US3823456A - Method of manufacturing a roller - Google Patents

Method of manufacturing a roller Download PDF

Info

Publication number
US3823456A
US3823456A US00375850A US37585073A US3823456A US 3823456 A US3823456 A US 3823456A US 00375850 A US00375850 A US 00375850A US 37585073 A US37585073 A US 37585073A US 3823456 A US3823456 A US 3823456A
Authority
US
United States
Prior art keywords
inserts
coat
tube
core
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00375850A
Inventor
S Schneider
K Thate
S Macher
E Geyken
H Kempe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19722232424 external-priority patent/DE2232424C3/en
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Priority to US05/446,923 priority Critical patent/US3971115A/en
Application granted granted Critical
Publication of US3823456A publication Critical patent/US3823456A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0032Producing rolling bodies, e.g. rollers, wheels, pulleys or pinions
    • B29D99/0035Producing rolling bodies, e.g. rollers, wheels, pulleys or pinions rollers or cylinders having an axial length of several times the diameter, e.g. for embossing, pressing, or printing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03DAPPARATUS FOR PROCESSING EXPOSED PHOTOGRAPHIC MATERIALS; ACCESSORIES THEREFOR
    • G03D3/00Liquid processing apparatus involving immersion; Washing apparatus involving immersion
    • G03D3/08Liquid processing apparatus involving immersion; Washing apparatus involving immersion having progressive mechanical movement of exposed material
    • G03D3/13Liquid processing apparatus involving immersion; Washing apparatus involving immersion having progressive mechanical movement of exposed material for long films or prints in the shape of strips, e.g. fed by roller assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/32Wheels, pinions, pulleys, castors or rollers, Rims
    • B29L2031/324Rollers or cylinders having an axial length of several times the diameter, e.g. embossing, pressing or printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49544Roller making
    • Y10T29/4956Fabricating and shaping roller work contacting surface element
    • Y10T29/49563Fabricating and shaping roller work contacting surface element with coating or casting about a core

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Photographic Processing Devices Using Wet Methods (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

A method of making a roller which is to be used in apparatus for wet treatment of photographic material and which comprises a hollow metallic core and two inserts with coupling shafts provided therein. A coat of chemically resistant thermoplastic material is applied around and sealingly surrounds the core to protect it from the corrosive action of media used in the wet treatment process. The outer surface of the thus coated roller is thereupon machined to a high-quality finish.

Description

United States Patent [191 Schneider et al;
[ July 16, 1974 METHOD OF MANUFACTURING A ROLLER Inventors: Siegfried Schneider, Durrnhaar;
' Kurt Thate, Munich; Erwin Geyken, Munich; Horst Kempe, Munich; Stephen Macher, Munich, all of Germany Agfa-Gevaert AG, Leverkusen, Germany Filed: July 2, 1973 Appl. No.: 375,850
Assignee:
[30] Foreign Application Priority Data July 1, 1972 Germany 2232424 U.S. Cl .Q 29/l48.4 D Int. Cl B2lh 1/14 Field of Search ..29/148.4 D, 148.4 R,
u I! II [56] References Cited UNITED STATES PATENTS 1,943,215 1/1934 Dunlap 29/l48.4 D 3,007,23l ll/l96l Garver 29/l48.4 D
Primary Examiner-Thomas l-l. Eager Attorney, Agent, or Firm-Michael S. Striker [5 7 ABSTRACT coated roller is thereupon machined to a high-quality finish.
11 Claims, 4 Drawing Figures PATENIEU JUL 1 61974 sum 1 m 2 him BACKGROUND OF THE INVENTION The present invention relates to rollers, especially to rollers whose length greatly exceeds their diameter, which can be used in apparatus for wet treatment of strip material, such as photographic roll film or prints. The invention also relates to a method of making such rollers.
In many types of apparatus for wet treatment of photographic films or the like, a web or sheet is transported along one or more straight and/or U-shaped paths by means of a conveyor system employing a number of rollers whose ends are provided with shafts or analogous mounting or coupling means for convenient installation in the frame. The rollers are disposed singly or in pairs andare normally provided with smooth external surfaces to reduce the likelihood of damage to the photosensitive emulsion. The surface-finish and the material of the rollers depend on the nature of fluids which act upon the rollers during treatment of the processed material. For example, rollers which are presently used in developing tanks for photographic material comprise cores consisting of high-quality steel and coats of rubber. Other materials are used for thoserollers which transport the film in a fixing or rinsing tank. The rollers at the drying station normally comprise a stainless core surrounded bya coating of phenolic resin. In many instances, the entire roller consistsof high-quality steel.
The manufacturing cost of such a large variety of rollers for use in a combined developing, fixing, rinsing and drying apparatus is extremely high, especially since the rollers must be produced in small numbers. Moreover. an unskilled workman is likely to confuse the rollers during assembly so that a roller which can stand the action of media in a fixing tank but is installed in the developing tank, or vice versa, is likely to be destroyed after a relatively short period of use. This can lead to prolonged interruptions in operation and substantial losses in output.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a versatile and chemically resistant roller which may be mass-produced in large numbers at a low cost.
It is an other object of the invention to provide a roller which maybe used in all stages of treatment of pho tographic material, regardless of the nature of fluids which come in contact therewith in various portions of the developing apparatus. I
It is a further object of the present invention to pro vide light-weight, rugged, reliable andlong lasting rollers which can be used interchangeably with similar rollers at any one of a plurality of processing stations in a photographic developing or like apparatus.
A concomitant object of the present invention is to provide a roller whose surface quality and chemical resistivity satisfy the requirements imposed on rollers in various stages of development of photographic materials.
It is a further object of the invention to provide a novel method of manufacturing chemically resistant rollers.
One feature of the invention resides in the provision of a roller which comprises a tubular metallic core provided with an external coat of chemically resistant ther moplastic material, and two inserts, portions of which 2 are received in the end portions of the metallic core and which are provided with shafts or analogous coupling or mounting means to facilitate the mounting of the roller in a frame or the like.
The thermoplastic material of the coat is chosen so as'to assure permanent bonding between the external surface of the metallic core and the coat applied thereto. Experience has shown that a roller produced in this manner is superior to conventional rollers because the metallic core offers the necessary rigidity and resistance to external forces, even under most unfavorable conditions, while the coat which contacts the maappended claims. The improved roller itself, however,
both as to its construction and its mode of operation, together .with additional features and advantages thereof, will be best understood upon perusal of the following detailed description of certain specific embodiments with reference to the accompanying drawing.
BRIEF DESCRIPTION, OF THE DRAWING FIG. 1 is a partlyelevational and partly axial sectional view of a roller which embodies one form of the invention;
FIG. 2 is a fragmentary schematic partly elevational and partly sectional viewof a portion of anapparatus for the making of rollers of the type shown inyFIG. 1;
FIG. 3 is a partly elevational and partly axial sectional view of a second roller; and
FIG. 4 is a sectional view as seen in the direction of arrows from the line IV-IV of FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A roller which embodies one form of the invention is shown in FIG. 1. This roller comprises a tubular metallic core 1 which is permanently bonded to a cylindrical sleeve or coat 2 of thermoplastic material. In the currently preferred embodiment, the metallic core 1 is made of aluminum; however, it is equally possible to use other materials whichare relatively inexpensive and are not highly resistant to corrosion, e.g., when subjected to the action of chemically active media used in the wet treatment of photographic materials. The only. important requirement the material of the core 1 has to satisfy, in addition to resistance. to external forces acting upon the roller, is to enter into a permanent bond with the material of the coat 2. The currently preferred materials for the making of the thermoplastic coat 2 are hard polyvinyl chloride, crystalline polyamide, polypropylene, polyethylene or their combinatrons.
The thickness of the coat 2 preferably exceeds 2 millimeters. The reasons for such rather pronounced thickness will be discussed later in connection with the description of steps following the application of the coat 2 to the core 1. Even though there is a wide variety of methods of applying'such a relatively thick coat of thermoplastic material to a cylindrical core, the cur rently preferred method is illustrated in FIG. 2. This method is an extrusion process according to which a continuous aluminum tube 1 is rotated about its axis and is moved lengthwise by a carriage, not shown, in the direction indicated by an arrow so as to advance along an extruder nozzle 3 forming part of an extruding apparatus of conventional design. However, it is to be understood that this relative movement can also be effected in any other known manner, such as moving the extruder nozzle 3 longitudinally of the tube 1' while the tube rotates but is held against axial movement.
Plasticized thermoplastic material which is being extruded from the nozzle 3 forms a strip as a result of rotation of the tube 1' and contacts the external surface of the tube to become attached thereto in the form of contiguous helical convolutions merging with each other as a result of the material of the strip being in a plasticized state, so as to form a continuous coat 2'. A support roller is located substantially opposite the extruder nozzle 3 to hold the tube against deflection thus keeping constant the distance between the orifice of the extruder nozzle and the tube to be coated and the thickness of the coat. While this method has been described as being used for coating continuous tubes, it is to be understood that it can also be used for coating of tubes of finite length.
Upon completion of the coating operation, the tube 1 with the thermoplastic coat 2' applied thereto is subdivided into tubular sections each including a metallic core 1 whose external surface is surrounded by a portion or sleeve 2 of the coat 2'. The length of the cores 1 equals or approximates the desired length of rollers. The thus obtained semi-finished product is then clamped at its outer surface, i.e., at the outer surface of the sleeve 2, and the end portions la of the core 1 are counterbored so that their internal diameters exceed the diameters of two cylindrical inserts 4. The end faces lb of the core 1 are bevelled so that they flare radially outwardly and may but need not abut against complementary surfaces on the flanges 4a of the respective inserts 4. The inserts 4 preferably consist of synthetic plastic material which can be bonded to the material of the sleeve 2. In the illustrated embodiment, each of the inserts 4 is provided with a shaft 5 of stainless steel; however, any other supporting and coupling means, such as sockets for accommodation of trunnions external to the roller may be used.
In the presently preferred embodiment, the material of the inserts 4 corresponds to the material of the sleeve 2. The end portions of the sleeve 2 may extend beyond the end faces lb of the core 1 so that the latter need not contact the flanges 4a. These flanges are bonded to the sleeve 2 by means of a suitable adhesive, by welding or in any other suitable way which insures that the sleeve 2 and flanges 4a form a fluidtight and corrosion-resistant envelope around the metallic core 1. t
The inserts 4 are provided with axial bores 4b which receive splined or toothed end portions of the respective shafts 5. The shafts 5 are permanently attached to the respective inserts 4 by an adhesive, by injection of the material of the inserts into a mold into which the splined portions of the shaft extend, or by sonic welding. The latter procedure consists in subjecting a shaft 5, while being forced into the respective insert 4, to vibrations at least in the sonic range, with resulting development of heat in the regions immediately bordering and contacting the shaft 5, caused by the friction between the surfaces of the shaft and the insert with attendant partial melting of the insert. Such partial melting facilitates the introduction of the shaft'into the insert and insures the formation of a permanent bond when the molten material of the insert is caused or allowed to set.
The currently preferred method of manufacturing the roller illustrated in FIG. 1 will now be described. As already explained above, the metallic tube 1 is first provided with a coat 2 having a sufficient thickness so as to allow for subsequent finishing operations, and then cut or otherwise subdivided into sections each of which includes a metallic core 1 provided with a sleeve 2 and having a length corresponding to the desired length of the cylindrical part of the roller. Subsequently thereto, the thus obtained semi-finished product is clamped at the inner surface of the core 1, and the external surface of the sleeve 2 is coarsely machined by turning or other material-removing operation so as to provide the sleeve with an external surface whichis coaxial with the intemal surface of the core 1. Subsequentlythereto, the semi-finished product is clampedat the thus coarsely machined external surface, and the end portions 1a of the core are counterbored by turning or a similar material-removing operation along a length at least matching the length of those portions of the inserts 4 which are to be insertedinto the core 1. The internal surfaces of the end portions la are coaxial to the outer surface of the coat 2 and to the remaining, nonmachined central portion of the inner surface of the core. The inner diameters of theend portions 1a are preferably slightly larger than the outer diameters of the main portions of the inserts so as to facilitate the introduction of inserts into the respective end portions 1a. Simultaneously therewith, or subsequently thereto, the metallic core 1 is provided with the outwardly flaring end faces lb which are preferably recessed in respect to the'end portions of the sleeve 2. The next step consists in introduction of the inserts 4, which are assumed to be provided with the shafts 5, into the respective end portions la of the core 1 with simultaneous establishment of a permanent bond between the flanges 4a of the inserts 4 and the sleeve 2, e.g., by glueing or any other procedure insuring a permanent seal and a chemically resistant bond between the inserts 4 and the sleeve. One of the alternative methods of bonding com prises thermal welding of the flanges 4a to the sleeve 2. Subsequently thereto, the thus obtained roller is supported on the shafts 5 which are coaxial with the core 1 and hence with the outer surface of the sleeve 2, and the outer surface is machined to eliminate surface roughness in a shaving-or chip-removing operation such as, for instance, turning or grinding. Experience has shown that best results are obtained if the surface is turned using a diamond cutting tool, the obtainable peak-to-valley height amounting to approximately 4 pm. While this surface quality is sufficient for most applications of the roller, it can be further improved by subsequent chemicalsmoothing operations, such as application of a solvent to the surface to be smoothed, or thermal smoothing operations, such as utilizing frictional heat between the smoothing tool and the surface to be smoothed, blowing hot air or other gas against the surface, or smoothing by radiated heat. Experience gained in prolonged tests has shown that the thus obtained rollers satisfy all criteria required from them if they are to be utilized in a developing apparatus for photographic strip or sheet materials, i.e., that they are sufficiently rigid so as not to buckle in actual use while the chemical resistivity afforded to them by the coat is sufficient for their utilization in all stages of the process.
The counterboring of the cores 1 can be dispensed with if the tube 1 consists of accurately calibrated tubular metallic stock having a constant wall thickness.
FIGS. 3 and 4 show a second embodiment of the improved roller. A metallic tube, preferably consisting of aluminum, is cut or otherwise subdivided intocores 6 of predetermined length. Subsequently thereto, inserts 7 with shafts 8 bonded thereto are introduced into the end portions of the core 6, and centered therein axially with respect to the core by moving the flanges 7a of the inserts 7 into abutment with the respective end faces of the core. The outer surfaces 7b of the inserts abut against the inner surface of the core 6, thus making the inserts 7 and their shafts 8 coaxial with the core 6. The material of the inserts 7 is preferably identical with that of a thermoplastic sleeve 9 for the core 6. Each shaft 8 is held in the respective insert 7 by four internal ribs 70 which allows for some deformation of the insertif the inner diameter of the core 6 is too small to receive the insert without deformation. If inserts of such a configuration are used, the machining of the inner surface of the core 6 can be avoided in most cases.
The thus obtained semi-finished product, i.e., the core 6 with the inserts 7 and shafts 8, is then introduced into an injection mold of conventional design, which is well known and thus not illustrated. A thermoplastic material, preferably the same as the material of the inserts, is then injected into the mold so as to provide, in a single operation, a coat or envelope 9 around the exposed surfaces of the semi-finished roller and fillthe voids between the ribs 7c. The injected material is preferably hard polyvinyl chloride, but any other suitable material may be used as well. According to a presently preferred embodiment, the mold consists of two mirror-symmetrical parts which have sockets for the shafts 8 and whose inner dimensions exceed the outer dimensions of the exposed surface of theroller by the intended thickness of the coat, and the injection openings are located so as to face the end faces of the roller and thus the inserts. The latter expedient facilitates the penetration of plasticized material into the voids between the ribs 7c. Since the'thus formed coat surrounds all the exposed surfaces, i.e., the external surface of the core and the exposed external surfaces of the inserts, these parts are automatically sealingly bonded to each other.
After the core has been coated, the roller is supported by the shafts 8 and the external surface of the coat 9 is machined, for instance turned, in one ormore stages, to obtain the final quality of the surface of the roller.
The manufacturing cost of this roller is even less than that of the roller shown in FIG. 1; however, the requirements for the quality of the injection molding process are high, since only minute quantity of gaseous inclusions in the material being injected into the mold to form the coat around the metallic core is permitted. Larger quantity of such inclusions or bubbles would result in porousness of the coat 9 and, in addition to impairing the quality of the surface of the roller, these in-' clusions might result in loss of protective quality of the coat 9 so that the chemically active medium may reach the core and thus corrosion thereof mayoccur. Therefore, it is highly desirable that the quantity of entrapped gas be kept to a minimum, advantageously by fevacuation of the material to be injection molded.
It has been disclosed above in connection with both embodiments of the rollers, that the semi-finished coated rollers are machined for improvement of the surface quality of the rollers. Thus, it is evident, that the coat of the rollers has to have sufficient thickness to allow for removal of a portion thereof during the machining operations. As already mentioned above, it is desirable that the coat be at least 2 millimeters thick. The additional advantages gained by providing such relatively thick coating are that evenif the core is not completely rotationally symmetrical, the materialremoving operations will not remove all of the chemically'resistant coating in some regions of the roller, so
that the core may be allowed to deviate from the ideal cylindrical shape to a certain degree without substantiallyimpairing the lifetime or performance of the roller. In addition thereto, the substantial thickness increases the lifespan of the roller by providing a larger quantity of material which canbe worn off before the metallic core is exposed.
The thus manufactured roller, which has asurface of high quality, is superior to heretofore used rubber or resulting from the action of leading edges of webs of photographic material upon the surfaces of the rollers.
ltxwill be understood that each of the rollers described above, or two or more together, may also find a useful application in other types of apparatus differing from the type described above. 7
While the invention has been illustrated and described as embodied in apparatus for'wet treatment of photographic materials, it is not intended to be limited to the details shown, since various modifications and structural changes maybe made without departing in any way from the spirit of the present invention.
Withoutfurther analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of our contribution to the art and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the claims.
What is claimed as new and desired to be protected by letters Patent is set forth-in the appended claims:
1. A method of producing chemically resistant rollers of the type having a tubular metallic core, comprising the steps of rotating an elongated! metallic tube about its axis; feeding against the external surface of the rotating tube a strip of chemically resistant thermoplastic material in plasticized state; efiecting a relative movement between said strip and said tube in the axial direction of said tube so that the strip forms around the tube a series of contiguous convolutions which together constitute a continuous cylindrical coat around said surface of said tube; subdividing the thus coated tube into tubular sections of predetermined length; introducing a portion of an insert into each end portion of each tubular section; and sealingly bonding said inserts to the coats of the respective sections.
2. A method as defined in claim 1, further comprising the steps of machining the inner surfaces of said end portions to a diameter substantially corresponding to the diameter of said portions of the respective inserts and shortening both ends of said core prior to said introducing step so as to insure positive contact between said inserts and the coat of the respective section.
3. A method as defined in claim 1, further comprising the step of machining the cylindrical surface of the coat of each section subsequent to said bonding step.
4. A method as defined in claim 1, further comprising the step of chemically smoothing the cylindrical surface of said coat by applying a solvent thereto.
5. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat.
6. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat by directing a stream of heated gaseous medium against said surface.
7. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat by radiated heat.
8. A method as defined in claim 1, further comprising the step of introducing coupling means into said inserts so as to establish a permanent bond between the former and the latter.
9. A method as defined in claim 8, wherein each of said coupling means is a shaft and each insert is provided with a central hole, said introducing step comprising inserting said shafts into the respective holes and glueing said shafts to the respective inserts.
10. A method as defined in claim 8, wherein each of said coupling means is a shaft and said introducing step comprises subjecting said shafts to vibration at least in the sonic range simultaneously with lengthwise movement of said shafts into the respective inserts so as to efi'ect partial melting of the material of the inserts.
11. A method as defined in claim 1, further comprising the step of injection molding of the insert around a coaxial shaft prior to insertion of said inserts into said end portions of the respective cores.

Claims (11)

1. A method of producing chemically resistant rollers of the type having a tubular metallic core, comprising the steps of rotating an elongated metallic tube about its axis; feeding against the external surface of the rotating tube a strip of chemically resistant thermoplastic material in plasticized state; effecting a relative movement between said strip and said tube in the axial direction of said tube so that the strip forms around the tube a series of contiguous convolutions which together constitute a continuous cylindrical coat around said surface of said tube; subdividing the thus coated tube into tubular sections of predetermined length; introducing a portion of an insert into each end portion of each tubular section; and sealingly bonding said inserts to the coats of the respective sections.
2. A method as defined in claim 1, further comprising the steps of machining the inner surfaces of said end portions to a diameter substantially corresponding to the diameter of said portions of the respective inserts and shortening both ends of said core prior to said introducing step so as to insure positive contact between said inserts and the coat of the respective section.
3. A method as defined in claim 1, further comprising the step of machining the cylindrical surface of the coat of each section subsequent to said bonding step.
4. A method as defined in claim 1, further comprising the step of chemically smoothing the cylindrical surface of said coat by applying a solvent thereto.
5. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat.
6. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat by directing a stream of heated gaseous medium against said surface.
7. A method as defined in claim 1, further comprising the step of thermally smoothing the cylindrical surface of said coat by radiated heat.
8. A method as defined in claim 1, further comprising the step of introducing coupling means into said inserts so as to establish a permanent bond between the former and the latter.
9. A method as defined in claim 8, wherein each of said coupling means is a shaft and each insert is provided with a central hole, said introducing step comprising inserting said shafts into the respective holes and glueing said shafts to the respective inserts.
10. A method as defined in claim 8, wherein each of said coupling means Is a shaft and said introducing step comprises subjecting said shafts to vibration at least in the sonic range simultaneously with lengthwise movement of said shafts into the respective inserts so as to effect partial melting of the material of the inserts.
11. A method as defined in claim 1, further comprising the step of injection molding of the insert around a coaxial shaft prior to insertion of said inserts into said end portions of the respective cores.
US00375850A 1972-07-01 1973-07-02 Method of manufacturing a roller Expired - Lifetime US3823456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/446,923 US3971115A (en) 1972-07-01 1974-02-28 Method of making roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19722232424 DE2232424C3 (en) 1972-07-01 roller

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/446,923 Division US3971115A (en) 1972-07-01 1974-02-28 Method of making roller

Publications (1)

Publication Number Publication Date
US3823456A true US3823456A (en) 1974-07-16

Family

ID=5849442

Family Applications (1)

Application Number Title Priority Date Filing Date
US00375850A Expired - Lifetime US3823456A (en) 1972-07-01 1973-07-02 Method of manufacturing a roller

Country Status (6)

Country Link
US (1) US3823456A (en)
CH (2) CH598626A5 (en)
FR (1) FR2191648A5 (en)
GB (1) GB1435552A (en)
HK (1) HK1677A (en)
IT (1) IT998176B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138766A (en) * 1990-04-26 1992-08-18 Fuji Photo Equipment Co., Ltd. Roller for transporting sheet-like material and method for manufacturing the same
US5412870A (en) * 1993-02-11 1995-05-09 Valmet Paper Machinery, Inc. Method for coating a roll
US5493777A (en) * 1994-09-09 1996-02-27 Jason Incorporated Idler roller and method of making
US20060021226A1 (en) * 2004-07-30 2006-02-02 Eastman Kodak Company Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8322639U1 (en) * 1983-08-05 1983-12-01 Uranit GmbH, 5170 Jülich Guide rollers for paper, foil finishing and printing machines
FR2670066A1 (en) * 1990-11-29 1992-06-05 Alcatel Business Systems Shaft for the mechanism of office-type equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943215A (en) * 1932-10-13 1934-01-09 Sonoco Products Co Textile roll and method of making the same
US3007231A (en) * 1960-01-18 1961-11-07 Alloy Hardfacing Co Method of producing metal rollers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943215A (en) * 1932-10-13 1934-01-09 Sonoco Products Co Textile roll and method of making the same
US3007231A (en) * 1960-01-18 1961-11-07 Alloy Hardfacing Co Method of producing metal rollers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138766A (en) * 1990-04-26 1992-08-18 Fuji Photo Equipment Co., Ltd. Roller for transporting sheet-like material and method for manufacturing the same
US5412870A (en) * 1993-02-11 1995-05-09 Valmet Paper Machinery, Inc. Method for coating a roll
US5582568A (en) * 1993-02-11 1996-12-10 Valmet Corporation Method for coating a roll and a coated roll for a paper machine
US5493777A (en) * 1994-09-09 1996-02-27 Jason Incorporated Idler roller and method of making
US5542900A (en) * 1994-09-09 1996-08-06 Jason Incorporated Idler roller and method of making
US20060021226A1 (en) * 2004-07-30 2006-02-02 Eastman Kodak Company Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process
US7353605B2 (en) * 2004-07-30 2008-04-08 Eastman Kodak Company Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process
US20080112728A1 (en) * 2004-07-30 2008-05-15 Cormier Steven O Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process

Also Published As

Publication number Publication date
CH563603A5 (en) 1975-06-30
DE2232424A1 (en) 1974-01-10
CH598626A5 (en) 1978-05-12
FR2191648A5 (en) 1974-02-01
DE2232424B2 (en) 1977-02-24
IT998176B (en) 1976-01-20
GB1435552A (en) 1976-05-12
HK1677A (en) 1977-01-14

Similar Documents

Publication Publication Date Title
US3971115A (en) Method of making roller
US3646652A (en) Roller structure
JPS6140119A (en) Method and device for continuously manufacturing long-sized hollow body, particularly, tube or pipe or inner-surface liner thereof from liquefied material such as reaction mixture or melt
US3823456A (en) Method of manufacturing a roller
US3446689A (en) Apparatus for the manufacture of plastic pipes
US2783174A (en) Process for producing fibrous tubes
US5138766A (en) Roller for transporting sheet-like material and method for manufacturing the same
US4038731A (en) Forming integrated roller from core, telescoping sleeve and filler adhesive
US4392177A (en) Transporting roller for webs of photosensitive material or the like
US4055879A (en) Roller
US3160917A (en) Coating of biaxially oriented film
US5358580A (en) Process for manufacturing hose having reinforcement incorporated therein and apparatus therefor
US3574810A (en) Method for manufacturing pipes possessing thermoplastic reinforcement
US7334336B2 (en) Method for producing a sleeved polymer member, an image cylinder or a blanket cylinder
US4449278A (en) Roller for supporting material sensitive to radiation and, method of making the same
JP2009045850A (en) Manufacturing method of pipe with heat insulating material
JPH10128829A (en) Manufacture of synthetic resin pipe and its cooling water tank
JP2959829B2 (en) Manufacturing method of rubber roller coated with fluororesin tube
JPH08190186A (en) Roller structure
US20050137071A1 (en) Plastic sleeve for an image cylinder and a method for producing the plastic sleeve
FI84449B (en) FOERFARANDE FOER BELAEGGNING AV ETT STAOLROER GENOM EXTRUSION.
JP3103140B2 (en) Roller manufacturing method
JP3409509B2 (en) Roller for automatic developing machine and method for manufacturing the same
JPH07315616A (en) Resin coated metallic roller
JPH0771442A (en) Sponge roller