US3831586A - Respiration monitor - Google Patents

Respiration monitor Download PDF

Info

Publication number
US3831586A
US3831586A US00307091A US30709172A US3831586A US 3831586 A US3831586 A US 3831586A US 00307091 A US00307091 A US 00307091A US 30709172 A US30709172 A US 30709172A US 3831586 A US3831586 A US 3831586A
Authority
US
United States
Prior art keywords
light
transducer
reed
change
person
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00307091A
Inventor
P Petit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00307091A priority Critical patent/US3831586A/en
Application granted granted Critical
Publication of US3831586A publication Critical patent/US3831586A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/04Babies, e.g. for SIDS detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S5/00Beds
    • Y10S5/94Beds with alarm means

Definitions

  • a respiration monitor comprising a sensing unit which senses the expansion and contraction of the chest, abdomen, side or back; and through the electrical system sounds an alarm if this motion ceases.
  • the respiration motion is changed to an electrical signal in the transducer.
  • Two points on the skin surface are selected as reference points and the relative motion of the two points is monitored by a light modulation method.
  • a small transducer is mounted on the skin at the first reference point.
  • a thin and flexible modulation reed which conforms to the curvature of the body is mounted at the second reference point, and extends through a slot in the transducer.
  • the relative motion of the modulation reed with reference to the transducer causes the light intensity impinging on a sensor to change thereby changing the sensors resistance and whenever light modulation stops, the electronic circuitry produces a visual or audial alarm and the patient is attended.
  • respiration monitors published and some of which are currently available. These include respiration and movement transducers disclosed in US. Pat. No. 3,268,845. The ones that are at all suitable for premature infants and the like are primarily designed for use on premature infants who are subject to sudden inexplicable cessation of respiration (apnea attack). These attacks generally occur without any warning. Others of these respiration monitors are designed for use in the intensive care units of hospitals and most of these require the bonding of electrodes to the body which is a source of numerous problems because the conductive jelly irritates the skin and those that do not utilize conductive jelly are bulky and taped in place or are not sensitive enough to monitor small prematures and slight changes.
  • the present unit is so inexpensive and simple to operate that it can be used by non-medically trained personnel thereby solving the problem of complex electronics and the use of electronically trained technicians.
  • the electronics in the present system isso simple and dependable as to provide a very low current drain feasible for use with a dry or wet cell battery for power, eliminating the possibility of electrical shocks and the failure of the unit from loss of outside power and the more complex arrangement of standby battery power to take over in the case of AC failure.
  • the problem of patient contact is solved by the present invention through the use of a universal transducer which does not have to come in direct contactwith the subject in order to measure respiration or movement.
  • the transducer can be attached to the patient in a variety-of ways and placed in a variety of positions on the body. Therefore, the present invention unlike the prior art devices provides a novel means of attaching a transducer to the patient so as to minimize discomfort, false signals, ease of application and reliability.
  • the present unit comprises the respiratory move ment sensing apparatus, which comprises alight modulation transducer and modulation reed and the means of attaching said transducer and reed to the patient via a small rubber belt or adhesive pad, and an electronic unit which monitors the transducer signal and gives a light and audible alarm when respiration ceases for an adjustable time ranging from 6 to 30 seconds.
  • FIG. 1 is a perspective view of an infant with the reed and transducer unit mounted across the chest and abdomen and with a portion of a typical incubator shown in dotted lines. The electronics unit is also shown.
  • FIG. 2 is a cross-sectional view taken on line 2-2 of FIGS of the direct modulation method of sensing respiratory movement whereby the light source shines through the modulation reed onto the sensor.
  • FIG. 3 is an alternate indirect modulation method whereby light is reflected from a surface behind the reed onto the sensor.
  • FIG. 4 is a perspective view of a portion of the belt.
  • FIG. 5 is a top plan view of the belt shown in FIG. 4 with the transducer and modulation reed mounted thereon.
  • FIG. 6 is a perspective view of a detail of the adhesive disposable used as an alternative means of mounting the transducer and reed.
  • FIG. 7 is a top plan view of the transducer and reed attached with the adhesive disposable pads.
  • FIG. 8 is a side elevation view of the transducer and light sensing housing with the belt shown in dotted lines.
  • FIG. 9 is a cross-sectional view of another modulation'reed.
  • FIG. 10 is a schematic circuit diagram of the sensing electronics system.
  • FIG. 11 is a diagrammatic view of the sensing unit mounted longitudinally on the upper abdomen and chest.
  • FIG. 12 is a diagrammatic view with the sensing unit mounted transversely on the abdomen.
  • the motion sensing unit is mounted on the back, front or side of the patient as shown in FIGS. 11 and 12 and is comprised of the modulation reed 46 and grid and the transducer 14.
  • the internal details of the transducer are shown in FIGS. 2 and 3.
  • the transducer housing 16 to which is attached an electrical wire 18 leading to the transducer is shown in FIG-8.
  • the housing 16 contains the light sensor 20 which converts light energy to electrical ene gy, which is well known in the art, and is activated by means of a small focused light source 22, which is also mounted in the housing 16.
  • the relative motion of two points on the skin surface is monitored by a unique light modulation technique.
  • the relative motion of the grid 60 on the modulation reed 46 in the transducer slot 28 causes the light intensity impinging on the sensor to change thus changing the sensors resistance (resistor) or turning it on and off (transistor).
  • This can be accomplished either by a direct modulation technique whereby the light is shined through the reed onto the sensor (FIG. 2) or by an indirect modulation technique whereby light is reflected from a surface behind the reed (FIG. 3).
  • the sensitivity of the transducer can be adjusted by changing the width of the modulation bars (grid) on the reed and the width of the sensor aperature and by changing the intensity and type of light source and the type of sensor.
  • the mounting belt 30 comprises a pair of pockets 40 in which are mounted the transducer 14 and modulation reed 46.
  • the transducer is mounted by means of-a tongue formed by the bottom portion 26 of the housing 16, and the reed is mounted by means of a slotted tongue 44 on the reed arrangement 46.
  • the reed 46 includes an elongated connection member 48 which contains the modulation medium or grid 60.
  • the motion sensing unit can also be mounted by adhesive mounting pads 52. which have pockets 40' for mounting the transducer or reed.
  • the grid 60 of the modulation reed can either be perforated to allow the passage of light, or be a clear plastic with an opaque set of bars or circular discs.
  • the reed'material must be thin and flexible to allow it to conform to the curvature of the body between the transducer and the reed mounting point without causing excess friction in the slot 28 on the transducer.
  • the transducer housing 16 and the reed 46 are attached to the patient by the belt 30 but they also may be attached by means of disposable adhesive (FIG. 6) or any other suitable method which allows the reed 46 to move relative to the slot in the transducer as respiration occurs.
  • the transducer housing 16 and reed 46 are preferably placed in the position where the relative motion between the two attachment points is at least 0.5 mm so that the transducer will translate the signal. If the transducer housing 16 and reed 46 are attached with the disposable adhesive, there are many positions and alignments of the body which will provide for satisfactory monitoring even on the smallest premature infant with very shallow breathing pattern. Some infants have most respiratory motion occurring between the upper abdomen 54 and the lower rib cage 56.
  • the transducer housing 16 and reed 46 can best be mounted so that the reed 46 is aligned with the length of the body (SeeFIG. 11).
  • the transducer housing 16 is mounted on the upper abdomen 54 above the navel 58 and the reed is attached to the chest 56 above the transducer.
  • Other infants have more motion occurring from the expansion of the diameter of the abdomen 54 and in this case the transducer housing 16 and reed 46 should be mounted from left to right and perpendicular to the actions of the body on the upper abdomen 54 as shown in FIG. 12.
  • the rubber belt 30 is used, it can be placed around the abdomen 54 either above or below the navel 58.
  • the transducer housing 16 and reed 46 can be placed either on the abdomen or back of the patient.
  • the alignment of the reed 46 and the transducer housing 16 is not so critical due to the shape of the reed slot 44 shown in FIG. 9.
  • the hourglass" shape allows misalignments of up to 30 before the reed 46 binds in the slot.
  • the reed 46 is only wide enough to cover'the sensor aperture while in contact with one wall of the aperture.
  • the sensor aperture 24 is square to increase sensitivity.
  • FIG. 10 (Example) Basically the circuit disclosed in FIG. 10 detects modulated light from the transducer to the circuit and includes resistors R1 through R 17; transistors 01 thru Q7; capacitors Cl and C2; switch S1. When light modulation ceases for a period of 6 to 30 seconds (adjustment is made by changing the value of R11) an alarm B is sounded. Changes in light intensity are detected by the photoresistor PR as shown or by any other suitable device such as a photo-transistor or photo-darlington. These light changes result in a voltage change across resistor R2.
  • the FET (abbreviation for unipoler field effect transistor) Q1 provides the needed impedance conversion between R2 and the input Q2. However, the signal from R2 is not amplified by Q1.
  • the capacitor C1 isolates the DC. voltage bias to the input of 02. R5 serves as a sensitivity adjustment.
  • the transistors Q2 and Q3 operate as a unit to provide high amplification. In fact, in this application transistors 02 and Q3 saturate at approximately 4.5 volts in the presence of the input signal across R5. Therefore, the voltage from the input side of R10 to ground is either 0 volts in the absence of light modulation or 4.5 volts when light is being modulated. 04 operates as a switch, which is on when the voltage across R10 is high.
  • the indicatorlight L provides a visual indication as to the state of the system.
  • This light L is controlled by a darlington transistor pair Q5.
  • switch S1 When switch S1 is placed in the test position the indicator light L burns intermittently or constantly depending on the respirationrate when the transducer T is being modulated, i.e., a normal condition exists. However, when the switch S1 is switched in the ON, the light L is turned off and only burns when the audio alarm is sounding, i.e., respiration, ceases.
  • the LED. (light emitting diode) CRI is located remotely in the transducer T, and provides the light source for the photo-resistor PR which is also remotely located in the transducer T.
  • This device is inherently fail-safe to the discharge of the battery.
  • the system sensitivity decreases. When the sensitivity has decreased sufficiently the system will react, as if a patient respiration failure had occurred and the audio alann B will be sounded. Low battery voltage may then be verified by observing the battery level indicator also.
  • the rhythmic breathing of the patient causes the static or passive condition of the system, that is, as long as the light from the light emitting diode L.E.D. is broken regularly and rhymically by the shutter 32 of the reed 46, the voltage changes occur across the photoresistor and these changes are amplified and utlilized to keep the alarm clock deactivated.
  • breathing stops for a period of time e.g. 6 to 30 seconds
  • respiration monitor for use on a person including application to an infant to monitor breathing:
  • a respiration sensing unit for mounting on the person being monitored, said unit being mounted on a portion of the person which normally expands and contracts-during breating, whereby said unit may respond to said motion or lack of motion and the effect thereof,
  • a means for modifying the intensity of said received light comprising a movable light interrupting member mounted on said person at a second place on said persons portion spaced from said one place and extending therefrom to between the light path from the light source and said light sensitive element so as to be moved by the normal breathing of the person to establish a normal movement of the light modifying means with respect to the light responsive element,
  • a transducer and an electrical circuit including the transducer and the light responsive element, said circuit being established electrically as normal in response to the normal movement of the light modifying means with respect to the light responsive element,
  • said light modifying member being a reed-like member having one end attached to the person and the other end moving to interrupt the light.
  • circuit includes electrical means for responding to a change in voltage caused by the change in light on the light responsive element and means for delaying for a period of time before actuating the alarm whereby temporary pauses with resumption of normal breathing do not actuate the alarm.
  • said light sensitive component is a photo-resistor.
  • said light is a light emitting diode.
  • the device is claim 1 wherein said light sensitive component as a photo-transistor.
  • said light sensitive component is a photo-darlington unit.

Abstract

A respiration monitor comprising a sensing unit which senses the expansion and contraction of the chest, abdomen, side or back; and through the electrical system sounds an alarm if this motion ceases. The respiration motion is changed to an electrical signal in the transducer. Two points on the skin surface are selected as reference points and the relative motion of the two points is monitored by a light modulation method. A small transducer is mounted on the skin at the first reference point. A thin and flexible modulation reed which conforms to the curvature of the body is mounted at the second reference point, and extends through a slot in the transducer. The relative motion of the modulation reed with reference to the transducer causes the light intensity impinging on a sensor to change thereby changing the sensor''s resistance and whenever light modulation stops, the electronic circuitry produces a visual or audial alarm and the patient is attended.

Description

[111 3,831,586 Aug. 27, 1974 RESPIRATION MONITOR Inventor: Parker H. Petit, 1741 McCoba Dr.,
Marietta, Ga. 30080 Filed: Nov. 16, 1972 Appl. No.: 307,091
References Cited UNITED STATES PATENTS 6/1967 Farris l28/2.08 X 3,347,222 10/1967 Kohrer 3,658,052 6/1970 Alter 128/2 S FOREIGN PATENTS OR APPLICATIONS 1,570,640 6/1969 France 128/2 S OTHER PUBLICATIONS IBM. Technical Disclosure Bulletin page 13, Vol. 6, No. 6, November 1963.
Primary Examiner-Aldrich F. Medbery Attorney, Agent, or Firm-Patrick F. Henry ABSTRACT A respiration monitor comprising a sensing unit which senses the expansion and contraction of the chest, abdomen, side or back; and through the electrical system sounds an alarm if this motion ceases. The respiration motion is changed to an electrical signal in the transducer. Two points on the skin surface are selected as reference points and the relative motion of the two points is monitored by a light modulation method. A small transducer is mounted on the skin at the first reference point. A thin and flexible modulation reed which conforms to the curvature of the body is mounted at the second reference point, and extends through a slot in the transducer. The relative motion of the modulation reed with reference to the transducer causes the light intensity impinging on a sensor to change thereby changing the sensors resistance and whenever light modulation stops, the electronic circuitry produces a visual or audial alarm and the patient is attended.
9 Claims, 12 Drawing Figures Pmmrsmuszmn I mu us 2 a 2% m. M 9' RESPIRATION MONITOR BACKGROUND OF THE INVENTION 1. Field of the Invention Medical monitoring methods and devices and especially respiration monitoring apparatus. US. Class 128 Subclass 2.05 or International Class A61b5/02. Transducer montioring devices for sensing physiological changes: Class 310 subclass 8.5; Class 338 Subclass 47.
2. Description of the Prior Art The following patents are noted:
As disclosed by the above noted prior art there are many respiration monitors published and some of which are currently available. These include respiration and movement transducers disclosed in US. Pat. No. 3,268,845. The ones that are at all suitable for premature infants and the like are primarily designed for use on premature infants who are subject to sudden inexplicable cessation of respiration (apnea attack). These attacks generally occur without any warning. Others of these respiration monitors are designed for use in the intensive care units of hospitals and most of these require the bonding of electrodes to the body which is a source of numerous problems because the conductive jelly irritates the skin and those that do not utilize conductive jelly are bulky and taped in place or are not sensitive enough to monitor small prematures and slight changes. All of these devices are very complex electronically and consequently the costs are correspondingly high. Also, many of these include problems of AC current grounding and leakage and electromotive force dropping across the patient. To summarize the situation, the currently available monitors are so complex that the expense precludes their use in many instances where they are required and needed. Most hospitals can only afford a few units whereas the need for these monitors is many times this number. The present invention solves the problems of cost by means of an inexpensive respiratory monitor which is simple to operate but at the same time is rugged, reliable and more sensitive than previous models thereby solving the problem of sensitivity but without the use of conductive jellies and bulkiness. The present unit is so inexpensive and simple to operate that it can be used by non-medically trained personnel thereby solving the problem of complex electronics and the use of electronically trained technicians. The electronics in the present system isso simple and dependable as to provide a very low current drain feasible for use with a dry or wet cell battery for power, eliminating the possibility of electrical shocks and the failure of the unit from loss of outside power and the more complex arrangement of standby battery power to take over in the case of AC failure. The problem of patient contact is solved by the present invention through the use of a universal transducer which does not have to come in direct contactwith the subject in order to measure respiration or movement. The transducer can be attached to the patient in a variety-of ways and placed in a variety of positions on the body. Therefore, the present invention unlike the prior art devices provides a novel means of attaching a transducer to the patient so as to minimize discomfort, false signals, ease of application and reliability.
SUMMARY OF THE INVENTION The present unit comprises the respiratory move ment sensing apparatus, which comprises alight modulation transducer and modulation reed and the means of attaching said transducer and reed to the patient via a small rubber belt or adhesive pad, and an electronic unit which monitors the transducer signal and gives a light and audible alarm when respiration ceases for an adjustable time ranging from 6 to 30 seconds.
Other and further objects and advantages of this invention will be apparent from reading the description of the preferred embodiment in conjunction with the drawings as follows:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an infant with the reed and transducer unit mounted across the chest and abdomen and with a portion of a typical incubator shown in dotted lines. The electronics unit is also shown.
FIG. 2 is a cross-sectional view taken on line 2-2 of FIGS of the direct modulation method of sensing respiratory movement whereby the light source shines through the modulation reed onto the sensor.
FIG. 3 is an alternate indirect modulation method whereby light is reflected from a surface behind the reed onto the sensor.
FIG. 4 is a perspective view of a portion of the belt.
FIG. 5 is a top plan view of the belt shown in FIG. 4 with the transducer and modulation reed mounted thereon.
FIG. 6 is a perspective view of a detail of the adhesive disposable used as an alternative means of mounting the transducer and reed.
FIG. 7 is a top plan view of the transducer and reed attached with the adhesive disposable pads.
FIG. 8 is a side elevation view of the transducer and light sensing housing with the belt shown in dotted lines.
FIG. 9 is a cross-sectional view of another modulation'reed.
FIG. 10 is a schematic circuit diagram of the sensing electronics system.
FIG. 11 is a diagrammatic view of the sensing unit mounted longitudinally on the upper abdomen and chest.
- FIG. 12 is a diagrammatic view with the sensing unit mounted transversely on the abdomen.
BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENT The motion sensing unit is mounted on the back, front or side of the patient as shown in FIGS. 11 and 12 and is comprised of the modulation reed 46 and grid and the transducer 14. The internal details of the transducer are shown in FIGS. 2 and 3. The transducer housing 16 to which is attached an electrical wire 18 leading to the transducer is shown in FIG-8. The housing 16 contains the light sensor 20 which converts light energy to electrical ene gy, which is well known in the art, and is activated by means of a small focused light source 22, which is also mounted in the housing 16. The relative motion of two points on the skin surface is monitored by a unique light modulation technique. The relative motion of the grid 60 on the modulation reed 46 in the transducer slot 28 causes the light intensity impinging on the sensor to change thus changing the sensors resistance (resistor) or turning it on and off (transistor). This can be accomplished either by a direct modulation technique whereby the light is shined through the reed onto the sensor (FIG. 2) or by an indirect modulation technique whereby light is reflected from a surface behind the reed (FIG. 3). The sensitivity of the transducer can be adjusted by changing the width of the modulation bars (grid) on the reed and the width of the sensor aperature and by changing the intensity and type of light source and the type of sensor.
As shown in FIGS. 4 and 5, the mounting belt 30 comprises a pair of pockets 40 in which are mounted the transducer 14 and modulation reed 46. The transducer is mounted by means of-a tongue formed by the bottom portion 26 of the housing 16, and the reed is mounted by means of a slotted tongue 44 on the reed arrangement 46. The reed 46 includes an elongated connection member 48 which contains the modulation medium or grid 60. The motion sensing unit can also be mounted by adhesive mounting pads 52. which have pockets 40' for mounting the transducer or reed.
The grid 60 of the modulation reed can either be perforated to allow the passage of light, or be a clear plastic with an opaque set of bars or circular discs. The reed'material must be thin and flexible to allow it to conform to the curvature of the body between the transducer and the reed mounting point without causing excess friction in the slot 28 on the transducer.
The transducer housing 16 and the reed 46 are attached to the patient by the belt 30 but they also may be attached by means of disposable adhesive (FIG. 6) or any other suitable method which allows the reed 46 to move relative to the slot in the transducer as respiration occurs. The transducer housing 16 and reed 46 are preferably placed in the position where the relative motion between the two attachment points is at least 0.5 mm so that the transducer will translate the signal. If the transducer housing 16 and reed 46 are attached with the disposable adhesive, there are many positions and alignments of the body which will provide for satisfactory monitoring even on the smallest premature infant with very shallow breathing pattern. Some infants have most respiratory motion occurring between the upper abdomen 54 and the lower rib cage 56. In this case, the transducer housing 16 and reed 46 can best be mounted so that the reed 46 is aligned with the length of the body (SeeFIG. 11). The transducer housing 16 is mounted on the upper abdomen 54 above the navel 58 and the reed is attached to the chest 56 above the transducer. Other infants have more motion occurring from the expansion of the diameter of the abdomen 54 and in this case the transducer housing 16 and reed 46 should be mounted from left to right and perpendicular to the actions of the body on the upper abdomen 54 as shown in FIG. 12. If the rubber belt 30 is used, it can be placed around the abdomen 54 either above or below the navel 58. The transducer housing 16 and reed 46 can be placed either on the abdomen or back of the patient. v
The alignment of the reed 46 and the transducer housing 16 is not so critical due to the shape of the reed slot 44 shown in FIG. 9. The hourglass" shape allows misalignments of up to 30 before the reed 46 binds in the slot. The reed 46 is only wide enough to cover'the sensor aperture while in contact with one wall of the aperture. The sensor aperture 24 is square to increase sensitivity.
DESCRIPTION OF THE ELECTRONIC CIRCUIT FIG. 10 (Example) Basically the circuit disclosed in FIG. 10 detects modulated light from the transducer to the circuit and includes resistors R1 through R 17; transistors 01 thru Q7; capacitors Cl and C2; switch S1. When light modulation ceases for a period of 6 to 30 seconds (adjustment is made by changing the value of R11) an alarm B is sounded. Changes in light intensity are detected by the photoresistor PR as shown or by any other suitable device such as a photo-transistor or photo-darlington. These light changes result in a voltage change across resistor R2. The FET (abbreviation for unipoler field effect transistor) Q1 provides the needed impedance conversion between R2 and the input Q2. However, the signal from R2 is not amplified by Q1. The capacitor C1 isolates the DC. voltage bias to the input of 02. R5 serves as a sensitivity adjustment. The transistors Q2 and Q3 operate as a unit to provide high amplification. In fact, in this application transistors 02 and Q3 saturate at approximately 4.5 volts in the presence of the input signal across R5. Therefore, the voltage from the input side of R10 to ground is either 0 volts in the absence of light modulation or 4.5 volts when light is being modulated. 04 operates as a switch, which is on when the voltage across R10 is high. When O4 is turned on, a charging current is supplied to the capacitor C2. The voltage across C2 increases turning on transistor 06, this lowers the voltage at the input of R15 and turns off Q7. In this state the audio alarm B is silent. However, when light modulation stops, the voltage across C2 decreases slowly providing a time delay controlled by R11. When C2 is discharged the voltage at the input of O7 is high and Q7 conducts thereby turning on the audio alarrnB.
The indicatorlight L provides a visual indication as to the state of the system. This light L is controlled by a darlington transistor pair Q5. When switch S1 is placed in the test position the indicator light L burns intermittently or constantly depending on the respirationrate when the transducer T is being modulated, i.e., a normal condition exists. However, when the switch S1 is switched in the ON, the light L is turned off and only burns when the audio alarm is sounding, i.e., respiration, ceases.
The LED. (light emitting diode) CRI is located remotely in the transducer T, and provides the light source for the photo-resistor PR which is also remotely located in the transducer T.
This device is inherently fail-safe to the discharge of the battery. As the supply voltage decreases, the system sensitivity decreases. When the sensitivity has decreased sufficiently the system will react, as if a patient respiration failure had occurred and the audio alann B will be sounded. Low battery voltage may then be verified by observing the battery level indicator also.
SUMMARY OF OPERATION OF DEVICE The rhythmic breathing of the patient causes the static or passive condition of the system, that is, as long as the light from the light emitting diode L.E.D. is broken regularly and rhymically by the shutter 32 of the reed 46, the voltage changes occur across the photoresistor and these changes are amplified and utlilized to keep the alarm clock deactivated. When breathing stops for a period of time (e.g. 6 to 30 seconds) the change in the intensity light impinging on PR ceases and the Alarm B is sounded after the preset time delay.
While I have shown and described a preferred embodiment of my invention with suggested modifications, this is by way of illustration only and does not constitute any sort of restriction thereon, since there are various alterations, changes, deviations, departures, omissions, additions, and variations which may be made in the disclosed invention without departing therefrom as determined only by reference to a proper construction of the appended claims.
What is claimed is:
1. In a respiration monitor for use on a person including application to an infant to monitor breathing:
a. a respiration sensing unit for mounting on the person being monitored, said unit being mounted on a portion of the person which normally expands and contracts-during breating, whereby said unit may respond to said motion or lack of motion and the effect thereof,
b. a source of light and a light sensitive component for receiving light from said source mounted at one place on said persons portion,
c. a means for modifying the intensity of said received light comprising a movable light interrupting member mounted on said person at a second place on said persons portion spaced from said one place and extending therefrom to between the light path from the light source and said light sensitive element so as to be moved by the normal breathing of the person to establish a normal movement of the light modifying means with respect to the light responsive element,
d. a transducer and an electrical circuit including the transducer and the light responsive element, said circuit being established electrically as normal in response to the normal movement of the light modifying means with respect to the light responsive element,
e. and means for operating an alarm means in said electric circuit upon change in said normal breating which is sensed by the change in the received light from said modifying means and the change in the transducer and electrical circuit to indicate the change in pattern of normal breathing.
2. The device in claim 1: said light modifying member being a reed-like member having one end attached to the person and the other end moving to interrupt the light.
3. The device in claim 1: wherein said circuit includes electrical means for responding to a change in voltage caused by the change in light on the light responsive element and means for delaying for a period of time before actuating the alarm whereby temporary pauses with resumption of normal breathing do not actuate the alarm.
4. The device in claim 1 wherein said light sensitive component is a photo-resistor.
5. The device in claim 1, wherein: said light is a light emitting diode.
6. The device is claim 1 wherein said light sensitive component as a photo-transistor.
7. The device in claim 1 wherein said light sensitive component is a photo-darlington unit.
8. The device in claim 1 wherein said light is a minature incandescent lamp.
9. The device in claim 1 wherein said light is a fiber optic light source.

Claims (9)

1. In a respiration monitor foR use on a person including application to an infant to monitor breathing: a. a respiration sensing unit for mounting on the person being monitored, said unit being mounted on a portion of the person which normally expands and contracts during breating, whereby said unit may respond to said motion or lack of motion and the effect thereof, b. a source of light and a light sensitive component for receiving light from said source mounted at one place on said persons portion, c. a means for modifying the intensity of said received light comprising a movable light interrupting member mounted on said person at a second place on said persons portion spaced from said one place and extending therefrom to between the light path from the light source and said light sensitive element so as to be moved by the normal breathing of the person to establish a normal movement of the light modifying means with respect to the light responsive element, d. a transducer and an electrical circuit including the transducer and the light responsive element, said circuit being established electrically as normal in response to the normal movement of the light modifying means with respect to the light responsive element, e. and means for operating an alarm means in said electric circuit upon change in said normal breating which is sensed by the change in the received light from said modifying means and the change in the transducer and electrical circuit to indicate the change in pattern of normal breathing.
2. The device in claim 1: said light modifying member being a reed-like member having one end attached to the person and the other end moving to interrupt the light.
3. The device in claim 1: wherein said circuit includes electrical means for responding to a change in voltage caused by the change in light on the light responsive element and means for delaying for a period of time before actuating the alarm whereby temporary pauses with resumption of normal breathing do not actuate the alarm.
4. The device in claim 1 wherein said light sensitive component is a photo-resistor.
5. The device in claim 1, wherein: said light is a light emitting diode.
6. The device is claim 1 wherein said light sensitive component as a photo-transistor.
7. The device in claim 1 wherein said light sensitive component is a photo-darlington unit.
8. The device in claim 1 wherein said light is a minature incandescent lamp.
9. The device in claim 1 wherein said light is a fiber optic light source.
US00307091A 1972-11-16 1972-11-16 Respiration monitor Expired - Lifetime US3831586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00307091A US3831586A (en) 1972-11-16 1972-11-16 Respiration monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00307091A US3831586A (en) 1972-11-16 1972-11-16 Respiration monitor

Publications (1)

Publication Number Publication Date
US3831586A true US3831586A (en) 1974-08-27

Family

ID=23188201

Family Applications (1)

Application Number Title Priority Date Filing Date
US00307091A Expired - Lifetime US3831586A (en) 1972-11-16 1972-11-16 Respiration monitor

Country Status (1)

Country Link
US (1) US3831586A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196425A (en) * 1978-07-10 1980-04-01 by said David S. Weekly said Clyde E. Williams Patient activity monitoring system
US4258718A (en) * 1979-04-16 1981-03-31 Goldman Michael D Measuring respiratory air volume
US4381788A (en) * 1981-02-27 1983-05-03 Douglas David W Method and apparatus for detecting apnea
US4585970A (en) * 1985-03-11 1986-04-29 Koal Jan G Flexible piezoelectric switch
EP0198545A2 (en) * 1985-04-15 1986-10-22 Philips Patentverwaltung GmbH Optical movement transducer
EP0200061A2 (en) * 1985-04-29 1986-11-05 Mediinvent HB Apparatus for monitoring respiration of a subject
FR2582392A1 (en) * 1985-05-21 1986-11-28 Zie Andre Improvements to methods and devices with a view to the detection and measurement of movements and/or distance
US4732159A (en) * 1986-05-02 1988-03-22 University Of Kentucky Research Foundation Simple capsule pneumograph
WO1988008687A1 (en) * 1987-05-12 1988-11-17 Fore Don C Respiration monitor
US4860766A (en) * 1983-11-18 1989-08-29 Respitrace Corp. Noninvasive method for measuring and monitoring intrapleural pressure in newborns
EP0436318A1 (en) * 1989-12-29 1991-07-10 Sentinel Monitoring, Inc. Sensor applicator
US5277194A (en) * 1989-01-31 1994-01-11 Craig Hosterman Breathing monitor and stimulator
US5435317A (en) * 1990-06-14 1995-07-25 Lesbar Pty Limited Respiratory monitor and stimulus imparting device and method
US5727562A (en) * 1996-07-11 1998-03-17 Beck; Gregory S. Pneumatically sensed respiration monitor & method
US5774055A (en) * 1997-06-09 1998-06-30 Pomerantz; David Infant monitoring device
US5914660A (en) * 1998-03-26 1999-06-22 Waterview Llc Position monitor and alarm apparatus for reducing the possibility of sudden infant death syndrome (SIDS)
US6113550A (en) * 1997-07-29 2000-09-05 The University Of Queensland Plethysmograph
US6475157B2 (en) 2001-01-24 2002-11-05 The University Of Queensland Seal for use in a volume displacement plethysmograph
US20090119841A1 (en) * 2007-11-13 2009-05-14 Mitsuru Takashima Bed apparatus and method of determining body movement
WO2010027515A1 (en) 2008-09-05 2010-03-11 Vivometrics, Inc. Noninvasive method and system for measuring pulmonary ventilation
EP2289403A1 (en) 2009-09-01 2011-03-02 Adidas AG Method and system for monitoring physiological and athletic performance characteristics of a subject
US20110054271A1 (en) * 2009-09-01 2011-03-03 Adidas Ag Noninvasive Method And System For Monitoring Physiological Characteristics
US20110054289A1 (en) * 2009-09-01 2011-03-03 Adidas AG, World of Sports Physiologic Database And System For Population Modeling And Method of Population Modeling
US20110054290A1 (en) * 2009-09-01 2011-03-03 Adidas AG, World of Sports Method and System for Interpretation and Analysis of Physiological, Performance, and Contextual Information
US20110050216A1 (en) * 2009-09-01 2011-03-03 Adidas Ag Method And System For Limiting Interference In Magnetometer Fields
US20110054270A1 (en) * 2009-09-01 2011-03-03 Adidas AG, World of Sports Multimodal Method And System For Transmitting Information About A Subject
US20110105861A1 (en) * 2009-09-01 2011-05-05 Adidas Ag World Of Sports Physiological Monitoring Garment
JP2011098214A (en) * 2004-03-24 2011-05-19 Dainippon Sumitomo Pharma Co Ltd Biological information measuring garment having sensor, biological information measuring system and equipment, and control method of equipment
US20110130643A1 (en) * 2009-09-01 2011-06-02 Adidas Ag Noninvasive Method And System For Monitoring Physiological Characteristics And Athletic Performance
US10194835B2 (en) 2015-04-01 2019-02-05 Medical Research Infrastructure And Health Services Fund Of The Tel Aviv Medical Center Method of monitoring volumetric change of a lung
WO2019065756A1 (en) * 2017-09-26 2019-04-04 バンドー化学株式会社 Respiration measurement method, and respiration measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325799A (en) * 1964-07-13 1967-06-13 Edwia Greines Cohen Mattress alarm
US3347222A (en) * 1963-11-14 1967-10-17 Charles W Kohrer Respiration monitor
FR1570640A (en) * 1968-04-09 1969-06-13
US3658052A (en) * 1970-06-16 1972-04-25 American Electronic Lab Breathing activity monitoring and alarm device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3347222A (en) * 1963-11-14 1967-10-17 Charles W Kohrer Respiration monitor
US3325799A (en) * 1964-07-13 1967-06-13 Edwia Greines Cohen Mattress alarm
FR1570640A (en) * 1968-04-09 1969-06-13
US3658052A (en) * 1970-06-16 1972-04-25 American Electronic Lab Breathing activity monitoring and alarm device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I.B.M. Technical Disclosure Bulletin page 13, Vol. 6, No. 6, November 1963. *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196425A (en) * 1978-07-10 1980-04-01 by said David S. Weekly said Clyde E. Williams Patient activity monitoring system
US4258718A (en) * 1979-04-16 1981-03-31 Goldman Michael D Measuring respiratory air volume
US4381788A (en) * 1981-02-27 1983-05-03 Douglas David W Method and apparatus for detecting apnea
US4860766A (en) * 1983-11-18 1989-08-29 Respitrace Corp. Noninvasive method for measuring and monitoring intrapleural pressure in newborns
US4585970A (en) * 1985-03-11 1986-04-29 Koal Jan G Flexible piezoelectric switch
EP0198545A2 (en) * 1985-04-15 1986-10-22 Philips Patentverwaltung GmbH Optical movement transducer
EP0198545A3 (en) * 1985-04-15 1988-01-07 Philips Patentverwaltung GmbH Optical movement transducer
EP0200061A2 (en) * 1985-04-29 1986-11-05 Mediinvent HB Apparatus for monitoring respiration of a subject
EP0200061A3 (en) * 1985-04-29 1988-04-06 Mediinvent HB Apparatus for monitoring respiration of a subject
FR2582392A1 (en) * 1985-05-21 1986-11-28 Zie Andre Improvements to methods and devices with a view to the detection and measurement of movements and/or distance
US4732159A (en) * 1986-05-02 1988-03-22 University Of Kentucky Research Foundation Simple capsule pneumograph
WO1988008687A1 (en) * 1987-05-12 1988-11-17 Fore Don C Respiration monitor
US4838279A (en) * 1987-05-12 1989-06-13 Fore Don C Respiration monitor
US5277194A (en) * 1989-01-31 1994-01-11 Craig Hosterman Breathing monitor and stimulator
EP0436318A1 (en) * 1989-12-29 1991-07-10 Sentinel Monitoring, Inc. Sensor applicator
US5435317A (en) * 1990-06-14 1995-07-25 Lesbar Pty Limited Respiratory monitor and stimulus imparting device and method
US5727562A (en) * 1996-07-11 1998-03-17 Beck; Gregory S. Pneumatically sensed respiration monitor & method
US5774055A (en) * 1997-06-09 1998-06-30 Pomerantz; David Infant monitoring device
US6113550A (en) * 1997-07-29 2000-09-05 The University Of Queensland Plethysmograph
US5914660A (en) * 1998-03-26 1999-06-22 Waterview Llc Position monitor and alarm apparatus for reducing the possibility of sudden infant death syndrome (SIDS)
US6475157B2 (en) 2001-01-24 2002-11-05 The University Of Queensland Seal for use in a volume displacement plethysmograph
JP2011098214A (en) * 2004-03-24 2011-05-19 Dainippon Sumitomo Pharma Co Ltd Biological information measuring garment having sensor, biological information measuring system and equipment, and control method of equipment
US20090119841A1 (en) * 2007-11-13 2009-05-14 Mitsuru Takashima Bed apparatus and method of determining body movement
WO2010027515A1 (en) 2008-09-05 2010-03-11 Vivometrics, Inc. Noninvasive method and system for measuring pulmonary ventilation
US20110009766A1 (en) * 2008-09-05 2011-01-13 Mccool Franklin Dennis Noninvasive method and system for measuring pulmonary ventilation
US8790273B2 (en) 2008-09-05 2014-07-29 Adidas Noninvasive method and system for measuring pulmonary ventilation
US20110130643A1 (en) * 2009-09-01 2011-06-02 Adidas Ag Noninvasive Method And System For Monitoring Physiological Characteristics And Athletic Performance
US8971936B2 (en) 2009-09-01 2015-03-03 Adidas Ag Multimodal method and system for transmitting information about a subject
US20110054290A1 (en) * 2009-09-01 2011-03-03 Adidas AG, World of Sports Method and System for Interpretation and Analysis of Physiological, Performance, and Contextual Information
US20110050216A1 (en) * 2009-09-01 2011-03-03 Adidas Ag Method And System For Limiting Interference In Magnetometer Fields
US20110054270A1 (en) * 2009-09-01 2011-03-03 Adidas AG, World of Sports Multimodal Method And System For Transmitting Information About A Subject
US20110105861A1 (en) * 2009-09-01 2011-05-05 Adidas Ag World Of Sports Physiological Monitoring Garment
US20110054289A1 (en) * 2009-09-01 2011-03-03 Adidas AG, World of Sports Physiologic Database And System For Population Modeling And Method of Population Modeling
JP2011107126A (en) * 2009-09-01 2011-06-02 Adidas Ag Method and system for limiting interference in magnetometer fields
EP2289403A1 (en) 2009-09-01 2011-03-02 Adidas AG Method and system for monitoring physiological and athletic performance characteristics of a subject
US8475371B2 (en) 2009-09-01 2013-07-02 Adidas Ag Physiological monitoring garment
US20110054271A1 (en) * 2009-09-01 2011-03-03 Adidas Ag Noninvasive Method And System For Monitoring Physiological Characteristics
US20110054272A1 (en) * 2009-09-01 2011-03-03 Adidas AG, World of Sports Method And System For Monitoring Physiological And Athletic Performance Characteristics Of A Subject
US9326705B2 (en) 2009-09-01 2016-05-03 Adidas Ag Method and system for monitoring physiological and athletic performance characteristics of a subject
US9526419B2 (en) 2009-09-01 2016-12-27 Adidas Ag Garment for physiological characteristics monitoring
US9545222B2 (en) 2009-09-01 2017-01-17 Adidas Ag Garment with noninvasive method and system for monitoring physiological characteristics and athletic performance
US9801583B2 (en) 2009-09-01 2017-10-31 Adidas Ag Magnetometer based physiological monitoring garment
US9826903B2 (en) 2009-09-01 2017-11-28 Adidas Ag Multi modal method and system for transmitting information about a subject
US10194835B2 (en) 2015-04-01 2019-02-05 Medical Research Infrastructure And Health Services Fund Of The Tel Aviv Medical Center Method of monitoring volumetric change of a lung
US11389082B2 (en) 2015-04-01 2022-07-19 Medical Research Infrastructure And Health Services Fund Of The Tel Aviv Medical Center Method of monitoring volumetric change of a lung
WO2019065756A1 (en) * 2017-09-26 2019-04-04 バンドー化学株式会社 Respiration measurement method, and respiration measurement device
JP2019058348A (en) * 2017-09-26 2019-04-18 国立大学法人神戸大学 Respiration measuring method, and respiration measuring device

Similar Documents

Publication Publication Date Title
US3831586A (en) Respiration monitor
US4539559A (en) Portable, disposable warning device for detecting urine-wet undergarments
US4862144A (en) Movement monitor
US4381788A (en) Method and apparatus for detecting apnea
US5581238A (en) Pacifier with fever heat alarm device
US8106781B2 (en) Device for monitoring the condition of a human being
US4350166A (en) Apnea detector
US5036859A (en) Moisture detector and indicator
US3760794A (en) Respiration monitoring apparatus and method
US5400012A (en) Breathing monitor
US4593686A (en) Monitor for an anti-apnea device
US5241300A (en) SIDS detection apparatus and methods
US4889131A (en) Portable belt monitor of physiological functions and sensors therefor
US6765489B1 (en) Accelerometer-based infant movement monitoring and alarm device
US4169462A (en) Crib death detector
JP2001190526A (en) Posture detecting device and respiratory function measuring device
JPS5814218B2 (en) Probe detachment detection device
US6267730B1 (en) Apnea detecting system
ZA200601793B (en) Device for monitoring the condition of a human being
US9675497B1 (en) Undergarment wearable patient monitor
US5139482A (en) Fluid infusion line monitor
JP4399939B2 (en) Biological information measuring device
GB2176610A (en) Respiration monitor
CA3214854A1 (en) Sensing device for a nappy
NL1008136C2 (en) Method and device for registering movement patterns of people.