US3825741A - Light source with high efficiency light collection means - Google Patents

Light source with high efficiency light collection means Download PDF

Info

Publication number
US3825741A
US3825741A US00338376A US33837673A US3825741A US 3825741 A US3825741 A US 3825741A US 00338376 A US00338376 A US 00338376A US 33837673 A US33837673 A US 33837673A US 3825741 A US3825741 A US 3825741A
Authority
US
United States
Prior art keywords
light
light source
conical
collector
conical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00338376A
Inventor
H Morton
B Oland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tinsley Laboratories Inc
Original Assignee
Tinsley Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tinsley Laboratories Inc filed Critical Tinsley Laboratories Inc
Priority to US00338376A priority Critical patent/US3825741A/en
Priority to GB5555373A priority patent/GB1447677A/en
Priority to NL7400580A priority patent/NL7400580A/xx
Priority to JP49018450A priority patent/JPS50132935A/ja
Application granted granted Critical
Publication of US3825741A publication Critical patent/US3825741A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/56Cooling arrangements using liquid coolants
    • F21V29/59Cooling arrangements using liquid coolants with forced flow of the coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/06Optical design with parabolic curvature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/402Lighting for industrial, commercial, recreational or military use for working places

Abstract

A light collector which completely surrounds an extended source, such as an arc tube, with a forward and rearward collector structure. The forward structure is an internally reflecting parabolic collector terminating in a narrow output aperture, while the rearward structure has two parts: a conical member with a rearwardly facing apex and a reflector member concavely behind the conical member. Both forward and rearward collector structures include axial pockets or apertures for receiving the extended source whose light rays are gathered and imaged through the output aperture.

Description

EEO-@6111 SR KR 341325474 uuncu Dunc; I" U E) D.
Morton et al.: 1
111 3,325,741 .451 July-23,1974
[ 1 LIGHT SOURCE WITH HIGH EFFICIENCY LIGHT COLLECTION'MEANS Inventors: Harvey L. Morton, Lafayette;
Bradley H. Oland, Oakland, both of Calif.
Tinsley Laboratories, Inc., Berkeley, Calif. 7
Filed: 1 Mar. 5, 1973 Appl. No.: 338,376
Assignee:
U.S. Cl. 240/41 R, 240/1 EL, 240/4135 R, 240/4135 C, 240/47, 350/9611, 354/1 Field of Search 95/1; 240/41 R, 41.35 R; 24 /4135 4 1 EL, 10 1., 21; 151, 93; 350/9 R, 96 B References Cited UNITED STATES PATENTS 6/1923 Wilson 240/4135 c x l-line.. 350/96 R Int. Cl. ..'...F2lm 7/00 1 3,127,112 3/1964 McCammon ct 111. 240/1 111. X
3,179,898' 4/1965 Meltzer 240/4135 R X 3,437,804 4/1969 Schuefcr et 111. .1 240/4135 R 3,545,838 12/1970 Levin et 111. 15/1 R Primary Examiner-Richard M. Sheer .Attomey, Agent or Firm.lerald E. Rosenblum;
Thomas Schneck [57] ABSTRACT A light collector which completely surrounds an extended source, such as an arc tube, with a forward and rearward collector structure. The forward structure is aninternally reflecting parabolic collector terminating in a narrow output aperture, while the rearward structure has two parts: a conical member with a rearwardly facing apex and a reflector member concavely behind the conical member/Both forward and rearward collector structures include axial pockets or apertures for receiving the extended source whose light rays are gathered and imaged through the output aperture;
14 Claims, 6 Drawing Figures PATENTEDJULZBIBM 3.825? 41 I saw u or 4 AX\S OF COLLECTOE- A X Ans A D\$PLACE.D BY d-s AxlsA' DISPLACED BY 4 AND eon-rep 5v e-c (AXIS OF PARABOLA) PARABOLA INTENSITY l l l l o 20 so 464556 5s NGLE FROM AXIS FIG. 6.
, LIGHT SOURCE wrrII FIELD OF THE INVENTION The presentinvention relates to high intensity light sources, and more particularly to a light source which is surrounded by a high efficiency light collector for collecting both forwardly and rearwardly dispersed light into a beam.
PRIOR ART High intensity lights, especially arc lamps, are used extensively in such applications as the projection of movies, in street lights and in the manufacture of television tube screens. With regard to making TV tube screens, the manufacturing process usually involves developing a pattern of phosphor dots on the screenby illuminating a photo-resistive surface through apertures in a shadow mask. The apertures correspond to locations of a desired color phosphor.
To shorten the time required to bring out the desired phosphor in the TV tube screen manufacturing process, a higher intensity light source isrequired. It would be advantageous to increase the light intensity without necessarily increasing the source strength, e.g., by enhancing'the efficiency of the light delivered from a source to a corresponding output beam.
Previously, ithas been known that in order to form a beam, a light source may be surrounded by a compound reflector, of which the forward portion is a hemisphere and the rearward portion is semi-elliptical with a small aperture in the hemisphere at one focus of the ellipse, with the light source being at the other focus of the ellipse. Light from the source is directed rearwardly to the semi-elliptical reflector where the light is then directed to the opposite focus of the ellipse, i.e., the output aperture.
The configuration of the source at one elliptical focus and output aperture at the other focus is geometrically ideal only when the source is small compared to the output aperture. In the case of an extended source,
such as a typical arc tube, the geometrically ideal conditions just described do not apply. For example, if a small output aperture is required, any error in the source position, such as due to are wander or misalignment, causes large variations in light output distribution. Further, the image of the extended source undergoes a paraxial magnification which is usually significant. Quite apart from the large off-axis abberations introduced by an elliptical reflector, the increased image size greatly reduces the amount of light available at the output aperture.
Light sources, in general, radiate a certain specific energy per unit surface area. To increase the total lamp output one must increase the surface area of the light source. In the case of an arc lamp, output is a function of arc length and diameter. Many applications, however, require that the output aperture be of a specific, small'size. This requires a collection system which efficiently images an extended source into a small aperture and disperses it in a controlled manner.
It is our object to provide a compact high intensity light source with a high efficiency collector which utilizes internal light reflection for production of an intense output beam by imaging an extended source through a small aperture and then dispersing this light through a wide field with an even distribution.
- SUMMARY OF THE INVENTION The above objects are achieved by utilizing a high intensity arc source which emits light in all directions and a light collector of the light conducting type which is disposed in a surrounding relationship about the light source. The energy per unit area is spread over the surface area of the light collector by imbedding the light source within the collector with a forward and a rearward portion of the collector. The forward or output portion of the collector is'defined by a surface which is curved in alight converging contour with complete internal light reflection extending from a large light receiving aperture and narrowing toward a smaller axial output aperture such that light from the source is reflected by internal reflection toward the output aperture. The rearward portion is adjacent to the forward portion and has surface characteristics for forwardly reflecting light from the source into the forward portion of the collector as light emerges rearwardly from the source. In this manner substantially all of the light which emerges from the source is directed into the forward portion of the light collector for convergence at the output'aperture.
I Because the high intensity are source is virtually imbedded in the material of the light collector, it is neces- DESCRIPTION OF THE FIGURES .FIG. 1 is a perspective view of the apparatus of the present invention with a partial cutaway section.
FIG. 2 is a side sectional view of the apparatus shown in FIG. 1. I
FIG. 3 is an exploded view of the light collector of the present invention; 7
FIG. 4 is a plan showing alignment of the axis of the light collector in three successive positions.
, FIG. 5 is a plan for construction of the parabolic light collector based upon alignment of the axis of the collector shown in FIG. 4.
FIG. 6 is a graph comparing the output of the present apparatus to the prior art.
DESCRIPTION OF THE PREFERRED EMBODIMENT InFIGS. 1 and 2, the light collector 11 is shown to include an outer housing 13, having a front-end 15 a which is defined by an annular flange and a back-end 17 which is penetrated by conduits 19 and 21. The
prime function of the housing 13 is to provide support for the internal structure of the light source and collector.
The structure of the light' source and collector includes a conventional arc tube 23 of the type wherein an arc discharge is created between opposed electrodes. The alignment of the arc tube 23 extends along the axis of housing 13. The function of the apparatus described herein is to collect as much light as possible from the extended source, arc tube 23, and deliver this light through output aperture 31.
The light collector 25 includes a forward portion 27 which is light-conductive as explained hereinafter and which converges from a larger diameter light receiving input aperture 29 atone end of the forward portion 27 proximate to the arc tube 23 and extends toward a smaller axial output aperture 31 at an opposite end.
A rearwardly extending portion of light collector 25 includes conical member 37 and reflector member 39. Conical member 37 has an output surface 35 with a diameter generally matching the diameter of the light input aperture 29 of forward portion 27. The conical member 37 co-axially surrounds a substantial part of the arc tube 23. Conical member 37 has a surface inclined to are source 23 to reflect light from source 23 into forward portion 27. The surface of conical member 37 is reflective merely because of differences in the index of refraction between the material of conical member 37, e.g. quartz, and the surrounding medium, e.g. air.
Conical member 37 is constructed on the basis of the following criteria. The cone angle is centered on the most intensive portion of the fan-shaped light output distribution from arctube 23. The cone angle should be as small as possible to avoid the need for a large input aperture for the forward portion 27 of light collector 25. Further, rearwardly directed light should be forwardly reflected with only one reflection, to the maximum extent possible. In practice, an angle of about 35 has been found best to achieve these criteria. The index of refraction of rearward portion 33 should be the same as forward portion 27 and greater than the ambient index of refraction surrounding the body.
Most of light which escapes conical member 37 is traveling either radially outwardly perpendicular to are tube 23 or in a rearward direction, i.e., toward back end 17 of housing 13. A reflector member 39 coaxially surrounds conical member 37 for reflecting light escaping from the conical member back into the conical member for passage into the forward portion 27 of light collector 25. As shown in the drawing, reflector member 39 comprises a series of annular steps which are made reflective by polishing or metalizing. One method of making reflector member 39 is to take a series of annular quartz or aluminum discs of increasing radii and adhere them together with a temperature resistant adhesive means. Then the stepped portion of the annular rings is made reflective by depositing an aluminum coating thereon in the case of quartz or by polishing the surface in the case of aluminum. The height and width of the staircase formed by the annular rings of increasing diameter should be approximately equal so that optimum corner reflection can be achieved. The staircase configuration is but one means for reflecting escaping light back into the light collector.
The trajectories of light rays from are source 23 may be summarized as follows. A small portion of the light from arc tube 23 which exits the tube in a forward direction at acute angles with respect to the axis of housing 13 will pass directly into the forward portion 27 of the light collector. Most of the light from arc source 23 will emerge generally perpendicular to the axis of arc source 23. Most of this light will be internally reflected in conical member 37 and then pass into forward portion 27. The remaining light will pass through conical member 37 onto reflector member 39 andbe reflected back into conical member 37. At this point the light will be reflected from another part of conical member 37 or pass directly into forward portion 27. The subsequent reflection from another part of conical member 37 increases the probability that the light will pass into forward portion 27. If it does not, the process is repeated.
The surface of the forward portion 27 of light collector 25 is parabolic as far as output aperture 31 where the parabola may be, but is not necessarily, truncated. Beyond output aperture 31, a dispersing lens is used. Such a lens may be parabolic or may be any standard dispersing lens. The general shape of the surface of forward portion 27 as well as the size of the output aperture may be determined in accord with the principles set forth in the article Light Collection within the Framework of Geometrical Optics by Roland Winston, Journal of the Optical Society of America, Volume 60, No. 2, pages 245-247 (February, 1970) and described herein.
The forward portion 27 of light collector 25 has an index of refraction higher than the ambient index of refraction and is made of a truncated light transmissive substance. Quartz is preferred because of its ability to withstand high temperatures and because of its optical uniformity. The shape of forward portion 27 is selected to achieve substantially total internal reflection.
The forward surface 27 of light collector 25 is generated by rotating a parabola about an optical axis. However, the parabola is first displaced from its axis, the A axis in FIG. 4 by a perpendicular distance equal to the radius of the output aperture 31, designated by d in FIG. 4, so that there is anew axis, B, parallel to the A axis. The B axis is now rotated by an angle 6, the angle whose sine is equal to the radius of the output aperture 31, d, divided by the radius of the input aperture, D. The new rotated axis is designated as the C axis in FIG. 4. The length of the parabola, L, is equal to (d D) cot 0, as set forth in the Winston article, cited above. The parabola which has been displaced from and tilted with respect to the A axis is now rotated about the A axis to form a solid of revolution, as shown in FIG. 5.
By this means, all rays incident on the forward surface 27 at an angle equal to 0 will be brought to a focus at the edge of the output aperture 31; all rays incident at an angle less than 6 will focus beyond the output aperture 31 and thus pass through the system; all rays incident at an angle greater than 0 will be internally reflected until the rays pass through the system.
The forward portion 27 of light collector 25 is cantilevered into position by an annular member 41 whose inside diameter matches the maximum diameter of the annular member 41 which corresponds to the inside diameter of the housing 13. The forward portion 27 of light collector 25 is connected to annular member 41 by means of a high temperature adhesive. Annular member 41 is made of aluminum with a polished surface adjacent to the light collector. Note that the annuconduit 19 and on an opposite side of the cavity with a secondconduit 21. The central'por'tion of cavity 43 opens into a plenum, 45, in which the arc tube 23 resides. Coolant is introduced into the first conduit 19 at a low temperature and is pumped into cavity 43 for cir culation into plenum 45 wherein the coolant removes heat from arc tube 23 and then flows toward second conduit 21 at a higher temperature for subsequent removal from the apparatus and recirculation after heat is removed.
Disk shaped cavity 43 is positioned between conical member 37, forward portion 27 and the arc source 23 so that all light originating from are source 23 passes through the disk shaped cavity 43 before entering forward portion 27. The coolant in the cavity 43 therefore filters all light entering forward portion 27. Specific filtering effects are achieved by selecting a suitable coolant. For example, mineral oil with an appropriate red dye will filter infra red so that optical radiation which would otherwise heat the apparatus is filtered out. The heat absorbed by the liquid filter is removed outside of the apparatus in heat exchangers. Liquid dyes having filtration qualities suitable for filtering desired optical bandwidths have been developed for laser technology and are Well known in the art. The index of refraction of the liquid should match the index of the light collector.
Arc tube 23 includes a positive electrode 47 which is held in place against an insulator 49 at the end of 'an axial notch 51 in the central portion of the light receiving aperture 29 of the forward portion 27 of the light collector. The axial notch is conical and extends to a depth such that apart of the tube resides in the'notch,
as shown in FIG. 3. The positive electrode 47 is con-' The plug 55 is seated in the back end E7 of housingll3.
FIG. 6 shows a plot of light intensity versus output angle from the axis of a light collector. For a typical prior art light collector with an arc source, the lower curve represents the output. Intensity has been measured in arbitrary units. The collector output of the present device is shown in the upper curve using the same are source as inthe prior art device. The two dashed curves represent twice and three times the intensity of the lower curve. Thus it is seen that the output of the present device images the source with an efficiency significantly greater than the prior art.
What is claimed is:
1. An optical device for collecting light from an elongated light source having an axially extending light emitting region and directing it into a beam comprising,
an elongated substantially solid light transmissive body coaxial with the axially extending light emitting region, said body completely surrounding the axially extending light emitting region of the light source with radial symmetry and having a light out put aperture of small radius and being shaped for reflecting substantially all light emitted from the elongated light source toward said output aperture.
2. The apparatus of claim 1 further defined by a discoidal coolant passageway extending about the light source, transverse thereto and radially symmetric with said body, of equal diameter therewith, and means for circulating coolant through said passageway.
3. The apparatus of claim 1 wherein said body comprises a forward portion and a rearward portion, said forwardportion including a substantially totally internally reflecting solid parabolic collector terminating in said output aperture and said rearward portion includ: ing an axially symmetric, solid, conical member with a rearwardly directed apex, said conical member having an axial hole therein, said conical member being coaxial with a portion of the light source, and said conical member having a partially reflective surface surrounding at least a portion of the light source, and a reflector member disposed about said conical member, said reflector member having mirror means facing said conical partially reflective surface for reflecting light passing through said conical surface back into said conical member.
4. An optical device for collecting light from an elongated light source having an axially extending light emitting region and directing it into a beam comprising,
an elongated, substantially solid light transmissive body of a single index of refraction having an elongated axial dimension, coaxial with the axially extending light emitting region, said body completely surrounding the light source with radial symmetry and having a forward portion including an internally reflecting light collector terminating in an output aperture of small radius and a rearward portion, said rearward portion including reflector means for directing rearwardly and outwardly directed light into said forward portion.
5. The apparatus of claim 4 wherein said forward portion comprises an internally reflecting solid parabolic light collector having a shape defined by displacing a second parabola from an axis of revolution, inclining the second parabola to an axis of revolution by a predetermined angle and forming an axially symmetric parabolic shape by rotating said second parabola about said axis of revolution, said parabolic light collector terminating with said output end.
6. The apparatus of claim 5 wherein said forward portion defines an axial pocket opposite said output end for receiving at least a portion of the light source.
7. The apparatus of claim 4 wherein said rearward portion further includes a solid conical member, said conical member having an axial hole therein, said conical member being coaxial with a portion of the light source, and said conical member having a conical partially reflective surface inclined at an angle to said light source for reflecting light emitted from said source toward said output end.
8. The apparatus of claim 7 further defined of a reflector member disposed about said conical surface, said reflector member having a mirror means facing said partially reflective conical surface for reflecting light passing through said conical surface back into said conical member.
9. The apparatus of claim 8 wherein said reflector member comprises a series of juxtaposed annular mirrors of decreasing radii from the forward to the rearward direction, coaxial with said conical surface and made reflective to provide corner reflection for reversing the trajectory of rearwardly directed light rays.
10. The apparatus of claim 4 wherein said light transmissive body is quartz.
11. The apparatus of claim 6 wherein said forward and rearward body portions are spaced from the light source to an extent that a disc shaped passageway is defined in said body extending about the light source, transverse thereto and radially symmetric with said body, of equal diameter therewith, and spaced such that all light originating from the source passes through said disc shaped passageway before entering said for ward portion.
12. The apparatus of claim 11 including fluid means for cooling the light source and means for introducing fluid into said disc shaped cavity.
13. The apparatus of claim 12 wherein said fluid means for cooling the light source has the same index of refraction as said light collector.
14. The apparatus of claim 12 wherein said fluid means is a liquid filter having optical bandwidth absorption characteristics.
v. UNITED STATES PATENT O FICE CERTIFICATE OF CORRECTION Patent Nd- 3,825,741 Dated July 23, 1974 In n fl Harvey L. Morton & Bradley H. Oland It ie certified that error appears in the above-identified patent and that said Letters Patentare hereby corrected as shown below:
Col. 3, line 37 Between "of" and "light" insert the-- Col. 6, line 60 Change "defined of a" to "defined by a Signed and sealed this 29th day of October 1-974.
(SEAL) Attest:
McCOY M. GIBSON JR. Attesting Officer C. MARSHALL DANN Commissioner of Patents USCOMM-DC 603764 69 U,S. GOVERNMENT PRINTING OFFICE: I!" 0-3l-33l,
F ORM P0-105O (10-69)

Claims (14)

1. An optical device for collecting light from an elongated light source having an axially extending light emitting region and directing it into a beam comprising, an elongated substantially solid light transmissive body coaxial with the axially extending light emitting region, said body completely surrounding the axially extending light emitting region of the light source with radial symmetry and having a light output aperture of small radius and being shaped for reflecting substantially all light emitted from the elongated light source toward said output aperture.
2. The apparatus of claim 1 further defined by a discoidal coolant passageway extending about the light source, transverse thereto and radially symmetric with said body, of equal diameter therewith, and means for circulating coolant through said passageway.
3. The apparatus of claim 1 wherein said body comprises a forward portion and a rearward portion, said forward portion including a substantially totally internally reflecting solid parabolic collector terminating in said output aperture and said rearward portion including an axially symmetric, solid, conical member with a rearwardly directed apex, said conical member having an axial hole therein, said conical member being coaxial with a portion of the light source, and said conical member having a partially reflective surface surrounding at least a portion of the light source, and a reflector member disposed about said conical member, said reflector member having mirror means facing said conical partially reflective surface for reflecting light passing through said conical surface back into said conical member.
4. An optical device for collecting light from an elongated light source having an axially extending light emitting region and directing it into a beam comprising, an elongated, substantially solid light transmissive body of a single index of refraction having an elongated axial dimension, coaxial with the axially extending light emitting region, said body completely surrounding the light source with radial symmetry and having a forward portion including an internally reflecting light collector terminating in an outpuT aperture of small radius and a rearward portion, said rearward portion including reflector means for directing rearwardly and outwardly directed light into said forward portion.
5. The apparatus of claim 4 wherein said forward portion comprises an internally reflecting solid parabolic light collector having a shape defined by displacing a second parabola from an axis of revolution, inclining the second parabola to an axis of revolution by a predetermined angle and forming an axially symmetric parabolic shape by rotating said second parabola about said axis of revolution, said parabolic light collector terminating with said output end.
6. The apparatus of claim 5 wherein said forward portion defines an axial pocket opposite said output end for receiving at least a portion of the light source.
7. The apparatus of claim 4 wherein said rearward portion further includes a solid conical member, said conical member having an axial hole therein, said conical member being coaxial with a portion of the light source, and said conical member having a conical partially reflective surface inclined at an angle to said light source for reflecting light emitted from said source toward said output end.
8. The apparatus of claim 7 further defined of a reflector member disposed about said conical surface, said reflector member having a mirror means facing said partially reflective conical surface for reflecting light passing through said conical surface back into said conical member.
9. The apparatus of claim 8 wherein said reflector member comprises a series of juxtaposed annular mirrors of decreasing radii from the forward to the rearward direction, coaxial with said conical surface and made reflective to provide corner reflection for reversing the trajectory of rearwardly directed light rays.
10. The apparatus of claim 4 wherein said light transmissive body is quartz.
11. The apparatus of claim 6 wherein said forward and rearward body portions are spaced from the light source to an extent that a disc shaped passageway is defined in said body extending about the light source, transverse thereto and radially symmetric with said body, of equal diameter therewith, and spaced such that all light originating from the source passes through said disc shaped passageway before entering said forward portion.
12. The apparatus of claim 11 including fluid means for cooling the light source and means for introducing fluid into said disc shaped cavity.
13. The apparatus of claim 12 wherein said fluid means for cooling the light source has the same index of refraction as said light collector.
14. The apparatus of claim 12 wherein said fluid means is a liquid filter having optical bandwidth absorption characteristics.
US00338376A 1973-03-05 1973-03-05 Light source with high efficiency light collection means Expired - Lifetime US3825741A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US00338376A US3825741A (en) 1973-03-05 1973-03-05 Light source with high efficiency light collection means
GB5555373A GB1447677A (en) 1973-03-05 1973-11-30 Light source with high efficiency light collection means
NL7400580A NL7400580A (en) 1973-03-05 1974-01-16
JP49018450A JPS50132935A (en) 1973-03-05 1974-02-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00338376A US3825741A (en) 1973-03-05 1973-03-05 Light source with high efficiency light collection means

Publications (1)

Publication Number Publication Date
US3825741A true US3825741A (en) 1974-07-23

Family

ID=23324576

Family Applications (1)

Application Number Title Priority Date Filing Date
US00338376A Expired - Lifetime US3825741A (en) 1973-03-05 1973-03-05 Light source with high efficiency light collection means

Country Status (4)

Country Link
US (1) US3825741A (en)
JP (1) JPS50132935A (en)
GB (1) GB1447677A (en)
NL (1) NL7400580A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915479A (en) * 1986-12-17 1990-04-10 U.S. Philips Corporation Liquid crystal display illumination system
FR2689961A1 (en) * 1992-04-13 1993-10-15 Amblard Jean Claude Fluid optic projector.
US5408563A (en) * 1993-07-28 1995-04-18 Beland; Robert High efficiency/high voltage optocoupler
US6267483B1 (en) 1998-06-03 2001-07-31 Daniel Hembery Low temperature horticultural light apparatus
JP2003227974A (en) * 2001-12-10 2003-08-15 Teledyne Lighting & Display Products Inc Light extraction from led with light pipe
WO2003107440A2 (en) * 2002-06-13 2003-12-24 Enfis, Limited Opteolectronic devices
US20040213001A1 (en) * 2003-04-25 2004-10-28 Visteon Global Technologies, Inc. Projector optic assembly
WO2003081127A3 (en) * 2002-03-26 2004-12-29 Enfis Ltd Cooled light emitting apparatus
US20060251376A1 (en) * 2005-05-03 2006-11-09 Cianciotto Frank T Light mixing and homogenizing apparatus and method
US7386214B1 (en) 2007-02-01 2008-06-10 The Boeing Company Homogenizing optical beam combiner
US7414793B2 (en) 2006-07-21 2008-08-19 The Boeing Company White light splitting and homogenizing systems and methods
US7443591B1 (en) 2007-02-01 2008-10-28 The Boeing Company Homogenizing optical beam combiner
US20080292259A1 (en) * 2007-02-01 2008-11-27 The Boeing Company Multi-color curved multi-light generating apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1457646A (en) * 1920-03-26 1923-06-05 Lyman A Wilson Water-cooled lamp
US3107296A (en) * 1961-08-01 1963-10-15 Sheldon H Hine Power optical apparatus
US3127112A (en) * 1964-03-31 Photographic flash tube and reflector
US3179898A (en) * 1962-04-02 1965-04-20 Bausch & Lomb Elliptical laminar reflecting cavity for maser excitation
US3437804A (en) * 1964-04-11 1969-04-08 Quarzlampen Gmbh Light transmitting device
US3545838A (en) * 1966-03-28 1970-12-08 Admiral Corp Temperature compensated collimator holder assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127112A (en) * 1964-03-31 Photographic flash tube and reflector
US1457646A (en) * 1920-03-26 1923-06-05 Lyman A Wilson Water-cooled lamp
US3107296A (en) * 1961-08-01 1963-10-15 Sheldon H Hine Power optical apparatus
US3179898A (en) * 1962-04-02 1965-04-20 Bausch & Lomb Elliptical laminar reflecting cavity for maser excitation
US3437804A (en) * 1964-04-11 1969-04-08 Quarzlampen Gmbh Light transmitting device
US3545838A (en) * 1966-03-28 1970-12-08 Admiral Corp Temperature compensated collimator holder assembly

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915479A (en) * 1986-12-17 1990-04-10 U.S. Philips Corporation Liquid crystal display illumination system
FR2689961A1 (en) * 1992-04-13 1993-10-15 Amblard Jean Claude Fluid optic projector.
WO1993021474A1 (en) * 1992-04-13 1993-10-28 Amblard Jean Claude Fluid optics projector
US5555493A (en) * 1992-04-13 1996-09-10 Amblard; Jean-Claude Fluid optics projector
US5408563A (en) * 1993-07-28 1995-04-18 Beland; Robert High efficiency/high voltage optocoupler
US6267483B1 (en) 1998-06-03 2001-07-31 Daniel Hembery Low temperature horticultural light apparatus
JP2003227974A (en) * 2001-12-10 2003-08-15 Teledyne Lighting & Display Products Inc Light extraction from led with light pipe
WO2003081127A3 (en) * 2002-03-26 2004-12-29 Enfis Ltd Cooled light emitting apparatus
US20050243539A1 (en) * 2002-03-26 2005-11-03 Evans Gareth P Cooled light emitting apparatus
WO2003107440A2 (en) * 2002-06-13 2003-12-24 Enfis, Limited Opteolectronic devices
US20060196651A1 (en) * 2002-06-13 2006-09-07 Kenneth Board Opteolectronic devices
WO2003107440A3 (en) * 2002-06-13 2004-08-05 Enfis Ltd Opteolectronic devices
DE102004020708B4 (en) * 2003-04-25 2008-05-08 Visteon Global Technologies, Inc., Dearborn Projector optics group for formation and projection of a directional characteristic with high gradient for vehicles
US20040213001A1 (en) * 2003-04-25 2004-10-28 Visteon Global Technologies, Inc. Projector optic assembly
US6850095B2 (en) * 2003-04-25 2005-02-01 Visteon Global Technologies, Inc. Projector optic assembly
US20060251376A1 (en) * 2005-05-03 2006-11-09 Cianciotto Frank T Light mixing and homogenizing apparatus and method
US7182495B2 (en) * 2005-05-03 2007-02-27 The Boeing Company Light mixing and homogenizing apparatus and method
US7414793B2 (en) 2006-07-21 2008-08-19 The Boeing Company White light splitting and homogenizing systems and methods
US7386214B1 (en) 2007-02-01 2008-06-10 The Boeing Company Homogenizing optical beam combiner
US7443591B1 (en) 2007-02-01 2008-10-28 The Boeing Company Homogenizing optical beam combiner
US20080292259A1 (en) * 2007-02-01 2008-11-27 The Boeing Company Multi-color curved multi-light generating apparatus
US7603017B2 (en) 2007-02-01 2009-10-13 The Boeing Company Multi-color curved multi-light generating apparatus

Also Published As

Publication number Publication date
NL7400580A (en) 1974-09-09
JPS50132935A (en) 1975-10-21
GB1447677A (en) 1976-08-25

Similar Documents

Publication Publication Date Title
US3825741A (en) Light source with high efficiency light collection means
US4305099A (en) Light collection system
US4897771A (en) Reflector and light system
JP4808893B2 (en) Image projection apparatus and light collection system
US4683525A (en) Lamp having segmented reflector
JP3224387B2 (en) Light extraction film
US4206494A (en) High throughput illuminator
US3443086A (en) Beam-forming system
KR100638227B1 (en) Illumination system using filament lamps
JPH05501924A (en) Optical lenses and related equipment
US3926501A (en) Device for directing light to illuminating fiber optical system
KR101324807B1 (en) Dual paraboloid reflector and dual ellipsoid reflector systems with optimized magnification
CN1160527C (en) Condensing and collecting optical systea using parabolic reflectors or a corresponding ellipsoid/hyperboloid pair of reflectors
CN113050354A (en) Light source assembly and projection equipment
KR20010006374A (en) Prismatic light beam homogenizer for projection displays
CN110632818A (en) Laser projection light source module device
JPH03501078A (en) High brightness television projection equipment
US4389701A (en) Illumination system
US3883731A (en) Light source with high efficiency light collection means
JP2002543467A (en) Improved light coupling from small arc lamps to larger targets
US4039816A (en) Arrangement for transmitting light energy
US2490052A (en) Catoptric projection system for flying spot scanning
US3251984A (en) Illumination optical system for aerial photography
TW200416476A (en) Light source of a projector
JP3440023B2 (en) Lighting equipment