US3808836A - Doublet gem construction - Google Patents

Doublet gem construction Download PDF

Info

Publication number
US3808836A
US3808836A US00311024A US31102472A US3808836A US 3808836 A US3808836 A US 3808836A US 00311024 A US00311024 A US 00311024A US 31102472 A US31102472 A US 31102472A US 3808836 A US3808836 A US 3808836A
Authority
US
United States
Prior art keywords
pavilion
girdle
doublet
interface
stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00311024A
Inventor
H Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00311024A priority Critical patent/US3808836A/en
Application granted granted Critical
Publication of US3808836A publication Critical patent/US3808836A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C17/00Gems or the like
    • A44C17/002Gems made of several cut pieces
    • A44C17/003Doublet stones

Definitions

  • ABSTRACT A doublet gem stone having a crown member of relatively high hardness and a pavilion member of lesser hardness but of higher optical dispersion and refractivity, and wherein the interface of the crown member and pavilion member is below the girdle of the gem stone.
  • the crown member has a pavilion shoulder between the girdle and the interface which shoulder is more nearly parallel to the axis of symmetry of the gem stone than are the sides of the pavilion member and forms a projected angle of between 3 and 40 with said sides.
  • the pavilion shoulder may be either partly or wholly on said crown member.
  • the crown member 1 is fabricated from a relatively hard, optically clear material such as sapphire and the pavilion member 2 is prepared from an optically brilliant and fiery material suchas strontium titanate or lithium niobate.
  • the doublet gem stone thus created has a table or flat face 8, and a girdle 3 entirely within the crown member 1 and a pavilion 2 having sides 6 tapering down to a culet 4.
  • the crown member and pavilion member are bonded together and the bonded surface forms the interface 5 of the doublet.
  • the sides 6 of the pavilion member are typically faceted and join with the pavilion shoulder of the crown member to form an inverted pyramid or cone.
  • the prongs contact the stone above the girdle where the stone is relatively hard and the sides of the pavilion member which is considerably softer than'the crown member. This some times causes cracking or scratching of the pavilion member.
  • FIG. 1 and FIG. 2 both referred to as the prior art, refer respectively to an elevation, partly in section, of a round out doublet gem stone and an enlarged elevation of a portion of the girdle of said gem stone;
  • FIG. 3 is an elevation, partially in section, of a round cut doublet gem stone according to this invention;
  • FIG. 4 is an enlarged elevation of a portion of the gem stone shown in FIG. 3;
  • FIG. 5 is an elevation partially in section of another embodiment of this invention.
  • the present invention overcomes the inadequacies of the prior art doublet gem stones by positioning the interface between the hard crown member and the brilliant pavilion member at a location between the girdle and the culet, with the pavilion shoulder of the crown member more parallel to the axis of the symmetry of the stone than are the sides of the pavilion member.
  • This axis of symmetry is an imaginary line extending normal to the plane of the table and passing through the culet of the pavilion.
  • the edge of the interface more closely approximates the dimensions of the girdle, thereby serving to visibly obscure the edge when the gem stone is viewed from above.
  • this construction provides a hard surface below the girdle for contact with the metal prongs of the setting, thereby preventing the prongs from damaging the softer stone of the pavilion.
  • a round out doublet gem stone is composed of a crown member 11 having a relatively fiat face or table 18, crown facets 19, a girdle 13, a pavilion shoulder 17 and a bottom face 15.
  • the pavilion member 12 includes a culet 14 and conical sides 16 usually cut into suitable facets. These facets, together with the high refractivity of the pavilion member, are largely responsible for the brilliance of the gem stone.
  • the sides 16 form an angle A at the culet 14 of at least 90.
  • the top of the pavilion and the bottom of the crown member are mated and bonded together to form the doublet interface 15.
  • the color and fire of the gem stone are created mainly by the optical dispersion that occurs at the interface where the two members meet.
  • the vertical line x-x represents the axis of symmetry of the gem stone.
  • the pavilion shoulder 17 of the crown member 11 is made more vertical (i.e., more nearly parallel to the x-x axis) than the sides 16 of the pavilion member 12, the diameter of the peripheral edge 20 (as seen in FIG. 4) of the interface is enlarged so that it more nearly equals the maximum dimensions of the stone at the girdle.
  • the distance D between the peripheral edge 20 and the girdle 13 is so small, particularly when com- FIGS. 1 and 2, that the girdle tends to-completely obscure the flaw created by the peripheral edge.
  • the distance D will increase as the interface 15 is moved toward the culet and away from the girdle.
  • the distance D does not increase as rapidly or as noticeably as it did in the prior art stone of FIG. 1.
  • 'it should be spaced a sufficient distance from the girdle to permit the prongs of the setting to contact the harder crown member both above and below the girdle.
  • the angle a is shown as the angle formed by the sides 16 of the pavilion member and the line representing the projection of the pavilion shoulder 17. This angle is typically between about 3 and about 40 and more preferably between about 10 and 30.
  • the angle (1, including l the type of stones being used for the crown member and the pavilion member, as well as their dispersions, refractive indices, hardness and brilliance; (2) the type of mounting to be used with the doublet gem stone; (3) the distance of the interface from the girdle; and (4) the method of cutting, faceting and joining the crown and pavilion.
  • a small angle a i.e., 10-20 percent, may be used if the interface can be located close to the girdle without causing damage to the softer stone bythe setting.
  • a small angle a i.e. 10-20 percent
  • the interface should be located away from the girdle and closer to the culet in which case, the angle a shouldbe larger, i.e., between 20 and 30. This larger angle serves to keep the diameter of the stone at the interface as large as possible and close to that of the girdle.
  • the angle a is typically changed by altering the slope of the pavilion shoulder 17 rather than the slope of the sides 16.
  • the culet angle A is about Angle B is the angle formed by the side 16 of the pavilion member and a line drawn parallel to the axis of symmetry. This angle is equal to one-half of the'culet angle M2 or about 45.
  • the angle a approaches the angle B as the pavilion shoulder 17 becomes more nearly parallel to the axis of symmetry. However, this angle a normally does not exceed 40.
  • the width of the girdle measured in the direction normal to the table 18, i.e., along the gem axis x--x is generally between about 1.5 percent and about 3 percent, and more preferably about 2 percent of the diameter of the stone measured at the girdle.
  • the interface is preferably located at about 1 percent to 20 percent of the distance from the girdle 13 toward the culet 14. A more preferred range is between 6 percent and 15 percent of this distance.
  • the total width of the girdle and the pavilion shoulder i.e., the distance from the top of the girdle 13 to the interface 15, is typically about 6 percent of the diameter, plus or minus 0.5 percent. This represents a measurement of between about I 1 percent and about 13 percent of the distance from the girdle to the culet.
  • FIG. 5 shows another embodiment of the invention wherein the apex of the angle a is located below the interface 15a joining the two members of the doublet gem stone.
  • This configuration permits the use of a pavilion shoulder a portion of which extends from the girdle 13a to the interface and a portion of which extends beneath the interface 20a and into the pavilion member as at 18.
  • a doublet stone wherein the apex is located slightly above the interface. Both of these alternatives represent commercial embodiments wherein the stories are cut and faceted after being joined together, and because of inaccuracies in manufacture, theapex is not located precisely at the interface.
  • the girdle of the gem stone may, when desired, be faceted to enhance both the brilliance and fire of the faceted stone and tofurther hide the interface thereof. It is generally known to facet the girdle of real diamonds. According to the preferred aspect of this invention, faceting of the girdle improves the appearance of the gemstone, and the combination of faceting of the girdle, lowering the interface between the crown and pavilion, together with using an angular, as opposed to a straight line junction between the pavilion shoulder and the sides of the pavilion, make for a truly beautiful gem stone.
  • the girdle may besloped in either direction, the edges may be slightly rounded and other girdle configurations may be employed without departing from the scope of the present invention.
  • doubleting of gem stones is not per se claimed to be inventive, herein, it is considered desirable to point out several representative production techniques.
  • a boule of suitable softer, brilliant fiery material such as strontium titanate
  • a boule of suitable harder, clear material such as sapphire or spinel
  • the two flat surfaces are then juxtaposed and wringed as set forth in US. Pat. No. 3,528,261, or otherwise carefully cemented with a suitable, colorless, optical cement.
  • the thus-formed doublet blank is then cut to its ultimatelydesired shape and appropriately faceted in conventional manner, taking care to preserve the interface generally parallel to the top of the cut stone and to locate the interface between the girdle and the culet of the cut stone.
  • This method involves the obvious difficulty of cutting the pavilion shoulder at a different angle than the pavilion after the assembly of the doublet.
  • a preferred method and one that would permit more rapid and inexpensive fabrication involves precutting and prefaceting of the crown member and the pavilion member followed by wringing or by cementing the two together.
  • Another approach would be to cement a prefaceted crown member to a preformed but slightly oversized pavilion member in the shape of a cone, and thereafter cutting the pavilion facets.
  • Doublet gem stones should preferably utilize crown and pavilion materials which have close to the same indices of refraction. Most preferably, the indices of refraction of the doublet members should not differ from each other by more than about 0.9. Furthermore, the refractive index of the crown member should be as high as possible. Be.- cause of the ability of a highly refractive material to bend" the rays of light, the useof a highly refractive stone for the crown member will cause the halo (the normally visible periphery of the interface) to appear very close to or immediately below the girdle. Alternatively, it permits the use of a smaller angle a or a larger distance between the girdle and the interface than that possible with a crown member made from a stone having a lower index of refraction.
  • the two images of the culet which may otherwise be observed by viewing the culet through the table, appear directly one underneath the other and very close together, whereby tending to merge the two culet images into one image.
  • a doublet gem stone construction comprising a crown member having a table and a girdle, and a pavilion member having a culet and joined to said crown member along an interface essentially parallel to said table and positioned between said girdle and said culet, the improvement wherein means are provided to visually obscure the edge of said interface when the stone is viewed from above, said means comprising a pavilion shoulder having. at least a portion thereof on said crown member located between the girdle and the interface, the projection of said pavilion shoulder forming an angle of between 3 and 40 wlth the sides of the pavilion member therebelow, said pavilion shoulder being more nearly parallel to the axis of symmetry of the gem stone than are the sides of the pavilion member whereby the dimensions of the peripheral edge. of the girdle for a given spacing between said girdle and said interface.
  • the gem stone of claim 1 wherein the-interface is positioned at about 1 percent to 20 percent of the distance between the girdle and the culet, measured from the girdle.
  • the improved doublet gem stone of claim 4 wherein the interface is located between about 10 percent and about l 5 percent of the distance between the girdle and the culet.
  • crown'member is of material selected from the group consisting of yttrium aluminum garnet, spinel, diamond and white sapphire and the pavilion is of material selected from the group consisting of lithium niobate and strontium titanate.

Abstract

A doublet gem stone having a crown member of relatively high hardness and a pavilion member of lesser hardness but of higher optical dispersion and refractivity, and wherein the interface of the crown member and pavilion member is below the girdle of the gem stone. The crown member has a pavilion shoulder between the girdle and the interface which shoulder is more nearly parallel to the axis of symmetry of the gem stone than are the sides of the pavilion member and forms a projected angle of between 3* and 40* with said sides. The pavilion shoulder may be either partly or wholly on said crown member.

Description

United States Patent 1191 Jones DOUBLET GEM CONSTRUCTION [76] lnventor: Harry S. Jones, 50 Naresink Dr.,
Monmouth Beach, NJ. 07750 [22] Filed: Nov. 30, 1972 121 App]. No.2 311,024
3,528,261 v9/1970 Jones .1. 63/32 [451 May 7,1974
Primary Examiner-F. Barry Shay Attorney, Agent, or Firm--Michael G. Gilman [57] ABSTRACT A doublet gem stone having a crown member of relatively high hardness and a pavilion member of lesser hardness but of higher optical dispersion and refractivity, and wherein the interface of the crown member and pavilion member is below the girdle of the gem stone. The crown member has a pavilion shoulder between the girdle and the interface which shoulder is more nearly parallel to the axis of symmetry of the gem stone than are the sides of the pavilion member and forms a projected angle of between 3 and 40 with said sides. The pavilion shoulder may be either partly or wholly on said crown member.
9 Claims, 5 Drawing Figures l/(GROUP A) I PATENTED MY 7 i974 F/GZ ' FIG. (PRIOR ART) (PRIOR ART} X /8 i 0 H ,9 ll/GROUP A) ,3
3r040 L I 12 GROUP A- Yttrium Aluminum Garnet Spinei Diamond White Sapphire GROUP BLiihium Niobaie Strontium Titonqte 1 DOUBLET GEM CONSTRUCTION BACKGROUND OF THE INVENTION It is known that certain materials, such as strontium titanate, zircon, rutile and lithium niobate can be made in faceted crystal form to produce gem stones which rival diamond in their fire, dispersion and brilliance. Unfortunately, those materials which have appropriate optical properties to simulate diamond are generally rather soft and easily marred.
It is also known that certain other materials, such as sapphire (particularly) white sapphire), spinel, quartz, yttrium aluminum garnet (YAG) and topaz are quite hard materials which successfully resist scratching and marring under ordinary use conditions and can be made in faceted crystal form, but have poor optical properties in relation to their use as gem stones. That is, they lack the brilliance and fire of either a real diamond or one of the softer materials referred to above. Flashes of the various spectral colors are commonly called fire by gemologists.
It has been proposed (see, for example, U.S. Pat. No. 3,528,261 and others) to combine the good properties of both of these kinds of materials by making so-called doublet gem stones where the softer, more brilliant material is used as the lower or pavilion portion of the stone and the harder, less brilliant material is used as the upper or crown portion of the stone. Such doublets should satisfy both the physical and optical require ments of the simulated diamond market.
In point of fact, however, there is a major difficulty which has been encountered in the doublet gem field. That is, that the interface has been most difficult, if not impossible, to hide. Thus, with respect to doublet gems which have been made, in the past, for example, in accordance with the teachings of the aforementioned patent, the manufacturers have attempted to hide the interface of the crown and pavilion portions by placing this interface exactly at the girdle, or widest portion, of the doublet.
Practical experience has shown that it is substantially impossible to hide the interface of the crown and the pavilion portions even from the casual observer when such is located at the girdle. I
In the effort to obviate this difficulty, it has been proposed to locate the interface below the girdle, that is between the girdle and the culet. The girdle is not intersected by the interface but instead is totally above the interface within the crown member.
Referring to FIG. 1 which illustrates this prior art approach, the crown member 1 is fabricated from a relatively hard, optically clear material such as sapphire and the pavilion member 2 is prepared from an optically brilliant and fiery material suchas strontium titanate or lithium niobate. The doublet gem stone thus created has a table or flat face 8, and a girdle 3 entirely within the crown member 1 and a pavilion 2 having sides 6 tapering down to a culet 4. The crown member and pavilion member are bonded together and the bonded surface forms the interface 5 of the doublet. The sides 6 of the pavilion member are typically faceted and join with the pavilion shoulder of the crown member to form an inverted pyramid or cone.
Even though the interface 5 is moved from the girdle 3 to a locationbelow the girdle in order to hide the interface, this relocation has created an additional problem. The interface is substantially invisible to the ordinary observer peering down at the flat face 8 of the stone. However, as can be more clearly shown in FIG. 2, the viewer can see a line 10 formed by the peripheral edge of the interface 5, this line being spaced radially inwardly at a distance D and from the girdle 3 of the stone. The presence of this line detracts from the aesthetic perfection of the doublet gem stone.
Furthermore, when the faceted doublet is mounted in a conventional setting such as a pronged (Tiffany) setting, the prongs contact the stone above the girdle where the stone is relatively hard and the sides of the pavilion member which is considerably softer than'the crown member. This some times causes cracking or scratching of the pavilion member.
Some unitary gem stones of the prior art, exemplified by U.S. Pat. No. 3,286,486 and U.S. Pat. No. 3,490,250, show a cross-sectional configuration wherein there is a change in the angular slope of the pavilion facets between the girdle and the culet. These prior art stones, however, neither contemplated the problems presented with the doublet gem construction nor offered a solution to these problems.
BRIEF DESCRIPTION OF THE INVENTION It is an important object of this invention to provide a novel gem stone doublet assembly.
- of appearance and resistance to wear.
Other and additional objects of this invention will become apparent upon disclosure of this entire specification, including the drawings, wherein:
FIG. 1 and FIG. 2, both referred to as the prior art, refer respectively to an elevation, partly in section, of a round out doublet gem stone and an enlarged elevation of a portion of the girdle of said gem stone; FIG. 3 is an elevation, partially in section, of a round cut doublet gem stone according to this invention;
FIG. 4 is an enlarged elevation of a portion of the gem stone shown in FIG. 3; and
FIG. 5 is an elevation partially in section of another embodiment of this invention. v
In its broadest aspect, the present invention overcomes the inadequacies of the prior art doublet gem stones by positioning the interface between the hard crown member and the brilliant pavilion member at a location between the girdle and the culet, with the pavilion shoulder of the crown member more parallel to the axis of the symmetry of the stone than are the sides of the pavilion member. This axis of symmetry is an imaginary line extending normal to the plane of the table and passing through the culet of the pavilion. In this stone, the edge of the interface more closely approximates the dimensions of the girdle, thereby serving to visibly obscure the edge when the gem stone is viewed from above. In addition, this construction provides a hard surface below the girdle for contact with the metal prongs of the setting, thereby preventing the prongs from damaging the softer stone of the pavilion.
' well to other shaped stones.
DETAILED DESCRIPTION OF THE INVENTION Referring to FIG. 3 of the drawings, a round out doublet gem stone according to this invention is composed of a crown member 11 having a relatively fiat face or table 18, crown facets 19, a girdle 13, a pavilion shoulder 17 and a bottom face 15. The pavilion member 12 includes a culet 14 and conical sides 16 usually cut into suitable facets. These facets, together with the high refractivity of the pavilion member, are largely responsible for the brilliance of the gem stone. The sides 16 form an angle A at the culet 14 of at least 90. The top of the pavilion and the bottom of the crown member are mated and bonded together to form the doublet interface 15. The color and fire of the gem stone are created mainly by the optical dispersion that occurs at the interface where the two members meet. The vertical line x-x represents the axis of symmetry of the gem stone.
' When, in accordance with the present invention, the pavilion shoulder 17 of the crown member 11 is made more vertical (i.e., more nearly parallel to the x-x axis) than the sides 16 of the pavilion member 12, the diameter of the peripheral edge 20 (as seen in FIG. 4) of the interface is enlarged so that it more nearly equals the maximum dimensions of the stone at the girdle. Thus, when the doublet gem stone is viewed from above, the distance D, between the peripheral edge 20 and the girdle 13 is so small, particularly when com- FIGS. 1 and 2, that the girdle tends to-completely obscure the flaw created by the peripheral edge. Obviously, the distance D, will increase as the interface 15 is moved toward the culet and away from the girdle. However, because the pavilion shoulder is more nearly parallel to the axis of symmetry than that of the prior art doublet gem stones, the distance D does not increase as rapidly or as noticeably as it did in the prior art stone of FIG. 1. Typically, it is desirable to keep the interface as close to the girdle as possible. However, 'it should be spaced a sufficient distance from the girdle to permit the prongs of the setting to contact the harder crown member both above and below the girdle.
Referring again to FIG. 3, the angle a is shown as the angle formed by the sides 16 of the pavilion member and the line representing the projection of the pavilion shoulder 17. This angle is typically between about 3 and about 40 and more preferably between about 10 and 30.
Several factors must be considered in selecting the angle (1, including l the type of stones being used for the crown member and the pavilion member, as well as their dispersions, refractive indices, hardness and brilliance; (2) the type of mounting to be used with the doublet gem stone; (3) the distance of the interface from the girdle; and (4) the method of cutting, faceting and joining the crown and pavilion. Generally, a small angle a, i.e., 10-20 percent, may be used if the interface can be located close to the girdle without causing damage to the softer stone bythe setting. However, if
the setting contacts the doublet a substantial distance below the girdle, then the interface should be located away from the girdle and closer to the culet in which case, the angle a shouldbe larger, i.e., between 20 and 30. This larger angle serves to keep the diameter of the stone at the interface as large as possible and close to that of the girdle.
Inasmuch as the culet angle A of the pavilion is fixed, the angle a is typically changed by altering the slope of the pavilion shoulder 17 rather than the slope of the sides 16.
As previously stated, the culet angle A is about Angle B is the angle formed by the side 16 of the pavilion member and a line drawn parallel to the axis of symmetry. This angle is equal to one-half of the'culet angle M2 or about 45. The angle a approaches the angle B as the pavilion shoulder 17 becomes more nearly parallel to the axis of symmetry. However, this angle a normally does not exceed 40.
In an American cut or ideal cut stone, the width of the girdle measured in the direction normal to the table 18, i.e., along the gem axis x--x is generally between about 1.5 percent and about 3 percent, and more preferably about 2 percent of the diameter of the stone measured at the girdle. For this stone, the interface is preferably located at about 1 percent to 20 percent of the distance from the girdle 13 toward the culet 14. A more preferred range is between 6 percent and 15 percent of this distance. Stated another way, the total width of the girdle and the pavilion shoulder, i.e., the distance from the top of the girdle 13 to the interface 15, is typically about 6 percent of the diameter, plus or minus 0.5 percent. This represents a measurement of between about I 1 percent and about 13 percent of the distance from the girdle to the culet.
FIG. 5 shows another embodiment of the invention wherein the apex of the angle a is located below the interface 15a joining the two members of the doublet gem stone. This configuration permits the use of a pavilion shoulder a portion of which extends from the girdle 13a to the interface and a portion of which extends beneath the interface 20a and into the pavilion member as at 18. Also included within the scope of this invention is a doublet stone wherein the apex is located slightly above the interface. Both of these alternatives represent commercial embodiments wherein the stories are cut and faceted after being joined together, and because of inaccuracies in manufacture, theapex is not located precisely at the interface.
It is further contemplated that the girdle of the gem stone may, when desired, be faceted to enhance both the brilliance and fire of the faceted stone and tofurther hide the interface thereof. It is generally known to facet the girdle of real diamonds. According to the preferred aspect of this invention, faceting of the girdle improves the appearance of the gemstone, and the combination of faceting of the girdle, lowering the interface between the crown and pavilion, together with using an angular, as opposed to a straight line junction between the pavilion shoulder and the sides of the pavilion, make for a truly beautiful gem stone.
As an alternative to the faceted girdle approach, it is also within the scope of this invention to polish the girdle so that it will have the shape of a surface of revolution, e.g., a cylinder or a truncated cone. Furthermore, the girdle may besloped in either direction, the edges may be slightly rounded and other girdle configurations may be employed without departing from the scope of the present invention.
Similarly, although the drawing hereof, shows round cut gem stones, this invention is by no means limited to this particular type of cutting. Those skilled in the art will readily appreciate its applicability to oval, square, marquise, pear or other shaped stones.
Although doubleting of gem stones is not per se claimed to be inventive, herein, it is considered desirable to point out several representative production techniques. Thus, a boule of suitable softer, brilliant fiery material, such as strontium titanate, is cut to provide one flat surface thereon. A boule of suitable harder, clear material, such as sapphire or spinel, is also cut to provide one flat surface thereon. The two flat surfaces are then juxtaposed and wringed as set forth in US. Pat. No. 3,528,261, or otherwise carefully cemented with a suitable, colorless, optical cement. The thus-formed doublet blank is then cut to its ultimatelydesired shape and appropriately faceted in conventional manner, taking care to preserve the interface generally parallel to the top of the cut stone and to locate the interface between the girdle and the culet of the cut stone.
This method involves the obvious difficulty of cutting the pavilion shoulder at a different angle than the pavilion after the assembly of the doublet. A preferred method and one that would permit more rapid and inexpensive fabrication involves precutting and prefaceting of the crown member and the pavilion member followed by wringing or by cementing the two together.
Another approach would be to cement a prefaceted crown member to a preformed but slightly oversized pavilion member in the shape of a cone, and thereafter cutting the pavilion facets.
It has been further found, and this is a most preferred aspect of this invention, that certain doublet combinations made in the manner of the gem stone construction described herein give unusually brilliant and diamondlike appearing gem stones. These are the combination of yttrium aluminum garnet (YAG) crown and strontium titanate pavilion; yttrium aluminum garnet crown and lithium niobate pavilion; lithium niobate pavilion andspinel crown; lithium niobate pavilion and white sapphire crown; strontium titanate pavilion and white sapphire crown; and strontium titanate pavilion and spine] crown.
It has also been found that when the crown is fabricated from diamond andthe pavilion is lithium niobate or strontium titanate, the nearest possible approach to a real diamond is achieved insofar as hardness, brilliance and fire are concerned. Actually, the resulting jewel has as much or more fire than a real diamond. Such a gem stone will be substantially less costly than a solid diamond of the same size because normally unusable thinner pieces of raw diamond, or slightly offwhite diamond material can be used for the crown portion.
Doublet gem stones, according to this invention, should preferably utilize crown and pavilion materials which have close to the same indices of refraction. Most preferably, the indices of refraction of the doublet members should not differ from each other by more than about 0.9. Furthermore, the refractive index of the crown member should be as high as possible. Be.- cause of the ability of a highly refractive material to bend" the rays of light, the useof a highly refractive stone for the crown member will cause the halo (the normally visible periphery of the interface) to appear very close to or immediately below the girdle. Alternatively, it permits the use of a smaller angle a or a larger distance between the girdle and the interface than that possible with a crown member made from a stone having a lower index of refraction.
it is within the spirit and scope of this invention to provide very special doublet constructions with certain types of pavilion material. Certain highly refractive materials, such as lithium niobate, for example, have two refractive indices. This material is referred to as being doubly refracting. When making gem stones of such doubly refracting material, it has been found to be most desirable to insure that the optical axis of the crystal is substantially parallel with the axis of symmetry of the cut gem stone.
When precautions are taken to insure that the lithium niobate boule is cut so that its optical axis is properly positioned, the two images of the culet, which may otherwise be observed by viewing the culet through the table, appear directly one underneath the other and very close together, whereby tending to merge the two culet images into one image.
Accurately positioning the gem axis relative to the crystal optical axis also reduces the lateral displacement of the culet facets to a minimum regardless of the angle from which the cut stone is viewed.
Other variations may be made in this invention without departing from the scope hereof, which is delimited by the claims wherein I claim:
1. In a doublet gem stone construction comprising a crown member having a table and a girdle, and a pavilion member having a culet and joined to said crown member along an interface essentially parallel to said table and positioned between said girdle and said culet, the improvement wherein means are provided to visually obscure the edge of said interface when the stone is viewed from above, said means comprising a pavilion shoulder having. at least a portion thereof on said crown member located between the girdle and the interface, the projection of said pavilion shoulder forming an angle of between 3 and 40 wlth the sides of the pavilion member therebelow, said pavilion shoulder being more nearly parallel to the axis of symmetry of the gem stone than are the sides of the pavilion member whereby the dimensions of the peripheral edge. of the girdle for a given spacing between said girdle and said interface.
2. The doublet gem stone of claim 1 wherein the apex of the angle is located at the interface between the crown member and the pavilion member.
3. The gem stone of claim 1 wherein the-interface is positioned at about 1 percent to 20 percent of the distance between the girdle and the culet, measured from the girdle.
- 4. The doublet gem stone of claim 2 wherein said angle is between about 10 and about 30.
5. The improved doublet gem stone of claim 4 wherein the interface is located between about 10 percent and about l 5 percent of the distance between the girdle and the culet.
6. The doublet gem stone of claim 1 wherein said pavilion has a higher index of refraction and higher optical dispersion than does said crown. I a
7. The doublet gem stone of claim 1 wherein said crown'member is of material selected from the group consisting of yttrium aluminum garnet, spinel, diamond and white sapphire and the pavilion is of material selected from the group consisting of lithium niobate and strontium titanate.
8. The doublet gem stone of claim 2 wherein said pavilion is a doubly refracting material whose optical axis.
is substantially parallel with the axis of symmetry of said stone.
9. The doublet gem stone of claim 1, wherein said pavilion shoulder has a truncated conical surface.

Claims (9)

1. In a doublet gem stone construction comprising a crown member having a table and a girdle, and a pavilion member having a culet and joinEd to said crown member along an interface essentially parallel to said table and positioned between said girdle and said culet, the improvement wherein means are provided to visually obscure the edge of said interface when the stone is viewed from above, said means comprising a pavilion shoulder having at least a portion thereof on said crown member located between the girdle and the interface, the projection of said pavilion shoulder forming an angle of between 3* and 40* with the sides of the pavilion member therebelow, said pavilion shoulder being more nearly parallel to the axis of symmetry of the gem stone than are the sides of the pavilion member whereby the dimensions of the peripheral edge of the girdle for a given spacing between said girdle and said interface.
2. The doublet gem stone of claim 1 wherein the apex of the angle is located at the interface between the crown member and the pavilion member.
3. The gem stone of claim 1 wherein the interface is positioned at about 1 percent to 20 percent of the distance between the girdle and the culet, measured from the girdle.
4. The doublet gem stone of claim 2 wherein said angle is between about 10* and about 30*.
5. The improved doublet gem stone of claim 4 wherein the interface is located between about 10 percent and about 15 percent of the distance between the girdle and the culet.
6. The doublet gem stone of claim 1 wherein said pavilion has a higher index of refraction and higher optical dispersion than does said crown.
7. The doublet gem stone of claim 1 wherein said crown member is of material selected from the group consisting of yttrium aluminum garnet, spinel, diamond and white sapphire and the pavilion is of material selected from the group consisting of lithium niobate and strontium titanate.
8. The doublet gem stone of claim 2 wherein said pavilion is a doubly refracting material whose optical axis is substantially parallel with the axis of symmetry of said stone.
9. The doublet gem stone of claim 1, wherein said pavilion shoulder has a truncated conical surface.
US00311024A 1972-11-30 1972-11-30 Doublet gem construction Expired - Lifetime US3808836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00311024A US3808836A (en) 1972-11-30 1972-11-30 Doublet gem construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00311024A US3808836A (en) 1972-11-30 1972-11-30 Doublet gem construction

Publications (1)

Publication Number Publication Date
US3808836A true US3808836A (en) 1974-05-07

Family

ID=23205053

Family Applications (1)

Application Number Title Priority Date Filing Date
US00311024A Expired - Lifetime US3808836A (en) 1972-11-30 1972-11-30 Doublet gem construction

Country Status (1)

Country Link
US (1) US3808836A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979924A (en) * 1974-10-17 1976-09-14 Eugene Falero Pereda Nonreflecting jewels for television broadcasting use
EP0003174A2 (en) * 1978-01-18 1979-07-25 Allied Corporation Multiple element display objects
US4809417A (en) * 1986-01-31 1989-03-07 George Normann & Associates Method of making a multiplet jewelry product with internally embedded visual indicia
US5072549A (en) * 1986-09-22 1991-12-17 Harold Johnston Method of cutting gemstones and product
US5090216A (en) * 1990-12-31 1992-02-25 Cjc Holdings, Inc. Enhanced gemstone
US5437167A (en) * 1994-05-12 1995-08-01 Ambar; Betzalel Invisible setting for round diamond stone
US5664440A (en) * 1996-06-05 1997-09-09 Roemer; Thomas Bruce Enhanced diamond ring
US6615611B1 (en) 2000-09-26 2003-09-09 Michael Schachter High yield diamond
US20050061230A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US20050061231A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US20080184739A1 (en) * 2007-02-07 2008-08-07 Chi Huynh Gemstone setting including a gem faceted to display a plurality of images from an outer focal region
EP1977659A1 (en) 2007-04-05 2008-10-08 Cielo S.R.L. Method for producing precious or semi-precious stones
US20090260396A1 (en) * 2008-04-16 2009-10-22 Eitan Broukman Methods for processing ornamental diamonds and corresponding ornamental diamonds
US20100005834A1 (en) * 2008-07-09 2010-01-14 Cielo S.R.L. Method for producing precious or semi-precious stones
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation
US20120180525A1 (en) * 2011-01-14 2012-07-19 Weingarten Jonathan Round gemstone cut shape providing a specific optical pattern
US11185138B2 (en) * 2017-08-03 2021-11-30 Sparkle Cut Diamonds, Inc. Managing optical characteristics of gemstones with diffractive structures
US11294110B2 (en) * 2018-10-23 2022-04-05 Sparkle Cut Diamonds, Inc. Fabricating diffractive structures on gemstones for high optical performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286486A (en) * 1964-01-10 1966-11-22 Huisman James Diamond with specially faceted pavilion
US3490250A (en) * 1966-09-19 1970-01-20 Chrom Tronics Inc Enhanced jewel stones and method of forming same
US3528261A (en) * 1968-04-12 1970-09-15 Harry S Jones Doublet gem construction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286486A (en) * 1964-01-10 1966-11-22 Huisman James Diamond with specially faceted pavilion
US3490250A (en) * 1966-09-19 1970-01-20 Chrom Tronics Inc Enhanced jewel stones and method of forming same
US3528261A (en) * 1968-04-12 1970-09-15 Harry S Jones Doublet gem construction

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979924A (en) * 1974-10-17 1976-09-14 Eugene Falero Pereda Nonreflecting jewels for television broadcasting use
EP0003174A2 (en) * 1978-01-18 1979-07-25 Allied Corporation Multiple element display objects
EP0003174A3 (en) * 1978-01-18 1979-08-08 Allied Corporation Multiple element display objects
US4809417A (en) * 1986-01-31 1989-03-07 George Normann & Associates Method of making a multiplet jewelry product with internally embedded visual indicia
US5072549A (en) * 1986-09-22 1991-12-17 Harold Johnston Method of cutting gemstones and product
US5090216A (en) * 1990-12-31 1992-02-25 Cjc Holdings, Inc. Enhanced gemstone
US5437167A (en) * 1994-05-12 1995-08-01 Ambar; Betzalel Invisible setting for round diamond stone
US5664440A (en) * 1996-06-05 1997-09-09 Roemer; Thomas Bruce Enhanced diamond ring
US6615611B1 (en) 2000-09-26 2003-09-09 Michael Schachter High yield diamond
US20030181147A1 (en) * 2000-09-26 2003-09-25 Michael Schachter Method for cutting natural and/or man-made diamonds
US20030188551A1 (en) * 2000-09-26 2003-10-09 Michael Schachter High yield diamond
US6892720B2 (en) 2000-09-26 2005-05-17 Michael Schachter Method for cutting natural and/or man-made diamonds
US20050061231A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US7326477B2 (en) * 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US20050061230A1 (en) * 2003-09-23 2005-03-24 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation
US8316667B2 (en) 2007-02-07 2012-11-27 Chi Huynh Gemstone setting including a gem faceted to display a plurality of images from an outer focal region
US20110041555A1 (en) * 2007-02-07 2011-02-24 Chi Huynh Gemstone setting including a gem faceted to display a plurality of images from an outer focal region
US20080184739A1 (en) * 2007-02-07 2008-08-07 Chi Huynh Gemstone setting including a gem faceted to display a plurality of images from an outer focal region
EP1977659A1 (en) 2007-04-05 2008-10-08 Cielo S.R.L. Method for producing precious or semi-precious stones
US20090260396A1 (en) * 2008-04-16 2009-10-22 Eitan Broukman Methods for processing ornamental diamonds and corresponding ornamental diamonds
US20100005834A1 (en) * 2008-07-09 2010-01-14 Cielo S.R.L. Method for producing precious or semi-precious stones
US20120180525A1 (en) * 2011-01-14 2012-07-19 Weingarten Jonathan Round gemstone cut shape providing a specific optical pattern
US8844319B2 (en) * 2011-01-14 2014-09-30 Jonathan WEINGARTEN Cut gemstone providing a specific optical pattern
US11185138B2 (en) * 2017-08-03 2021-11-30 Sparkle Cut Diamonds, Inc. Managing optical characteristics of gemstones with diffractive structures
US11294110B2 (en) * 2018-10-23 2022-04-05 Sparkle Cut Diamonds, Inc. Fabricating diffractive structures on gemstones for high optical performance

Similar Documents

Publication Publication Date Title
US3808836A (en) Doublet gem construction
US6615611B1 (en) High yield diamond
CA1081488A (en) Brilliantized step cut stone
US5970744A (en) Cut cornered square mixed-cut gemstone
CN101970194B (en) Methods for processing ornamental diamonds and corresponding ornamental diamonds
US4306427A (en) Chrysoberyl gemstones
CN101721021B (en) Cut diamond and cutting method
US20170202319A1 (en) Jewel
US6698239B2 (en) Brilliant cut diamond
US5090216A (en) Enhanced gemstone
US6449985B1 (en) Diamond cut
WO2002094051A1 (en) Faceted mixed cut gemstone for controlled brilliance
WO2015100036A1 (en) Cushion cut gemstone exhibiting excellent optical brilliance
US2265316A (en) Cut stone
US20190223564A1 (en) Gemstone cut
US20170303647A1 (en) Cut gem and article comprising such a gem
US2090240A (en) Artificial gem in the nature of asteriae
CN213281800U (en) Gem
KR101227754B1 (en) Decoration jewel and cutting method of the same
US3755025A (en) Production of doublet blanks for simulated diamonds
JP2003111606A (en) Colored diamond
US20050160766A1 (en) Diamond cut
CN113290720B (en) Cutting method of diamond with radian and diamond
CN211483219U (en) Diamond structure
CN212260719U (en) Precious stone with oval structure