mold part 34 of the molding station 16. The mold parts 33, 34 are movable toward and away from each other. This movement is achieved by means of a crank mechanism which is controlled by a shaft 35 and is provided with a two armed lever 36 as well as the connecting levers 37, 38. The connecting lever 37 causes the movement of the lower mold part 34 while the lever 38 acts on a yoke 39 which, via connecting rods 40, is coupled with an upper yoke 41 carrying the upper mold part 33.
The design of the upper and lower mold parts depends upon the type of molding procedure. In this exemplary preferred embodiment, the material web 14 consists of a thermoplastic foil which is molded by the apparatus of the molding station 16 in blow or vacuum molding method. Moreover, the upper mold part 33 is provided with pre-expansion dies 42. Movably supported from the upper yoke 41, a frame 43 surrounds the dies 42. The frame 43 and the dies 42 are relatively movable by means of a compressed air cylinder 46. The lower part 34 of the mold 16 is provided with mold cavities 44 which are concave molds for the exact outer shape of the containers to be molded.
In the example shown in the drawings, blow molding is used. Therefore. the frame 43 is sealed, in suitable fashion, with respect to the guide rods 45 supporting the dies 42 and movably retaining the frame 43. The pre-expansion dies have blow openings from which emerges the air to finish forming the containers. The lower mold cavities are ventilated by means of thin bores, not shown. In this embodiment, the upper and lower mold parts define sixteen molding units, four rows of four each The units work simultaneously so that during any given cycle of the molding station 16, a total of 16 containers is formed.
Preceding the molding station in the direction of advance is arranged the heating station 15. It consists of two heated plates, 47 and 48, movable towards each other by means of a lever arrangement which essentially corresponds to the lever arrangement 35, 36, 37, and 38 of the molding station 16. These plates touch the material web 14 on either side as they are moved towards each other by the rotation of shaft 35'. The plates 47, 48 are attached by means of guides 49 to a carriage 50 running on the slide rails 31 and fastened to the frame supports 32. The slide rails, carriage, and
guides may correspond to those of the molding station.
The feed roll 13 for the material web 14 is arranged on a bearing support 51 in the frame 11 and is removable for changing when exhausted. FIG. 3 shows, in broken lines, a circulating conveyer 52 which runs over the rollers 53 and seizes the edge of and guides the material web 14, by means of its upper run. Cooperation of the conveyer and web continues over almost the entire length of the filling machine. The conveyer 52 may be a pair of belts with protrusions perforating the material web 14 in the edge area to grasp the web and thereby to take it along positively, or, for example, the
conveyer 52 may be a pair of known clip chain arrangements in which the clips hold the material web 14 in the edge areas. By either arrangement, one ensures that the web of material, which is frequently quite likely to stretch, runs in precise synchronization with the individual stations which act in association. It is possible, and advantageous, to compensate transverse expansion or shrinking of the material web by varying the space between the two edge grasping belts of the conveyer 52. For example, in the event of cross expansion due to the effect of heat, sagging of the material web can be prevented by having the belts run in slightly divergent directions.
FIG. 5 is a diagram of the drive for the carriage 30 of the molding station 16. A like drive for the heating station may be used. Longitudinal movement of the carriage 30 on the slide rails 31 is obtained by means of a drum cam, rotated, for example, by a motor M. For clarity, in FIG. 5 the drum cam 54 is shown above the carriage 30, whereas more practically, the cam is located behindthe carriage 30, as viewed in FIG. 5. That is to say all of elements of FIG. 5 above the axis y would be swung 90 about the axis into the plane of the paper. The drum cam 54 has a guide slot 55 which forms an endless curved guide groove for the roller about the circumference of the drum. When the drum 54 rotates, the carriage 30 moves to and fro in the direction of the double arrow 57 and parallel the conveying direction.
The vertical motions, which impart closing and opening movements to the mold parts, are controlled by a revolving disc cam 58. In the example shown, the cam 58 rotates with the same number of rotations as the drum cam 54. The disc cam 58 drives a lever 59 which, intermediate its ends, has a fulcrum on the frame 11 and a roller at its cam follower end. The other lever end is attached to a guide plate 60. A further support lever 61 attached to the guide plate, maintains the guide plate parallel to the carriage during movement. The guide plate has a slot 62 which receives a roller 63. By means of a lever 64 the roller 63 is connected with the shaft 35 and actuates the shaft. As mentioned above in relation to FIG. 3, the shaft 35 controls theopening and closing of the mold parts.
When the disc cam 58 drives the lever 59, that lever pivots so that the guide plate 60 is displaced upwards or downwards, remaining parallel to the direction of movement of the carriage. The roller moving in the slot 62 pivots the lever 64 and the shaft 35. Due to the always parallel disposition of the guide plate 60 and of the slot 62, the position of the carriage relative to the guide plate has no effect on the are through which the roller 63, lever 64, and shaft 35 are driven.
For the sake of simplification, FIG. 5 shows the drive of the disc cam 58 independent from the drive of the drum cam 54. However, for synchronization, it is preferred that all movements be derived from a common drive shaft 66 as shown diagrammatically in FIG. 4. The motor M, which is part of the drive 68, may be coupled to the shaft 66 via a transmission 67 and a belt or chain. Or the shaft 66 may be driven directly to control similar carriage drives 68 via the belt and gearing 67. In FIG. 5, the driving device 68, of FIG. 4 appears only as a block.
OVERALL OPERATION From the feed roller 13, the web 14 advances to between the plates 47, 48 of the heating station 15. At the entrance into the heating station, the edges of the web 14 are seized by the conveyer belts 52 and are carried forward. In the extreme upstream position of the carriage as in FIG. 3, the plates 47, 48 close as a result of the swinging of the shaft 35 in clockwise direction. The plates come to rest against and heat the web 14. Simultaneously, the carriage moves downstream at precisely the same velocity as the material web, the two being preferably commonly driven. Shortly before the downstream limit of the carriage movement, the plates 47, 48 separate'again. The material web 14, which is now heated, advances into the molding station 16 with constant speed. The plates 47, 48 remain opened while the carriage 50 again runs back upstream.
In the extreme upstream position of the molding stations carriage 30, the upper and lower mold parts 33, 34 are separated. The molding station is open. The drive of FIG. 5 moves the carriage 30 forward, accelerating at asconstant a rate as possible, thereby holding transient forces to a minimum throughout the system. The carriage 30 is brought by the drum cam 54 to a constant speed which is precisely the speed of the web 14. The upper and lower mold parts, 33 and 34, are then moved towards each other by the pivoting of the shaft 35 clockwise in the manner described above. Due to the unequal arms of the lever 36, as shown in FIG. 3, the lower part 34 moves up faster than the upper part 33 moves down. The opposing faces 69 and 70 of these two parts, respectively, come to rest against the web 14.
In the embodiment represented here, care should be taken to assure that the face 69 of the frame 43 comes tightly to bear against the material web. Thereafter occurs the molding operation. The pre-expansion dies 42 are lowered by means of the compressed air cylinder 46. The material is pressed into the molding cavities 44 corresponding to their outside shape. The dies 42 do not yet cause the displaced web portions to correspond to the final shape determined by the mold cavities, since the dies are smaller than the subsequent interior shape of the containers. These dies merely effect the initial mechanical shaping of the containers. Thereafter, compressed air is forced into the container interior via the blow nozzles 71 in the pre-expansion dies. As a result, the heated material is forced to the walls of the mold cavities 44, thereby acquiring its final shape. The air present in the mold cavities may escapethrough the bores mentioned above. The lower mold part 34 may be cooled in order to achieve fast hardening or stabilization of the soft synthetic material.
It should be mentioned here that it may be of advantage frequently to employ a vacuum molding method instead of the blow molding method described. Only a few modifications of the process described have to be applied in such a case. The blow openings 71 in the preexpansion dies 42 may then be dispensed with, and the frame 43 need not be sealed tight with respect to the dies 42 and guide rods 45. On the other hand, a vacuum source is connected to the molding cavities 44 which, for the purpose of final molding of the material, sucks the material against the inside walls of the molding cavities.
During the molding process described, the carriage has, of course, been moving to the right at the same speed as the material web 14. Shortly before arrival at the downstream reversing point, the mold parts open due to the swing of the shaft counterclockwise. The containers are thus freed from the mold cavities 44 and continue advancing as the carriage stops and returns upstream to mold further containers from the web. The return of the carriage 30 in the direction counter to the direction of conveying need not be effected with constant speed but can be executed, for example, with constant acceleration over half of the return path and then with constant deceleration so that, as a whole, thereturn is effected faster than downstream travel.
The containers 21, which have now been fully molded, but which are still connected at their upper edges, continue their travel towards the filling station. Filling takes place as previously described. The nowfilled containers are closed by the placement of a cover foil conventionally over all. This foil then is sealed on. Only afterwards the containers are punched out by the punching station which also travels with the containers. The punching apparatus which separates the containers from the web may be like web cutting or punching apparatus well known in the art, but is preferably driven by a drive like that discussed above in relation to FIG. 5.
It is evident that the machine can be adopted easily to meet varying requirements. For example, if molding requires double as much time as filling, one provides, for example, for double the number of molding units arranged in series. The slowest station, i.e., the station which takes the longest time to act on the web or coritainers, thus does not determine the cycle speed of the entire machine. The through put speed of the entire operation can therefore be multiplied, without any branching, by simple increasing of the units or assemblies at each station which act on the web or containers.
Many variants of the preferred embodiment can be achieved within the scope of the invention. The type of machine described can be employed for many kinds of containers and materials.
' The molding station, on the other hand, can be easily adjusted to the molding methods required in each case. As already mentioned, the contact heating method described may be replaced by radiation heating. In the event that the cycle of operation times are chosen to be equal for the heating operation and for the molding operation and mass compensation by contrary motion is of no concern, the carriages 30 and may be moved by means of an entirely common drive moving both carriages at the same time and in the same direction, or even by carrying the heating plates and the mold parts on one carriage. To offset forces in the apparatus re sulting from acceleration of the two carriages, and the members supported thereby, the driving provisions which move the carriages linearly should be adjusted to operate in a push-pull or out of phase relationship in which the acceleration of one carriage in one direction substantially offsets the acceleration of the other carriage in the other direction. If two drum cams are employed, adjustment of the relative rotary positions thereof, one to the other, may lend the desired result.
The preferred embodiment illustrates and describes only one exemplary method and machine and should not be understood to limit the scope of protection, which scope is defined solely by the claims appended hereto.
I claim:
1. Combined container forming and filling apparatus comprising:
means for continuously conveying a web of thermoplastic material along a path at a selected and substantially constant speed;
heating means for heating the web;
heater driving means for driving the heating means along said path parallel to and at equal speed with the web for a distance sufficient to afi'ord adequate time for softening of the thermoplastic material as the web moves and then returning the heating means in the direction opposite the direction of web movement;
molding means located along said path downstream from said heating means for molding containers in the web;
mold driving means for driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction opposite the direction of web movement after containers have been molded in the web, said mold driving means and said heater driving means being adapted to operate in push-pull out of phase relationship so as to reduce acceleration forces in the apparatus; and
filling means located along said path downstream from said molding means for filling the containers formed in the web.
2. Apparatus according to claim 1 wherein the means for conveying comprises means for moving the molded containers past the filling means continuously and without interruption as the containers are formed, the filling means comprising at least one fill dispensing outlet adapted to dispense fill into containers, and means for moving the outlet with the moving container during dispensing and for returning the outlet thereafter.
3. The apparatus according to claim 2 wherein the molding means comprises a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, the number of molding units arranged in the conveying direction differing from the number of filling outlets in the conveying direction, and the length of distance travelled by the mold units and outlets during operation being a function of the number of mold units and outlets, respectively.
4. Combined container forming and filling apparatus including means for filling containers formed by the apparatus, means for continuously conveying a web of material along a path at a selected speed, molding means located along said path for molding containers in the web, and means for first driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction opposite the direction of web movement after containers have been molded in the web, said molding means comprising:
a carriage driven by said driving means;
slide rails attached to said apparatus for guiding the carriage for linear movement;
upper and lower mold parts carried by said carriage movable toward and away from each other and disposed above and below the path of web travel, respectively;
a shaft carried by the carriage and adapted for partial rotation;
means coupling the shaft to the upper and lower mold parts to move the upper and lower mold parts upon partial rotation of the shaft;
a drive lever affixed to the shaft;
a slotted plate extending in the conveying direction and receiving an end of the drive lever in a slot therein, the drive lever end received in the slot being freely movable along the slot in the conveying direction without pivoting; and
means for cyclically moving the slotted plate to pivot the lever and the shaft, and control the movement of the mold parts.
5. Combined container forming and filling apparatus including means for filling containers formed by the apparatus, means for continuously conveying a web of thermoplastic material along a path at a selected speed, molding means located along said path for molding containers in the web, means for first driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction. opposite the direction of web movement after containers have been molded in the web, means for heating the web upstream of the molding means to cause softening .of the thermoplastic material, and means for driving the heating means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for softening of the thermoplastic material as the web moves and then returning the heating means in the direction opposite the direction of web movement, said heating means comprising:
a heating means carriage; means for guiding the heating means carriage for linear movement by said heating means driving means; at least one heating plate carried by said carriage and movable into and out of engagement with the web, and plate motive means for first moving the plate toward the web as the carriage begins movement in the direction of conveying and for then moving the plate away from the web as the carriage approaches the limit of travel downstream, whereby the retracted plate is then returned upstream by the carriage. 6. Apparatus according to claim 5 wherein said molding means includes means movable linearly with and opposite movement of the web to carry the molding means, said mold driving means being coupled in driving relation to said linearly movable means.
7. Apparatus according to claim 6 wherein said linearly movable means comprises a carriage, the apparatus further including slide rails guiding the carriage for linear movement by said driving means, upper and lower mold parts carried by said carriage movable toward and away from each other and disposed above and below the path of web travel, respectively, the apparatus further including motive means for first moving the mold parts toward each other and into engagement with the web as the carriage begins movement in the direction of conveyance and for then moving the mold parts away from each other as the carriage approaches the limit of travel downstream, whereby the separated mold parts are then returned upstream by the carriage.
8. Apparatus according to claim 5 wherein the means for filling is adapted to fill the moving containers molded in the web, the means for continuously conveying comprising means for moving the molded containers past the filling means continuously and without interruption as the containers are formed.
9. Apparatus according to claim 8 including means for closing and sealing the containers immediately after filling thereof by said filling means and as the containers move.
10. Apparatus according to claim 5 wherein said molding means comprises a plurality of mold units, each for molding a separate container, arranged transversely of the conveying direction and across the web, whereby rows of containers are formed across the moving web.
11. Apparatus according to claim 10 wherein said molding means further including a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, whereby a plurality of rows of containers are formed along the web simultaneously and affording additional time for the molding of each container as the web travels a predetermined distance.
12. Apparatus according to claim 5 wherein said molding means comprises a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, whereby a plurality of containers are formed along the web simultaneously to afford additional time forthe molding of each container as the web travels a predetermined distance.
13. Apparatus according to claim 5 wherein the molding means comprises means for applying an air pressure differential across the web to cause the web to be shaped by the molding means.
14. The apparatus according to claim 5 wherein the mold driving means and the heater driving means are adapted to operate in push pull relationship to cause out of phase movement thereof reducing the forces in the apparatus resulting from acceleration.
15. The apparatus according to claim 5 wherein the means for continuously conveying includes means for cooperating with the web throughout the combined forming and filling apparatus to impart substantially constant spaced speed movement to the web and formed containers'throughout the apparatus.
16. The apparatus according to claim 15 wherein the means for cooperating and moving includes an endless conveyer member having means for engaging the web at least at one longitudinal web edge to draw the web through the combined apparatus.
3,808,772 1 l 12 17. The apparatus according to claim further inimmediately downstream of the filling means and eluding means for separating the containers from the web downstream of the filling means.
18. The apparatus according to claim 17 further inare severed from the eluding means for covering the newly filled container 5 means for sealing the covered containers before they

Claims (18)

1. Combined container forming and filling apparatus comprising: means for continuously conveying a web of thermoplastic material along a path at a selected and substantially constant speed; heating means for heating the web; heater driving means for driving the heating means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for softening of the thermoplastic material as the web moves and then returning the heating means in the direction opposite the direction of web movement; molding means located along said path downstream from said heating means for molding containers in the web; mold driving means for driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction opposite the direction of web movement after containers have been molded in the web, said mold driving means and said heater driving means being adapted to operate in push-pull out of phase relationship so as to reduce acceleration forces in the apparatus; and filling means located along said path downstream from said molding means for filling the containers formed in the web.
2. Apparatus according to claim 1 wherein the means for conveying comprises means for moving the molded containers past the filling means continuously and without interruption as the containers are formed, the filling means comprising at least one fill dispensing outlet adapted to dispense fill into containers, and means for moving the outlet with the moving container during dispensing and for returning the outlet thereafter.
3. The apparatus according to claim 2 wherein the molding means comprises a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, the number of molding units arranged in the conveying direction differing from the number of filling outlets in the conveying direction, and the length of distance travelled by the mold units and outlets during operation being a function of the number of mold units and outlets, respectively.
4. Combined container fOrming and filling apparatus including means for filling containers formed by the apparatus, means for continuously conveying a web of material along a path at a selected speed, molding means located along said path for molding containers in the web, and means for first driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction opposite the direction of web movement after containers have been molded in the web, said molding means comprising: a carriage driven by said driving means; slide rails attached to said apparatus for guiding the carriage for linear movement; upper and lower mold parts carried by said carriage movable toward and away from each other and disposed above and below the path of web travel, respectively; a shaft carried by the carriage and adapted for partial rotation; means coupling the shaft to the upper and lower mold parts to move the upper and lower mold parts upon partial rotation of the shaft; a drive lever affixed to the shaft; a slotted plate extending in the conveying direction and receiving an end of the drive lever in a slot therein, the drive lever end received in the slot being freely movable along the slot in the conveying direction without pivoting; and means for cyclically moving the slotted plate to pivot the lever and the shaft, and control the movement of the mold parts.
5. Combined container forming and filling apparatus including means for filling containers formed by the apparatus, means for continuously conveying a web of thermoplastic material along a path at a selected speed, molding means located along said path for molding containers in the web, means for first driving the molding means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for molding the web as the web moves and then returning the molding means in the direction opposite the direction of web movement after containers have been molded in the web, means for heating the web upstream of the molding means to cause softening of the thermoplastic material, and means for driving the heating means along said path parallel to and at equal speed with the web for a distance sufficient to afford adequate time for softening of the thermoplastic material as the web moves and then returning the heating means in the direction opposite the direction of web movement, said heating means comprising: a heating means carriage; means for guiding the heating means carriage for linear movement by said heating means driving means; at least one heating plate carried by said carriage and movable into and out of engagement with the web, and plate motive means for first moving the plate toward the web as the carriage begins movement in the direction of conveying and for then moving the plate away from the web as the carriage approaches the limit of travel downstream, whereby the retracted plate is then returned upstream by the carriage.
6. Apparatus according to claim 5 wherein said molding means includes means movable linearly with and opposite movement of the web to carry the molding means, said mold driving means being coupled in driving relation to said linearly movable means.
7. Apparatus according to claim 6 wherein said linearly movable means comprises a carriage, the apparatus further including slide rails guiding the carriage for linear movement by said driving means, upper and lower mold parts carried by said carriage movable toward and away from each other and disposed above and below the path of web travel, respectively, the apparatus further including motive means for first moving the mold parts toward each other and into engagement with the web as the carriage begins movement in the direction of conveyance and for then moving the mold parts away from each other as the carriage apProaches the limit of travel downstream, whereby the separated mold parts are then returned upstream by the carriage.
8. Apparatus according to claim 5 wherein the means for filling is adapted to fill the moving containers molded in the web, the means for continuously conveying comprising means for moving the molded containers past the filling means continuously and without interruption as the containers are formed.
9. Apparatus according to claim 8 including means for closing and sealing the containers immediately after filling thereof by said filling means and as the containers move.
10. Apparatus according to claim 5 wherein said molding means comprises a plurality of mold units, each for molding a separate container, arranged transversely of the conveying direction and across the web, whereby rows of containers are formed across the moving web.
11. Apparatus according to claim 10 wherein said molding means further including a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, whereby a plurality of rows of containers are formed along the web simultaneously and affording additional time for the molding of each container as the web travels a predetermined distance.
12. Apparatus according to claim 5 wherein said molding means comprises a plurality of mold units, each for molding a separate container, arranged longitudinally in the conveying direction along the web, whereby a plurality of containers are formed along the web simultaneously to afford additional time for the molding of each container as the web travels a predetermined distance.
13. Apparatus according to claim 5 wherein the molding means comprises means for applying an air pressure differential across the web to cause the web to be shaped by the molding means.
14. The apparatus according to claim 5 wherein the mold driving means and the heater driving means are adapted to operate in push-pull relationship to cause out of phase movement thereof reducing the forces in the apparatus resulting from acceleration.
15. The apparatus according to claim 5 wherein the means for continuously conveying includes means for cooperating with the web throughout the combined forming and filling apparatus to impart substantially constant spaced speed movement to the web and formed containers throughout the apparatus.
16. The apparatus according to claim 15 wherein the means for cooperating and moving includes an endless conveyer member having means for engaging the web at least at one longitudinal web edge to draw the web through the combined apparatus.
17. The apparatus according to claim 5 further including means for separating the containers from the web downstream of the filling means.
18. The apparatus according to claim 17 further including means for covering the newly filled container immediately downstream of the filling means and means for sealing the covered containers before they are severed from the web.
US00192216A 1970-10-27 1971-10-26 Apparatus for forming and filling containers Expired - Lifetime US3808772A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19702052551 DE2052551A1 (en) 1970-10-27 1970-10-27 Filling machine with molding device

Publications (1)

Publication Number Publication Date
US3808772A true US3808772A (en) 1974-05-07

Family

ID=5786210

Family Applications (1)

Application Number Title Priority Date Filing Date
US00192216A Expired - Lifetime US3808772A (en) 1970-10-27 1971-10-26 Apparatus for forming and filling containers

Country Status (4)

Country Link
US (1) US3808772A (en)
CH (1) CH533539A (en)
DE (1) DE2052551A1 (en)
FR (1) FR2113280A5 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965651A (en) * 1973-12-14 1976-06-29 Erwin Reichlin Device for the manufacture and filling of packages
US4033092A (en) * 1974-08-01 1977-07-05 Multivac Sepp Haggenmueller Kg Vacuum packaging machine for the production of packages from packaging material webs
US4045152A (en) * 1975-09-02 1977-08-30 Kusel Equipment Company Apparatus for making cheese
US4069645A (en) * 1974-08-01 1978-01-24 Multivac Sepp Haggenmueller Kg Vacuum packaging machine for the production of sealed packages
JPS5329888A (en) * 1976-08-30 1978-03-20 Denpei Sakurai Automatic wrapping machine for ptp wrapping
US4094127A (en) * 1976-11-29 1978-06-13 Andrea Romagnoli Apparatus for forming, filling and closing plastics trays
USRE29937E (en) * 1974-02-15 1979-03-20 Mahaffy & Harder Engineering Co. Continuous movement packaging machine
US4292785A (en) * 1978-09-20 1981-10-06 Anchor Building Products Limited Tile packaging
US4506495A (en) * 1981-01-23 1985-03-26 Ima-Industria Macchine Automatiche S.P.A. Machine for producing blister packages
US4543770A (en) * 1982-03-02 1985-10-01 Kurt Walter Apparatus for producing and charging containers in a sterile atmosphere
US4726173A (en) * 1985-10-04 1988-02-23 Newpack S.P.A. Automatic packaging machine
US4794224A (en) * 1987-04-09 1988-12-27 Ncr Corporation Dry film developer for an aperture card printer
US4800705A (en) * 1987-07-31 1989-01-31 Package Machinery Company, Bodolay/Pratt Division Continuous form, fill, seal and separate packaging machine
US4863693A (en) * 1984-08-21 1989-09-05 E. I. Du Pont De Nemours And Company Analysis instrument having a blow molded reaction chamber
US5187921A (en) * 1990-09-04 1993-02-23 Glaxo Group Limited Method and apparatus for filling cavities
US5205110A (en) * 1990-12-12 1993-04-27 Buchko Raymond G Servo motor operated indexing motion packaging machine and method
US5269123A (en) * 1989-12-29 1993-12-14 Massimo Marchesini Device for sealing a film onto a blister band, particularly a polypropylene band
US5409368A (en) * 1993-06-01 1995-04-25 Heiskell; Ronald E. Apparatus for punching
US5517805A (en) * 1994-11-08 1996-05-21 Epstein; Moshe Vacuum-packaging machine with translating tools
US5732529A (en) * 1996-03-29 1998-03-31 Ethicon, Inc. Apparatus for feeding foil stock in a process for making sealed sterile packages
US5737902A (en) * 1996-09-19 1998-04-14 Aylward Enterprises, Inc. Apparatus and method for packaging pills
EP0847920A1 (en) * 1996-12-14 1998-06-17 Dixie-Union GmbH & Co. KG Packaging machine with a chamber consisting of an upper and a lower part
EP0895934A1 (en) * 1997-08-08 1999-02-10 Multivac Sepp Haggenmüller Kg Lifting device for a working station of a packaging machine
WO2000024635A1 (en) * 1998-10-23 2000-05-04 Vicente Gomez Laguna Machine for the fabrication of containers with consumable content
US6324819B1 (en) * 1997-02-20 2001-12-04 Kourtoglou S.A. Food Packaging Machinery Packaging apparatus
US6334290B1 (en) * 1999-04-17 2002-01-01 Robert Bosch Gmbh Apparatus for producing packages
WO2002042158A1 (en) * 2000-11-23 2002-05-30 Packaging Imolese S.P.A. Process and apparatus for the production of blister packs
WO2002060758A1 (en) * 2001-01-31 2002-08-08 The Procter & Gamble Company Process for making pouches
WO2002060757A3 (en) * 2001-01-31 2002-12-19 Procter & Gamble Method and apparatus for vaccum forming films
US20030017066A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Apparatus, flexible bag and method for dispensing
FR2829993A1 (en) * 2001-09-27 2003-03-28 Bosch Gmbh Robert Form, fill and seal system, for plastic pots, has heater moving together with plastic strip and acting as additional conveyor
US20030179250A1 (en) * 2002-03-22 2003-09-25 Po-Wei Chang Multidirectionally movable transmission mechanism of a business machine
US20040007588A1 (en) * 2001-07-19 2004-01-15 Baxter International Inc. Flexible bag for use in manufacturing
WO2004022429A1 (en) * 2002-09-06 2004-03-18 Cfs Germany Gmbh Packaging machine with a displacement unit
US20040144799A1 (en) * 2003-01-24 2004-07-29 Baxter International Inc. Liquid dispenser and flexible bag therefor
US20040144800A1 (en) * 2003-01-24 2004-07-29 Baxter International, Inc. Liquid dispenser and flexible bag therefor
US20040244339A1 (en) * 2001-10-26 2004-12-09 Corrado Dal Pozzo Method and machine for producing blister packs
US20050011908A1 (en) * 2003-07-16 2005-01-20 Baxter International, Inc. Dispenser and pressure/vacuum converting machine
EP1506924A2 (en) * 2003-08-11 2005-02-16 Harro Höfliger Verpackungsmaschinen GmbH Apparatus for manufacturing water-soluble containers
WO2005030471A1 (en) * 2003-10-02 2005-04-07 Angel Javier Martinez Sampedro Progressive machine which is used to produce containers and reliefs using a thermoformable flexible or semi-rigid film, comprising one or more layers and imprints on the upper cover and sides thereof
US20050081485A1 (en) * 2003-10-15 2005-04-21 Uhlmann Pac-Systeme Gmbh & Co. Kg Blister-foil packaging machine
US6905314B2 (en) 2001-10-16 2005-06-14 Baxter International Inc. Pump having flexible liner and compounding apparatus having such a pump
US20050268578A1 (en) * 2003-12-01 2005-12-08 Haehnel Bernd Blister packaging machine
US20060132247A1 (en) * 2004-12-20 2006-06-22 Renesas Technology Corp. Oscillator and charge pump circuit using the same
US7299609B1 (en) * 2006-06-21 2007-11-27 Moshe Epstein Piston-cylinder actuator and mounting support for the lower tool of an indexing packaging machine
US7340871B1 (en) * 2006-03-31 2008-03-11 Alkar-Rapidpak, Inc. Web packaging system with ergonomic tooling change
DE102006054400A1 (en) * 2006-11-18 2008-05-21 Uhlmann Pac-Systeme Gmbh & Co. Kg Thermo forming machine for forming blister pack, has heater and/or part of heater adjustably supported parallel to level of form foil, and form station adjustably supported between stop position and operating position
CN100450872C (en) * 2001-01-31 2009-01-14 宝洁公司 Method and apparatus for forming films
US20090100804A1 (en) * 2007-10-23 2009-04-23 Bonneville Craig R Web Packaging System with Ergonomic Forming Plug Change
US20090241485A1 (en) * 2008-03-28 2009-10-01 Buchko Raymond G Lift Mechanism For Tooling That Acts On A Web In A Packaging Machine
US20090260320A1 (en) * 2008-04-18 2009-10-22 Multivac Sepp Haggenmueller Gmbh & Co. Kg Workstation of a packaging machine having a lifting device
US20090289397A1 (en) * 2008-05-21 2009-11-26 Pia-K Enterprises, Llc Forming Station of Apparatus for Making Packaging
US20090313956A1 (en) * 2006-06-27 2009-12-24 Idm World, S.L. Machine for shaping, filling and closing expanded polymer containers
US20090320408A1 (en) * 2008-06-30 2009-12-31 Clifford Dey Method and device for forming pre-made pouches
US20100011718A1 (en) * 2006-10-20 2010-01-21 Cfs Germany Gmbh Packaging machine having an adjustable pneumatic/hydraulic drive
US20100287888A1 (en) * 2009-05-18 2010-11-18 Alkar-Rapidpak, Inc. Packaging Machines and Methods
US20100323641A1 (en) * 2009-06-22 2010-12-23 Qualcomm Incorporated Method and apparatus for using pre-distortion and feedback to mitigate nonlinearity of circuits
US20110071009A1 (en) * 2008-03-25 2011-03-24 Sarong Societa' Per Azioni Apparatus for forming aseptic containers
US8499536B2 (en) 2009-05-18 2013-08-06 Alkar-Rapidpak-Mp Equipment, Inc. Apparatuses and methods for assisted tooling extraction
US20130219827A1 (en) * 2012-02-28 2013-08-29 The Procter & Gamble Company Apparatus for Forming Packages and Filling System
US20140326519A1 (en) * 2011-12-06 2014-11-06 Molins Plc Checkweigher
JP2015048136A (en) * 2013-09-03 2015-03-16 株式会社岩黒製作所 Pocket part formation device of blister pack and packaging device
US20150268088A1 (en) * 2012-12-05 2015-09-24 Molins Plc Weighing Device
US9156573B2 (en) 2011-03-30 2015-10-13 Alkar-Rapidpak, Inc. Packaging apparatuses and methods
US10618767B2 (en) 2014-03-06 2020-04-14 The Procter And Gamble Company Method and apparatus for pleating or shaping a web
US10625886B2 (en) 2014-03-06 2020-04-21 The Procter And Gamble Company Method and apparatus for shaping webs in a vertical form, fill, and sealing system
US10737820B2 (en) 2012-07-24 2020-08-11 The Procter And Gamble Company Apparatus for packing products into containers
US10850876B2 (en) * 2015-06-09 2020-12-01 Cryovac, Llc Apparatus and process for packaging products
US10961093B2 (en) 2017-08-14 2021-03-30 Cp Packaging, Inc. Simplified lift mechanism for a packaging machine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2372730A1 (en) * 1976-12-03 1978-06-30 Ima Spa Plastics blister package forming appts. - has differentially heated plates and deforming members mounted on common carriage and registered cover strip applying station
US4329830A (en) * 1979-06-22 1982-05-18 Omori Machinery Co., Ltd. Method and apparatus for packaging powdery or particle-size material
DE3141528A1 (en) * 1981-10-20 1983-05-11 IWK Verpackungstechnik GmbH, 7513 Stutensee Packaging machine
DE3605864C1 (en) * 1986-02-24 1987-06-19 Hassia Verpackung Ag Packing machine with foil tape run for the continuous cyclical shaping, filling, closing and at least grouping of cups
DE19824588A1 (en) * 1998-06-02 1999-12-09 Kraemer & Grebe Kg Die and method for producing a packaging tray with an undercut
DE102005009870A1 (en) * 2005-03-01 2006-09-07 Cfs Germany Gmbh Molding unit for making deep-drawn plastic food tubs from plastic sheet has coolant channels which cool molds during deep drawing
DE102005017755A1 (en) 2005-04-15 2006-10-19 Cfs Germany Gmbh Foodstuffs packaging machine, has antenna for data exchange between transponder and computer- and/or control unit, where data are transmitted to transponder and are accessed from transponder by antenna
US7665281B2 (en) 2005-07-13 2010-02-23 Cfs Germany Gmbh Machine for making packaging with form-fit connection
DE102006022634A1 (en) * 2006-05-12 2007-11-15 Uhlmann Pac-Systeme Gmbh & Co. Kg forming station
EP3187426A1 (en) 2015-12-28 2017-07-05 MULTIVAC Sepp Haggenmüller SE & Co. KG Packaging machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3075329A (en) * 1959-11-16 1963-01-29 Union Bag Camp Paper Corp Apparatus for packaging articles
US3397508A (en) * 1965-08-06 1968-08-20 Total Packaging Inc Thermoplastic packaging machine
US3475878A (en) * 1965-10-22 1969-11-04 Margaret R Ross Packaging machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3075329A (en) * 1959-11-16 1963-01-29 Union Bag Camp Paper Corp Apparatus for packaging articles
US3397508A (en) * 1965-08-06 1968-08-20 Total Packaging Inc Thermoplastic packaging machine
US3475878A (en) * 1965-10-22 1969-11-04 Margaret R Ross Packaging machine

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965651A (en) * 1973-12-14 1976-06-29 Erwin Reichlin Device for the manufacture and filling of packages
USRE29937E (en) * 1974-02-15 1979-03-20 Mahaffy & Harder Engineering Co. Continuous movement packaging machine
US4069645A (en) * 1974-08-01 1978-01-24 Multivac Sepp Haggenmueller Kg Vacuum packaging machine for the production of sealed packages
US4033092A (en) * 1974-08-01 1977-07-05 Multivac Sepp Haggenmueller Kg Vacuum packaging machine for the production of packages from packaging material webs
US4045152A (en) * 1975-09-02 1977-08-30 Kusel Equipment Company Apparatus for making cheese
JPS5329888A (en) * 1976-08-30 1978-03-20 Denpei Sakurai Automatic wrapping machine for ptp wrapping
US4094127A (en) * 1976-11-29 1978-06-13 Andrea Romagnoli Apparatus for forming, filling and closing plastics trays
US4292785A (en) * 1978-09-20 1981-10-06 Anchor Building Products Limited Tile packaging
US4506495A (en) * 1981-01-23 1985-03-26 Ima-Industria Macchine Automatiche S.P.A. Machine for producing blister packages
US4543770A (en) * 1982-03-02 1985-10-01 Kurt Walter Apparatus for producing and charging containers in a sterile atmosphere
US4863693A (en) * 1984-08-21 1989-09-05 E. I. Du Pont De Nemours And Company Analysis instrument having a blow molded reaction chamber
US4726173A (en) * 1985-10-04 1988-02-23 Newpack S.P.A. Automatic packaging machine
US4794224A (en) * 1987-04-09 1988-12-27 Ncr Corporation Dry film developer for an aperture card printer
US4800705A (en) * 1987-07-31 1989-01-31 Package Machinery Company, Bodolay/Pratt Division Continuous form, fill, seal and separate packaging machine
US5269123A (en) * 1989-12-29 1993-12-14 Massimo Marchesini Device for sealing a film onto a blister band, particularly a polypropylene band
US5187921A (en) * 1990-09-04 1993-02-23 Glaxo Group Limited Method and apparatus for filling cavities
US5205110A (en) * 1990-12-12 1993-04-27 Buchko Raymond G Servo motor operated indexing motion packaging machine and method
US5409368A (en) * 1993-06-01 1995-04-25 Heiskell; Ronald E. Apparatus for punching
US5517805A (en) * 1994-11-08 1996-05-21 Epstein; Moshe Vacuum-packaging machine with translating tools
US5732529A (en) * 1996-03-29 1998-03-31 Ethicon, Inc. Apparatus for feeding foil stock in a process for making sealed sterile packages
US5737902A (en) * 1996-09-19 1998-04-14 Aylward Enterprises, Inc. Apparatus and method for packaging pills
US5819510A (en) * 1996-12-14 1998-10-13 Dixie-Union Gmbh & Co. Kg Packaging machine having a chamber consisting of an upper part and a lower part
EP0847920A1 (en) * 1996-12-14 1998-06-17 Dixie-Union GmbH & Co. KG Packaging machine with a chamber consisting of an upper and a lower part
US6324819B1 (en) * 1997-02-20 2001-12-04 Kourtoglou S.A. Food Packaging Machinery Packaging apparatus
EP0895934A1 (en) * 1997-08-08 1999-02-10 Multivac Sepp Haggenmüller Kg Lifting device for a working station of a packaging machine
US6085497A (en) * 1997-08-08 2000-07-11 Multivec Sepp Haggenmuller Gmbh & Co. Lifting device for a working station of a packaging machine
WO2000024635A1 (en) * 1998-10-23 2000-05-04 Vicente Gomez Laguna Machine for the fabrication of containers with consumable content
ES2167124A1 (en) * 1998-10-23 2002-05-01 Laguna Vicente Gomez Machine for the fabrication of containers with consumable content
US6453650B1 (en) 1998-10-23 2002-09-24 Vicente Gomez Laguna Machine for the fabrication of containers with consumable content
US6334290B1 (en) * 1999-04-17 2002-01-01 Robert Bosch Gmbh Apparatus for producing packages
WO2002042158A1 (en) * 2000-11-23 2002-05-30 Packaging Imolese S.P.A. Process and apparatus for the production of blister packs
US20040080082A1 (en) * 2000-11-23 2004-04-29 Cesarino Galassi Process and apparatus for the production of blister packs
US7300618B2 (en) * 2000-11-23 2007-11-27 Packaging Imolese S.P.A. Process and apparatus for the production of blister packs
EP1422142A1 (en) * 2000-11-23 2004-05-26 Packaging Imolese S.P.A. Process for the production of blister packs
EP1358107B1 (en) 2001-01-31 2015-12-30 The Procter & Gamble Company Method and apparatus for vacuum forming films
CN100450872C (en) * 2001-01-31 2009-01-14 宝洁公司 Method and apparatus for forming films
US20050034432A1 (en) * 2001-01-31 2005-02-17 The Procter & Gamble Company Method and apparatus for forming films
WO2002060757A3 (en) * 2001-01-31 2002-12-19 Procter & Gamble Method and apparatus for vaccum forming films
US7677015B2 (en) 2001-01-31 2010-03-16 The Procter & Gamble Company Method and apparatus for forming films
WO2002060758A1 (en) * 2001-01-31 2002-08-08 The Procter & Gamble Company Process for making pouches
US20040144064A1 (en) * 2001-01-31 2004-07-29 The Procter & Gamble Company Process for making pouches
US7127874B2 (en) 2001-01-31 2006-10-31 The Procter & Gamble Company Process for making pouches
US6769231B2 (en) 2001-07-19 2004-08-03 Baxter International, Inc. Apparatus, method and flexible bag for use in manufacturing
US20030017066A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Apparatus, flexible bag and method for dispensing
US20040094573A1 (en) * 2001-07-19 2004-05-20 Baxter International Inc. Flow control apparatus for use in dispensing fluent material
US20040007588A1 (en) * 2001-07-19 2004-01-15 Baxter International Inc. Flexible bag for use in manufacturing
FR2829993A1 (en) * 2001-09-27 2003-03-28 Bosch Gmbh Robert Form, fill and seal system, for plastic pots, has heater moving together with plastic strip and acting as additional conveyor
US6905314B2 (en) 2001-10-16 2005-06-14 Baxter International Inc. Pump having flexible liner and compounding apparatus having such a pump
US20040244339A1 (en) * 2001-10-26 2004-12-09 Corrado Dal Pozzo Method and machine for producing blister packs
US6941729B2 (en) * 2001-10-26 2005-09-13 I.M.A. Industria Macchine Automatiche S.P.A. Method and machine for producing blister packs
US6847471B2 (en) * 2002-03-22 2005-01-25 Kinpo Electronics, Inc. Multidirectionally movable transmission mechanism of a business machine
US20030179250A1 (en) * 2002-03-22 2003-09-25 Po-Wei Chang Multidirectionally movable transmission mechanism of a business machine
US20050247143A1 (en) * 2002-09-06 2005-11-10 Ernst-Walter Schmitt Packaging machine with a displacement unit
WO2004022429A1 (en) * 2002-09-06 2004-03-18 Cfs Germany Gmbh Packaging machine with a displacement unit
US7237691B2 (en) 2003-01-24 2007-07-03 Baxter International Inc. Flexible bag for fluent material dispenser
US7007824B2 (en) 2003-01-24 2006-03-07 Baxter International Inc. Liquid dispenser and flexible bag therefor
US20040144800A1 (en) * 2003-01-24 2004-07-29 Baxter International, Inc. Liquid dispenser and flexible bag therefor
US20040144799A1 (en) * 2003-01-24 2004-07-29 Baxter International Inc. Liquid dispenser and flexible bag therefor
US20050011908A1 (en) * 2003-07-16 2005-01-20 Baxter International, Inc. Dispenser and pressure/vacuum converting machine
EP1506924A3 (en) * 2003-08-11 2005-04-06 Harro Höfliger Verpackungsmaschinen GmbH Apparatus for manufacturing water-soluble containers
EP1506924A2 (en) * 2003-08-11 2005-02-16 Harro Höfliger Verpackungsmaschinen GmbH Apparatus for manufacturing water-soluble containers
WO2005030471A1 (en) * 2003-10-02 2005-04-07 Angel Javier Martinez Sampedro Progressive machine which is used to produce containers and reliefs using a thermoformable flexible or semi-rigid film, comprising one or more layers and imprints on the upper cover and sides thereof
US20050081485A1 (en) * 2003-10-15 2005-04-21 Uhlmann Pac-Systeme Gmbh & Co. Kg Blister-foil packaging machine
US7140163B2 (en) * 2003-10-15 2006-11-28 Uhlmann Pac-Systeme Gmbh & Co. Kg Blister-foil packaging machine
US20050268578A1 (en) * 2003-12-01 2005-12-08 Haehnel Bernd Blister packaging machine
US20060132247A1 (en) * 2004-12-20 2006-06-22 Renesas Technology Corp. Oscillator and charge pump circuit using the same
US20080134643A1 (en) * 2006-03-31 2008-06-12 Alkar-Rapidpak, Inc. Web Packaging System with Ergonomic Tooling Change
US7340871B1 (en) * 2006-03-31 2008-03-11 Alkar-Rapidpak, Inc. Web packaging system with ergonomic tooling change
US7607279B2 (en) 2006-03-31 2009-10-27 Alkar-Rapidpak, Inc. Web packaging system with ergonomic tooling change
US7299609B1 (en) * 2006-06-21 2007-11-27 Moshe Epstein Piston-cylinder actuator and mounting support for the lower tool of an indexing packaging machine
US20090313956A1 (en) * 2006-06-27 2009-12-24 Idm World, S.L. Machine for shaping, filling and closing expanded polymer containers
US8033085B2 (en) * 2006-06-27 2011-10-11 Idm World S.L. Machine for shaping, filling and closing expanded polymer containers
US20100011718A1 (en) * 2006-10-20 2010-01-21 Cfs Germany Gmbh Packaging machine having an adjustable pneumatic/hydraulic drive
DE102006054400A1 (en) * 2006-11-18 2008-05-21 Uhlmann Pac-Systeme Gmbh & Co. Kg Thermo forming machine for forming blister pack, has heater and/or part of heater adjustably supported parallel to level of form foil, and form station adjustably supported between stop position and operating position
US7703265B2 (en) 2007-10-23 2010-04-27 Alkar-Rapidpak, Inc. Web packaging system with ergonomic forming plug change
US20090100804A1 (en) * 2007-10-23 2009-04-23 Bonneville Craig R Web Packaging System with Ergonomic Forming Plug Change
US20100175350A1 (en) * 2007-10-23 2010-07-15 Alkar-Rapidpak, Inc. Web Packaging System with Ergonomic Forming Plug Change
US8181432B2 (en) 2007-10-23 2012-05-22 Alkar-Rapidpak-Mp Equipment, Inc. Web packaging system with ergonomic forming plug change
US8663080B2 (en) * 2008-03-25 2014-03-04 Sarong Societa' Per Azioni Apparatus for forming aseptic containers
US20110071009A1 (en) * 2008-03-25 2011-03-24 Sarong Societa' Per Azioni Apparatus for forming aseptic containers
US20090241485A1 (en) * 2008-03-28 2009-10-01 Buchko Raymond G Lift Mechanism For Tooling That Acts On A Web In A Packaging Machine
US7833002B2 (en) 2008-03-28 2010-11-16 Cp Packaging, Inc. Lift mechanism for tooling that acts on a web in a packaging machine
DE102008019626A1 (en) * 2008-04-18 2009-10-29 Multivac Sepp Haggenmüller Gmbh & Co. Kg Workstation of a packaging machine with a lifting device
US20090260320A1 (en) * 2008-04-18 2009-10-22 Multivac Sepp Haggenmueller Gmbh & Co. Kg Workstation of a packaging machine having a lifting device
US8042320B2 (en) 2008-04-18 2011-10-25 Mutlivac Sepp Haggenmüller GmbH & Co. KG Workstation of a packaging machine having a lifting device
US20090289397A1 (en) * 2008-05-21 2009-11-26 Pia-K Enterprises, Llc Forming Station of Apparatus for Making Packaging
US8758669B2 (en) 2008-06-30 2014-06-24 Ethicon, Inc. Method and device for forming pre-made pouches
US8128859B2 (en) 2008-06-30 2012-03-06 Ethicon, Inc. Method for forming pre-made pouches
US20100314805A1 (en) * 2008-06-30 2010-12-16 Clifford Dey Method and device for forming pre-made pouches
US20090320408A1 (en) * 2008-06-30 2009-12-31 Clifford Dey Method and device for forming pre-made pouches
US20100287888A1 (en) * 2009-05-18 2010-11-18 Alkar-Rapidpak, Inc. Packaging Machines and Methods
US8499536B2 (en) 2009-05-18 2013-08-06 Alkar-Rapidpak-Mp Equipment, Inc. Apparatuses and methods for assisted tooling extraction
US8186134B2 (en) 2009-05-18 2012-05-29 Alkar-Rapidpak-Mp Equipment, Inc. Packaging machines and methods
US20100323641A1 (en) * 2009-06-22 2010-12-23 Qualcomm Incorporated Method and apparatus for using pre-distortion and feedback to mitigate nonlinearity of circuits
US9156573B2 (en) 2011-03-30 2015-10-13 Alkar-Rapidpak, Inc. Packaging apparatuses and methods
US9574931B2 (en) * 2011-12-06 2017-02-21 Molins Plc Checkweigher for checking the weight of filled receptacles
US20140326519A1 (en) * 2011-12-06 2014-11-06 Molins Plc Checkweigher
US20130219827A1 (en) * 2012-02-28 2013-08-29 The Procter & Gamble Company Apparatus for Forming Packages and Filling System
US10737820B2 (en) 2012-07-24 2020-08-11 The Procter And Gamble Company Apparatus for packing products into containers
US20150268088A1 (en) * 2012-12-05 2015-09-24 Molins Plc Weighing Device
US9772218B2 (en) * 2012-12-05 2017-09-26 Molins Plc Weighing device
JP2015048136A (en) * 2013-09-03 2015-03-16 株式会社岩黒製作所 Pocket part formation device of blister pack and packaging device
US10618767B2 (en) 2014-03-06 2020-04-14 The Procter And Gamble Company Method and apparatus for pleating or shaping a web
US10625886B2 (en) 2014-03-06 2020-04-21 The Procter And Gamble Company Method and apparatus for shaping webs in a vertical form, fill, and sealing system
US10850876B2 (en) * 2015-06-09 2020-12-01 Cryovac, Llc Apparatus and process for packaging products
US10961093B2 (en) 2017-08-14 2021-03-30 Cp Packaging, Inc. Simplified lift mechanism for a packaging machine

Also Published As

Publication number Publication date
CH533539A (en) 1973-02-15
DE2052551A1 (en) 1972-06-22
FR2113280A5 (en) 1972-06-23

Similar Documents

Publication Publication Date Title
US3808772A (en) Apparatus for forming and filling containers
US4094127A (en) Apparatus for forming, filling and closing plastics trays
US3958394A (en) Continuous movement packaging machine
US6247293B1 (en) Modular packaging machine with web tension control
US5776045A (en) Machine for attaching a reclosable fastener to a flexible material
US6195967B1 (en) Packaging machine having continuous and intermittent modes
US5768852A (en) Vertical form, fill and seal machine, components and method for making reclosable bags
US3204756A (en) Apparatus for the intermittent transport of workpieces, especially for the feeding of wrappers, labels, or the like in wrapping machines
EP0999141A2 (en) Servo-controlled pouch making apparatus
EP0999137A2 (en) Pouch carrying apparatus
US4375146A (en) Continuous rotary machine and method for forming, filling, and sealing package of laminated sheet material
US4662148A (en) Method and apparatus for the application of film wrappings
US5223073A (en) Apparatus for forming cells in continuous strips, particularly for packaging suppositories and the like
GB1203868A (en) Method and machine for forming and filling bags
US4117649A (en) System for forming, filling and closing bags
US3653175A (en) Machine for conditioning packings
US5069021A (en) Apparatus for producing a fluids package
US4287702A (en) Method and installation for packaging in a sterile medium
US3733773A (en) Apparatus including reciprocating web feeding means for a continuously feeding web
US3706183A (en) Rotary heat-sealing and cut-off mechanism
US3071905A (en) Continuous packaging device
US4094125A (en) Packaging machine
US3331183A (en) Sealing packages
US3647335A (en) Apparatus for forming containers
US4262470A (en) Packaging system with cantilevered web feed system accessible for changing web