Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS3828766 A
Type de publicationOctroi
Date de publication13 août 1974
Date de dépôt14 août 1972
Date de priorité14 août 1972
Numéro de publicationUS 3828766 A, US 3828766A, US-A-3828766, US3828766 A, US3828766A
InventeursKrasnow D
Cessionnaire d'origineJet Medical Prod Inc
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Disposable medical electrode
US 3828766 A
Résumé
A disposable medical electrode comprising a support member made of a closed cell plastic material having an adhesive surface. A centrally located contact element is embedded therein so as to leave an exposed portion thereof at the adhesive side of the support member. A smaller pad member made up of an open cell plastic material is adhered to the adhesive surface of the support member at a position opposite to and in contact with the exposed portion of the contact element. In use, the pad member has a conductive gel dispersed throughout so that when the electrode is placed against the skin of a patient a good conductive path is present from the skin through the gelled pad to the contact element.
Images(1)
Previous page
Next page
Description  (Le texte OCR peut contenir des erreurs.)

ilnited States Patent 191 Krasnow [451 Aug. 13, 1974 [73] Assignee: Jet Medical Products Inc., Braintree,

Mass.

[22] Filed: Aug. 14, 1972 [21] Appl. No.: 280,350

[52] US. Cl. 128/21. E, 128/417, l28/D1G. 4 [51] Int. Cl A61b 5/04 [58] Field of Search 128/206 E, 2.1 E, DIG. 4,

[56] References Cited UNITED STATES PATENTS Karnofsky 128/417 X 3,701,346 10/1972 Patrick et a1 128/206 E Primary Examiner-Richard A. Gaudet Assistant Examiner-Lee S. Cohen Attorney, Agent, or Firm-Dike, Bronstein, Roberts & Cushman [5 7] ABSTRACT A disposable medical electrode comprising a support member made of a closed cell plastic material having an adhesive surface. A centrally located contact element is embedded therein so as to leave an exposed portion thereof at the adhesive side of the support member. A smaller pad member made up of an open cell plastic material is adhered to the adhesive surface of the support member at a position opposite to and in contact with the exposed portion of the contact element. In use, the pad member has a conductive gel dispersed throughout so that when the electrode is placed against the skin of a patient a good conductive path is present from the skin through the gelled pad to the contact element.

11 Claims, 6 Drawing Figures PATENTEDMIBI 3 14 3.828.766

llgifllllll&

FIG!

FIG. IA 25 DISPOSABLE MEDICAL ELECTRODE DISCLOSURE OF THE INVENTION ble between the skin area which is being monitored and the metallic contact element of the electrode so that a maximum electrical signal can be obtained for use in the monitoring equipment. An improtant further characteristic of such electrodes is that they be so designed as to minimize the discomfort which a patient will suffer, especially when such electrode may be required to be used over a prolonged period of time, sometimes for several days.

It is particularly desirable that such electrodes provide maximum signal strength with minimal discomfort for more sensitive patients, such as adults with sensitive skin and children or infants whose skin is apt to be more tender than that of adults. The comfort factor may be particularly important when used with extremely small infants, less than 30 days old, in the growing field of neo-natalogy.

DESCRIPTION OF THE PRIOR ART A conventionally structured electrode presently available for use in the medical field is a type which utilizes a conductive gel between the skin area which is being contacted and the metallic contact element of the electrode to which the monitoring circuit is connected. In such presently used electrodes the metal contact element is normally affixed to a rigid plastic base member of the electrode, the contact element being in the form of a snap fastener assembly having a first side to which a monitoring circuit is snap connected and a second oppositely disposed side which is in contact with a pad member made of an open cell plastic material permeated with a conductive gel. The pad is in turn in pressure contact with the skin, the conductive gel thereby assuring that a good conductive path is present from the skin to the metal contact element for the signal which is being monitored.

In such prior art electrodes the gel pad is freely nested in a recessed region of the electrode which is formed by a solid ridged portion of the rigid plastic body member, the outer surface of the'ridge coming into pressure contact with the skin adjacent the outer perimeterof the gel pad when the electrode is in use. The ridged body member containing the snap fastener contact element is attached to a circularly shaped open cell plastic foam material one side of which has an adhesive thereon so that the electrode can adhere to the skin. The protruding ridge is thereby between the open cell adhesive foam material and the open cell-gel pad foam material to form a barrier therebetween so as to prevent the conductive gel in the gel pad from being .2 absorbed'by and dispersed throughout the open cell adhesive foam portion of the overall electrode. Unfortunately, however, the presence of the ridge tends to cause excessive discomfort'to the patient on whom the electrode is being used since the ridge which digs into the skin of the patient can become extremely irritating.

Moreover, since the gel pad itself is held within the recessed portion of the electrode only by means of the surface tension created between the gel material and the surface of the solid ridged member of the electrode,

the gel pad can often fall out of its recessed nest during handling and must be replaced by hand or other means, all of which tends to cause the gel pad to become less sanitary in use than is desired.

SUMMARY OF THE INVENTION In the monitoring electrode of the invention the need for a ridged barrier between a conductor gel pad and an adhesive portion of the electrode is eliminated so that a relatively smooth surface is presented to the skin of the patient and any irritation and discomfort caused by the presence of a ridge is completely avoided. In the structure of the invention, the adhesive base member of the electrode to which a snap fastener contact element is attached is made of a plastic foam material having a closed cell configuration. A gel pad made of a plastic foam material having an open cell configuration is then adhered to the underside of the closed cell foam material opposite the underside of the snap fastener contact element.

In one preferred embodiment of the invention a thin vinyl plastic strip is adhered to the upper side of the closed cell body member to provide some rigidity thereto. Because of the closed cell nature of the adhesive base member of the electrode, substantially none of the conductive gel which is dispersed throughout the open cell gel pad can be absorbed by or dispersed within the closed cell material and the gel is adequately retained within the open cell gel pad during manufacture, shipment and use. Moreover, because no solid plastic ridged member is used, the surface of the electrode which comes into contact with the skin of the patient is essentially soft and relatively smooth with no protruding ridges so that it can be readily placed on the patients skin for good adherence without discomfort even with prolonged use.

In the preferred embodiment of the invention the lower surface of the contact element which is in contact with the gel pad may be coated with silver so that, in reacting with the gel substance a silver/silver chloride conductive coating is formed which enhances the signal carrying properties of the electrode.

The elimination of the need for a ridged barrier also permits the formation of a relatively smaller electrode than that of presently available electrodes and permits their use with regions of the body where the larger electrodes have not-been readily useable. A smaller size also makes the electrode more convenient for use with child and infant patients.

The invention is described in more detail with reference to the attached drawings wherein FIG. 1 shows a view in cross-section of a monitoring electrode of the prior art;

FIG. 1A shows a plan view of the electrode of FIG.

FIG. 2 shows a view in cross-section of a preferred embodiment of the electrode in accordance with the invention;

FIG. 2A shows a plan view of the electrode of FIG.

FIG. 3 shows a view in cross-section of a portion of the electrode of FIG. 2; and

FIG. 4 shows a view in cross-section of a preferred embodiment for packaging one or more of the electrodes of FIG. 2.

FIG. 1 depicts a conventional monitoring electrode of the prior art which has found relatively widespread use in the medical field at the present time. As can be seen therein the electrode comprises a solid plastic ridged body member having an upper portion 11A and a lower portion 11B, each of a circular configuration, which portions each include flat body portions 12A and 128 respectively, and ridged portions 13A and 13B, respectively, forming the outer peripheries thereof. A contact element 14 is positioned within apertures at the centers of solid portions 11A and 118, the contact element being in the form of a conventional male snap fastener having a first upper portion 14A with a protruding snap at the center thereof and a lower portion 148 which nests within the upper portion so that the overall element can be attached to and retained in the solid ridged member. The snap fastener 14 provides a snap contact to a corresponding female snap fastener (not shown) which is in turn connected to an appropriate lead for connection to suitable monitoring equipment (also not shown). The upper and lower solid portions 11A and 118 may be made of any appropriately chosen plastic material and are arranged to enclose an adhesive pad member 16 also of substantially circular configuration, as shown. One side of foam pad 16 has a layer 17 of double faced adhesive material placed thereon and extending from ridge 138 to the periphery thereof so as to provide an adhesion surface which permits the electrode to be placed in an adhering manner on the skin of a patient. A circular pad 19 of foam plastic material is nested within the recess 18 formed by ridge 13B, pad 19 being substantially permeated with a conductive gel substance forming a gel pad for providing a good conductive path from the skin which contacts the outer exposed surface thereof and the lower portion 148 of contact element 14, which is in contact with the inner surface of gel pad 19. Gel pad 19 is retained within the recess 18 by the surface tension action of the gel on the underside of solid plastic portion 12B,

In the prior art structure shown both of the plastic pad materials forming the adhesive pad 16 and the gel pad 19 are made of an open cellular plastic foam material which is readily absorbent to liquids and gels which can thereby penetrate into and become dispersed throughout such materials. In order to permit dispersion of conductive gel throughout gel pad 19 without permitting a similar dispersionin the adhesive pad 16, the ridge 13B and body portion 128 form a barrier so that none of the gel in gel pad 19 comes into contact with the adhesive pad 16. Were the conductive gel to become dispersed throughout adhesive pad 16 as well as gel pad 19, the conductivity of the path through pad 19 would be greatly reduced and the effectiveness of the electrode would become diminished. Further, when the prior art electrode 10 is placed on the skin of a patient for any prolonged period of time, ridge 13B tends to dig into the skin and become so irritating that a high degree of discomfort may result, particularly with patients having relatively tender skin.

Moreover, when the electrode has been placed on the skin the presence of ridge 13B tends to cause the adhesive surfaces in the regions adjacent the ridges to be raised out of contact with the skin so that the area of adhesive contact with the skin is reduced. In order to assure that the surface area of adhesive contact is sufficient, the diameter of the overall electrode must be made relatively large and the electrode becomes less useful for some applications.

A preferred embodiment of the monitoring electrode of the invention is depicted in FIGS. 2 and 2A and shows the contrast between the structure thereof and that of the prior art electrode shown in FIGS. 1 and 1A.

As can be seen in FIGS. 2 and 2A, the electrode 20 of the invention comprises an adhesive foam pad portion 21 which forms the main body of the electrode and has on one surface thereof a layer 22 of double-faced adhesive which effectively covers the entire surface. In a preferred embodiment adhesive foam pad 21 has a substantially circular configuration and at the central region of the surface 24 opposite to the adhesive surface thereof a paper thin circular piece 23 of vinyl plastic material is positioned. Vinyl piece 23 imparts a slightly greater degree of rigidity for the surface 24 of the electrode than to the adhesive surface thereof and, further, can be used as an appropriate label for identifying the electrode and the manufacturer thereof.

A snap fastener contact element 25 is machine fastened at the center of adhesive foam pad 21 as shown. After the fastening process the presence of fastener 25 forms slight depressions at both the upper and the lower surfaces of foam pad 21, as shown. The peripheral region of a gel pad 26 is caused to adhere to the adhesive surface of pad 21 so that the pad 26 is placed at a position opposite the lower contact surface 25A of contact element 25 as shown in enlarged detail in FIG. 3.

Adhesive foam pad 21 is made of a closed cell plastic material, such as a closed cell polyethylene or polyurethane plastic material, while gel pad 26 is made of an open cell material, such as polyurethane foam material. The use of a closed cell material for pad 21 effectively prevents any penetration through the pad 21 of any conductive gel which is present in gel pad 26 within which it is in contact. One such closed cell plastic successfully used in the electrode of the invention is a polyethylene plastic sold under the name Volara" by the Voltech Company of Lawrence, Massachusetts. One such open cell gel pad material which has been successfully used to provide the necessary gel dispersion action is a polyurethane foam material sold by Rogers Foam Company, Somerville, Massachusetts.

Further, the double sided adhesive layer 22 is selected so as to avoid causing any irritation to the skin, to which it adheres. One such adhesive which has been successfully used and which has been approved for such use by the Federal Drug Administration of the United States Government is identified as Adhesive No. 1524, made by 3M Company, Minneapolis, Minnesota.

The cellular density of open cell material 26 is such as to be sufficiently dense to hold a conductive gel within the material and at the same time sufficiently porous to allow the gel to penetrate throughout the material so that a good electrical contact is made between the skin of the patient and the lower surface 25A of contact element 25. Conductive gels for this purpose are readily available to those in the art and any convenient gel such as that identified as Spectra 360 as sold by Parker Laboratories, lrvington, New Jersey, may be used in the electrode of the invention.

in order to enhance the conductive path from the skin to the contact element 25, the bottom surface 25A thereof is coated with silver. When the conductive gel comes into contact with the silver coated surface thereof it forms a combination silver/silver chloride coating which enhances the conductive properties therebetween. In using conventional snap fasteners which have chrome plated surfaces, for example, contact with electrode conductive gels often causes the formation of an acid coating which may be injurious to the skin against which the electrode is pressed. The silver/silver chloride coating not only has been found to increase the conductivity of the overall electrode, it has also been found to be essentially harmless to the skin of the patient. It can also be seen that when the electrode is applied to the skin of a patient, gel pad.26 is effectively compressed and the lower surface of the electrode forms an effectively soft and smooth contact with the skin over its entire area and little or no discomfort is felt by the patient.

With reference to the dimensions of the various.ele ments of the electrode of the invention, it has been found that the thickness of the adhesive foam pad 21 preferably lies within a range of from 1/ 32nd of an inch to about 3/ l6ths of an inch, with a thickness of about 1/ 1 6th of an inch being successfully used in a preferred embodiment of the electrode. The thickness is primarily selected so as toretain sufficient flexibility for the overall electrode to permit it to be used in various skin areas, even those having a relatively deep curvature. Moreover, it has been found that if the adhesive foam pad portion is at least l/32nd of aninch thick, it becomes much easier to remove the electrode both from the card on which it is shipped, as described below, and

from the skin after use.

The vinyl label 23 has been found preferably to have a diameter lying 0etween about 0.75 inches to up to the diameter of the foam pad 16. The latter preferably has a diameter of from about 1 inch to 2 /4 inches and in a preferred embodiment a diameter of 1% inches hasbeen found to be satisfactory for use not only on adult patients but also on child and infant patients.

The diameter of gel pad 26 is preferably between about ll/l6 inch and l3/l6 inch with a diameter of about /1 inch being successfully used in a preferred embodiment. Thus, the gel pad must be sufficiently large to cover the bottom contact element surface and yet have enough surface area in contact with the adhesive layer 22 to permit the gel pad to be adequately. attached to the foam pad 21 about its entire periphery. Since the gel pad 26 is retained on foam'pad 21'by the adhesive layer 22 it doesnot depend for its retention upon the surface tension ofthe gel itself. Accordingly, in shipping the overall electrode the electrode can be shipped either in a dry form, that is, a form wherein the gel is not applied to the open cell pad 26 until just prior to use, or in a wet" form, that is, where the gel is applied when the electrode is packaged so that it arrives for use in a pre-gelled" state. Such a construction is in contrast with that of theprior art where the V gel must'beshipped in a wet state so as to be retained gel pads are further protected by applying a clear plastic cover-member 32 having relatively rigid raised portions 33 positioned above each gel pad 26, as shown. Cover member 32 may be appropriately fastened with adhesive material, such as a suitable glue, at appropriate pointson the lower surface of the card.

Each card may be inserted into an hermetically sealed bag 35 which also has a light opaque inner surface. If the, electrode is of a pre-gelled form, the hermetically sealedbag prevents theescapeof any mois ture from-the gel and keeps the gel pad 26 in an appropriately wet conductive state. The use of a light opaque bag'prevents the penetration into the interior of the bagof ultraviolet rays which may cause a deterioration of the adhesive, layer 22. Accordingly, when-the electrode-is ready for use it will adhere firmly to the skin-without any problems. The semi-rigid cover 32 prevents the gel pad from being inadvertently squeezed during shipment which action would cause an irretrievable loss of the gel material.

In manufacturing the electrodes of the, inventioma sheetof closedcell plastic foam material is coveredon one surface thereof with a double sided layer of adhesive material. A plurality of vinyl labelsare then adhered at various regions to the opposite side thereof andthe snap fasteners 25 are machine installed at the centerof 'each vinyl label. A pluralityof open cell foam plastic pads are thenadhered to the adhesive layer of the closed cell material at positions opposite'each snap fastener. The open cell pads can be so applied ina dry. state and the electrodes then appropriately punched out from the closed cell plastic sheet. If ltilS desired to ship the electrodes in a wet state, a conductive gel is applied to each of the gel pads before packag-, mg.

Whether in a wet or in a dry state, one or more of the punchedelectrodes are mounted on a card having one ormore circular apertures each having a diameter the sameas that of the open cell gel pads and the relatively rigid plastic cover is then glued to thsurface of the card through which the open cell gel pad protrudes. Thecards are then placed into hermetically scalable and light opaque. bags and appropriately sealed for storage and/or shipment.

What is claimed is: l. A monitoring electrode comprising a substantially flat support member formed of plastic foam material having a closed cellular configuration throughout, one surface of which is adhesive;

a contact element embedded in said support member, a first contact portion thereof being exposed atsaid one surface and a second contact portion thereof protruding from the opposite surface of said support member;

a pad member formed of plastic foam material having an open cellular configuration adhered to said adhesive surface of said support member at a position such that the inner surface of said pad member is in contact with and substantially covers said exposed portion of said contact element, the outer surface thereof being capable of contacting a surface to be monitored.

2. A monitoring electrode in accordance with claim 1 and further including a conductive gel being dispersed throughout said pad member when said monitoring electrode is in use to provide a conductive path from said outer surface of said pad member to said second contact portion.

3. A monitoring electrode in accordance with claim 2 and further including a plastic strip adhered to a portion of said opposite surface of said support member to impart greater rigidity to said opposite surface than to said one surface thereof.

4. A monitoring electrode in accordance with claim 2 wherein the thickness of said support member is in a range from about 1/32 inch to about 3/16 inches.

5. A monitoring electrode in accordance with claim 4 wherein the thickness of said support member is about l/l6 inch.

8 wherein said support member is substantially circular in configuration and has a diameter of about l% inches.

10. A monitoring electrode in accordance with claim 8 wherein said pad member is substantially circular in configuration and has a diameter in a range from about 1 H16 inches to about 13/16 inches. 11. A monitoring electrode in accordance with claim 10 wherein said pad member is substantially circular in configuration and has a diameter of about inches.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US2055540 *18 déc. 193329 sept. 1936Gen Therapeutics CorpProcess and apparatus for treating pathological conditions
US3340868 *5 mars 196512 sept. 1967Gen ElectricBody signal pickup electrode
US3534727 *24 mars 196720 oct. 1970NasaBiomedical electrode arrangement
US3545432 *24 juil. 19678 déc. 1970Gulton Ind IncBody electrode assembly
US3581736 *20 déc. 19681 juin 1971Zenkich IliasElectrocardiograph electrode
US3587565 *25 août 196928 juin 1971Cardiac Electronics IncDisposable electrode
US3696807 *13 févr. 197010 oct. 1972Mdm CorpMedical electrode with relatively rigid electrolyte cup
US3701346 *4 janv. 197131 oct. 1972Bionetics IncMedical electrode
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US3923042 *30 sept. 19742 déc. 1975Medicor MuevekElectrical detector/transducer/applicable on the skin surface for biometrical observations
US3961623 *17 janv. 19758 juin 1976Medical Research Laboratories, Inc.Method of using a disposable electrode pad
US3964469 *21 avr. 197522 juin 1976Eastprint, Inc.Disposable electrode
US3972329 *25 nov. 19743 août 1976Kaufman John GeorgeBody electrode for electro-medical use
US3973557 *21 avr. 197510 août 1976Allison Kenneth CElectrode
US3976055 *27 nov. 197424 août 1976Ndm CorporationElectrode and conductor therefor
US3977392 *21 avr. 197531 août 1976Eastprint, Inc.Medical electrode
US3989035 *4 août 19752 nov. 1976Stemmen Laboratory, Inc.Disposable medical electrode
US3993049 *26 déc. 197423 nov. 1976Kater John A RElectrodes and materials therefor
US4029086 *11 août 197514 juin 1977Consolidated Medical Equipment, Inc.Electrode arrangement
US4034854 *16 juil. 197612 juil. 1977M I Systems, Inc.Electrode package
US4040412 *3 févr. 19769 août 1977Sato Takuya RBioelectrodes
US4050453 *3 févr. 197627 sept. 1977Concept, Inc.Radiotransparent electrode
US4063352 *20 déc. 197620 déc. 1977M I Systems, Inc.Method of making electrode package
US4067322 *28 janv. 197610 janv. 1978Johnson Joseph HDisposable, pre-gel body electrodes
US4077397 *25 mars 19767 mars 1978Baxter Travenol Laboratories, Inc.Diagnostic electrode assembly
US4077398 *25 mars 19767 mars 1978Baxter Travenol Laboratories, Inc.Diagnostic electrode assembly
US4092985 *2 août 19766 juin 1978John George KaufmanBody electrode for electro-medical use
US4161174 *7 juil. 197817 juil. 1979Mercuri Albert RBiomedical electrode assembly
US4166456 *6 oct. 19774 sept. 1979Vaughn CorporationCarrier release sheet
US4177817 *1 févr. 197811 déc. 1979C. R. Bard, Inc.Dual terminal transcutaneous electrode
US4196737 *21 avr. 19788 avr. 1980C. R. Bard, Inc.Transcutaneous electrode construction
US4319579 *11 déc. 198016 mars 1982Ndm CorporationReusable medical electrode having disposable electrolyte carrier
US4327737 *15 mai 19804 mai 1982Roman SzpurMedical electrode assembly
US4353373 *17 avr. 198012 oct. 1982Ferris Manufacturing Corp.EKG Electrode and package
US4393584 *9 oct. 198119 juil. 1983C. R. Bard, Inc.Method of manufacture of electrode construction
US4441500 *25 mars 198110 avr. 1984Ferris Manufacturing Corp.EKG Electrode
US4522211 *9 oct. 198111 juin 1985C. R. Bard, Inc.Medical electrode construction
US4524775 *14 févr. 198325 juin 1985Jan RasmussenMedical electrode and a method of manufacturing same
US4543958 *6 déc. 19821 oct. 1985Ndm CorporationMedical electrode assembly
US4584962 *15 nov. 198429 avr. 1986Ndm CorporationMedical electrodes and dispensing conditioner therefor
US4590089 *15 nov. 198420 mai 1986Ndm CorporationMedical electrodes and dispensing conditioner therefor
US4669479 *21 août 19852 juin 1987Spring Creek Institute, Inc.Dry electrode system for detection of biopotentials
US4674511 *9 mai 198423 juin 1987American Hospital Supply CorporationMedical electrode
US4685467 *10 juil. 198511 août 1987American Hospital Supply CorporationX-ray transparent medical electrodes and lead wires and assemblies thereof
US4832036 *13 mai 198523 mai 1989Baxter International Inc.Medical electrode
US4838273 *22 juin 198713 juin 1989Baxter International Inc.Medical electrode
US4852585 *9 févr. 19881 août 1989Darox CorporationElectrocardiology
US5305746 *29 sept. 199226 avr. 1994Aspect Medical Systems, Inc.Disposable, pre-gelled, self-prepping electrode
US5326272 *2 janv. 19915 juil. 1994Medtronic, Inc.Low profile electrode connector
US5431166 *22 janv. 199311 juil. 1995Ludlow CorporationLow profile medical electrode
US5660177 *17 oct. 199426 août 1997Biofield Corp.Detects electromagnetic field present between reference and several test points on living organisms, therfore provides an accurate measurement of gradient of an electrical activity which occures as function of biological activity
US5823957 *27 juil. 199520 oct. 1998Biofield CorpD.C. biopotential sensing electrode and electroconductive medium for use therein
US6254614 *18 oct. 19993 juil. 2001Jerry M. JessephDevice and method for improved diagnosis and treatment of cancer
US656917622 janv. 200127 mai 2003Jerry M. JessephDevice and method for improved diagnosis and treatment of cancer
US671142713 févr. 200223 mars 2004Milwaukee Electronics CorporationSkin abrading medical electrode mounting and packaging system
US7065410 *5 nov. 200120 juin 2006Cameron Health, Inc.Subcutaneous electrode with improved contact shape for transthorasic conduction
US736444017 janv. 200729 avr. 2008Lifesync CorporationMulti-lead keyhole connector
US761698028 sept. 200610 nov. 2009Tyco Healthcare Group LpRadial electrode array
US76573225 mai 20062 févr. 2010Cameron Health, Inc.Subcutaneous electrode with improved contact shape for transthoracic conduction
US79253231 oct. 200912 avr. 2011Tyco Healthcare Group LpRadial electrode array
US797806421 sept. 200912 juil. 2011Proteus Biomedical, Inc.Communication system with partial power source
US803674813 nov. 200911 oct. 2011Proteus Biomedical, Inc.Ingestible therapy activator system and method
US805414017 oct. 20078 nov. 2011Proteus Biomedical, Inc.Low voltage oscillator for medical devices
US805533410 déc. 20098 nov. 2011Proteus Biomedical, Inc.Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US810988328 sept. 20067 févr. 2012Tyco Healthcare Group LpCable monitoring apparatus
US811402115 déc. 200914 févr. 2012Proteus Biomedical, Inc.Body-associated receiver and method
US811561823 mai 200814 févr. 2012Proteus Biomedical, Inc.RFID antenna for in-body device
US81804255 déc. 200715 mai 2012Tyco Healthcare Group LpECG lead wire organizer and dispenser
US82389965 déc. 20077 août 2012Tyco Healthcare Group LpElectrode array
US82589625 mars 20094 sept. 2012Proteus Biomedical, Inc.Multi-mode communication ingestible event markers and systems, and methods of using the same
US854063223 mai 200824 sept. 2013Proteus Digital Health, Inc.Low profile antenna for in body device
US854063313 août 200924 sept. 2013Proteus Digital Health, Inc.Identifier circuits for generating unique identifiable indicators and techniques for producing same
US854066424 mars 201024 sept. 2013Proteus Digital Health, Inc.Probablistic pharmacokinetic and pharmacodynamic modeling
US85421231 août 201224 sept. 2013Proteus Digital Health, Inc.Multi-mode communication ingestible event markers and systems, and methods of using the same
US854540227 avr. 20101 oct. 2013Proteus Digital Health, Inc.Highly reliable ingestible event markers and methods for using the same
US854543623 déc. 20111 oct. 2013Proteus Digital Health, Inc.Body-associated receiver and method
US85472481 sept. 20061 oct. 2013Proteus Digital Health, Inc.Implantable zero-wire communications system
US855856323 août 201015 oct. 2013Proteus Digital Health, Inc.Apparatus and method for measuring biochemical parameters
US856004314 mai 201215 oct. 2013Covidien LpECG lead wire organizer and dispenser
US856816027 juil. 201129 oct. 2013Covidien LpECG adapter system and method
US857162714 mai 201229 oct. 2013Covidien LpECG lead wire organizer and dispenser
US858322723 sept. 201112 nov. 2013Proteus Digital Health, Inc.Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US85971865 janv. 20103 déc. 2013Proteus Digital Health, Inc.Pharmaceutical dosages delivery system
US86686515 déc. 200611 mars 2014Covidien LpECG lead set and ECG adapter system
US867482513 mars 200918 mars 2014Proteus Digital Health, Inc.Pharma-informatics system
US86906115 mars 20138 avr. 2014Covidien LpECG electrode connector
US86940807 sept. 20108 avr. 2014Covidien LpECG lead system
US870621730 mars 201222 avr. 2014Cameron HealthCardioverter-defibrillator having a focused shocking area and orientation thereof
US8708926 *31 mars 201029 avr. 2014Drägerwerk AG & Co. KGaADouble temperature sensor
US871819319 nov. 20076 mai 2014Proteus Digital Health, Inc.Active signal processing personal health signal receivers
US872154018 nov. 201013 mai 2014Proteus Digital Health, Inc.Ingestible circuitry
US873003111 juil. 201120 mai 2014Proteus Digital Health, Inc.Communication system using an implantable device
US87843082 déc. 201022 juil. 2014Proteus Digital Health, Inc.Integrated ingestible event marker system with pharmaceutical product
US879500430 sept. 20135 août 2014Covidien, LPECG electrode connector
US879870820 mars 20125 août 2014Covidien LpPhysiological sensor placement and signal transmission device
US880218311 juil. 201112 août 2014Proteus Digital Health, Inc.Communication system with enhanced partial power source and method of manufacturing same
US88104096 mai 201319 août 2014Proteus Digital Health, Inc.Multi-mode communication ingestible event markers and systems, and methods of using the same
US20090227856 *19 déc. 200810 sept. 2009Brian Keith RussellElectrocardiogram sensor
US20100292605 *31 mars 201018 nov. 2010Dragerwerk AG & Co. KGaADouble temperature sensor
US20140187063 *15 mars 20133 juil. 2014Suunto OyMale end of a telemetric transceiver
USRE32724 *11 oct. 19852 août 1988American Hospital Supply CorporationReusable medical electrode having disposable electrolyte carrier
DE2735050A1 *3 août 19778 févr. 1979Siemens AgElektrode
EP0000759A1 *31 juil. 197821 févr. 1979Siemens AktiengesellschaftElectrode
WO1979000042A1 *7 juil. 19788 févr. 1979A MercuriBiomedical electrode assembly
WO1996011631A1 *16 oct. 199525 avr. 1996Biofield CorpDc biopotential sensing electrode and electroconductive medium for use therein
Classifications
Classification aux États-Unis600/391
Classification internationaleA61B5/0408
Classification coopérativeA61B5/0408
Classification européenneA61B5/0408