Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.


  1. Recherche avancée dans les brevets
Numéro de publicationUS3823666 A
Type de publicationOctroi
Date de publication16 juil. 1974
Date de dépôt16 avr. 1973
Date de priorité23 nov. 1970
Numéro de publicationUS 3823666 A, US 3823666A, US-A-3823666, US3823666 A, US3823666A
InventeursHanson W
Cessionnaire d'originePitney Bowes Inc
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Value dispensing mechanisms
US 3823666 A
A postage meter having a mechanism which is rotatable to print a postage impression of a selected value. A mechanism for setting the postage value is provided, and is assembled with the printing mechanism for rotation therewith. This setting mechanism includes selector wheels which are coaxially rotatable, and setting bars which are longitudinally translatable in response to rotation of the selector wheels. Economic accountability is assured by postage registers having four drivable decimal orders, and input pinions for each such order. The setting mechanism has four adjustable register-driving gear clusters which are normally disengaged from the register pinions, but engage them during printing. Mechanisms are provided for choking the register, and for clamping the choke devices to provide positive register locking when the driving gear clusters are disengaged from the pinions. The setting bars comprise an assembly of individual bar members, pairs of which are connected together for joint translation. The bars are nested in a unique way, and are formed with respective gear tooth racks which adjust the register-driving gear clusters and set the numerical value of the postage printing wheels. Rectification is accomplished by pawls which engage the setting bar racks, and have a mutually interlocking relationship with a shutter disk. This interlock operates either to disable the meter trip mechanism, and thus prevent postage printing operation, when the setting bars are not in rectified position; or to lock the setting bars during a postage printing cycle. A deadlock latch, which acts as an intermediate link between the shutter disk and trip mechanism, also blocks the trip mechanism when the descending postage balance is low, or the register compartment access door is open.
Previous page
Next page
Revendications  disponible en
Description  (Le texte OCR peut contenir des erreurs.)

[111 3,823,666 [451 July '16, 1974 United States Patent [191 Hanson n Sm m M r .m S6 m 2 mm m m A S D m n,. .m E m. I M D a3 6 a 7 TI. m as a n n w Manua s mmmmm u S WC P A 3 w m 2 n me. m m R wn we mlu A w w .w W Vi AHA 111]] 45 32 57 722 [l [[l ,800, Nov. 23, 1970, Pat. No.

Division of Ser. No. 91' 3,731,068.

gister pinions, but engage hanisms are provided for [52] US. 101/91, 101/45, 235/58 P,

choking the register, and for clamping the choke devices to provide positive re 9 m m7 3 4 B l C L n I 1 driving gear clusters are disen The setting bars comprise an [58] Field of Search............. 101/45, 90, 91, 95, 99,

bar members, pairs of which are con lOl/l 235/58 P, 60 P, 60 AP, 101

for joint translation. The bars are nested in a unique way, and are formed with res whic [56] References Cited UNITED STATES PATENTS pective gear tooth racks h adjust the register-driving gear clusters and set 0 I e- B wem flmflh w 63 as e egk CW innm m mfl t flflS lDA-N gh e 0 m n. nkm fl e Uh Hh dm nwytcwryl s m m w la Z wu m on P ea p no md a t m m fl s a r P r r W flwo w w Wm m gd 9m 6 a n8 mm a m m nmm ms pnut a m h m S am e C u ka 2lga cc aa m a k mfmh .w nmk a m w o C W n .m r am 1 e hew ah a Sh bC m mm n m m m mwm ms] S k mmm w mRu Lratd Sm 1 5 x559 WWMWIWMNN 11 ill NyOONOOOO 33 l l l l l ll 2.2 n mnnw M u M Hunt u n Hume m mmmmd m U "n LLw m m m m mm H. "n .n "Kim Mfr. nn e&o.w tSV nk uuueaure oohuhra RRTRCGBGM 446667777 999999999 HHHHHHHHH 26 5263 957902093 924498631 Q 6 33l4528 026689 7 3 .3 .3 .55 223333333.

Primary Examiner-Robert E. Pulfrey the shutter disk and trip mechanism, also blocks the trip mechanism when the descending postage balance Assistant. Examiner-Edward M. Coven Attorney, Agent, or Firm-William D. Soltow, Jr.; Alis bert W. Scribner; Martin D. Wittstein open.

or the register compartment access door is [57] ABSTRACT A postage meter havinga mechanism which is rotat- 15 Claims, 24 Drawing Figures PATENTEBJUL 1 6 I914 sum 01 0F 14 w sh PAIENTED JUL 1 51914 sum 02 or 14 PATENIEn JUL 1 s 1914 SHE! 03 0F 14 PATENTEB Jun 6 m4 saw on nr 14 PATENTEDJUHBIQH I 3323366 sum new 14 FIGJIC PAIENIEDJUL 1 61924 sum '10 av 14 PAIENTEDJUHEW 3.823.566

sum 11 or 14 Pmmmwu 3.823.666

saw 12 or 14 FIG.I3

PATENTEnJuu 6:914

sum 1a ar 14 mm; wE

' 1 VALUE DISPENSING MECHANISMS This is a division, of application Ser. No. 9 l ,800 filed Nov. 23, 1970, now U.S. Pat. No. 3,731,068.

FIELD OF THE INVENTION This invention relates to value dispensing mechanisms generally, and in particular to postage meters.

Tl-IE PRIOR ART that: must also be a mechanism of economic accountability, usually a numerical register, to keep a cumulative record of value dispensed over many operating cycles. There must, also be some means for selecting the value to be dispensed in each operating cycle, and setting means for guaranteeing that there will be a numerical input which depletes the register by an amount corresponding to the value dispensed.

In such a meter, it is quite a complicated task to design a suitable mechanism which will effect the proper setting of. the postage printing wheels and guarantee that a corresponding input will be made to the register; and to design a trip mechanism which will insure that only a single cycle of postage printing can take place for each register input, and that operation is impossible except under conditions of numerical rectification. Finally, it is essential that the security of the register be guaranteed by'suitable interlocks responsive to the register compartment access door, and that the postage printing mechanism be disabled when the register balance reaches a minimum numerical level equal to the maximum amount of postage that can be dispensed in a single operating cycle. The latter feature guarantees that the amount of postage dispensed can never exceed the remaining credit.

Previous postage, meter designs which achieved all these objectives have tended to be complicated and expensive, while those which were simpler and less expensive all had one or more shortcomings. In particular, the cluster gear" type of meter (described in de tail below) is relatively economical; but the previous examples of this design leftconsiderable room for additional design sophistication.

THE INVENTION The present invention provides a postage meter which adopts the cluster gear approach, but carries it out more successfully than in the past. In particular,

I the present cluster gear meter provides improved solu- BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sideelevational view of a postage meter embodying this invention, with the protective cover broken away for clarity of illustration.

FIG. 2 is a perspective view of a sub-assembly comprising the postage printing and setting mechanisms of that meter. v

FIGS. 3 through 6 respectively are perspective views of the postage setting mechanisms for each of the four driveable numerical orders of the register of that meter.

parts broken away for clarity of illustration, showing v the trip and lock-out mechanisms of this postage meter in consecutive and/or alternative operating conditions.

FIGS. 11D and 11E are views similar to FIGS. 11A through 11C, but limited to the register lock-out mechanism.

FIG. 12 is an exploded perspective view, with parts broken away for clarity of illustration, of the trip mechanism of FIGS. 11A through 11C.

FIG. 13 is a top plan view of the register choking, clamping and antireverse mechanism of this postage meter.

FIG. 14 is a sectional view taken along the lines 14-14 of FIG. 1, looking in the direction of the arrows, and showing the same mechanism as FIG. 13.

FIGS. 15A through 15C are fragmentary top plan views, correlated with FIGS. 11A through 11C respectively, of the meter rectifier mechanism, illustrating its cooperation with the shutter disk.

FIG. 16 is an exploded perspective view of a portion of the setting mechanism carriageof this meter.

FIG. 17 is a sectional view taken along line 17-17 of FIG. 13, looking in the direction of the arrows.

' And FIG. 18 is a sectional view taken along lines I 18l8 of FIG. 16, looking in the direction of the arrows.v I

The same reference characters refer to the same elements throughout all the views of the drawing.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT In General. FIG. 1 provides an overall view of a postage meter 30 embodying this invention. In general terms, it comprises a housing 31, a rotary postage printing mechanism 32, and a rotating impression roller 34 therebelow which .cooperates therewith to imprint postage upon an envelope E or other postage-receiving object. The envelope is inserted into a printing slot 36 defined by the printing mechanism 32 above it and theimpression roller 34 below. The motion of the envelope E engages a trip finger 38 which in turn operates-a trip mechanism generally designated 40. The function of this trip mechanism is to switch on the power to an electric motor 42 having an output shaft 44 to which is affixed a cooling fan 46. When the power is switched on, the motor and shaft drive reduction gearing 48, an output'shaft 50 and a drive gear 52 secured to the output shaft. The gear 52 drivingly engages a gear 54 which is secured to a carriage 144 supporting the postage printing mechanism 32 and a setting mechanism frame plate 70. Both frame plates 66 and 70 are 60.'The latter mechanism includes manual postage se- I ect'ion means 58 mounted at the front end of the carriage, and a plurality of register-driving gear clusters 62 mounted on the rear end of the carriage. The carriage 144 is mounted for rotation in response to gear 54 and about an axis 56, by means of a rear shaft 64 journaled upon a rear frame plate 66, and a forward shaft 68 journaled by means of a flanged bushing 69 upon a front upstanding from a meter floor 67.

As is conventional in postage dispensing meters, the register 74 contains a numerical record of the descend ing postage credit balance, and also the ascendingcumulative total of postage dispensed over the entire life of the meter 30. The register comprises several numerical orders, which in the U.S. monetary system represent different decimal places; i.e., the register contains numerical display wheels 76.1 through 76.7 representing, for example, tenths of cents through thousands of dollars respectively. Through conventional Geneva gearing, each of these numerical orders is connected to those above it for decimal carries.

The rotation of carriage 144 about axis 56 drives printing mechanism 32 through its postage printing cycle. Such carriage rotation, whichstarts from'the position of FIG. 7 and proceeds as indicated in FIG. 8 (see arrow 78), also causes the register driving gear clusters 62 to engage register input pinions 72 and thus alter the contents of numerical register 74. For example, a selected one of several gear segments 94 of cluster 62.1 moves into driving engagement with the input pinion 72.1 of the first register order 74.1, as seen in FIG. 8.

That pinion 72.1, which is rotatably mounted on a shaft the other driveable register orders 7 4.2 through 74.4 by

means of their respective input pinions 72.2 through 72.4. f 1

The Setting Mechanism. The cluster gear type of register driving mechanism, which is simpler and more economical than various other approaches, is. seen in U.S. Pat. No. 2,306,499 of F. .I. Rouan. In that design,

and 'in the present one, the postage printing mechanism 32 is operable upon rotation about a horizontal axis;

and the setting mechanism is rotatable therewith and includes the cluster gears 62which engage the register input pinions 72 during that rotation, to accomplish the register input function. It follows that the register driving clusters 62 areengaged with the register pinions 72 only during a portion of the postage dispensing cycle. At'all other times the register 74 is disengaged therefrom, and in the prior art Rouan meter this left the register in a floating, insecure condition.

As in the prior art, each cluster 62 of the present meter comprises a plurality of the gear segments 94, each having different numbers of teeth, and the value of the register input is selected, to correspond to the amount of postage dispensed, by rotating these clusters 62 about their respective shafts 96 to present different segments 94 to the register pinons 72. In the cited Rouan patent, however, the setting mechanism responsion.

sible for rotating these clusters consisted of a direct gear sector and pinion connecting manual selector levers to the clusters. The geometry of that arrangement was such that only two numerical orders of the register could be set from manual selector members placed in side-by-side relationship. Since it is a highly desirable operator convenience feature to have the selector members for all decimal orders in side-by-side relationship, the prior art mechanism was effectively limited to two settable orders; and, as a result the postage meter could dispense no more than $0.99 per postage impres- Another problem with the prior art meter just described is that it contained no provision for rectifying the setting mechanism; i.e., setting it precisely at some quantized numerical level corresponding to an allowed amount of postage, and not allowing it to slip into some indeterminate or intermediate position between al-' lowed postage levels.

In a U.S. patent application co-pending with this one, (Ser. No. 91,680, filed Nov. 23, 1970, now U.S. Pat. No.. 3682378) inventions are disclosed and-claimed which represent improvements in several respects over the meter disclosed in the cited Rouan patent. One 25.

such feature of that application is the broad concept ofv using a translatable bar mechansim for connecting a set of coaxially rotatable postage selectors to rotate the register driving clusters 62, thus selecting theappropriate gear segment 94 to correspond with the amount of postage.

' The presentapplication discloses the same postage meter mechanism. as the co-pending application just mentioned, but claims different aspects of that mechanism. So far as the translatable-bar type of setting mechanisms is concerned, for example, the present invention carries that approach significantly further, by

- designing each translatable bar 98 as an assembly of at least two separate bar members 100 and 102 connected together for joint translation, thus simplifying the manufacturing problems. In addition, separate rack means 104, and 126 are formed on the various bar members for engagement with pinions 128, 112 and 90 of the cluster gears 62, postage printing wheels .96 and manual postage selector wheels 80 respectively;

For a full appreciation of these aspects of the invention, the readers attention is directed first to FIG. 2, which provides a detailed view of the printing and setting mechanisms mounted on the'rotatable carriage 144. (The direction of carriage rotation is indicated by arrow 78 in FIG. 2.) To select the desired amount of postage, the setting mechanism 60 comprises selection mechanism 58 which is partially enclosed in a housing 89 and includes notched finger disks 80.1 through 80.4 to which are secured postage read-out number wheels 82.1 through 82.4 respectively. Each finger disk 80 and its associated number wheel-82 are integrally molded of a plastic material, and rotatably mounted upon a horizontal selection mechanism shaft 84 journaled between the two arms of a U-shaped bracket 86 (see also amount of postage; and the second is to adjust the disa placements which the register driving gear clusters 62 impart to their respective register input pinions 72.

Each of these register driving gear clusters 62 comprises a hub 92 on which are formed nine different angularly spaced gear segments 94.1 through 94.9 containing one through nine gear teeth respectively, and corresponding to the numerical values one through nine which the selection mechanism 58 can assign to each of four decimal orders. In addition, there is a space 94.0 between each pair of gear segments 94.1 and 94.9, which corresponds to the assignment of zero value to a particular decimal order.

The hubs 92 are mounted for rotation about vertical shafts 96 in response to the setting mechanism 60. Such rotation determines which of the gear segments 94.1 through 94.9, or the space 94.0, is presented to the associated register input pinion 72. When the space 94.0 is thus selected, there is a zero input to the associated register order; and when one of the segments 94.1

employing the selector members 80.] through 80.4,

and the meter 30 is able to print four decimal orders of postage, for which the printing mechanism 32 comprises four decimal order print wheels 95.1 through 95.4 respectively. I

The setting mechansim 60 comprises a connecting linkage including four bar assemblies 98.1 through 98.4 which are responsive to the four selector pinions 90.1 through 90.4 respectively. In FIGS. 3 through 6 it is seen that these bar assemblies comprise rather complicated shapes which are simplified for manufacturing purposes by dividing them into respective front and rear bar members 100 and 102, and using respective fastening screws 124 to unite each pair of bars for translation as a unit.

The front bars 100.1 through 100.4 respond to the selector pinions 90 and set the type wheels 95 of postage printing mechanism 32. They are formed with respective toothed racks 104.] through 104.4 which en-' gage the selector pinions 90.1 through 90.4 respec- .wardly.

The slanted branch 106.4 and each of the slanted extensions of branches 106.1 through 106.3 extend into interleaved relationship, (see FIG. 10) with the four decimal order postage printing wheels 95.1 through 95.4, and broaden out to form toothed racks 110.1 through 110.4 respectively. The racks 110 drive pinions 112. 1'through 112.4 respectively, each of which is formed integrally with an associated one of the postage printing wheels 95.1 through 95.4 respectively; all the print wheels and their pinions being rotatably mounted upon a common shaft 114 (Fig. 10) which is nonrotatably affixed to a print mechanism housing 116 (see FIG. 1) in a manner which is conventional in the postage meterart. Thus, as the operator of the postage meter manually rotates the disks to select the amount of postage indicated by the numerals on the read-out wheels 82, the selector pinions and selector racks 104 translate the bar members longitudinally, causing the print racks to rotate the print pinions 112 and print wheels 95 into printing positions which correspond to the postage selected.

The rear bar members 102 each perform three functions: setting the gear clusters 62; rectification of the setting mechanism 60; and slidably mounting the bar assemblies 98 on the carriage 144.

So far as setting the gear clusters 62 is concerned, the bars 102.1 through 102.4 are formed with toothed rack tabs 126.1 through 126.4 respectively bent at right angles thereto, which engage pinions 128.1 through 128.4 respectively, secured to gear cluster hubs 92.1 through 92.4 respectively. When any one of the bar assemblies 98 is longitudinally translated, such motion causes the rack tab 126 thereof to rotate the associated pinion 128 and gear cluster 62 about its shaft 96, thus selecting the angular position of the cluster. This in turn presents a particular gear segment 94 of the cluster to its register input pinion 72, i.e. the segment with the number of registerdriving teeth which is appropriate to the particular postage level desired for the particular decimal order.

Rectification. The co-pending application mentioned above represented an improvement over the earlier Rouan cluster gear patent in that means were provided for rectifying the setting mechanism. One result was fied the angular positions of the cluster gears; otherwise it would have been possible for two consecutive gear segments of any one cluster to. pass on opposite sides of their associated register input pinion, without engaging that pinion at all. In that patent application, the rectifying mechanism claimed was one in which rectifying pawls were resiliently biased into nested engagement with position-determining teeth formed on any appropriate member of the setting mechanism.

In, accordance with the present invention rectification is accomplished specifically by providing a special toothed rectifying rack 132 on each of the translatable bar assemblies 98, and the resiliently biased rectifying pawls (designated 134) act directly on those racks. The advantage of this approach is that the rectifying action takes place close to the register driving cluster gears 62, and thus reduces backlash in the positioning of those gears.

The rear bar members 102.1 through 102.4 are formed with respective right angle dog-leg bends 102a from which are folded respective right angle flanges 130.1 through 130.4. These bar flanges have two functions, one of which is rectification. They are formed with toothed rectifying racks 132.1 through 132.4 respectively, which cooperate with respective rectifying pawls 134.1 through 134.4. One pair of oddnumbered pawls 134.1 and 134.3 are in superposed relationship and are pivotally mounted on the upper surface of the carriage 144 (see FIGS. 1, 2 and 16) by a single fastener 136.1, and the other pair of evennumbered pawls 134.2 and 134.4 are similarly superposed and mounted on the lower surface of the carriage by fastener 136.2. Each of these pawls 134 is formed with'a tooth 138 which nests between the teeth of the associated rectifying rack 132 when the associated bar assembly 98 is in one of its rectified positions, or rides over those teeth 132, rotating the associated pawl 134 about its fastener 136, when the associated bar assembly is between rectified positions.

The Rotating Carriage. The co-pen'ding patent application mentioned above claims a carriage which is arranged to form an elongated cavity within which register-driving cluster gears are rotatably mounted, and bar means are mounted for translation .whereby to rotate the cluster gears. The present invention carries that concept further, specifically providing a carriage 144 the rear of which comprises a pair of upper and lower confronting plates 146 and 148 respectively for rotatably mounting the cluster gears 62 andslidably mounting the bar means 98, and the front of which comprises the housing 89 in which the postage selection mechanism 58 is rotatably supported on bracket 86. The space between the plates 146 and'148 constitutes a rear cavity 150 within which the bar means 98 are housed. the interior of housing 89 constitutes a front cavity 88 in which the selection mechanism 58 is contained, and the bar means 98 extend longitudinally forward from rear cavity 150 into front cavity 88 to engage the postage selection mechanism 58.

The carriage 144 also comprises a four-pronged forked frame member 152 (FIGS. 1, A and 16) at the forward end of the cavity 150, to which the upper and lower plates 146 and 148 are secured by fasteners 330; and a disk 154 (FIGS. 1, 2, 13 and 14) to which these plates are secured at the rear of cavity- 150, by means of tabs 156 and fasteners 157. The. carriage members 146, 148, 152 and 154 thus form a strong rectangular frame to support the bars 98 and cluster gears 62 within rear cavity 150. v

With reference to FIGS. 1 and 16, the front wall of the four-pronged member 152 is formed with a circular passageway opening 152a surrounded by ahollow cylindrical shaft 68, which is integral'with the front wall of member 152 and projects forwardly therefrom. A smaller diameter sleeve 71 is secured to the rear wall 116b of printmechanism housing 116, and projects rearwardly therefrom into the interior of the hollow shaft 68 to. mount the housing 116 (and the print mechanism 32 therein) upon the pronged member 152. Two hollow roll pins 65 (cylindrical pins rolled from sheet stock) pass through diametrically opposite radial openings 63 formed in the shaft 68 and sleeve 71, to secure the shaft and sleeve together. These pins are squeezed prior to insertion inthe holes 63, and then expand for a friction fit therein. In addition, set screws 61 are threaded into tapped holes 59 which are formed on opposite sides of frame member 152 and sleeve 71 at 90 displacements from holes 63, thus forming a more'rigid assembly. The U-shaped bracket 86, which supports the selection mechanism-58, is secured by fasteners 332 to the front wall 116a of housing. 116 (FIG. 9), and its two arms project forwardly therefrom. The selector housing 89'is also mounted on the front wall of housing 116. The entire carriage 144 is mounted for rotation about axis by means of the shaft 64, which protrudes rearwardly from disk 154 and is journaled on the rear frame plate 66, and hollow shaft 68 which is journaled within shouldered bushing 69. The bushing in turn is I supported upon the front frame plate 70. Opening 152a and the hollow interiors of shaft 68, bushing 69, sleeve 71 and housing 116 define a continuous axial passageway through which the bar assemblies 98 pass from the rear cavity 150 to the front cavity 88.

' Mounting of the Setting and Rectifying Mechanisms on the Carriage. The second function of the bar flanges 130 is to mount the bar assemblies 98 slidably on the carriage 144. As best seen in FIG. 7, but with reference to FIGS. 1 through 6 and 9 also, the underside of carriage plate 146 is formed with a wide, shallow channel 158 which is elongated in the direction parallel to axis 56, and slidably receives'an upperpair of oddnumbered bar flanges 130.1 and 130.3 in superposed relationship. These flanges are retained within the channel 158 by means of a rivet 160 which is driven upwardlyjntothe carriage plate 146 through a, pair of slots 162.1 and 162.3 formed in both flanges 130.1ar'1d 130.3 respectively. The rivet has an enlarged head overlapping the edges of the slots 162, to prevent vertical escape of the flanges. Similarly, the'uppersurface of carriage plate 148 is formed witha wide, shallow channel 164 which slidably receives a lower pair of even-numbered bar flanges 130.2 and 130.4 in superposed relationship. These flanges are also retained within the channel 164 by means of another headed rivet 166 which is driven downwardly through respective slots 162.2 and 162.4 thereof into the lower carriage plate 148. The heads of rivets 160 and 166 are not tight against the bar flanges 130, so as to avoid binding their sliding movement; while the width of slots 162 is greater than the outside diameter of the rivet shafts for the same reason. .The slots are sufficiently elongated to ceive the opposite ends of shafts 96 for rotatably mounting the cluster gears 62 within the cavity 150, so that the selected one of the gear segments or spaces 94.0 through 94.9 can be brought into driving alignment with the associated register input pinion 72. Pinions 128 are provided to rotate each gear cluster 62 in this manner, each pinion being located at one end of its associated shaft 96 and hub 92, adjacent to one of the carriage plates 146 or 14 8, where it is conveniently engageable by the associated bar rack 126 for rotating the cluster gear in response to translation of the associated bar assembly 98. As best seen in FIG. 9, odd-numbered alternate cluster gears 62.1 and 62.3 are located on one side of the carriage 144, and drive their respective register input pinions 72.1 and 72.3 during a first half of the carriage rotation (as illustrated for cluster gear 62.1 in FIGS. 7 and 8). Even-numbered alternate cluster gears 62.2 and 62.4, on the other hand, are located on the opposite side of the carriage. and thus drive their respective pinions 72.2 and 72.4 during the second half of such rotation. a

The carriage frame member 152 serves many subsid-. iary functions. In order to keep the rectifying pawls 134 resiliently biased into engagement with their associated in FIG. 10, the two lower order selector racks 104.1

. and 104.2 engage their respective pinions 90.1 and frame member 152 by machine screws 170. Each leaf spring is fork-shaped to form pairs of independently flexing tines 172.1, 172.3 (extending upwardly) and 172.2, 172.4 (extending downwardly), which engage respective projections 140.1 through 140.4 of respective rectifying pawls. 134.1 through 134.4. Note that the upper and lower surfaces of frame member 152 receive the rectifying pawl fasteners 136.1 and 136.3, respectively; and the side surfaces thereof receive the leaf spring fasteners 170. In addition, the unique upper and lower pronged configuration of member 152 allows the right angle dog-leg bends 102a of bar members 102.1 and 102.3 to reach upwardly through the upper bifurcation thereof, and those of the other two bar members 102.2 and 102.4 to reach downwardly through the lower bifurcation; so that their flanges 130 engage respectively with rectifying pawls 134.1 and 134.3 atop the frame member 152, and 134.2 and 134.4 below the frame member.

Interrelationship Among the Bar Assemblies. The shape of each bar assembly 98 is complicated by the require'ment that it perform five functions simultaneously: driven engagement with one of the selector pinions 90; driving engagement with one of the print wheel pinions 112; rectifying engagement with one of the pawls 134; driving engagement with one of the cluster pinions 128; and slidable mounting of the bar assembly itself upon one of the rear carriage plates 146 or 148. The design is further complicated by the fact that only the selector pinions 90 and cluster pinions 128 are located with the carriage cavities 88 and 150 respectively and are thereof adjacent to the path of translation of the main bar members 100 and 102 respectively; whereas the print wheel pinions 112 are displaced sidewardly therefrom, and the rectifying pawls 134 are located above and below the carriage frame member 152. The problem of print wheel pinion engagement is solved by providing the forward bar members 100 with the sidewardly extending branches 106 which bring the toothed racks 110 into proximity with print wheel pinions 112, while the problem of rectifying pawl engagement is solved by providing the vertically extending right angle dog-leg bends 102a, as previously described. Despite their intricately branched shapes, however, the bar assemblies 98 must be translatable independently of each other, without any interference between the various bends 102a and branches 106, in order that the four register orders 74.1 through 74.4 be settable independently. For the same reason, moreover, the flanges 130 and racks 126 must avoid mutual interference while performing their respective functions of slidably mounting the bar assemblies 98 on the carriage plates 146 and 148, and driving the cluster pinions 128. Inorderto avoid such mutual interference, the various parts of the bar assemblies 98.1

90.2 from below, while the two higher order selector racks 104.3 and 104.4 engage their respective selector pinions 90.3 and 90.4 from above. As a result, the bar assemblies 98.1 and 98.2 are driven rearwardly by their respective pinions 90.1 and 90.2, from the forward limiting positions of these bar assemblies illustrated in FIGS. 6 and 5 respectively. Similarly, the bar assemblies 98.3 and 98.4 are driven forwardly by their respective pinions 90.3. and 90.4, from the rearward limiting positions of these bar assemblies illustrated in FIGS. 4 and 3 respectively. To accommodate these differing directions of barassembly motion, slots 162.3

and 162.4 extend rearwardly from their respective rivets 160 and 166, while slots 162.1 and 162.2 extend forwardly therefrom. Note also that the direction of rotation of the respective cluster gears 62 and print wheels depends on the direction of translation of their bar assemblies 98.

The described vertical displacement of bar members from each other permits their respective sidewardly extending, print-wheel-driving branches 106 to overlie one another within the print wheel housing 116, to avoid mutual interference. Thus, as seen in FIGS. 9 and 10, the lowermost of these members is the lowest order branch 106.1; which is bent from the lower edge of bar 100.1, one of the two lower bars 100 (see also FIG. 6). The next one above is the second order branch 106.2, which achieves a spaced, overlying, noninterfering relationship to branch 106.1 by being bent from the upper edge of the other lower bar 100.2 (see also FIG. 5). The next one above that is the third order branch 106.3 which achieves a spaced overlying, noninterfering relationship to branch 106.2 by being bent from the lower edge of the bar 100.3 (see also FIG. 4), one of those positioned above bars 100.1 and 100.2. Finally, the fourth order branch 106.4 achieves a spaced, overlying, non-interfering relationship with branch 106.3 by being bent from the top edge of the rectly to their respective from bar members 100.3 and 100.4 (see FIGS. 4 and 3 respectively), so that the third and fourth order bar assemblies 100.3, 102.3 and 100.4, 102.4 are essentially co-linear. The first and second order rear bar members 102.1 and 102.2, in contrast, are laterally offset from their respective front bar members 100.1 and 100.2 (and thus-brought into proximity with the third and fourth order bars 102.3 and 102.4) by being secured-to their respective front bar branches 106.1 and 106.2.(see FIGS. 6 and 5 respectively), instead of directly to their respective front bar members 100.1 and 100.2.

At the point where the rear bar members 102 are enclosed by the four prongs of frame member 152, they divide into a first group of two bars 102.1 and 102.3 formed with respective upwardly extending dog-leg

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US2306499 *20 juil. 194029 déc. 1942PitneyRegister actuator
US2321425 *11 janv. 19418 juin 1943PitneyTotalizer actuator
US3363547 *16 avr. 196416 janv. 1968Burroughs CorpPressure roller control means in item encoders
US3363549 *10 sept. 196516 janv. 1968Friden IncPlaten control means in postage meter machines
US3381790 *10 mai 19677 mai 1968Sarl Soc Lamy D Etudes Et De RRolling contact typewheel printer
US3494282 *13 févr. 196810 févr. 1970Addressograph MultigraphPrint wheel setting means and print control means in traveling roller bed and cylinder print machines
US3515060 *31 janv. 19682 juin 1970Farrington Business MachInterlock assembly in traveling platen roller imprinting machines having settable type wheels
US3572239 *12 déc. 196823 mars 1971Rhodanienne De Mecanographie SDrum series printing wheels and setting means therefor
US3618513 *18 déc. 19699 nov. 1971Olympia Werke AgPrinting mechanism including resiliently biased rotatable-type wheels
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US3876870 *3 avr. 19748 avr. 1975Malavazos Administrator GregorRegister for a postal meter
US3938095 *16 oct. 197310 févr. 1976Pitney-Bowes, Inc.Computer responsive postage meter
US3949203 *3 avr. 19746 avr. 1976A J M Research CorporationSelection mechanism for a postage meter
US3978457 *23 déc. 197431 août 1976Pitney-Bowes, Inc.Microcomputerized electronic postage meter system
US4034669 *6 oct. 197512 juil. 1977Pitney-Bowes, Inc.Postage meter setting mechanism
US4050374 *21 juin 197627 sept. 1977Pitney-Bowes, Inc.Meter setting mechanism
US4160899 *27 déc. 197710 juil. 1979Pitney-Bowes, Inc.Detent remover for a postage meter
US4287825 *30 oct. 19798 sept. 1981Pitney Bowes Inc.Printing control system
US4331075 *4 févr. 198025 mai 1982Vickers LimitedValue setting mechanism, particularly for franking machines
US4398458 *16 mars 198216 août 1983Francotyp Gesellschaft MbhAdjustment device for postage metering and value stamping machines
US4408524 *30 juil. 198211 oct. 1983Postalia GmbhDevice for locking and aligning printing numeral rolls and a control cylinder
US4421023 *20 mai 198220 déc. 1983Pitney Bowes Inc.Printer control systems for electronic postage meter
US4472625 *8 déc. 198218 sept. 1984Pitney Bowes Inc.Selectable decimal point for printing device
US4516494 *21 mars 198414 mai 1985Pitney Bowes Inc.Anti theft device for a printing machine print wheel assembly
US4603627 *23 mars 19845 août 1986Pitney Bowes Inc.Rotary shutter device for a postal mailing system
US4644142 *6 nov. 198517 févr. 1987F.M.E. CorporationModular universal postage meter
US4648314 *31 mai 198410 mars 1987Hebenstreit GmbhWafer baking automatic machine
US4656341 *6 nov. 19857 avr. 1987F.M.E. CorporationPostage meter printhead assembly
US4675841 *10 juin 197623 juin 1987Pitney Bowes Inc.Micro computerized electronic postage meter system
US4777353 *13 nov. 198711 oct. 1988F.M.E. CorporationValue wheel rod lock
US5445074 *2 nov. 199429 août 1995Pitney Bowes Inc.Value selection and printing apparatus including a security device
USRE31875 *10 janv. 197830 avr. 1985Pitney Bowes Inc.Computer responsive postage meter
EP0111322A2 *8 déc. 198320 juin 1984Pitney Bowes Inc.Electronic mailing machine
EP0111322A3 *8 déc. 198313 mai 1987Pitney Bowes Inc.Electronic mailing machine
Classification aux États-Unis101/91, 235/58.00P, 235/101, 101/45
Classification internationaleG07B17/00
Classification coopérativeG07B2017/00548, G07B17/00508
Classification européenneG07B17/00F2