US3814838A - Insulator assembly having load distribution support - Google Patents

Insulator assembly having load distribution support Download PDF

Info

Publication number
US3814838A
US3814838A US00365930A US36593073A US3814838A US 3814838 A US3814838 A US 3814838A US 00365930 A US00365930 A US 00365930A US 36593073 A US36593073 A US 36593073A US 3814838 A US3814838 A US 3814838A
Authority
US
United States
Prior art keywords
insulators
insulator assembly
ring
plate
adapter plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00365930A
Inventor
J Shafer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Electronics Corp
Original Assignee
Continental Electronics and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Electronics and Manufacturing Co filed Critical Continental Electronics and Manufacturing Co
Priority to US00365930A priority Critical patent/US3814838A/en
Priority to DE2406106A priority patent/DE2406106C3/en
Priority to FR7405584A priority patent/FR2232047B1/fr
Priority to JP2409274A priority patent/JPS5479B2/ja
Application granted granted Critical
Publication of US3814838A publication Critical patent/US3814838A/en
Assigned to VARIAN ASSOCIATES, INCORPORATED reassignment VARIAN ASSOCIATES, INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONTINENTAL ELECTRONICS MFG. CO., A CORP OF TX.
Assigned to CONTINENTAL ELECTRONICS CORPORATION, A CORP OF NV reassignment CONTINENTAL ELECTRONICS CORPORATION, A CORP OF NV ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: VARIAN ASSOCIATES, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/14Supporting insulators

Definitions

  • a ceramic insulator assembly includes a plurality of parallelvertical insulators arranged with equal spacings about the circumference of a circle.
  • Vertical loadingforces are applied to the insulators by way of an adapter plate separated from a top plate on the insulat'ors by a load distribution ring.
  • the ring is aligned with the axes of the insulators, so that bending forces are nottransferred to the insulators.
  • a plurality of. vertical tiers of insulators separated by divider plates may be provided. One end of each insulator may be mounted in a molded joint to insure substantially equal load distribution.
  • a ceramic insulator assembly that can withstand high loading forces without failure.
  • the assembly is comprised of one or more tiers of parallel ceramic insulators positioned to. be equally spaced about the circumference of a circle, i.e. to be uniformly distributed about the circle.
  • the axes of corresponding insulators in the tiers are aligned, and the tiers are separated by divider plates.
  • a mounting plate is mounted to the tops of the insulators of the uppermost tiers, and a load distribution ring is mountedon top of the top mounting plate.
  • the ring is aligned with the axes of the insulators, i.e., the center lines of the insulators extend through the load distribution r'ing between the inner and outer diameters thereof.
  • An adapter plate is mounted on top of the distribution ring.
  • the ring has a width, i.e. the dimensions between its inner and outer diameters, whereby bending due to loading of the assembly is taken up by the adapter plate, and 'is' not transferred to the top mounting plate and hence the ceramic insulators.
  • a molded joint for example of an epoxy, is provided at one end of each insulator.
  • FIG. I is a side view of a multi-tier insulator in accordance with the invention.
  • FIG. 3 is a further enlarged, partially cross-sectional view of a portion of the insulator assembly of FIG. 2 taken along the lines 3--3;
  • FIG. 1 is a side view of an insulator assembly in accordance with the invention.
  • the assembly is comprised of one or more tiers of parallel, vertically extending, preferably cylindrical cetively shortened and shortens the effect of construction 2 ramic insulators 10, two such tiers being illustrated-in the arrangement of FIG. 1. It is to be understood, of course, that a greater or lesser number of tiers may be provided.
  • the ends of each insulator are provided with mounting flanges 'l 1- according to conventional practice.
  • the insulators 10 are equally spaced about the circumference of a circle, as is apparent in FIG. 2, and as shown in FIG. 1 the axes of corresponding insulators in the tiers are aligned. I
  • tiers of insulators When two or more tiers of insulators are provided, they are separated by a center plate 12.
  • the bottoms of the insulators of the lowermost tier are mounted on i a base plate 13, and a top plate 14 is mounted on the tops of the insulators of the uppermost tier.
  • the insulator flanges 11 are affixed to the respective plates 12, 13
  • the base plate 13 may be conventionally mounted on a spacer plate 15.
  • FIG. 1 illustrates the application of a vertical load to the insulator assembly by the arrow P directed downwardly onto the adapter plate 20.
  • the plates 12, 13 and 14 are preferably circular, as illustrated in FIG. 2. These plates may, if desired, be annular,.with the chain line 22 illustrating their inner edges, since the effective region of these plates from the standpoint of loading is annular.
  • the insulators 10 shown in the drawing are depicted with smooth external surfaces, itwill be understood, of course, that these insulators may be provided with annular ridges according to the conventional practice. Further, as illustrated in FIG. I, the diameters of the ceramic insulators are greater at their ends than at their middle portions. While this feature is not essential, it is desirable since the highest. bending stresses on theassembly occur at the ends, not at the axial centers rangement have equal flexibility with respect to the top and base plates 14 and 13 respectively. In this arrangement the column length of the insulators is'thus effececcentricity.
  • the load distribution ring 21 is provided in order that all bending from the vertical load'P within the circle of the ceramic insulators is taken in the adapter plate 20, and is thereby not transferred unevenly to the ceramic insulators.
  • the width (i.e. the dimension between the inner and outer 1 diameters) of the ring 21 be as small as possible.
  • minimum width is limited, according to conventional design practice, by the compressive strength of the material of the ring and the material in the top plate 14 and the adapter plate 20.
  • the ring is aligned with the axes of the ceramic insulators, so that approximately equal areas of the tops of the ceramic insulators appear on the inside and Outside of the ring 21, as is apparent in FIG. 2.
  • a molded joint 25 (see P16. 3) is provided at each insulator.'Themolded joints are provided at only one end of each insulator. The joint material must have high compressive strength, and as high as possible a modulus of elasticity, and it must also have low creep characteristics. Epoxy resin materials have been found to be suitable for this purpose.
  • the maximum thicknessof the joint 25 is ascertained by adding together all of the construction tolerances in the fabrication of the insulators and insuring that the total vertical deflection of the molded joint is less than 10 percent of the total vertical deflection of the ceramic insulator under maximum load.
  • the molded joint is employed so that all of the insulators acting in parallel, start their load cycles simultaneously upon the application of load to the assembly, whereby no stress concentrations are created.
  • ceramic insulators were employed having lengths of 46.25
  • the insulators were of normall station post design. The. heights of the flanges were 4 125 inches.
  • the top plate 14, divider plate 12 and base plate 13 were 5 inches thick and had diameters of 55.25 inches.
  • the effective inner edge 22 of these plates had a diameter of 19 inches.
  • the diameter of the assembly between axes of opposite insulators was 37.2 inches.
  • the load distributing ring 21 had an inner diameter'of 35.7 inches,'and outer diameter of 38.7, inches, and a'thickness of'0.25 inches.
  • the adapter ring had a thickness of 12 inches.
  • the molded joints 25 were of an epoxy material, and had maximumthieknesses of about 0.016 inches.
  • the total deflection of the epoxy under the above load was thus less than 1 percent of the total vertical deflection.
  • An insulator assembly comprising a plurality of parallel cylindrical insulators equally spaced about the circumference of a circle, mounting plate means mounted on one end of said insulators, an adapter plate means aligned with said mounting plate means for receiving a loading force, and a load distribution ring between said mounting plate and said adapter plate for transmitting said loading force to said insulators, said ring being aligned with the axes of said insulators, said ring having a width dimension between its inner and outer diameters that is less than the diameters of said insulators at said one end thereof whereby bending due to said loading force is not transferred to said insulators.
  • An insulator assembly comprising a plurality of parallel vertical elongated ceramic insulators equally spaced about the circumference of a circle, a top plate means on the upper ends of said insulators, an adapter plate overlying said top plate means, and a load distribution ring between said adapter plate and said top plate and alignedwith the axes of said insulators, said ring having a width dimension between the inner and outer diameters thereof that is less than the diameters of the upper ends of said insulators whereby bending forces due to vertical loads applied tosaid adapter plate means are not transferred to said insulators.
  • the insulator assembly of claim 2 further comprising a molded mounting joint on one end of each of said insulators whereby said vertical loads are substantially equally distributed between said insulators.
  • An insulator assembly comprising a plurality of aligned tiers of parallel vertical cylindrical insulators equally spaced about the circumference of a circle with the axes of the insulators in separate tiers being aligned, divider plate means separating said tiers, a top plate mounted on the upper ends of the uppermost tier of insulators, an adapter plate above said top plate, and a load distribution ring between said adapter plate and said top plate and aligned with the axes of said insulators for transferring vertical loads on said adapter plate to said tiers of insulators, said ring having a width dimension between its inner and outer diameters that is less than the diameters of the upper ends of said insulators whereby bending due to said vertical load is not transferred from said adapter plate to said top plate.
  • the insulator assembly of claim 8 further comprising a base plate mounted on the bottoms of the insulators of the lowermost tier of insulators, said top plate, divider plate means and base plate having substantially equal flexibility.

Abstract

A ceramic insulator assembly includes a plurality of parallel vertical insulators arranged with equal spacings about the circumference of a circle. Vertical loading forces are applied to the insulators by way of an adapter plate separated from a top plate on the insulators by a load distribution ring. The ring is aligned with the axes of the insulators, so that bending forces are not transferred to the insulators. A plurality of vertical tiers of insulators separated by divider plates may be provided. One end of each insulator may be mounted in a molded joint to insure substantially equal load distribution.

Description

United States Patent 1191 'Shafer 1111 "3,814,838 1451 June 4,1974
[ INSULATCR ASSEMBLY HAVING'LOAD DISTRIBUTION SUPPORT [75] Inventor: James F. Shafer, Dallas Tex.
[73] Assignee: Continental Electronics:
Manufacturing Company, Dallas, Tex.
[22] Filed: June I, 1973 [2|] Appl. No.: 365,930
US. Cl. .1 174/150 Int. Cl. II0lb, 17/14 Field of Search... l74/l41 R, I41 C, 148,
174/149 R, 149 B, l5 0, 158R [56] I References Cited UNITED STATES PATENTS 1.9911549 4/1935 Lappetal 174/1511x 2,264,685 12/1941 Wellset'al. 174 14x FOREIGN PATENTS OR APPLICATIONS 348,l24' 5/1937 Italy l74/l4l R Primary E.raminerLaramie E. Askin Attorney, Agent, or Firm-Albert C. Nolte, .lr.; Edward B. Hunter; Charles B. Hamburg 1 71 ABSTRACT A ceramic insulator assembly includes a plurality of parallelvertical insulators arranged with equal spacings about the circumference of a circle. Vertical loadingforces are applied to the insulators by way of an adapter plate separated from a top plate on the insulat'ors by a load distribution ring. The ring is aligned with the axes of the insulators, so that bending forces are nottransferred to the insulators. A plurality of. vertical tiers of insulators separated by divider plates may be provided. One end of each insulator may be mounted in a molded joint to insure substantially equal load distribution.
1] Claims, 4 Drawing Figures INSULATOR ASSEMBLY HAVING LOAD DISTRIBUTION SUPPORT This invention relates to insulator assemblies and is more particularly directed to the provision of means for blies so that, under conditions of high loading, the assemblies failed due to cracking of the ceramic insulators.
In order to overcome these problems, parallel oil filled ceramic tubes have been .provided, mounted between steel plates. While this modification is successful formoderately high loads, it has'been found that the arrangement is alsosubject to failure under high loading conditions. I
Briefly stated, in accordance with the invention, a ceramic insulator assembly is provided that can withstand high loading forces without failure. The assembly is comprised of one or more tiers of parallel ceramic insulators positioned to. be equally spaced about the circumference of a circle, i.e. to be uniformly distributed about the circle. When more than one tier is provided, the axes of corresponding insulators in the tiers are aligned, and the tiers are separated by divider plates.
A mounting plate is mounted to the tops of the insulators of the uppermost tiers, and a load distribution ring is mountedon top of the top mounting plate. The ring is aligned with the axes of the insulators, i.e., the center lines of the insulators extend through the load distribution r'ing between the inner and outer diameters thereof. An adapter plate is mounted on top of the distribution ring. The ring has a width, i.e. the dimensions between its inner and outer diameters, whereby bending due to loading of the assembly is taken up by the adapter plate, and 'is' not transferred to the top mounting plate and hence the ceramic insulators.
In order to insure substantially equal distribution of vertical loads between the ceramic insulators, a molded joint, for example of an epoxy, is provided at one end of each insulator.
With the above described arrangement it has been found that high loading forces may be applied to the insulator assembly without danger of failure of the assembly by cracking of the ceramic insulators due to stress concentration effects.
In order that the invention will be more clearly understood, it will now be described in greater detail with reference to the accompanying drawing, whereini FIG. I is a side view of a multi-tier insulator in accordance with the invention;
FIG. 2 is an enlarged, partially cut-away, top view of the insulator assembly of FIG. 1;
FIG. 3 is a further enlarged, partially cross-sectional view of a portion of the insulator assembly of FIG. 2 taken along the lines 3--3; and
FIG. 4 is a partially cross-sectional view of a portion of the arrangement of FIG. 3 and illustrates the effect of loading forces on the insulator assembly.
Referring now to the drawings, FIG. 1 is a side view of an insulator assembly in accordance with the invention. The assembly is comprised of one or more tiers of parallel, vertically extending, preferably cylindrical cetively shortened and shortens the effect of construction 2 ramic insulators 10, two such tiers being illustrated-in the arrangement of FIG. 1. It is to be understood, of course, that a greater or lesser number of tiers may be provided. The ends of each insulator are provided with mounting flanges 'l 1- according to conventional practice. The insulators 10 are equally spaced about the circumference of a circle, as is apparent in FIG. 2, and as shown in FIG. 1 the axes of corresponding insulators in the tiers are aligned. I
When two or more tiers of insulators are provided, they are separated by a center plate 12. The bottoms of the insulators of the lowermost tier are mounted on i a base plate 13, and a top plate 14 is mounted on the tops of the insulators of the uppermost tier. The insulator flanges 11 are affixed to the respective plates 12, 13
and 14 by conventional means, such as bolts (not shown). The base plate 13 may be conventionally mounted on a spacer plate 15.
' An adapter plate 20 aligned with the insulator assembly is spaced from the top of the top plate 14 by a load distribution ring 21. The load distribution ring 21, as is apparent in FIGS. 2 and 3, is aligned with the axes of the ceramic insulators, i.e., the axes of the ceramic insulators intersect the ring 21 between its inner and outer diameters. FIG. 1 illustrates the application of a vertical load to the insulator assembly by the arrow P directed downwardly onto the adapter plate 20.
The plates 12, 13 and 14 are preferably circular, as illustrated in FIG. 2. These plates may, if desired, be annular,.with the chain line 22 illustrating their inner edges, since the effective region of these plates from the standpoint of loading is annular.
While the insulators 10 shown in the drawing are depicted with smooth external surfaces, itwill be understood, of course, that these insulators may be provided with annular ridges according to the conventional practice. Further, as illustrated in FIG. I, the diameters of the ceramic insulators are greater at their ends than at their middle portions. While this feature is not essential, it is desirable since the highest. bending stresses on theassembly occur at the ends, not at the axial centers rangement have equal flexibility with respect to the top and base plates 14 and 13 respectively. In this arrangement the column length of the insulators is'thus effececcentricity.
The load distribution ring 21 is provided in order that all bending from the vertical load'P within the circle of the ceramic insulators is taken in the adapter plate 20, and is thereby not transferred unevenly to the ceramic insulators. For this purpose, it is preferred that the width (i.e. the dimension between the inner and outer 1 diameters) of the ring 21 be as small as possible. The
minimum width is limited, according to conventional design practice, by the compressive strength of the material of the ring and the material in the top plate 14 and the adapter plate 20. The ring is aligned with the axes of the ceramic insulators, so that approximately equal areas of the tops of the ceramic insulators appear on the inside and Outside of the ring 21, as is apparent in FIG. 2.
The effect of the ring 21 in the assembly is illustrated in exagerated form in the partially cross-sectional view of FIG. 4. ln this illustration, the vertical force P on the 'with respect to the axes of the ceramic insulators, and
substantially none of the bending force acting on the plate 20 is transferred'to the ceramic insulator 10. As pointed out above, theillustration of FIG. 4 is exaggerated, and in actual design of the insulator assembly it is preferred that the elements of the assembly be designed so that the load center acting on the distribution ring shifts no more than /sth of the ring width for the worst case of load distribution. 1
It will be understood, of course, that suitable means, such as bolts, may be provided for maintaining the alignment of the adapter plate 20 on the structure, although this feature does not form a part of the invention per se.
ln order to enable the distribution of vertical force to withi n between the ceramic insulators of eaclrtjgr, a molded joint 25 (see P16. 3) is provided at each insulator.'Themolded joints are provided at only one end of each insulator. The joint material must have high compressive strength, and as high as possible a modulus of elasticity, and it must also have low creep characteristics. Epoxy resin materials have been found to be suitable for this purpose. The maximum thicknessof the joint 25 is ascertained by adding together all of the construction tolerances in the fabrication of the insulators and insuring that the total vertical deflection of the molded joint is less than 10 percent of the total vertical deflection of the ceramic insulator under maximum load. The molded joint is employed so that all of the insulators acting in parallel, start their load cycles simultaneously upon the application of load to the assembly, whereby no stress concentrations are created.
In an actual embodiment of the invention, ceramic insulators were employed having lengths of 46.25
inches, with root'diameters at their centers of 8 inches,
and root diameters at 9 inches from their ends of 8.5 inches. The insulators were of normall station post design. The. heights of the flanges were 4 125 inches. The top plate 14, divider plate 12 and base plate 13 were 5 inches thick and had diameters of 55.25 inches. The effective inner edge 22 of these plates had a diameter of 19 inches. The diameter of the assembly between axes of opposite insulators was 37.2 inches. The load distributing ring 21 had an inner diameter'of 35.7 inches,'and outer diameter of 38.7, inches, and a'thickness of'0.25 inches. The adapter ring had a thickness of 12 inches. The molded joints 25 were of an epoxy material, and had maximumthieknesses of about 0.016 inches.
In an illustration of the design of the molded joints, assume thatthe total vertical deflection of an insulator assembly having two ceramic insulators, under a loading of 1,631 kips, is approximately 0.235 inches, that the effective diameter of the molded joint is 12.5 inches at the bolt circle and that the ceramic insulators and top and bottom plates of a single tier unit have tolerances of plus or minus 0.002 inches. In this case, the total possible mismatch in the assembly could be 8 X 2 X 0.002 0.032 inches. If an epoxy joint of 0.032 inches thickness is employed, then the total deflection of the epoxy joint under the above loading is:
A PL/AE 0.0008 inches where P is the applied load, L is the thickness of the moldable joint, A is the area of the joint, and E is the modulus of elasticity, in this case being equal to 520,000.
The total deflection of the epoxy under the above load was thus less than 1 percent of the total vertical deflection.
While the invention has been disclosed and described with reference to a single embodiment, it will be obvious that many variations and modifications may be made therein without departing from the invention, and it is therefore intended in the following claims to cover each such variation and modification as falls within the true spirit-and scope of the invention.
' What is claimed is:
1. An insulator assembly comprising a plurality of parallel cylindrical insulators equally spaced about the circumference of a circle, mounting plate means mounted on one end of said insulators, an adapter plate means aligned with said mounting plate means for receiving a loading force, and a load distribution ring between said mounting plate and said adapter plate for transmitting said loading force to said insulators, said ring being aligned with the axes of said insulators, said ring having a width dimension between its inner and outer diameters that is less than the diameters of said insulators at said one end thereof whereby bending due to said loading force is not transferred to said insulators.
2. An insulator assembly comprising a plurality of parallel vertical elongated ceramic insulators equally spaced about the circumference of a circle, a top plate means on the upper ends of said insulators, an adapter plate overlying said top plate means, and a load distribution ring between said adapter plate and said top plate and alignedwith the axes of said insulators, said ring having a width dimension between the inner and outer diameters thereof that is less than the diameters of the upper ends of said insulators whereby bending forces due to vertical loads applied tosaid adapter plate means are not transferred to said insulators.
3. The insulator assembly of claim 2 further comprising a molded mounting joint on one end of each of said insulators whereby said vertical loads are substantially equally distributed between said insulators.
4. The insulator assembly of claim 3 wherein said molded joints are of an epoxy material.
.5. The insulator assembly of claim 3 wherein said molded joints are at only one end of each of said insulators.
6. The insulator assembly of claim 3 wherein said molded joints comprise a layer of a molded material of a thickness whereby vertical deformation of said layer islessthan 10%-Jof the ve tical defo ma ion f he .cerresponding insulator under maximum load.
. 7. The insulator assembly of claim 2 wherein the diameters of said insulators are greater at the axial ends thereof than at their axial centers.
8. An insulator assembly comprising a plurality of aligned tiers of parallel vertical cylindrical insulators equally spaced about the circumference of a circle with the axes of the insulators in separate tiers being aligned, divider plate means separating said tiers, a top plate mounted on the upper ends of the uppermost tier of insulators, an adapter plate above said top plate, and a load distribution ring between said adapter plate and said top plate and aligned with the axes of said insulators for transferring vertical loads on said adapter plate to said tiers of insulators, said ring having a width dimension between its inner and outer diameters that is less than the diameters of the upper ends of said insulators whereby bending due to said vertical load is not transferred from said adapter plate to said top plate.
9. The insulator assembly of claim 8 wherein only one end of each of said insulators has a molded joint for assuring substantially equal loading of said insulators.
10. The insulator assembly of claim 9 wherein said molded joints are of an epoxy material.
11. The insulator assembly of claim 8 further comprising a base plate mounted on the bottoms of the insulators of the lowermost tier of insulators, said top plate, divider plate means and base plate having substantially equal flexibility.

Claims (11)

1. An insulator assembly comprising a plurality of parallel cylindrical insulators equally spaced about the circumference of a circle, mounting plate means mounted on one end of said insulators, an adapter plate means aligned with said mounting plate means for receiving a loading force, and a load distribution ring between said mounting plate and said adapter plate for transmitting said loading force to said insulators, said ring being aligned with the axes of said insulators, said ring having a width dimension between its inner and outer diameters that is less than the diameters of said insulators at said one end thereof whereby bending due to said loading force is not transferred to said insulators.
2. An insulator assembly comprising a plurality of parallel vertical elongated ceramic insulators equally spaced about the circumference of a circle, a top plate means on the upper ends of said insulators, an adapter plate overlying said top plate means, and a load distribution ring between said adapter plate and said top plate and aligned with the axes of said insulators, said ring having a width dimension between the inner and outer diameters thereof that is less than the diameters of the upper ends of said insulators whereby bending forces due to vertical loads applied to said adapter plate means are not transferred to said insulators.
3. The insulator assembly of claim 2 further comprising a molded mounting joint on one end of each of said insulators whereby said vertical loads are substantially equally distributed between said insulators.
4. The insulator assembly of claim 3 wherein said molded joints are of an epoxy material.
5. The insulator assembly of claim 3 wherein said molded joints are at only one end of each of said insulators.
6. The insulator assembly of claim 3 wherein said molded joints comprise a layer of a molded material of a thickness whereby vertical deformation of said layer is less than 10% of the vertical deformation of the corresponding insulator under maximum load.
7. The insulator assembly of claim 2 wherein the diameters of said insulators are greater at the axial ends thereof than at their axial centers.
8. An insulator assembly comprising a plurality of aligned tiers of parallel vertical cylindrical insulators equally spaced about the circumference of a circle with the axes of the insulators in separate tiers being aligned, divider plate means separating said tiers, a top plate mounted on the upper ends of the uppermost tier of insulators, an adapter plate above said top plate, and a load distribution ring between said adapter plate and said top plate and aligned with the axes of said insulators for transferring vertical loads on said adapter plate to said tiers of insulators, said ring having a width dimension between its inner and outer diameters that is less than the diameters of the upper ends of said insulators whereby bending due to said vertical load is not transferred from said adapter plate to said top plate.
9. The insulator assembly of claim 8 wherein only one end of each of said insulators has a molded joint for assuring substantially equal loading of said insulators.
10. The insulator assembly of claim 9 wherein said molded joints are of an epoxy material.
11. The insulator assembly of claim 8 further comprising a base plate mounted on the bottoms of the insulators of the lowermost tier of insulators, said top plate, divider plate means and base plate having substantially equal flexibility.
US00365930A 1973-06-01 1973-06-01 Insulator assembly having load distribution support Expired - Lifetime US3814838A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US00365930A US3814838A (en) 1973-06-01 1973-06-01 Insulator assembly having load distribution support
DE2406106A DE2406106C3 (en) 1973-06-01 1974-02-05 Post insulator arrangement
FR7405584A FR2232047B1 (en) 1973-06-01 1974-02-19
JP2409274A JPS5479B2 (en) 1973-06-01 1974-02-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00365930A US3814838A (en) 1973-06-01 1973-06-01 Insulator assembly having load distribution support

Publications (1)

Publication Number Publication Date
US3814838A true US3814838A (en) 1974-06-04

Family

ID=23440979

Family Applications (1)

Application Number Title Priority Date Filing Date
US00365930A Expired - Lifetime US3814838A (en) 1973-06-01 1973-06-01 Insulator assembly having load distribution support

Country Status (4)

Country Link
US (1) US3814838A (en)
JP (1) JPS5479B2 (en)
DE (1) DE2406106C3 (en)
FR (1) FR2232047B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135133A1 (en) * 2002-12-27 2004-07-15 Ngk Insulators, Ltd. Polymer insulator apparatus and method of mounting same
US20070273387A1 (en) * 2001-08-31 2007-11-29 Cascade Microtech, Inc. Optical testing device
US20070290700A1 (en) * 1992-06-11 2007-12-20 Cascade Microtech, Inc. Wafer probe station having a skirting component
US20080042374A1 (en) * 2000-09-05 2008-02-21 Cascade Microtech, Inc. Chuck for holding a device under test
US20080042680A1 (en) * 1999-06-30 2008-02-21 Cascade Microtech Inc. Probe station thermal chuck with shielding for capacitive current
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7498828B2 (en) 2002-11-25 2009-03-03 Cascade Microtech, Inc. Probe station with low inductance path
US7504823B2 (en) 2004-06-07 2009-03-17 Cascade Microtech, Inc. Thermal optical chuck
US7550984B2 (en) 2002-11-08 2009-06-23 Cascade Microtech, Inc. Probe station with low noise characteristics
US7595632B2 (en) 1992-06-11 2009-09-29 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
US7626379B2 (en) 1997-06-06 2009-12-01 Cascade Microtech, Inc. Probe station having multiple enclosures
US7639003B2 (en) 2002-12-13 2009-12-29 Cascade Microtech, Inc. Guarded tub enclosure
US7688062B2 (en) 2000-09-05 2010-03-30 Cascade Microtech, Inc. Probe station
US7688091B2 (en) 2003-12-24 2010-03-30 Cascade Microtech, Inc. Chuck with integrated wafer support
US8069491B2 (en) 2003-10-22 2011-11-29 Cascade Microtech, Inc. Probe testing structure
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1998549A (en) * 1934-02-15 1935-04-23 Lapp Insulator Company Inc Insulator construction
US2264685A (en) * 1940-06-28 1941-12-02 Westinghouse Electric & Mfg Co Insulating structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1998549A (en) * 1934-02-15 1935-04-23 Lapp Insulator Company Inc Insulator construction
US2264685A (en) * 1940-06-28 1941-12-02 Westinghouse Electric & Mfg Co Insulating structure

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492147B2 (en) 1992-06-11 2009-02-17 Cascade Microtech, Inc. Wafer probe station having a skirting component
US20070290700A1 (en) * 1992-06-11 2007-12-20 Cascade Microtech, Inc. Wafer probe station having a skirting component
US7595632B2 (en) 1992-06-11 2009-09-29 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
US7589518B2 (en) 1992-06-11 2009-09-15 Cascade Microtech, Inc. Wafer probe station having a skirting component
US7626379B2 (en) 1997-06-06 2009-12-01 Cascade Microtech, Inc. Probe station having multiple enclosures
US7616017B2 (en) 1999-06-30 2009-11-10 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
US20080042680A1 (en) * 1999-06-30 2008-02-21 Cascade Microtech Inc. Probe station thermal chuck with shielding for capacitive current
US7514915B2 (en) * 2000-09-05 2009-04-07 Cascade Microtech, Inc. Chuck for holding a device under test
US20080048648A1 (en) * 2000-09-05 2008-02-28 Cascade Microtech, Inc. Chuck for holding a device under test
US20080054885A1 (en) * 2000-09-05 2008-03-06 Cascade Microtech, Inc. Chuck for holding a device under test
US20080048647A1 (en) * 2000-09-05 2008-02-28 Cascade Microtech, Inc. Chuck for holding a device under test
US7688062B2 (en) 2000-09-05 2010-03-30 Cascade Microtech, Inc. Probe station
US7501810B2 (en) 2000-09-05 2009-03-10 Cascade Microtech, Inc. Chuck for holding a device under test
US20080042374A1 (en) * 2000-09-05 2008-02-21 Cascade Microtech, Inc. Chuck for holding a device under test
US7518358B2 (en) 2000-09-05 2009-04-14 Cascade Microtech, Inc. Chuck for holding a device under test
US7969173B2 (en) 2000-09-05 2011-06-28 Cascade Microtech, Inc. Chuck for holding a device under test
US20070273387A1 (en) * 2001-08-31 2007-11-29 Cascade Microtech, Inc. Optical testing device
US7550984B2 (en) 2002-11-08 2009-06-23 Cascade Microtech, Inc. Probe station with low noise characteristics
US7498828B2 (en) 2002-11-25 2009-03-03 Cascade Microtech, Inc. Probe station with low inductance path
US7639003B2 (en) 2002-12-13 2009-12-29 Cascade Microtech, Inc. Guarded tub enclosure
US20040135133A1 (en) * 2002-12-27 2004-07-15 Ngk Insulators, Ltd. Polymer insulator apparatus and method of mounting same
US6897384B2 (en) * 2002-12-27 2005-05-24 Ngk Insulators, Ltd. Polymer insulator apparatus and method of mounting same
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7876115B2 (en) 2003-05-23 2011-01-25 Cascade Microtech, Inc. Chuck for holding a device under test
US8069491B2 (en) 2003-10-22 2011-11-29 Cascade Microtech, Inc. Probe testing structure
US7688091B2 (en) 2003-12-24 2010-03-30 Cascade Microtech, Inc. Chuck with integrated wafer support
US7504823B2 (en) 2004-06-07 2009-03-17 Cascade Microtech, Inc. Thermal optical chuck
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test

Also Published As

Publication number Publication date
FR2232047B1 (en) 1978-01-06
FR2232047A1 (en) 1974-12-27
JPS5031392A (en) 1975-03-27
JPS5479B2 (en) 1979-01-05
DE2406106C3 (en) 1981-01-08
DE2406106B2 (en) 1980-04-24
DE2406106A1 (en) 1974-12-12

Similar Documents

Publication Publication Date Title
US3814838A (en) Insulator assembly having load distribution support
KR890010379A (en) Connecting rod mechanism for insulating wall structure
US4057687A (en) Connection between core and armatures of structures comprising a core of agglomerated fibres
US3093568A (en) Moderator core structures for nuclear reactors
US4395143A (en) Annular, flexible bearings for radial loads
US20060048960A1 (en) Inner conductor supports for rigid coaxial transmission lines
US3522366A (en) Electrical insulators
US3303506A (en) Double mast antenna having the upper mast supported by a carrier mast which extends the length of the lower mast
US3003738A (en) Resilient mountings
CA1293543C (en) Suspension insulator
US2207522A (en) Concentric conductor transmission line
US2216893A (en) Concentric conductor transmission line
US4631892A (en) Composite bearing column
CN105464444A (en) Reinforced electric tower
US1915838A (en) Insulator
US2735075A (en) thomason
US1998549A (en) Insulator construction
US2292248A (en) Bushing
US1868479A (en) Compensating strut type insulator
US1981339A (en) Aerial mast
US1489689A (en) Insulator
US1684441A (en) High-tension insulator
US1198131A (en) Insulator.
US3225133A (en) Molded electrical insulator
US4392015A (en) Condenser-type electrical bushing with central electrode aligning wedging blocks

Legal Events

Date Code Title Description
AS Assignment

Owner name: VARIAN ASSOCIATES, INCORPORATED, 611 HANSEN WAY, P

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CONTINENTAL ELECTRONICS MFG. CO., A CORP OF TX.;REEL/FRAME:004522/0534

Effective date: 19860206

AS Assignment

Owner name: CONTINENTAL ELECTRONICS CORPORATION, 4212 SOUTH BU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:VARIAN ASSOCIATES, INC.;REEL/FRAME:005662/0912

Effective date: 19910928