US3812442A - Ceramic inductor - Google Patents

Ceramic inductor Download PDF

Info

Publication number
US3812442A
US3812442A US00230247A US23024772A US3812442A US 3812442 A US3812442 A US 3812442A US 00230247 A US00230247 A US 00230247A US 23024772 A US23024772 A US 23024772A US 3812442 A US3812442 A US 3812442A
Authority
US
United States
Prior art keywords
ceramic
interconnection
inductor
pad
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00230247A
Inventor
W Muckelroy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00230247A priority Critical patent/US3812442A/en
Application granted granted Critical
Publication of US3812442A publication Critical patent/US3812442A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • ABSTRACT- A nonolithic microminiature inductor comprising a helical conductive path of deposited metal film immersed in a rectangular block of magnetic refractory material.
  • the inductor has metal caps at each end of the block as terminations. These terminations may be soldered to metallized pads located on a substrate.
  • a method for making this inductor wherein loops of conductive metal are deposited onto a thin unsintered magnetically permeable ceramic sheet with holes for interconnection therein and wherein said holes are alligned and said sheets are laminated such that upon sintering said metal forms ahelical, contiguous conductive path immersed a contiguous block of ceramic.
  • This invention relates generally to monolithic microminiature components for use in the assembly of microcircuitry using substrates as a basis onto which the various types of components are mounted. Less generally this invention relates to a monolithic microminiature inductance element and a method for making same. Specifically this invention relates to a microminiature monolithic inductance element with a magnetically permeable core comprising a magnetically loaded ceramic material and a process for making in mass production large quantities of this device at very economi cal prices. Moreover, it is related to that class of devices classified as inductors which possess an innercore having the property of significantly enhancing a magnetic field.
  • the classes of microelectronic manufacture to which this invention applies are thick film technology, thin film technology, and hybrid multichip technology.
  • the'invention is to be used where reduction in size is required; a large quantity is to be produced; and cost is an essential factor.
  • Helical miniature inductors made by the application of thick and thin films and by substractively etching the inductor are currently used in manufacturing hybrid microelectronic circuits.
  • Helical miniature inductors have bee-n available for sometime in monolithic form factors having iron cores. However, they comprise fine wire, wound onto iron rods, coated with an epoxy in order to fix the position of the wire to maintain the characteristics of the device.
  • spiral inductors printed on very thin sheets of material is the high probability of changes in the Q-factor by bending of the substrate.
  • Another problem with the spiral is interconnection. When both terminations of the spiral are on the same side of the substrate one of the terminations must be crossed over the respective turns of the spiral. This degrades operation of the device. Even if terminations are brought out on opposite sides of the substrate the problem of traversing the respective windings is still present.
  • Another. severe problem with the spiral inductor and the spiral inductor reversed upon itself is that a tremendously large amount of substrate is required.
  • the term refractory material is used herein to mean a substance which will not melt, decompose or materially change under the processing conditions involving in forming the device herein described.
  • Refractory material is generally classified into four broad groups.
  • the group of utility here includes the polycrystalline materials such as ceramics and includes, for example, porcelains, steatites, aluminas, and ferrites.
  • the present invention is described with reference to these ceramics and, more particularly, thin sheets of alumina with ferrites mixed therein. However, itshould be understood that the present invention is equally applicable to the other ceramic materials.
  • the spiral may be formed from a paste of glass, high melting point metal 'such as platinum and gold, and a decomposable fluid suspending agent applied to the refractory oxide by any convenient method, for example, by dipping, brushing, or spraying.
  • a decomposable fluid suspending agent applied to the refractory oxide by any convenient method, for example, by dipping, brushing, or spraying.
  • the amount of fluid used as a-suspending agent depends on the method of application. If spraying is used, a relatively thin'suspension is required. If brushing or squeeze screen processes are employed, thicker paste suspension should be such as to insure good conductivity of the deposition.
  • Magnetic materials usable for this device include 2-81 perrnalloy and carbonyl iron insulated powders, and Ferroxcube Ill sintered powder.
  • a meanparticle size range which is suitable is 0.5 to 25 microns for the paste, with the preferred range being between 0.5 and 15 microns. Smaller particles are equally satisfactory.
  • the glass flux a glass which fuses and bonds to the ceramic at a temperature below the melting point of the metal and resists reduction under the usual processing conditions should be used.
  • Glasses having these properties are readily compounded from mixtures of silica (SiO and various combination of the oxides of sodium (Na O), calcium (CaO), barium (BaO), magnesium (MgO), aluminum (A1 boron (B 0 potassium (K20) and phosphorus (P 0 among other elements.
  • Table l is illustrative of some suitable glasses which can be conveniently compounded from typical oxides specified as to .kind
  • the ingredients are smelted together in a furnace at a temperature sufficient to melt but not volatilize the constituent oxides, for example, between l,l00 and l,500 C, until a mass of uniform quality has been obtained.
  • the melt is fritted by pouring into cold water, and the resultant frit is ground to the fineness desired. It is desirable for the glass particles to be finely divided, for example, in the order of it micron to 25 microns particle size, so that the paste mixture will, under the processing'conditions, result in a continuous metal layer adherently bonded to the ceramic.
  • the glass'and metal particles are suspended in a volatile and decomposable fluid suspending agent and applied to the refractory oxide by any of the methods aforementioned.
  • the relative amount of metal and glass used may vary over fairly wide limits. The main consideration is that the metal content be sufficiently high to insure that the resulting metal film after processing is continuous. Generally, between five to 50 parts by weight of metal is used for each part by weight of glass.
  • the fluid suspending medium serves to disperse the paste mixture in the desired pattern on the substrate and to hold the paste'in this'pattem until processing commences. During processing the suspending medium should'volatilize, leaving no residue. The suspending medium should not react with the metalic or glass-components of the coating composition before or during firing.
  • the common suspending media contain two components.
  • the first component acts as a dispersion medium for the paste and as a solvent for the second component which insures proper bonding of the paste to the green ceramic or refractory oxide until processing commences.
  • Suitable dispersion media which are solvents for the below listed binders are benzene; the esters of fatty acids; alcohols of low molecular weight such as ethyl, butyl, and amyl; acetates including Cellosolve acetate (ethylene glycol monoethyl ether acetate), and Carbitol acetate (diethylene glycol monoethyl ether acetate); ketones such as acetone and methyl-ethyl-ketone; and higher ethers such as glycol diethyl ether.
  • benzene the esters of fatty acids
  • alcohols of low molecular weight such as ethyl, butyl, and amyl
  • acetates including Cellosolve acetate (ethylene glycol monoethyl ether acetate), and Carbitol acetate (diethylene glycol monoethyl ether acetate)
  • ketones such as acetone and methyl-ethyl-
  • Suitable binders are, for example, the vinyl or substituted vinyl polymers such as polymethylmethacrylate, polyethylmethacrylate, polybutylrnethacrylate, and polyisobutylmethacrylate and the cellulose esters and ethers such as cellulose nitrate, cellulose acetate, cellulose butyrate, methyl cellulose and ethyl cellulose.
  • the vinyl or substituted vinyl polymers such as polymethylmethacrylate, polyethylmethacrylate, polybutylrnethacrylate, and polyisobutylmethacrylate
  • the cellulose esters and ethers such as cellulose nitrate, cellulose acetate, cellulose butyrate, methyl cellulose and ethyl cellulose.
  • Rohm and Haas Acryl0id A-lO a solution of 30 percent polymethylmethacrylate solids in Cellosolve acetate has proved a good suspending medium.
  • any ceramic which is resistant to the usual processing conditions may be used as the refractory substrate.
  • the following table is illustrative of various ceramic compositions that have successfully been used. The compositions are expressed in parts by weight.
  • thermoplastic organics are used as flow-promoting binders for the refractory oxide.
  • the prime step is to coat the flne alumina particles with these thermoplastics. This step is facilitated by intense mixing at high temperatures in the range to 400 C. Water emulsions of the organic plastic agents facilitate the initial mixing of the organic with the ceramic particulates, and the initial contact can be made by using an aqueous or non-aqueous slurry and solution. Removal of the volatile constituents provides an intimate mixture of the organic and ceramic most often termed green ceramic.
  • firing of the laminate is done in a furnace in which both atmosphere and temperature can be controlled.
  • the firing is done in an reducing atmosphere.
  • This firing step is carried out under conditions sufficient to volatilize the fluid suspending media, and to commence formation of a refractory ceramic-toglass-to-metal bond.
  • the temperature and tiring times are interdependent.
  • the fluid suspending vehicle used and the temperature required commences formation of the refractory ceramic-to-glass-to-metal bond.
  • This temperature is dependent upon the temperature requircd to sinter the ceramic and to cause wetting of the refractory ceramic and at least part of the metal by the glass in the paste system.
  • Such wetting and sintering temperatures are dependent upon the glass flux used. Temperatures ranging from, for example, l,400 to l,600 C have been successfully used.
  • the maximum temperature is limited by the melting point of the metal while the minimum temperature is again dependent upon the wetting and sintering temperature of the glass flux employed and the temperature required to sinter the ceramic wet by the glass comprising the paste.
  • Yet another additional object of this invention is to provide a new and novel microminiature monolithic inductor whose electrical paths are formed by metalization paths of thick films and thin films.
  • Still an additional object of this invention is to provide a new and novel method for making a microminiature monolithic inductor in which the electrical conductive paths are formed onto unfired alumina ceramic tape by a subtractive etching technique.
  • Still yet an additional object of this invention is to provide a new and 'novel design of metalization which provides a helical spiral that provides inductivity within a compact area.
  • a monolithic microminiature inductor comprising a helical conductive path of deposited metal film immersed in a rectangular block of magnetic refractory material.
  • the inductor has metal caps at each end of the block as terminations. These terminations may be soldered to metallized pads located on a substrate.
  • a method for making this inductor wherein loops of conductive metal are deposited onto a thin unsintered magnetically permeable ceramic sheet with holes for interconnection therein and wherein said holes are alligned and said sheets are laminated such that upon sintering said metal forms a helical contiguous conductive path immersed a contiguous block of ceramic.
  • FIG. la is an illustration of the process of manufacturing magnetically permeable ceramic tape..
  • FIG. 1b is a flow chart of the method for manufacturing magnetically permeable ceramic tape.
  • FIG. 2a is an illustration of the pattern deposition process by which conductive paths are formed on the ceramic tape.
  • FIG. 3a is a view of the underside and top of various layers of the inductor.
  • FIG. 3b is an exploded view of a monolithic inductor and unbent metal end terminations.
  • FIG. 30 is an illustration of a monolithic inductor with end terminations about to be bonded thereto.
  • FIG. 3d is an illustration of a monolithic inductor having end terminations formed by coating the ends thereof.
  • FIG. 3e is an illustration of a finished monolithic inductor.
  • FIG. 3f is an illustration of a' monolithic inductor having its coated end terminations sintered.
  • FIG. 4 is a flow chart of the manufacturing process by subtracture etching.
  • FIG. 5a is an exploded view of the monolithic inductor showing internal structure.
  • FIG. 5b is an illustration of a molded metal end termination or cap.
  • FIG. is an illustration showing a metal end cap with metal film formed thereon.
  • FIG. 5d shows details of a first outside layer of the monolithic inductor.
  • FIG. 5e shows details of an interconnector pattern formed on an internal layer of the monolithic inductor.
  • FIG. 1a wherein there is illustrated the basic steps in the manufacture of the magnetically permeable ceramic tape.
  • the construction principle of the multilayer ceramic inductor chip begins with the mixing of a slurry 31 of alumina powder and various binders that can be cast in thin layers 31 on a flat surface 34.
  • a magnetically permeable powder 32 is added to the slurry of ceramic material 31.
  • a doctor-blade-33 is normally used to achieve the required thinness and uniformity.
  • Organic binders in the slurry give enough strength and flexibility to the tape 31 after drying for removal and handling.
  • step 40 consists of adding a portion of magnetic powder to the ceramic slurry 31.
  • the proportion of the magnetic material to the ceramic material may vary between and 30 percent of the volume of the ceramic material.
  • the next step of the process 41 is to spread this slurry material by doctor blade to the desired thickness. After step 41 is accomplished the ceramic sheet material is dryed,
  • step 42 by convection or infrared or other heat transfer means. Once the ceramic sheet material is dry it acquires a plastic and rubber like characteristic and becomes'very flexible, yet not brittle.
  • step 43 this tapelike, rubber-like material is cut into long strips 37.
  • a paper or plastic backing is appositioned, step 44, to the tape and the tape is then in step 45 punched with holes at the required locations.
  • the long strips of tape are next rolled onto reels, step 46. This completes the process for formation of the tape.
  • the next phase necessary in the production of these monolithic microminiature inductance elements with magnetically permeable ceramic cores is a formation of conductive paths by pattern deposition as shown in FIG. 2a.
  • the reels of ceramic tape 39 are fed through a printer 47 which screens the conductive pattern necessary to form the inductance element onto the tape 37.
  • the tape 37 is then fed through a drying oven or apparatus 49 which removes the highly volatile components of the metalization silk screened'onto the substrate 37. After the metalization is dryed the paper is separated from the ceramic tape 37 and rolled onto reels 50 for reuse.
  • the ceramic tape 37 is then fed into a compression and lamination apparatus 51 along with reels of tape from other lines similar to the one we have described as illustrated in 52.
  • Sections of these sheets are alligned and ,stacked and the stacked structure 53 is compressed and laminated by compression apparatus 51 and the resulting compressed structure is cut from the tape sources and trimmed with cutting apparatus 54.
  • These large compressed sheets of ceramic tape with metalization thereon contain many inductors.
  • These I laminated structures 56 are then carried by a belt 55 to a sintering oven 57 which cures the ceramic at temperatures up to l,600 C. transforming the laminated structure 56 into a monolithic mass of conductor, ceramic, and magnetically permeable powder immersed and surrounded by the various granules and molecules of alumina ceramic.
  • a diamond cutter 58 to cut out the various conductors comprised in structure 56.
  • the above steps are illustrated in flow chart form in FIG. 2b. Note that in step 66 of FIG. 2b metal terminations are attached to the individual inductive elements.
  • Step 66 is a final increment in the production of these to compose a helical inductor. If we were to take an inductor cut from the laminated 56 which, for instance, is comprised of seven individual layers of tape the structure would look as indicated and illustrated in FIG. 3a.
  • Reference character A represents a first layer or lamination that has its top side indicated by 207 and its bottom side indicated by 200.
  • the top side 207 has a large rectangular metalization or bonding pad 240 thereon. This pad is used to bond the resulting helical inductor to other circuits.
  • a hole 241 is formed in a comer of thepad 240.
  • the bottom side 200 of the layer A has a small rectangular interconnection pad 220 formed thereon.
  • the hole 241 previously mentioned in connection with the top side 207 is the same hole 241 that passesthrough the interconnection pad 220.
  • the supporting tape between the conductive portions 220 and 240 constitutes the ceramic tape previously discussed which is magnetically permeable but electrically insulative.
  • the layer B has a single, discontinuous loop formed on the bottom side 20].
  • Interconnection pads 22] and 222 are positioned in spaced perpendicular relationship to each other.
  • a hole 243 is formed through the interconnection pad 221. This hole, as well as the previously mentioned hole 241 is formed at- 38 in FIG. la.
  • the top side of the layer B has a single interconnection pad 242 with the hole 243 passing therethrough. Thus, the hole 243 passes through the interconnection pad 242 on the top side as well as the interconnection pad 243 of the loop which is formed on the bottom side of layer B.
  • top and bottom sides in three dimensions, one must visualize the bottom side 201 being flipped over to the opposite top side, the flipping occuring by turning the layer B over to the left in which case it will be clear that the hole 423 in the top side is positioned in registry with the hole 243 of the bottom side.
  • This relationship between top and bottom sides of the layers in the lamination 56 exists for the upper and lower depicted layers in FIG. 3a. As a result, seven layers are shown.,When the layersare arranged in juxtaposition with one another, then the following relationship exists between interconnecting members.
  • the upper most layer 240 is connected with an underside interconnection pad 220, through a conductor existing in the opening 241.
  • the conductor referred to is actually fused metal that is contributed by the bonding pad 240 on the top side and the interconnection pad 220 on the bottom side.
  • the interconnection pad 220 contacts the interconnection pad 242 of top side 208 in the next lower layer B.
  • Fused metal from the hole 243 forms a conductive path between the pad 242 and the pad 221 on the under side 201.
  • a thin loop or conductor in the form of a generally U-shaped configuration continues the conductive path to the pad 222 at the other end of the loop.
  • the top side of the next layer lays in juxtaposition with the bottom layer 202 of the layer above it. More specifically, the interconnection pad 224 of side 202 contacts the interconnection pad 246 of top side'210 in the forth layer. A hole 247 is formed through the layer and an interconnection pad 225 on the bottom side 203 of this bottom layer. The interconnection pad 225 is connected to a third loop or winding that terminates outwardly in an interconnection pad 226. Thus far described, a conductive pad has been formed between the bonding pad 240 and the interconnection pad 226 thus completing three windings of the helical inductor.
  • the next lower lamination has its top side 211 positioned against the lower side 203 of the lamination above it.
  • interconnection pad 226 contacts the interconnection pad 248 on the top side 211.
  • a hole 249 passes through the interconnection pad 248 and an interconnection pad 227 on the bottom side 204 of the fifth layer.
  • a conductive loop or winding connects the interconnection pad 227 to the interconnection pad 228 at the opposite end of the winding.
  • the hole 249 again permits the fusing of metal between the interconnection pads 248 and 227 on opposite sides of the layer thus creating a conductive path through the layer.
  • an electrical path has been described between the bonding pad 240 and a fourth winding of the helical inductor.
  • the top side 212 of the sixth layer includes an interconnection
  • the present invention includes the inventive concept of using an identical configuration on the bottom sides of previously discussed second-sixth layers in FIG. 3a. Further, the same simple interconnection pad exists on the top side of these layers. Thus, by merely using seven identical layers a helix can be formed by rotating each layer or lamination by 90 with respect to the one above it and below it.
  • the top most or first layer A and the last or bottom most layer, which is the right most layer in FIG. 3a, are identical. They only differ in that the top side of the top most layer A is reversed in relationship to the bottom most layer. This type of modular approach expedites the fabrication of the device and results in minimum cost considerations.
  • One specie comprises one kovar cross-shaped (FIG. 3b) or u-shaped (FIGS. 5! and 5c) sheet attached to each end of the monolithic inductor 67.
  • the kovar metal sheet termination 69 or a sheet made out of a similar metal such as gold or silver or platinum or lead tin is attached to the bonding pad 73 at the end of the inductor either by soldering 69 and binding the tabs around the end of the inductor or welding 69 to the bonding pad 73. Bonding pads 73 and bonding pads 72 can be coated with high temperature solder and then joined.
  • This joining may be accomplished by an electric heating means 70.
  • One way of attaching the terminations 69 formed onto the inductor 67 and thus forming 68 is to use the combination of members 71 and 70 as a high resistance heating element passing current thereinto and thus joining the terminations to the inductor by soldering.
  • Another possibility is to use member 71 as the electrodes of a high resistance weld apparatus and thus weld the end terminations 69 to the attachment pad 73.
  • An alternative process is to dip each end of the monolithic inductor 67 into a thixotropic paste 74 and coat each end thereof as illustrated in 75. The entire structure 75 is then sintered in a high temperature oven.
  • Several compositions of paste 74 are acceptable. Among these are gold, platinum-gold, platinum-silver, copper, palladium-silver, molymanganese, and lead-tin. The final product of this process is so illustrated in FIG. 3e.
  • FIG. 4 is shown a flow chart of the manufacturing process by substractive etching.
  • the tape is coated with a layer of metal. This may be done either by spraying of a thick-film thixotropic paste or by vacuum deposition of a metal by thinfilm technique. Both sides of the tape are coated.
  • each side of the tape is coated with photoresist. This may be done by spraying or other dipping or bathing means. The photoresist is exposed in a pattern appositioned to both sides as illustrated in step 82.
  • the photoresist is developed in the proper solution and then the tape is immersed in an etchant to remove the unwanted areas of metal.
  • the photoresist is removed from the metallization in step 84.
  • step 86 one electrode layer is aligned and juxtaposed to a layer comprising one layer of the inductor.
  • the next layer is rotated 90 and alligned and juxtaposed.
  • This step 87 is repeated n times, n being proportional to the value of the inductance desired.
  • the top electrode layer is properly alligned and juxtaposed,'step 89.
  • the alligned and juxtaposed layers including the electrode layers are then compressed under pressure.
  • the compressed layers are sintered in a high temperature kiln at temperatures above l,500 C.
  • the center sections are then cut into single inductors utilizing a diamond saw, step 92.
  • the electrodes are applied to the inductors, step 93.
  • the electrodes are either welded onto the pad as shown in step 94, sintered onto the inductor as shown in step 95, or soldered on as shown in step 96.
  • FIG. a provides an exploded view of the monolithic microminiature inductor without end terminations.
  • FIG. 5a also shows the various building blocks necessary to construct a complete inductor. Note that each building block has only one hole for interconnection.
  • the metallization may befollowed through hole 114 to the pad 109 in FIG. 5a
  • FIG. 5b the end termination comprising kovar metal is illustrated.
  • This end termination 122 has on its inner central face a solder material 123 for connection and joining to a termination bonding pad 120 or 119. Soldering or welding may be accomplished by applying the appropriate amount of thermal power to the portion'124. In the case of welding, a current is passed through the termination 122 at the point 124.
  • FIG. 6a shows two layers 102 and 103 of ceramic tape with metalizations 109 and 111 thereon and through-hole 112 therein before lamination and interconnection.
  • Ceramic tape 103 is positioned and alligned on top of ceramic tape 102.
  • Appositioned onto ceramic tape 102 is 'a metallization connection pad 111.
  • This metalization connection pad 111 is connected to metalization connection pad 109 through aperture or hole 112. It is noted that hole 112 is metalized throughout.
  • FIG. 6b shows two ceramic tape layers appositioned toeach other and appropriately compressed.
  • Metallized hole 112 is compressed into metallized connection layer and pad 111 forming a continuous conductive path from 111 to pad 109 with the metalization in hole 112 serving as the connecting means.
  • barium titanate BaTiO may also be used in the slurry to enhance the properties of the refractory ceramic.
  • lithic ceramic block having appositioned layers, each layer comprising:
  • each member having a formation thereon characterized as a discontinuous conductive loop with conductive interconnection pads at the ends thereof;
  • each member having a formation thereon characterized as a conductive interconnection pad, the formation on respective sides of each of said members being identical in configuration, one of the interconnection pads on the end of each loop being positioned in registry with the interconnection pad on the opposite side of the member;
  • the members stacked so that all first sides face in one direction while the second sides face a second direction;
  • each member being rotated substantially with respect to the member above and below it to cause the interconnection pad on the second side of each member to be in contact with an interconnection pad on the first side of a juxtaposing member;
  • the body of the member comprises an electrically insulated,'magnetically permeable metal powder immersed in ceramic,.said powder and ceramic forming a contiguous material, whereby said ceramic is made magnetically permeable by the presence of said powder.

Abstract

A nonolithic microminiature inductor comprising a helical conductive path of deposited metal film immersed in a rectangular block of magnetic refractory material. The inductor has metal caps at each end of the block as terminations. These terminations may be soldered to metallized pads located on a substrate. A method for making this inductor wherein loops of conductive metal are deposited onto a thin unsintered magnetically permeable ceramic sheet with holes for interconnection therein and wherein said holes are alligned and said sheets are laminated such that upon sintering said metal forms a helical contiguous conductive path immersed a contiguous block of ceramic.

Description

United States Patent [191 Muckelroy [451 May 21,1974
[ CERAMIC INDUCTOR [76] Inventor: William L. Muckelroy, P.O. Box
9685, Washington, DC. 20016 [22] Filed: Feb. 29, 1972 21 Appl. No.: 230,247
[52] US. Cl 336/83, 29/602, 336/192, 336/200, 336/232 [51] Int. Cl. 1101f 17/06 [58] Field of Search 336/83, 200, 232, 221,
336/192; 340/174 CC, 174 JA; 317/258;
5/1967 Davis 336/221 X Primary Examiner-Thomas J. Kozma Attorney, Agent, or Firm-Edward J. Kelly; Herbert Berl; Saul Elbaum [5 7] ABSTRACT- A nonolithic microminiature inductor comprising a helical conductive path of deposited metal film immersed in a rectangular block of magnetic refractory material. The inductor has metal caps at each end of the block as terminations. These terminations may be soldered to metallized pads located on a substrate. A method for making this inductor wherein loops of conductive metal are deposited onto a thin unsintered magnetically permeable ceramic sheet with holes for interconnection therein and wherein said holes are alligned and said sheets are laminated such that upon sintering said metal forms ahelical, contiguous conductive path immersed a contiguous block of ceramic.
3 Claims, 19 Drawing Figures FATENTEDHAYZ'I \974 SHEET 5 BF 6 I [80 [8| f 82 f 5 com TAPE coAT BOTH EXPOSE PHOTO \MMERSE WTH LAYER S\DES W\TH A 5:32a TAPE \N 0E METAL PHOTO-RE:\ST 0am SDES) ETCHANT AUGN RoTATE NEXT \MMERSE TAPE MEN AND ELEcTRoDE L YE \N PHOTO {255T LAYER FOR Juxmpose A g ND Au N REMOVE? MP ES N Loop AND JuxTAPoSE REPEAT mfg ggg COMPRESS SmTER STEP ELECTRODE ASSEMBLY COMPRESSED N TMES LAYER 0F LAYERS SEQTTDN CUT SEQTLDNS APPLY \NTO S\NGLE ELEcTRoDEs \NDUCTOIZS To \NDucTDRS WELD SNTEK SOLDEQ ELECTRODES ELfiCTRoDE ELECTRODES L 94 k 95 k 96 PATENTEDwm .974 12 442 SHEET 6 OF 6 The invention described herein may be manufactured, used, and licensed for or by the United States Government for governmental purposes without the payment to the inventor of any royalty thereon.
BACKGROUND OF THE INVENTION This invention relates generally to monolithic microminiature components for use in the assembly of microcircuitry using substrates as a basis onto which the various types of components are mounted. Less generally this invention relates to a monolithic microminiature inductance element and a method for making same. Specifically this invention relates to a microminiature monolithic inductance element with a magnetically permeable core comprising a magnetically loaded ceramic material and a process for making in mass production large quantities of this device at very economi cal prices. Moreover, it is related to that class of devices classified as inductors which possess an innercore having the property of significantly enhancing a magnetic field. Amongthe classes of microelectronic manufacture to which this invention applies are thick film technology, thin film technology, and hybrid multichip technology. In any case, the'invention is to be used where reduction in size is required; a large quantity is to be produced; and cost is an essential factor.
Currently spiral inductors made by the application of thick and thin films and by substractively etching the inductor are currently used in manufacturing hybrid microelectronic circuits. Helical miniature inductors have bee-n available for sometime in monolithic form factors having iron cores. However, they comprise fine wire, wound onto iron rods, coated with an epoxy in order to fix the position of the wire to maintain the characteristics of the device. Many problems exist with tary applications where hardware comprising electronic circuity is subjected to large accelerations and shocks.
There are other designs of monolithic inductors essentially the same as the one previously described. The difference is that these other devices are molded into plastic. And naturally, thereare the myriad of structures for inductive elements which are not microminiature and which are not monolithic in the sense of this invention in that the various parts of the inductor are not chemically bonded or thermally fuzed to each other. In general, in the past inductors in microminiature form-factors and form-factors easily applicable to hybrid microelectronic circuits have been extremely expensive in relationship to the cost of other functional components to be used in the circuits and therefore offers a cost factor against the use of such components.
Another inherent disadvantage in the structure of the aforesaid components is the nature of the conductive terminations formed onto the device for interconnecting them into the particular circuitry for which it is needed. In most cases, such as that of the plastic device it is best to only epoxy such a device to the substrate using a conductive epoxy material because of the problems involved in raising the temperature of such a device to that necessary for soldering into the circuit. The difference in thermal coefficients between the plastic and the metal terminations at the ends thereof usually precludes the use of high or even moderate soldering temperatures for interconnecting such devices into the circuit. These differences in thermal coefficients are extremely cumbersome when soldering microminiature devices. In general, in assembling hybrid circuits it is desirable to reflow solder chips components. This precludes other sensitive semiconductors from having to be reheating many times. All devices in use today, except spiral depositions onto substrates, have significant thennal mismatches in materials.
In the case of the spiral inductor printed onto a substrate such as alumina or mylar the coupling between the various turns of the spiral are not enhanced significantly. Usually there is free space above the spiral unless some particular type of coating is applied.
One problem with spiral inductors printed on very thin sheets of material is the high probability of changes in the Q-factor by bending of the substrate. Another problem with the spiral is interconnection. When both terminations of the spiral are on the same side of the substrate one of the terminations must be crossed over the respective turns of the spiral. This degrades operation of the device. Even if terminations are brought out on opposite sides of the substrate the problem of traversing the respective windings is still present. Another. severe problem with the spiral inductor and the spiral inductor reversed upon itself is that a tremendously large amount of substrate is required. The term refractory material is used herein to mean a substance which will not melt, decompose or materially change under the processing conditions involving in forming the device herein described. Refractory material is generally classified into four broad groups. The group of utility here includes the polycrystalline materials such as ceramics and includes, for example, porcelains, steatites, aluminas, and ferrites. The present invention is described with reference to these ceramics and, more particularly, thin sheets of alumina with ferrites mixed therein. However, itshould be understood that the present invention is equally applicable to the other ceramic materials.
The spiral may be formed from a paste of glass, high melting point metal 'such as platinum and gold, and a decomposable fluid suspending agent applied to the refractory oxide by any convenient method, for example, by dipping, brushing, or spraying. Therelative amounts of materials within the paste may vary over fairly wide limits. The main consideration is that the metal content be sufficiently high to insure that the resulting metal film after processing is continuous. The amount of fluid used as a-suspending agent depends on the method of application. If spraying is used, a relatively thin'suspension is required. If brushing or squeeze screen processes are employed, thicker paste suspension should be such as to insure good conductivity of the deposition. Magnetic materials usable for this device include 2-81 perrnalloy and carbonyl iron insulated powders, and Ferroxcube Ill sintered powder.
Generally, a meanparticle size range which is suitable is 0.5 to 25 microns for the paste, with the preferred range being between 0.5 and 15 microns. Smaller particles are equally satisfactory.
As for the glass flux, a glass which fuses and bonds to the ceramic at a temperature below the melting point of the metal and resists reduction under the usual processing conditions should be used.
Glasses having these properties are readily compounded from mixtures of silica (SiO and various combination of the oxides of sodium (Na O), calcium (CaO), barium (BaO), magnesium (MgO), aluminum (A1 boron (B 0 potassium (K20) and phosphorus (P 0 among other elements. Table l is illustrative of some suitable glasses which can be conveniently compounded from typical oxides specified as to .kind
and amount in the table. The table is not intended to.
be exhaustive of suitable glasses but indicates the general composition of some readily fusible nonreductible glasses. It is noted that this table encompasses many common types of glasses such as the borosilicates, phosphates and silicates.
in the preparation of the glasses, the ingredients are smelted together in a furnace at a temperature sufficient to melt but not volatilize the constituent oxides, for example, between l,l00 and l,500 C, until a mass of uniform quality has been obtained. The melt is fritted by pouring into cold water, and the resultant frit is ground to the fineness desired. It is desirable for the glass particles to be finely divided, for example, in the order of it micron to 25 microns particle size, so that the paste mixture will, under the processing'conditions, result in a continuous metal layer adherently bonded to the ceramic.
The glass'and metal particles are suspended in a volatile and decomposable fluid suspending agent and applied to the refractory oxide by any of the methods aforementioned. The relative amount of metal and glass used may vary over fairly wide limits. The main consideration is that the metal content be sufficiently high to insure that the resulting metal film after processing is continuous. Generally, between five to 50 parts by weight of metal is used for each part by weight of glass.
The fluid suspending medium serves to disperse the paste mixture in the desired pattern on the substrate and to hold the paste'in this'pattem until processing commences. During processing the suspending medium should'volatilize, leaving no residue. The suspending medium should not react with the metalic or glass-components of the coating composition before or during firing.
To insure proper dispersion and bonding of the paste, many of the common suspending media contain two components. The first component acts as a dispersion medium for the paste and as a solvent for the second component which insures proper bonding of the paste to the green ceramic or refractory oxide until processing commences. Examples of suitable dispersion media which are solvents for the below listed binders are benzene; the esters of fatty acids; alcohols of low molecular weight such as ethyl, butyl, and amyl; acetates including Cellosolve acetate (ethylene glycol monoethyl ether acetate), and Carbitol acetate (diethylene glycol monoethyl ether acetate); ketones such as acetone and methyl-ethyl-ketone; and higher ethers such as glycol diethyl ether. Suitable binders are, for example, the vinyl or substituted vinyl polymers such as polymethylmethacrylate, polyethylmethacrylate, polybutylrnethacrylate, and polyisobutylmethacrylate and the cellulose esters and ethers such as cellulose nitrate, cellulose acetate, cellulose butyrate, methyl cellulose and ethyl cellulose. Rohm and Haas Acryl0id A-lO, a solution of 30 percent polymethylmethacrylate solids in Cellosolve acetate has proved a good suspending medium.
In general, any ceramic which is resistant to the usual processing conditions may be used as the refractory substrate. The following table is illustrative of various ceramic compositions that have successfully been used. The compositions are expressed in parts by weight.
TABLE.
Porcelain Steatlte Alumina Composition A B C D E. F G
Feldspar 35. 50 30 25 Ball clay... Kaolin..... Talc Dolomite.. BaCO 1 Remainder.
In order to form a ceramic slurry with good flow property, the forementioned thermoplastic organics are used as flow-promoting binders for the refractory oxide. The prime step is to coat the flne alumina particles with these thermoplastics. This step is facilitated by intense mixing at high temperatures in the range to 400 C. Water emulsions of the organic plastic agents facilitate the initial mixing of the organic with the ceramic particulates, and the initial contact can be made by using an aqueous or non-aqueous slurry and solution. Removal of the volatile constituents provides an intimate mixture of the organic and ceramic most often termed green ceramic.
In a typical process, firing of the laminate is done in a furnace in which both atmosphere and temperature can be controlled. The firing is done in an reducing atmosphere. This firing step is carried out under conditions sufficient to volatilize the fluid suspending media, and to commence formation of a refractory ceramic-toglass-to-metal bond. The temperature and tiring times are interdependent. The fluid suspending vehicle used and the temperature required commences formation of the refractory ceramic-to-glass-to-metal bond. This temperature is dependent upon the temperature requircd to sinter the ceramic and to cause wetting of the refractory ceramic and at least part of the metal by the glass in the paste system. Such wetting and sintering temperatures are dependent upon the glass flux used. Temperatures ranging from, for example, l,400 to l,600 C have been successfully used.
The maximum temperature is limited by the melting point of the metal while the minimum temperature is again dependent upon the wetting and sintering temperature of the glass flux employed and the temperature required to sinter the ceramic wet by the glass comprising the paste.
The invention described herein overcomes many of the disadvantages of the foregoing constructions.
It is therefore the object of this invention to provide a new and novel process for manufacturing microminiature monolithic inductance elements with a magnetically permeable core.
It is yet another object of this invention to provide a new and novel microminiature inductance element with a magnetically permeable core which is monolithic and comprises materials having coherent thermal coefficients.
It is yet an additional object of this invention to provide a new and novel device and process for manufacturing said device which is economical and easily adaptable to high volume manufacturing.
It is yet an additional object of this invention to provide a monolithic helical inductor emersed in a magnetically permeable ceramic material within terminations suitable for attachment by reflow soldering to thick film circuitry.
It is another object of this invention to provide a microminiature monolithic inductance element which has a form factor compatible with that of other components used in hybrid microelectronics.
It is still additional object of this invention to provide a microminiature monolithic inductance element with a structure made of ceramic and cerrnet materials.
It is yet another additional object of this invention to provide an inductance device having a surface of refractory material.
It is yet an additional object of this invention to provide a microminiature monolithic inductor with a new and novel core comprising a magnetically permeable alumina ceramic.
It is yet an additional object of this invention to provide a helical inductor imbedded in a magnetically permeable alumina ceramic having a rectangular-solid form-factor.
Yet another additional object of this invention is to provide a new and novel microminiature monolithic inductor whose electrical paths are formed by metalization paths of thick films and thin films.
Still an additional object of this invention is to provide a new and novel method for making a microminiature monolithic inductor in which the electrical conductive paths are formed onto unfired alumina ceramic tape by a subtractive etching technique.
Still yet an additional object of this invention is to provide a new and 'novel design of metalization which provides a helical spiral that provides inductivity within a compact area.
These and other objects of the present invention will become more fully apparent with the reference to the following specifications and drawings which relate to several variations of apreferred embodiment of the invention described herein.
SUMMARY A monolithic microminiature inductor comprising a helical conductive path of deposited metal film immersed in a rectangular block of magnetic refractory material. The inductor has metal caps at each end of the block as terminations. These terminations may be soldered to metallized pads located on a substrate. A method for making this inductor wherein loops of conductive metal are deposited onto a thin unsintered magnetically permeable ceramic sheet with holes for interconnection therein and wherein said holes are alligned and said sheets are laminated such that upon sintering said metal forms a helical contiguous conductive path immersed a contiguous block of ceramic.
BRIEF DESCRIPTION OF THE DRAWINGS The specific nature of the invention as well as other objects, aspects, uses, and advantages thereof will clearly appear from the following description and from the accompanying drawings, in which:
FIG. la is an illustration of the process of manufacturing magnetically permeable ceramic tape..
FIG. 1b is a flow chart of the method for manufacturing magnetically permeable ceramic tape.
FIG. 2a is an illustration of the pattern deposition process by which conductive paths are formed on the ceramic tape.
FIG. 3a is a view of the underside and top of various layers of the inductor.
FIG. 3b is an exploded view of a monolithic inductor and unbent metal end terminations.
FIG. 30 is an illustration of a monolithic inductor with end terminations about to be bonded thereto.
FIG. 3d is an illustration of a monolithic inductor having end terminations formed by coating the ends thereof.
FIG. 3e is an illustration of a finished monolithic inductor.
FIG. 3f is an illustration of a' monolithic inductor having its coated end terminations sintered.
FIG. 4 is a flow chart of the manufacturing process by subtracture etching.
FIG. 5a is an exploded view of the monolithic inductor showing internal structure.
FIG. 5b is an illustration of a molded metal end termination or cap.
FIG. is an illustration showing a metal end cap with metal film formed thereon.
FIG. 5d shows details of a first outside layer of the monolithic inductor.
FIG. 5e shows details of an interconnector pattern formed on an internal layer of the monolithic inductor.
several variations of a preferred embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The manufacturing process of the present invention will be easily understood in broad aspects by reference to FIG. 1a wherein there is illustrated the basic steps in the manufacture of the magnetically permeable ceramic tape. The construction principle of the multilayer ceramic inductor chip begins with the mixing of a slurry 31 of alumina powder and various binders that can be cast in thin layers 31 on a flat surface 34. However, before casting a magnetically permeable powder 32 is added to the slurry of ceramic material 31. A doctor-blade-33 is normally used to achieve the required thinness and uniformity. Organic binders in the slurry give enough strength and flexibility to the tape 31 after drying for removal and handling. Strips 37 are cut out of this tape and backed with insulating paper 36 and then holes are punched with tool 38 and the resulted strips are rolled onto roles 39. The striping or cutting of strips is done with tool 35. In order that this particular portion of the process may be easily understood it is presented to flow chart form. In FIG. 1]) step 40 consists of adding a portion of magnetic powder to the ceramic slurry 31. The proportion of the magnetic material to the ceramic material may vary between and 30 percent of the volume of the ceramic material. The next step of the process 41 is to spread this slurry material by doctor blade to the desired thickness. After step 41 is accomplished the ceramic sheet material is dryed,
step 42, by convection or infrared or other heat transfer means. Once the ceramic sheet material is dry it acquires a plastic and rubber like characteristic and becomes'very flexible, yet not brittle. In step 43, this tapelike, rubber-like material is cut into long strips 37. In order to prevent the slurry tapes from sticking together due to temperature changes during rolling, a paper or plastic backing is appositioned, step 44, to the tape and the tape is then in step 45 punched with holes at the required locations. The long strips of tape are next rolled onto reels, step 46. This completes the process for formation of the tape.
The next phase necessary in the production of these monolithic microminiature inductance elements with magnetically permeable ceramic cores is a formation of conductive paths by pattern deposition as shown in FIG. 2a. The reels of ceramic tape 39 are fed through a printer 47 which screens the conductive pattern necessary to form the inductance element onto the tape 37. The tape 37 is then fed through a drying oven or apparatus 49 which removes the highly volatile components of the metalization silk screened'onto the substrate 37. After the metalization is dryed the paper is separated from the ceramic tape 37 and rolled onto reels 50 for reuse. The ceramic tape 37 is then fed into a compression and lamination apparatus 51 along with reels of tape from other lines similar to the one we have described as illustrated in 52. Sections of these sheets are alligned and ,stacked and the stacked structure 53 is compressed and laminated by compression apparatus 51 and the resulting compressed structure is cut from the tape sources and trimmed with cutting apparatus 54. These large compressed sheets of ceramic tape with metalization thereon contain many inductors. These I laminated structures 56 are then carried by a belt 55 to a sintering oven 57 which cures the ceramic at temperatures up to l,600 C. transforming the laminated structure 56 into a monolithic mass of conductor, ceramic, and magnetically permeable powder immersed and surrounded by the various granules and molecules of alumina ceramic. Once this essential step is completed it is necessary to use a diamond cutter 58 to cut out the various conductors comprised in structure 56. The above steps are illustrated in flow chart form in FIG. 2b. Note that in step 66 of FIG. 2b metal terminations are attached to the individual inductive elements.
Step 66 is a final increment in the production of these to compose a helical inductor. If we were to take an inductor cut from the laminated 56 which, for instance, is comprised of seven individual layers of tape the structure would look as indicated and illustrated in FIG. 3a.
In order to appreciate the relationship between the various layers in the laminated structure 56, continuing reference is made to FIG. 3a. Reference character A represents a first layer or lamination that has its top side indicated by 207 and its bottom side indicated by 200. The top side 207 has a large rectangular metalization or bonding pad 240 thereon. This pad is used to bond the resulting helical inductor to other circuits. A hole 241 is formed in a comer of thepad 240. The bottom side 200 of the layer A has a small rectangular interconnection pad 220 formed thereon. The hole 241 previously mentioned in connection with the top side 207 is the same hole 241 that passesthrough the interconnection pad 220. If one where to flip the layer A from the bottom side 200 to the top side 207, by rotating the layer to the left as it is being flipped, the configuration as depicted in FIG. 3a, for the top side 207 will be seen. The supporting tape between the conductive portions 220 and 240 constitutes the ceramic tape previously discussed which is magnetically permeable but electrically insulative.
A similar relationship between top and bottom sides exists for layer B. The layer B has a single, discontinuous loop formed on the bottom side 20]. Interconnection pads 22] and 222 are positioned in spaced perpendicular relationship to each other. A hole 243 is formed through the interconnection pad 221. This hole, as well as the previously mentioned hole 241 is formed at- 38 in FIG. la. The top side of the layer B has a single interconnection pad 242 with the hole 243 passing therethrough. Thus, the hole 243 passes through the interconnection pad 242 on the top side as well as the interconnection pad 243 of the loop which is formed on the bottom side of layer B. Tovisualize the relationship between the top and bottom sides in three dimensions, one must visualize the bottom side 201 being flipped over to the opposite top side, the flipping occuring by turning the layer B over to the left in which case it will be clear that the hole 423 in the top side is positioned in registry with the hole 243 of the bottom side. This relationship between top and bottom sides of the layers in the lamination 56 exists for the upper and lower depicted layers in FIG. 3a. As a result, seven layers are shown.,When the layersare arranged in juxtaposition with one another, then the following relationship exists between interconnecting members.
The upper most layer 240 is connected with an underside interconnection pad 220, through a conductor existing in the opening 241. In the present invention, the conductor referred to is actually fused metal that is contributed by the bonding pad 240 on the top side and the interconnection pad 220 on the bottom side. The interconnection pad 220 contacts the interconnection pad 242 of top side 208 in the next lower layer B. Fused metal from the hole 243 forms a conductive path between the pad 242 and the pad 221 on the under side 201. A thin loop or conductor in the form of a generally U-shaped configuration continues the conductive path to the pad 222 at the other end of the loop. Thus far, a conductive path has been formed between the bonding pad 240 and the first turn of the resulting helical inductor laminate inductor 56. Next comes the top side 209 of the next layer. When so situated in the laminated structure, contact is made between the pad 222 of the previously mentioned loop and an interconnection pad 245 in 209. A hole 244 passes through the interconnection pad 245 and a similarly situated interconnection pad 223 on the bottom side of this layer. Fused metal during the compression step causes the interconnection of the pads. A second loop exists on the bottom layer 202 which terminates in another interconnection pad 224 at the opposite end of the loop. Thus, a conductive path has been completed through two windings of the helical inductor. The top side of the next layer lays in juxtaposition with the bottom layer 202 of the layer above it. More specifically, the interconnection pad 224 of side 202 contacts the interconnection pad 246 of top side'210 in the forth layer. A hole 247 is formed through the layer and an interconnection pad 225 on the bottom side 203 of this bottom layer. The interconnection pad 225 is connected to a third loop or winding that terminates outwardly in an interconnection pad 226. Thus far described, a conductive pad has been formed between the bonding pad 240 and the interconnection pad 226 thus completing three windings of the helical inductor. The next lower lamination has its top side 211 positioned against the lower side 203 of the lamination above it. Particularly, the previously mentioned interconnection pad 226 contacts the interconnection pad 248 on the top side 211. A hole 249 passes through the interconnection pad 248 and an interconnection pad 227 on the bottom side 204 of the fifth layer. A conductive loop or winding connects the interconnection pad 227 to the interconnection pad 228 at the opposite end of the winding. The hole 249 again permits the fusing of metal between the interconnection pads 248 and 227 on opposite sides of the layer thus creating a conductive path through the layer. Thus far described, an electrical path has been described between the bonding pad 240 and a fourth winding of the helical inductor.
Continuing with the next lower lamination, the top side 212 of the sixth layer includes an interconnection,
pad 250 with a hole 251 fonned therein. This hole passes through a similarly disposed interconnection pad 229 on the bottom side of the sixth layer. As in other cases, an additional winding is formed on this bottom side. The hole 251 again provides space for fused metal from the interconnection pads 250 and 229 to interconnect these pads through the layer. The interconnection pad 230 at one end of the fifth winding contacts an interconnection pad 252 on the top side of the seventh layer. A hole 253 is formed through the interconnection pad 253. This hole passes through the rectangular metalization or bonding pad 231 which exists on the bottom side of the seventh layer. Due to the presence of this hole, metal fuses between the interconnection pad 252 and the bonding pad 206 to complete an electrical path through the complete helical inductor including the five turns on the bottom sides of the second-sixth layers of the structure.
It is most significant to note that the present invention includes the inventive concept of using an identical configuration on the bottom sides of previously discussed second-sixth layers in FIG. 3a. Further, the same simple interconnection pad exists on the top side of these layers. Thus, by merely using seven identical layers a helix can be formed by rotating each layer or lamination by 90 with respect to the one above it and below it. The top most or first layer A and the last or bottom most layer, which is the right most layer in FIG. 3a, are identical. They only differ in that the top side of the top most layer A is reversed in relationship to the bottom most layer. This type of modular approach expedites the fabrication of the device and results in minimum cost considerations.
Referring now to FIGS. 3b, 3c, 3d and 5b we outline two possible methods for providing terminations for the monolithic inductor. One specie comprises one kovar cross-shaped (FIG. 3b) or u-shaped (FIGS. 5!) and 5c) sheet attached to each end of the monolithic inductor 67. The kovar metal sheet termination 69 or a sheet made out of a similar metal such as gold or silver or platinum or lead tin is attached to the bonding pad 73 at the end of the inductor either by soldering 69 and binding the tabs around the end of the inductor or welding 69 to the bonding pad 73. Bonding pads 73 and bonding pads 72 can be coated with high temperature solder and then joined. This joining may be accomplished by an electric heating means 70. One way of attaching the terminations 69 formed onto the inductor 67 and thus forming 68 is to use the combination of members 71 and 70 as a high resistance heating element passing current thereinto and thus joining the terminations to the inductor by soldering. Another possibility is to use member 71 as the electrodes of a high resistance weld apparatus and thus weld the end terminations 69 to the attachment pad 73. An alternative process is to dip each end of the monolithic inductor 67 into a thixotropic paste 74 and coat each end thereof as illustrated in 75. The entire structure 75 is then sintered in a high temperature oven. Several compositions of paste 74 are acceptable. Among these are gold, platinum-gold, platinum-silver, copper, palladium-silver, molymanganese, and lead-tin. The final product of this process is so illustrated in FIG. 3e.
On FIG. 4 is shown a flow chart of the manufacturing process by substractive etching. Summarizing this process, first the tape is coated with a layer of metal. This may be done either by spraying of a thick-film thixotropic paste or by vacuum deposition of a metal by thinfilm technique. Both sides of the tape are coated. Next each side of the tape is coated with photoresist. This may be done by spraying or other dipping or bathing means. The photoresist is exposed in a pattern appositioned to both sides as illustrated in step 82. Next the photoresist is developed in the proper solution and then the tape is immersed in an etchant to remove the unwanted areas of metal. Upon completion of this step 83 the photoresist is removed from the metallization in step 84.
On step 86 one electrode layer is aligned and juxtaposed to a layer comprising one layer of the inductor. After completion of the previous step 86 the next layer is rotated 90 and alligned and juxtaposed. This step 87 is repeated n times, n being proportional to the value of the inductance desired. Finally, the top electrode layer is properly alligned and juxtaposed,'step 89. The alligned and juxtaposed layers including the electrode layers are then compressed under pressure. The compressed layers are sintered in a high temperature kiln at temperatures above l,500 C. The center sections are then cut into single inductors utilizing a diamond saw, step 92. Next, the electrodes are applied to the inductors, step 93. In the final step of manufacture of these inductors the electrodes are either welded onto the pad as shown in step 94, sintered onto the inductor as shown in step 95, or soldered on as shown in step 96.
FIG. a provides an exploded view of the monolithic microminiature inductor without end terminations. FIG. 5a also shows the various building blocks necessary to construct a complete inductor. Note that each building block has only one hole for interconnection.
Tracing the electrical path from the termination bonding pad 119 is FIG. 5d, the metallization may befollowed through hole 114 to the pad 109 in FIG. 5a
' which is connected to the conductive pad 111. This pad FIG. 5f. Metallized hole 115 interconnects pad 116 of layer 105 with termination bonding pad 120 thereon.
In FIG. 5b the end termination comprising kovar metal is illustrated. This end termination 122 has on its inner central face a solder material 123 for connection and joining to a termination bonding pad 120 or 119. Soldering or welding may be accomplished by applying the appropriate amount of thermal power to the portion'124. In the case of welding, a current is passed through the termination 122 at the point 124.
Turning further to FIGS. 6a and 6b the intricacies of interconnecting a metallization pad on the surface of one layer or segment to a metallization pad on the surface of another layer or segment are described. FIG. 6a shows two layers 102 and 103 of ceramic tape with metalizations 109 and 111 thereon and through-hole 112 therein before lamination and interconnection. Ceramic tape 103 is positioned and alligned on top of ceramic tape 102. Appositioned onto ceramic tape 102 is 'a metallization connection pad 111. This metalization connection pad 111 is connected to metalization connection pad 109 through aperture or hole 112. It is noted that hole 112 is metalized throughout. FIG. 6b shows two ceramic tape layers appositioned toeach other and appropriately compressed. What is shown in ceramic tape 103 on top of and juxtaposed to the ceramic tape 102. Metallized hole 112 is compressed into metallized connection layer and pad 111 forming a continuous conductive path from 111 to pad 109 with the metalization in hole 112 serving as the connecting means.
It is to be understood that barium titanate (BaTiO may also be used in the slurry to enhance the properties of the refractory ceramic.
The inventor wishes it to be understood furthermore that he does not desire to be limited to the exact detail of construction shown and described herein for obvious modifications will occur to a person skilled in this art.
lithic ceramic block having appositioned layers, each layer comprising:
a member having a body portion made of magnetically permeable and electrically insulative metal powder immersed in said block;
a first side of each member having a formation thereon characterized as a discontinuous conductive loop with conductive interconnection pads at the ends thereof;
a second side of each member having a formation thereon characterized as a conductive interconnection pad, the formation on respective sides of each of said members being identical in configuration, one of the interconnection pads on the end of each loop being positioned in registry with the interconnection pad on the opposite side of the member;
an opening formed through the interconnection pad on the second side of each member;
the members stacked so that all first sides face in one direction while the second sides face a second direction;
each member being rotated substantially with respect to the member above and below it to cause the interconnection pad on the second side of each member to be in contact with an interconnection pad on the first side of a juxtaposing member;
metal material from contacting interconnection pads fused together through a hole in the interconnection pad of a respective second side thus resulting in a conductive helixformed through the members with the body portions of the members serving as a core for the helix.
2. The subject matter of claim 1 together with two layers having conductive bonding pads thereon, the layers being electrically connected to the helix ends for providing connection terminals to the helix. 7 v
3. The subject matter of claim 2 wherein the body of the member comprises an electrically insulated,'magnetically permeable metal powder immersed in ceramic,.said powder and ceramic forming a contiguous material, whereby said ceramic is made magnetically permeable by the presence of said powder.

Claims (3)

1. A microminiature inductor in the form of a monolithic ceramic block having appositioned layers, each layer comprising: a member having a body portion made of magnetically permeable and electrically insulative metal powder immersed in said block; a first side of each member having a formation thereon characterized as a discontinuous conductive loop with conductive interconnection pads at the ends thereof; a second side of each member having a formation thereon characterized as a conductive interconnection pad, the formation on respective sides of each of said members being identical in configuration, one of the interconnection pads on the end of each loop being positioned in registry with the interconnection pad on the opposite side of the member; an opening formed through the interconnection pad on the second side of each member; the members stacked so that all first sides face in one direction while the second sides face a second direction; each member being rotated substantIally 90* with respect to the member above and below it to cause the interconnection pad on the second side of each member to be in contact with an interconnection pad on the first side of a juxtaposing member; metal material from contacting interconnection pads fused together through a hole in the interconnection pad of a respective second side thus resulting in a conductive helix formed through the members with the body portions of the members serving as a core for the helix.
2. The subject matter of claim 1 together with two layers having conductive bonding pads thereon, the layers being electrically connected to the helix ends for providing connection terminals to the helix.
3. The subject matter of claim 2 wherein the body of the member comprises an electrically insulated, magnetically permeable metal powder immersed in ceramic, said powder and ceramic forming a contiguous material, whereby said ceramic is made magnetically permeable by the presence of said powder.
US00230247A 1972-02-29 1972-02-29 Ceramic inductor Expired - Lifetime US3812442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00230247A US3812442A (en) 1972-02-29 1972-02-29 Ceramic inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00230247A US3812442A (en) 1972-02-29 1972-02-29 Ceramic inductor

Publications (1)

Publication Number Publication Date
US3812442A true US3812442A (en) 1974-05-21

Family

ID=22864488

Family Applications (1)

Application Number Title Priority Date Filing Date
US00230247A Expired - Lifetime US3812442A (en) 1972-02-29 1972-02-29 Ceramic inductor

Country Status (1)

Country Link
US (1) US3812442A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992691A (en) * 1975-07-02 1976-11-16 Cubic Corporation Electronic circuit board flat coil inductor
US4130722A (en) * 1977-01-10 1978-12-19 Globe-Union Inc. Thick-film circuit module including a monolithic ceramic cross-over device
FR2424618A1 (en) * 1978-04-27 1979-11-23 Vacuumschmelze Gmbh HIGH CURRENT REACTOR COIL
US4183074A (en) * 1977-04-16 1980-01-08 Wallace Clarence L Manufacture of multi-layered electrical assemblies
NL7909351A (en) * 1978-12-28 1980-07-01 Tdk Electronics Co Ltd LAYERED ELECTRONIC PART AND METHOD OF MANUFACTURE THEREOF.
US4301580A (en) * 1977-04-16 1981-11-24 Wallace Clarence L Manufacture of multi-layered electrical assemblies
US4313152A (en) * 1979-01-12 1982-01-26 U.S. Philips Corporation Flat electric coil
WO1982000541A1 (en) * 1980-08-06 1982-02-18 J Vandebult Modified resonant tag circuit constructions and fabrication processes therefor
WO1982002618A1 (en) * 1981-01-26 1982-08-05 Ernie Carillo Electrical reactor construction
DE3418379A1 (en) * 1983-05-18 1984-11-22 Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto LAYERED INDUCTION COIL
US4486641A (en) * 1981-12-21 1984-12-04 Ruffini Robert S Inductor, coating and method
US4651254A (en) * 1982-08-24 1987-03-17 Dynamit Nobel Aktiengesellschaft Inductive igniters with secondary coil
US4750077A (en) * 1983-03-01 1988-06-07 Mitsubishi Denki Kabushiki Kaisha Coil device
US4797648A (en) * 1987-03-09 1989-01-10 Murata Manufacturing Co., Ltd. Chip inductor
US5032815A (en) * 1988-12-23 1991-07-16 Murata Manufacturing Co., Ltd. Lamination type inductor
US5045380A (en) * 1988-08-24 1991-09-03 Murata Manufacturing Co., Ltd. Lamination type inductor
US5072508A (en) * 1988-06-23 1991-12-17 Murata Mfg. Co., Ltd. Method of making an inductive-resistive circuit element
US5251108A (en) * 1991-01-30 1993-10-05 Murata Manufacturing Co., Ltd. Laminated electronic device with staggered holes in the conductors
US5302932A (en) * 1992-05-12 1994-04-12 Dale Electronics, Inc. Monolythic multilayer chip inductor and method for making same
US5414402A (en) * 1992-11-19 1995-05-09 Murata Manufacturing Co., Ltd. Multi-layer substrate
US5572779A (en) * 1994-11-09 1996-11-12 Dale Electronics, Inc. Method of making an electronic thick film component multiple terminal
US5783879A (en) * 1997-06-03 1998-07-21 Eastman Kodak Company Micromotor in a ceramic substrate
EP0921542A1 (en) * 1997-03-28 1999-06-09 Matsushita Electronics Corporation Chip inductor and method for manufacturing the same
EP0929085A2 (en) * 1998-01-08 1999-07-14 Taiyo Yuden Co., Ltd. Electronic components
US5945902A (en) * 1997-09-22 1999-08-31 Zefv Lipkes Core and coil structure and method of making the same
DE19818673A1 (en) * 1998-04-27 1999-10-28 Thomson Brandt Gmbh Kitchen sink
EP0953994A2 (en) * 1998-05-01 1999-11-03 Taiyo Yuden Co., Ltd. Multi-laminated inductor and manufacturing method thereof
GB2337863A (en) * 1998-05-09 1999-12-01 Frederick E Bott Method and means of forming a desired coil configuration
US6007758A (en) * 1998-02-10 1999-12-28 Lucent Technologies Inc. Process for forming device comprising metallized magnetic substrates
US6046707A (en) * 1997-07-02 2000-04-04 Kyocera America, Inc. Ceramic multilayer helical antenna for portable radio or microwave communication apparatus
US6073340A (en) * 1997-05-29 2000-06-13 Denso Corporation Method of producing lamination type ceramic heater
US6124779A (en) * 1996-12-11 2000-09-26 Murata Manufacturing Co. Ltd. Multilayer-type inductor
US6133809A (en) * 1996-04-22 2000-10-17 Murata Manufacturing Co., Ltd. LC filter with a parallel ground electrode
US6147573A (en) * 1996-11-21 2000-11-14 Tdk Corporation Multilayer electronic part with planar terminal electrodes
US6189200B1 (en) * 1996-09-17 2001-02-20 Murata Manufacturing Co., Ltd. Method for producing multi-layered chip inductor
EP1087524A2 (en) * 1999-09-24 2001-03-28 Toko Kabushiki Kaisha Laminated chip component and manufacturing method
US6293001B1 (en) 1994-09-12 2001-09-25 Matsushita Electric Industrial Co., Ltd. Method for producing an inductor
US6304164B1 (en) 1998-02-02 2001-10-16 Taiyo Yuden Co., Ltd. Multilayer electronic component and manufacturing method therefor
US6426683B1 (en) * 1999-11-09 2002-07-30 Motorola, Inc. Integrated filter with improved I/O matching and method of fabrication
US6487774B1 (en) * 1998-01-22 2002-12-03 Matsushita Electric Industrial Co., Ltd. Method of forming an electronic component using ink
US6566731B2 (en) * 1999-02-26 2003-05-20 Micron Technology, Inc. Open pattern inductor
US6580350B1 (en) * 1999-03-31 2003-06-17 Taiyo Yuden Co., Ltd. Laminated electronic component
US20030112114A1 (en) * 2001-12-13 2003-06-19 International Business Machines Corporation Embedded inductor and method of making
US20030151486A1 (en) * 1994-09-12 2003-08-14 Eiichi Uriu Inductor and method for producing the same
US6690165B1 (en) * 1999-04-28 2004-02-10 Hironori Takahashi Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field
US20040113721A1 (en) * 2002-12-13 2004-06-17 International Business Machines Corporation MLC frequency selective circuit structures
US20040151876A1 (en) * 2003-01-31 2004-08-05 Tanielian Minas H. Fabrication of electromagnetic meta-materials and materials made thereby
US20040167008A1 (en) * 2003-02-25 2004-08-26 Kung-Chung Hsu Method for processing ceramic powder suspension
US20050150106A1 (en) * 2004-01-14 2005-07-14 Long David C. Embedded inductor and method of making
US20060114094A1 (en) * 2004-09-21 2006-06-01 Henry Jean Simplified surface-mount devices and methods
US20090139759A1 (en) * 2004-12-20 2009-06-04 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method therefor
US20110291784A1 (en) * 2009-02-10 2011-12-01 Murata Manufacturing Co., Ltd. Electronic component
US8161635B1 (en) * 2007-02-06 2012-04-24 Marvell International Ltd. Methods for forming a single cap via in pad of substrate
US8539666B2 (en) 2011-11-10 2013-09-24 Harris Corporation Method for making an electrical inductor and related inductor devices
US8610528B1 (en) 2010-01-20 2013-12-17 Vlt, Inc. Vertical PCB surface mount inductors and power converters

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992691A (en) * 1975-07-02 1976-11-16 Cubic Corporation Electronic circuit board flat coil inductor
US4130722A (en) * 1977-01-10 1978-12-19 Globe-Union Inc. Thick-film circuit module including a monolithic ceramic cross-over device
US4183074A (en) * 1977-04-16 1980-01-08 Wallace Clarence L Manufacture of multi-layered electrical assemblies
US4301580A (en) * 1977-04-16 1981-11-24 Wallace Clarence L Manufacture of multi-layered electrical assemblies
FR2424618A1 (en) * 1978-04-27 1979-11-23 Vacuumschmelze Gmbh HIGH CURRENT REACTOR COIL
US4322698A (en) * 1978-12-28 1982-03-30 Tetsuo Takahashi Laminated electronic parts and process for making the same
NL7909351A (en) * 1978-12-28 1980-07-01 Tdk Electronics Co Ltd LAYERED ELECTRONIC PART AND METHOD OF MANUFACTURE THEREOF.
DE2952441A1 (en) * 1978-12-28 1980-07-17 Tdk Electronics Co Ltd LAMINATED ELECTRONIC COMPONENT AND METHOD FOR PRODUCING SUCH COMPONENTS
US4313152A (en) * 1979-01-12 1982-01-26 U.S. Philips Corporation Flat electric coil
US4369557A (en) * 1980-08-06 1983-01-25 Jan Vandebult Process for fabricating resonant tag circuit constructions
WO1982000541A1 (en) * 1980-08-06 1982-02-18 J Vandebult Modified resonant tag circuit constructions and fabrication processes therefor
US4367450A (en) * 1981-01-26 1983-01-04 Ernie Carillo Electrical reactor construction
WO1982002618A1 (en) * 1981-01-26 1982-08-05 Ernie Carillo Electrical reactor construction
US4486641A (en) * 1981-12-21 1984-12-04 Ruffini Robert S Inductor, coating and method
US4651254A (en) * 1982-08-24 1987-03-17 Dynamit Nobel Aktiengesellschaft Inductive igniters with secondary coil
US4750077A (en) * 1983-03-01 1988-06-07 Mitsubishi Denki Kabushiki Kaisha Coil device
DE3418379A1 (en) * 1983-05-18 1984-11-22 Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto LAYERED INDUCTION COIL
US4543553A (en) * 1983-05-18 1985-09-24 Murata Manufacturing Co., Ltd. Chip-type inductor
US4797648A (en) * 1987-03-09 1989-01-10 Murata Manufacturing Co., Ltd. Chip inductor
US5072508A (en) * 1988-06-23 1991-12-17 Murata Mfg. Co., Ltd. Method of making an inductive-resistive circuit element
US5045380A (en) * 1988-08-24 1991-09-03 Murata Manufacturing Co., Ltd. Lamination type inductor
US5032815A (en) * 1988-12-23 1991-07-16 Murata Manufacturing Co., Ltd. Lamination type inductor
US5251108A (en) * 1991-01-30 1993-10-05 Murata Manufacturing Co., Ltd. Laminated electronic device with staggered holes in the conductors
US5302932A (en) * 1992-05-12 1994-04-12 Dale Electronics, Inc. Monolythic multilayer chip inductor and method for making same
US5414402A (en) * 1992-11-19 1995-05-09 Murata Manufacturing Co., Ltd. Multi-layer substrate
US6914510B2 (en) 1994-09-12 2005-07-05 Matsushita Electric Industrial Co., Ltd. Inductor and method for producing the same
US20040227609A1 (en) * 1994-09-12 2004-11-18 Eiichi Uriu Inductor and method for producing the same
US6911888B2 (en) 1994-09-12 2005-06-28 Matsushita Electric Industrial Co., Ltd. Inductor and method for producing the same
US6631545B1 (en) 1994-09-12 2003-10-14 Matsushita Electric Industrial Co., Ltd. Method for producing a lamination ceramic chi
US6293001B1 (en) 1994-09-12 2001-09-25 Matsushita Electric Industrial Co., Ltd. Method for producing an inductor
US20050190036A1 (en) * 1994-09-12 2005-09-01 Matsushita Electric Industrial Co., Ltd. Inductor and method for producing the same
US20030151486A1 (en) * 1994-09-12 2003-08-14 Eiichi Uriu Inductor and method for producing the same
US7078999B2 (en) 1994-09-12 2006-07-18 Matsushita Electric Industrial Co., Ltd. Inductor and method for producing the same
US6909350B2 (en) 1994-09-12 2005-06-21 Matsushita Electric Industrial Co., Ltd. Inductor and method for producing the same
US6911887B1 (en) 1994-09-12 2005-06-28 Matsushita Electric Industrial Co., Ltd. Inductor and method for producing the same
US5572779A (en) * 1994-11-09 1996-11-12 Dale Electronics, Inc. Method of making an electronic thick film component multiple terminal
US6133809A (en) * 1996-04-22 2000-10-17 Murata Manufacturing Co., Ltd. LC filter with a parallel ground electrode
US6630881B1 (en) * 1996-09-17 2003-10-07 Murata Manufacturing Co., Ltd. Method for producing multi-layered chip inductor
US6189200B1 (en) * 1996-09-17 2001-02-20 Murata Manufacturing Co., Ltd. Method for producing multi-layered chip inductor
US6568054B1 (en) * 1996-11-21 2003-05-27 Tkd Corporation Method of producing a multilayer electronic part
US6147573A (en) * 1996-11-21 2000-11-14 Tdk Corporation Multilayer electronic part with planar terminal electrodes
US6124779A (en) * 1996-12-11 2000-09-26 Murata Manufacturing Co. Ltd. Multilayer-type inductor
EP0921542A4 (en) * 1997-03-28 2000-06-07 Matsushita Electronics Corp Chip inductor and method for manufacturing the same
US6388550B1 (en) 1997-03-28 2002-05-14 Matsushita Electric Industrial Co., Ltd. Chip inductor and its manufacturing method
EP0921542A1 (en) * 1997-03-28 1999-06-09 Matsushita Electronics Corporation Chip inductor and method for manufacturing the same
US6073340A (en) * 1997-05-29 2000-06-13 Denso Corporation Method of producing lamination type ceramic heater
US5783879A (en) * 1997-06-03 1998-07-21 Eastman Kodak Company Micromotor in a ceramic substrate
US6046707A (en) * 1997-07-02 2000-04-04 Kyocera America, Inc. Ceramic multilayer helical antenna for portable radio or microwave communication apparatus
US5945902A (en) * 1997-09-22 1999-08-31 Zefv Lipkes Core and coil structure and method of making the same
US6218925B1 (en) 1998-01-08 2001-04-17 Taiyo Yuden Co., Ltd. Electronic components
EP0929085A3 (en) * 1998-01-08 2000-02-23 Taiyo Yuden Co., Ltd. Electronic components
EP0929085A2 (en) * 1998-01-08 1999-07-14 Taiyo Yuden Co., Ltd. Electronic components
US6979416B2 (en) 1998-01-22 2005-12-27 Matsushita Electric Industrial Co., Ltd. Method of forming an electronic component using ink
US6487774B1 (en) * 1998-01-22 2002-12-03 Matsushita Electric Industrial Co., Ltd. Method of forming an electronic component using ink
US6304164B1 (en) 1998-02-02 2001-10-16 Taiyo Yuden Co., Ltd. Multilayer electronic component and manufacturing method therefor
US6153078A (en) * 1998-02-10 2000-11-28 Lucent Technologies Inc. Process for forming device comprising metallized magnetic substrates
US6007758A (en) * 1998-02-10 1999-12-28 Lucent Technologies Inc. Process for forming device comprising metallized magnetic substrates
US6154111A (en) * 1998-04-27 2000-11-28 Deutsche Thomson-Brandt Gmbh Storage coil
DE19818673A1 (en) * 1998-04-27 1999-10-28 Thomson Brandt Gmbh Kitchen sink
EP0953994A3 (en) * 1998-05-01 2000-02-23 Taiyo Yuden Co., Ltd. Multi-laminated inductor and manufacturing method thereof
EP0953994A2 (en) * 1998-05-01 1999-11-03 Taiyo Yuden Co., Ltd. Multi-laminated inductor and manufacturing method thereof
GB2337863B (en) * 1998-05-09 2002-08-14 Frederick E Bott Coil substrate
GB2337863A (en) * 1998-05-09 1999-12-01 Frederick E Bott Method and means of forming a desired coil configuration
US6566731B2 (en) * 1999-02-26 2003-05-20 Micron Technology, Inc. Open pattern inductor
US20080246578A1 (en) * 1999-02-26 2008-10-09 Micron Technology Inc. Open pattern inductor
US7262482B2 (en) 1999-02-26 2007-08-28 Micron Technology, Inc. Open pattern inductor
US7091575B2 (en) 1999-02-26 2006-08-15 Micron Technology, Inc. Open pattern inductor
US6653196B2 (en) 1999-02-26 2003-11-25 Micron Technology, Inc. Open pattern inductor
US8009006B2 (en) 1999-02-26 2011-08-30 Micron Technology, Inc. Open pattern inductor
US7380328B2 (en) 1999-02-26 2008-06-03 Micron Technology, Inc. Method of forming an inductor
US9929229B2 (en) 1999-02-26 2018-03-27 Micron Technology, Inc. Process of manufacturing an open pattern inductor
US20060012007A1 (en) * 1999-02-26 2006-01-19 Micron Technology, Inc. Open pattern inductor
US6580350B1 (en) * 1999-03-31 2003-06-17 Taiyo Yuden Co., Ltd. Laminated electronic component
US6690165B1 (en) * 1999-04-28 2004-02-10 Hironori Takahashi Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field
EP1087524A2 (en) * 1999-09-24 2001-03-28 Toko Kabushiki Kaisha Laminated chip component and manufacturing method
EP1087524A3 (en) * 1999-09-24 2003-07-09 Toko Kabushiki Kaisha Laminated chip component and manufacturing method
US6426683B1 (en) * 1999-11-09 2002-07-30 Motorola, Inc. Integrated filter with improved I/O matching and method of fabrication
EP1100193A3 (en) * 1999-11-09 2008-01-23 Freescale Semiconductor, Inc. Integrated filter with improved I/O matching and method of fabrication
US6975199B2 (en) 2001-12-13 2005-12-13 International Business Machines Corporation Embedded inductor and method of making
US20030112114A1 (en) * 2001-12-13 2003-06-19 International Business Machines Corporation Embedded inductor and method of making
US20040113721A1 (en) * 2002-12-13 2004-06-17 International Business Machines Corporation MLC frequency selective circuit structures
US6806793B2 (en) 2002-12-13 2004-10-19 International Business Machines Corporation MLC frequency selective circuit structures
US6938325B2 (en) * 2003-01-31 2005-09-06 The Boeing Company Methods of fabricating electromagnetic meta-materials
US20040151876A1 (en) * 2003-01-31 2004-08-05 Tanielian Minas H. Fabrication of electromagnetic meta-materials and materials made thereby
US20040167008A1 (en) * 2003-02-25 2004-08-26 Kung-Chung Hsu Method for processing ceramic powder suspension
US20050150106A1 (en) * 2004-01-14 2005-07-14 Long David C. Embedded inductor and method of making
US6931712B2 (en) 2004-01-14 2005-08-23 International Business Machines Corporation Method of forming a dielectric substrate having a multiturn inductor
US20060114094A1 (en) * 2004-09-21 2006-06-01 Henry Jean Simplified surface-mount devices and methods
US7612641B2 (en) 2004-09-21 2009-11-03 Pulse Engineering, Inc. Simplified surface-mount devices and methods
US20090139759A1 (en) * 2004-12-20 2009-06-04 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method therefor
US8161635B1 (en) * 2007-02-06 2012-04-24 Marvell International Ltd. Methods for forming a single cap via in pad of substrate
US8772647B1 (en) 2007-02-06 2014-07-08 Marvell International Ltd Single-cap via-in-pad and methods for forming thereof
US8237528B2 (en) * 2009-02-10 2012-08-07 Murata Manufacturing Co., Ltd. Electronic component
CN102308344B (en) * 2009-02-10 2013-10-16 株式会社村田制作所 Electronic component
US20110291784A1 (en) * 2009-02-10 2011-12-01 Murata Manufacturing Co., Ltd. Electronic component
US8610528B1 (en) 2010-01-20 2013-12-17 Vlt, Inc. Vertical PCB surface mount inductors and power converters
US9190206B1 (en) 2010-01-20 2015-11-17 Vlt, Inc. Vertical PCB surface mount inductors and power converters
US9697947B1 (en) 2010-01-20 2017-07-04 Vlt, Inc. Vertical PCB surface mount inductors and power converters
US8539666B2 (en) 2011-11-10 2013-09-24 Harris Corporation Method for making an electrical inductor and related inductor devices
US9159485B2 (en) 2011-11-10 2015-10-13 Harris Corporation Method for making an electrical inductor and related inductor devices

Similar Documents

Publication Publication Date Title
US3812442A (en) Ceramic inductor
US3833872A (en) Microminiature monolithic ferroceramic transformer
US4868711A (en) Multilayered ceramic capacitor
KR100307078B1 (en) Glass bonding layer for ceramic circuit board supporting substrate
US3423517A (en) Monolithic ceramic electrical interconnecting structure
US5661882A (en) Method of integrating electronic components into electronic circuit structures made using LTCC tape
US3978248A (en) Method for manufacturing composite sintered structure
GB2367425A (en) Composite monolithic elctronic component
US5379004A (en) High frequency-use non-reciprocal circuit element
US5866240A (en) Thick ceramic on metal multilayer circuit board
US4835656A (en) Multi-layered ceramic capacitor
JPS63300593A (en) Ceramic composite substrate
JPS58212940A (en) Substrate for microwave circuit and its manufacture
Walton Principles of thick film materials formulation
US2752663A (en) Method of uniting terminals and conductive electrodes and bonding same to ceramic base
JPS61108192A (en) Low temperature sintered multilayer ceramic substrate
JPH10289822A (en) Electronic component and wafer
JP3248294B2 (en) Chip inductor and manufacturing method thereof
JPH04291985A (en) Laminated circuit parts
JPH04157713A (en) Laminated ceramic capacitor
US3585460A (en) Miniature ceramic capacitor and method of manufacture
JPS60176296A (en) Method of producing glazed resistance element interal multilayer substrate
JP2724075B2 (en) Method for depositing metal layer on aluminum nitride sintered body
JP2505107B2 (en) Ceramic multilayer wiring board and manufacturing method thereof
JPH01164012A (en) Structure of external terminal electrode of lamination application component