US3832310A - Detergent compositions containing aminopolyureylene resin and optical brighteners - Google Patents

Detergent compositions containing aminopolyureylene resin and optical brighteners Download PDF

Info

Publication number
US3832310A
US3832310A US00308885A US30888572A US3832310A US 3832310 A US3832310 A US 3832310A US 00308885 A US00308885 A US 00308885A US 30888572 A US30888572 A US 30888572A US 3832310 A US3832310 A US 3832310A
Authority
US
United States
Prior art keywords
resin
alkyl
weight
apu
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00308885A
Inventor
P Grand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US90133A priority Critical patent/US3703480A/en
Priority to US00090154A priority patent/US3726815A/en
Priority to AU34526/71A priority patent/AU460548B2/en
Priority to CA125,548A priority patent/CA970909A/en
Priority to GB4937671A priority patent/GB1357960A/en
Priority to DE19712155224 priority patent/DE2155224A1/en
Priority to BE775158A priority patent/BE775158A/en
Priority to AT976571A priority patent/AT322708B/en
Priority to CA127,541A priority patent/CA955390A/en
Priority to SE7114616A priority patent/SE401608B/en
Priority to NL7115801A priority patent/NL7115801A/xx
Priority to FR7140963A priority patent/FR2114751A5/fr
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Priority to US00308885A priority patent/US3832310A/en
Priority to US308884A priority patent/US3875071A/en
Application granted granted Critical
Publication of US3832310A publication Critical patent/US3832310A/en
Priority to US05/760,619 priority patent/US4312855A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4933Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having sulfur as an exocyclic substituent, e.g. pyridinethione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/88Polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/90Block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3726Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/60Optical bleaching or brightening
    • D06L4/664Preparations of optical brighteners; Optical brighteners in aerosol form; Physical treatment of optical brighteners
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/434Luminescent, Fluorescent; Optical brighteners; Photosensitizers

Definitions

  • the invention relates to improved compositions comprising a water-soluble and/or water-insoluble active material having the capacity to impart a residual characteristic to surfaces treated therewith such as antibacterial compounds, tarnish inhibitors, ultra-violet absorbers, fluorescent brighteners, bluing agents and skin treating materials and an aminopolyureylene (APU) resin in an amount effective to enhance the effects of the active materials.
  • APU resins appear to enhance the deposition and/or retention of the water-soluble and water-insoluble active substances on the surfaces contacted therewith.
  • the capacity of the APU resin to improve the effectiveness of the active materials on surfaces contacted there with surprisingly is maintained in the presence of watersoluble organic detergents and, therefore, detergent compositions containing the mixture of active material and APU resin represent preferred embodiments.
  • Such detergent compositions include dishwashing detergents, shampoos, laundry detergents, hard-surface cleaners and toilet bars.
  • the effectiveness of the APU resins in the presence of minor and major amounts of water-soluble organic detergents is surprising because the effectiveness of the active materials is due to the deposition and/or retention of the active materials on surfaces contacted therewith and detergents normally tend to minimize deposition and retention of such materials on the washed surfaces.
  • the APU resin may unite either with the active material or the contacted surface to increase the affinity of the active material for the surface. In many cases, an increase in the weight of active material retained by the surface has been quantitatively verified. However, no absolute mechanism has been defined and the invention is not limited to any particular theory.
  • the improved compositions of this invention consist essentially of a mixture of an aminopolyureylene resin having a molecular weight in the range of about 300 to 100,000 and a water-soluble or water-insoluble 3,832,310 Patented Aug. 27, 1974 active material having the capacity to impart a residual property to surfaces treated therewith and selected from the group consisting of (A) antibacterial compounds, (B) tarnish inhibitors, (C) ultra-violet absorbers, (D) optical brighteners, (E) bluing agents and (F) skin-treating compounds, the weight ratio of resin to active material being effective to improve the effects of the active material and selected from the range of 1:1 to 20:1 preferably 1:1 to 5:1.
  • Preferred compositions are detergent compositions comprising 2% to 99% by weight of a water-soluble, organic detergent, 0.05% to 5% by Weight of aminopolyureylene resin and about 0.05 to 5% by weight of active material.
  • a method for improving the effectiveness of active materials on surfaces contacted therewith which comprises contacting the surface with a water solution or dispersion of the active material and an effective amount of the aminopolyureylene resin sutficient to improve the effect of the active material retained on the treated surface after the contacting solution is removed.
  • the APU resins suitable for use in the described compositions and method have a molecular weight in the range of about 300 to 100,000 and are characterized by the following repeating unit:
  • suitable APU resins include both the polyureaand the polythiourea-containing compounds.
  • Preferred APU resins have a repeating unit where Y is oxygen, n is 3, and X is selected from the group consisting of NC alkyl and CH2CH2 Generally, the number of repeating units in the resin will be sufficient to yield a polymer having a molecular weight in the range of about 300 to 100,000.
  • Preferred APU resins have an average molecular weight in the range of 1,000 to 20,000 and a particularly preferred resin is the reaction product of equimolar quantities of N-methyl, bis(3-amino-propyl) amine and urea having a molecular weight of about 4,300.
  • the molecular weight of the APU resins is based upon aqueous gel permeation chromatographic analysis. The separation is carried out in oxalic acid solution, adjusted to pH 3.5, on three Corning controlled-pore glass columns (nominal pore sizes 175, 125 and A.) in series. Detection is by differential refractometer. Reference compounds are dextran polysaccharides of moleucular weights of 150,000, 110,000, 40,000, 20,000 and 10,000 and sucrose and galactose.
  • the APU resins which can be used in the compositions of this invention are prepared by reacting, for example, 145 grams of N-methyl bis (3-aminopropyl) amine (1.0 mole) and 60 grams of urea (1.0 mole) in a 3-necked flask equipped with a therometer, mechanical stirrer, condenser, and nitrogen sparge tube. Nitrogen is bubbled slowly through the solution throughout the course of the reaction. The solution is heated to 140 C. over a 20- minute interval where ammonia begins to evolve. The solution is further heated to 250 C. over a 30-minute interval and allowed to cool.
  • the product is a hard, resinous powder (Resin A) having a molecular weight of about 4,300.
  • the secondary amine analogues can be made by the above process if his (3-aminopropyl) amine or bis (2-aminoethyl) amine are reacted with urea or thiourea.
  • the piperazine analogues are made by reacting N,N- di(3-aminopropyl) piperazine or N,N'-di (Z-aminoethyl) piperazine with urea or thiourea.
  • the N-C to C alkyl analogues are prepared by reacting N-C to C alkyl bis(3-aminopropyl) amine or N-C to C alkyl bis(2- aminoethyl) amine with urea or thiourea. Additional analogues are prepared by the following reactions:
  • the active materials which are potentiated by the APU resin are well known and have been used for treating surfaces and substrates to impart certain residual characteristics to the contacted surfaces.
  • the treated surfaces or substrates include proteinaceous materials such as hair and skin, textiles such as cotton, rayon and synthetic fibers, and porcelain, wood, plastic and metal.
  • Such active materials may be water-soluble such as cetyl dimethyl benzyl ammonium bromide and gelatin or water-insoluble such as zine 2-pyridinethiol-1-oxide and optical brighteners.
  • the Water-insoluble materials are usually in the form of finely divided particles having a diameter in the range of about 0.5 to 50 microns.
  • Suitable active materials include antibacterial compounds, tarnish inhibitors, ultra-violet absorbers, optical brighteners, bluing agents and skin treating materials such as hydrolyzed proteins, silicones and polyacrylamides.
  • Antibacterial compounds which may be used in the compositions include water-soluble and water-insoluble salts of Z-pyridinethiol-l-oxide, substituted salicylanilides, substituted carbanilides, halogenated bisphenols, monohigher alkyl quaternary ammonium salts, and 5,7 diiodo- 8-hydroxyquinoline.
  • Preferred antibacterial compounds include the waterinsoluble salts, e.g., zinc, cadium, zirconium, tin and aluminum, and water-soluble salts, e.g., sodium and potassium, of Z-pyridinethiol-l-oxide which has the following structural formula in tautomeric form.
  • the zinc and sodium salts of Z-pyridinethiol-l-oxide are particularly preferred.
  • Suitable antibacterial compounds are the substituted bisphenols having the formula OH OH Xn X wherein X is a halogen such as chlorine or bromine, n is 1-3 and R is an alkylene of '1-4 carbon atoms or divalent sulfur.
  • Typical compounds include bis(3,5,6-trichloro-2- hydroxyphenyl) methane or sulfide, bis(5-chloro-2-hydroxyphenyl)methane and bis (3,5-dichloro 2 hydroxyphenyllmethane or sulfide.
  • Suitable antibacterial substituted salicylani'lides have the structural formula wherein Y is hydrogen, halogen, or trifiuoromethyl, W is halogen or ethoxy, and W is hydrogen or halogen. Included among the suitable carbanilides are 3,4,4'-trichlor-ocarbanilide; 4,4'-trifluoromethyl-3',4,4' trichlorocarbanilide; 3,3-bis(trifiuoromethyl-4-ethoXy-4' chlorocarbanilide; and 3,5 bis(trifluoromethyl) 4 chlorocarbanilide.
  • antibacterial materials are the mono-higher-alkyl quaternary ammonium salts having the following struc tural formula:
  • R2 [R1l IR3] A wherein R is C to C alkyl, R and R are each C -C alkyl, R; is (D C alkyl or benzyl and A is an anion selected from the group consisting of chlorine, bromine, iodine, and methosulfate.
  • a preferred compound is cetyl trimethyl ammonium bromide.
  • Additional useful antimicrobial compounds include 5,7- di-iodo 8 hydroxy quinoline, 1,6 di(4 chlorophenyldiguanado) hexane, and 5-chloro-2(2,4-dichlorophenoxy) phenol, C to C isoquinolinium halides, such as lauryl isoquinolinium bromide, and C3-C22 alkyl pyridinium halide.
  • Ultraviolet absorbers potentiated by APU resins have the structural formula where X, Y, and Z are selected from the group consisting of hydrogen, hydroxy, C to C alkoxy and carboxy, at least one of said X, Y, and Z being oxy.
  • Preferred compounds include Z-hydroxy-4-n-octoxy-benzophenone and 2-hydroxy-4-methoxy-Z'-carboxy-benzophenone.
  • optical or fuoroescent brightener active materials which are potentiated by the APU resins are selected from the group consisting of stilbene disulfonates, quaternized aminoalkyl substituted phenyl su-lfonamides of aryl pyrazolines, substituted styrylnaphth oxazoles, and substituted aminocoumarins.
  • CHzCH2OH and Y is NHQ, momoniomz, or NEG-00m.
  • Suitable compounds are disodinm 4,4 bis [4-anilino-6- methoxyanilino-s-triazin-Z-yl amino] 2,2 stilbene disulfonate and disodium 4,4 bis(4,6 dianilino s triazin-2-yl amino) 2,2 stil'bene-disulfonate.
  • Suitable quaternized aminoalkyl substituted phenyl sulfonamides of aryl pyrazoline have the following formula:
  • X is hydrogen, phenyl, or halogenated phenyl with not more than one X being hydrogen and Y is a quaternized Q-somnnmmxnn wherein R is C -C alkyl and R and R are each selected from the group consisting of hydrogen and C C alkyl.
  • a typical compound is quaternized-l-p(sulfonyl-" -di-methyl aminopropyl amido) phenyl 3 p chlorophenyl pyrazoline.
  • Suitable oxazole fluorescent brighteners have the structural formula:
  • CCH CH R r wherein R is hydrogen or C -C alkyl.
  • R is hydrogen or C -C alkyl.
  • a preferred compound is 4 methyl, 7 dimethyl amino coumarin.
  • a bluing material which is potentiated by APU resin is ultramarine blue.
  • This is a well-known blue pigment occurring naturally as mineral the lapis lazuli. It can be made, for example, by igniting a mixture of kaolin, sodium carbonate or sulfate, sulfur, and carbon. It is insoluble in water and is stable when in contact with bleaching agents, alkali, and light. Details for synthetic ultramarines are given in the text Ultramarines, Their History and Characteristics, Reckitts (Colours) Ltd., Hull, England. Preferred are micropulverized, synthetic ultramarine blues, particularly grades RS4'RS8 provided by Reckitts.
  • the pigment is in the form of particles substantially all of which exhibit a diameter of less than about 0.05 millimeter, and is characterized by the ability to impart a faint blue visible shade to fabrics treated therewith without staining such fabrics when used at recommended concentration and fashion, being generally considered to be non-substantive, or at least non-accumulative, on fabrics.
  • the skin-treating materials which are enhanced by the APU resins are the water-soluble, substantive proteins.
  • proteins are substantive to the hair and skin in the presence of detergents.
  • Suitable proteins are water-soluble polypeptides, having a molecular Weight in the range of about (amino acid) to about 20,000, preferably from about 800 to 12,000.
  • Such polypeptides are obtained by hydrolysis of protein materials such as hides, gelatin, collagen, and the like, with collagen protein being preferred, using well-known processes. During hydrolysis the protein materials are gradually broken down into their constituent polypeptides and amino acids by prolonged heating with acids, e.g., sulfuric acid, or alkalis, e.g., sodium hydroxide, or treatment with enzymes, e.g., peptidases.
  • polypeptides are formed, and as hydrolysis proceeds these are converted progressively to simpler and simpler polypeptides, to tripeptides, dipeptides, and finally to amino acids. It is obvious that the polypeptides derived from proteins are complex mixtures.
  • the preferred hydrolysates are obtained from boneor skin-derived collagen protein by enzymatic hydrolysis and are sold under the trade names WSP-X-250 and WSP-X1000 of Wilson Pharmaceutical and Chemical Corporation.
  • APU resins include ethylene oxide polymers having a molecular weight in the range of about 500,000 to 1,000,000 which are sold under the trade name Polyox.
  • the water-soluble organic detergent materials which can be used in forming the preferred detergent compositions of this invention may be selected from the group consisting of anionic, nonionic, amphoteric, zwitterionic, polar nonionic, and cationic detergents, and mixtures of two or more of the foregoing detergents.
  • the anionic surface-active agents include those surfaceactive or detergent compounds which contain an organic hydrophobic group containing generally 8 to 26 carbon atoms and preferably 10 to 18 carbon atoms in their molecular structure, and at least one water-solubilizing group selected from the group of sulfonate, sulfate, carboxylate, phosphonate and phosphate so as to form a water-soluble detergent.
  • anionic detergents which fall within the scope of the anionic detergent class include the water-soluble salts, for example, the sodium, ammonium, and alkylolammonium salts, of higher fatty acids or resin salts containing about 8 to 20 carbon atoms, preferably 10 to 18 carbon atoms.
  • Suitable fatty acids can be obtained from oils and waxes of animal or vegetable origin, for example, tallow, grease, coconut oil, tall oil and mixtures thereof.
  • Particularly useful are the sodium and potassium salts of the fatty acid mixtures derived from coconut oil and tallow, for example, sodium coconut soap and potassium tallow soap.
  • the anionic class of deteregents also include the watersoluble sulfated and sulfonated synthetic detergents having an alkyl radical of 8 to 26, and preferably about 12 to 22 carbon atoms.
  • alkyl includes the alkyl portion of the higher acyl radicals.
  • the sulfonated anionic detergents are the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, for example, the sodium, potassium, and ammonium salts of higher alkyl benzene sulfonates, higher alkyl toluene sulfonates, higher alkyl phenol sulfonates and higher naphthalene sulfonates.
  • the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, for example, the sodium, potassium, and ammonium salts of higher alkyl benzene sulfonates, higher alkyl toluene sulfonates
  • a preferred sulfonate is linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers, that is, wherein the benzene ring 18 preferably attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low.
  • Partlcularly preferred materials are set forth in U.S. P'at. 3,320,174.
  • Suitable anionic detergents are the olefin sulfonates, including long-chain alkene sulfonates, longchain hydroxyalkane sulfonates or mixtures of alkene sulfonates and hydroxylalkane sulfonates.
  • sulfate or sulfonate detergents are paraffin sulfonates containing about to 20 and preferably about to carbon atoms
  • the primary paraffin sulfonates are made by reacting long-chain alpha olefins and bisulfites are paraflin sulfonates having the sulfonated group distributed along the paraffin chain as shown in U.S. Pats. 2,503,280; 2,507,088; 3,260,741; 3,372,188; and German Pat.
  • sodium and potassium sulfates of higher alcohols containing 8 to 18 carbon atoms such as sodium lauryl sulfate and sodium tallow alcohol sulfate
  • sodium and potassium salts of tx-sulfofatty acid esters containing about 10 to 20 carbon atoms in the acyl group for example, methyl wsulfomyristate and methyl wsulfotallowate, ammonium sulfates of monoor di-glycerides of higher (C -C fatty acids, for example, stearic monoglyceride monosulfate
  • the suitable anionic detergents include also the C to C acyl sarcosinates (for example, sodium lauroyl sarcrosinate), sodium and potassium salts of the reaction product of higher fatty acids containing 8 to 18 carbon atoms in the molecule esterified with isethionic acid, and sodium and potassium salts of the C to C acyl N- methyl taurides, for example, sodium cocoyl methyl taurate and potassium stearoyl methyl taurate.
  • C to C acyl sarcosinates for example, sodium lauroyl sarcrosinate
  • sodium and potassium salts of the reaction product of higher fatty acids containing 8 to 18 carbon atoms in the molecule esterified with isethionic acid and sodium and potassium salts of the C to C acyl N- methyl taurides, for example, sodium cocoyl methyl taurate and potassium stearoyl methyl taurate.
  • Anionic phosphate surfactants in which the anionic solubilizing group attached to the hydrophobic group is an oxyacid of phosphorous are also useful in the detergent compositions.
  • Suitable phosphate surfactants are the sodium, potassium, and ammonium alkyl phosphate esters such as in which R represents an alkyl chain containing from about 8 to 20 carbon atoms or an alkyl phenyl group having 8 to 20 carbon atoms and M represents a soluble cation.
  • R represents an alkyl chain containing from about 8 to 20 carbon atoms or an alkyl phenyl group having 8 to 20 carbon atoms and M represents a soluble cation.
  • the particular anionic detergent salt will be suitably selected, depending upon the particular formulation and the proportions therein.
  • Suitable salts include the ammonium, substituted ammonium (mono-, di, and tri ethanolammonium), alkali metal (such as sodium and potassium) and alkaline earth metal (such as calcium and magnesium) salts.
  • Preferred salts are the ammonium, triethanolammonium, sodium, and potassium salts of the higher alkyl sulfates and the C to C acyl sarcosinates.
  • the nonionic snythetic organic detergents are generally the condensation product of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups. Practically any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a nonionic detergent. Further, the length of the polyetheneoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
  • the nonionic detergents include the polyethylene oxide condensate of one mole of alkyl phenol containing from about 6 to 12 carbon atoms in a straightor branchedchain configuration with about 5 to 30 moles of ethylene oxide, for example, nonyl phenol condensed with 9 moles of ethylene oxide, dodecyl phenol condensed with 15 moles of ethylene and dinonyl phenol condensed with 15 moles of ethylene oxide. Condensation products of the corresponding alkyl thiophenols with 5 to 30 moles of ethylene oxide are also suitable.
  • Nonionics are the polyoxyethylene polyoxypropylene adducts of l-butanol.
  • the hydrophobe of these anionics has a minimum molecular weight of 1,000 and consists of an aliphatic monohydric alcohol containing from 1 to 8 carbon atoms to which is attached a heteric chain of oxyethylene and oxypropylene.
  • the weight ratio of oxypropylene to oxyethylene covers the range of 95:5 to :15. Attached to this is the hydrophilic polyoxyethylene chain which is from 44.4 to 54.6 of the total molecular weight.
  • nonionic detergent class also included in the nonionic detergent class are the condensation products of a higher alcohol containing about 8 to 18 carbon atoms in a straight or branchedchain configuration condensed with about 5 to 30 moles of ethylene oxide, for example, lauryl-myristyl alcohol condensed with about 16 moles of ethylene oxide.
  • a particularly useful group of nonionics is marketed under the trade name Pluronics.
  • the compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
  • the molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4,000 and preferably 1,200 to 2,500.
  • the addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole.
  • the molecular weight of the block polymers varies from 1,000 to 15,000, and the polyethylene oxide content may comprise 20% to 80% by weight.
  • Zwitterionic detergents such as the betaines and sulfobetaines having the following formula are also useful:
  • R is an alkyl group containing about 8 to 18 carbon atoms
  • R and R are each an alkylene or hydroxyalkylene group containing about 1 to 4 carbon atoms
  • R is an alkylene or hydroxyalkylene group containing 1 to 4 carbon atoms
  • X is C or 8:0.
  • the alkyl group can contain one or more intermediate linkages such as amido, ether, or polyether linkages or nonfunctional substituents such as hydroxyl or halogen which do not substantially affect the hydrophobic character of the group.
  • the detergent is called a betaine
  • X is 620
  • the detergent is called a sulfobetaine or sultaine.
  • Preferred betaine and sulfobetaine detergents are l-(lauryl dimethylammonio) acetate, l-(myristyl dimethylammonio) propane-3-sulfonate, and l-(myristyldimethylammonio -2-hydroxy-propane-3-sulfonate.
  • the polar nonionic detergents are those in which the tween two atoms, for example, N O, P O, As O, and hydrophilic group contains a semi-polar bond directly be- S O. There is charge separation between the two directly bonded atoms, but the detergent molecule bears no net charge and does not dissociate into ions.
  • the polar nonionic detergents of this invention include open-chain aliphatic amine oxides of the general formula R R R N- O.
  • R is an alkyl, alkenyl, or monohydroxyalkyl radical having about 10 to 16 carbon atoms, R and R are each selected from the group consisting of methyl, ethyl, propyl, ethanol, and propanol radicals.
  • operable polar nonionic detergents are the openchain aliphatic phosphine oxides having the general formula R R R O wherein R is an alkyl, alkenyl, or monohydroxyalkyl radical ranging in chain length from 10 to 18 carbon atoms, and R and R are each alkyl and monohydroxyalkyl radicals containing from 1 to 3 carbon toms.
  • ampholytic detergents include the alkyl beta-aminopropionates, RN(H)C H COOM; the alkylbetaiminodipropionates, RN(C H COOM) the alkyl and hydroxy alkyl taurinates, RN(CH )C H SO M; and the long-chain imidazole derivatives having the following formulas:
  • R is an acyclic group of about 7 to 17 carbon atoms
  • W is selected from the group of R OH, RgCOOM
  • R OR Y is selected from the group consisting of OH-
  • R OSO- R is an alkylene or hydroxyalkylene group containing 1 to 4 carbon atoms
  • R is selected from the group consisting of alkyl, alkyl aryl and fatty acyl glyceride groups having 6 to 18 carbon atoms in the alkyl or an acyl group
  • M is a water-soluble cation, for example, sodium, potassium, ammonium, for alkylolammonium.
  • Formula I detergents are disclosed in Volume II of Surface Active Agents and Detergents and Formula II detergents are described in US. 2,773,068; US. 2,781,354; and US 2,781,357.
  • the acyclic groups may be derived from coconut oil fatty acids (a mixture of fatty acids containing 8 to 18 carbon atoms), lauric fatty acid, and oleic fatty acid, and the preferred groups are C to C alkyl groups.
  • Preferred detergents are sodium N-lauryl betaaminopropionate, disodium N-lauryl iminodipropionate, and the disodium salt of 2-lauryl-cycloimidium 1 hy droxyl, l-ethoxyethanoic acid, l-ethanoic acid.
  • Cationic surface active agents may also be employed. Such agents are those surface active detergent compounds which contain an organic hydrophobic group and a cationic solubilizing group. Typical cationic solubilizing groups are amine and quaternary groups.
  • Suitable synthetic cationic detergents are normal primary amines RNH wherein R is C to C the diamines such as those of the type RNHC H NH wherein R is an alkyl group of about 12 to 22 carbon atoms, such as N-Z-aminoethyl stearyl amine and N-2- aminoethyl myristyl amine; amide-linked amines such as those of the type R CONHC H NH wherein R is an alkyl group of 8 to carbon atoms, such as N-Z-amino ethylstearyl amide and N-amino ethylmyristyl amide; quaternary ammonium compounds wherein typically one of the groups linked to the nitrogen atom is an alkyl group of about 8 to 22 carbon atoms and three of the groups linked to the nitrogen atom are alkyl groups which contain 1 to 3 carbon atoms, including alkyl groups bearing inert substituents, such as phenyl groups, and there is
  • the alkyl group may contain intermediate linkages such as amide which do not substantially affect the hydropho-bic character of the group, for example, stearyl amido propyl quaternary ammonium chloride.
  • Typical quaternary ammonium detergents are ethyl-dimethyl-stearyl ammonium chloride, benzyl-dimethylstearyl ammonium chloride, trimethyl-stearyl ammonium chloride, trimethyl-cetyl ammonium bromide, dimethyl-ethyl-lauryl ammonium chloride, dimethyl-propyl-myristyl ammonium chloride, and the corresponding methosulfates and acetates.
  • Preferred detergent compositions of this invention are the liquid, antimicrobial shampoo compositions suitable for washing the hair and scalp.
  • Such compositions consist essentially of about 10% to by weight of a detergent selected from the group consisting of non-soap aionic, amphoteric, and zwitterionic detergents from 0.1% to 3% by weight of water-soluble or water-insoluble particulate antimicrobial active material, 0.5% to 3.5% of aminopolyureylene resin, and the balance primarly water.
  • the shampoo compositions may also include minor amounts of ethanol or isopropanol perfume, color, stearate opacifying agents, ethylene diamine tetracetate or citrate sequestering agents, thickening agents, and fatty acid alkylolamide foam boosters.
  • compositions falling within the scope of the invention are the heavy-duty laundering compositions containing APU polymers and at least one of the active materials potentiated by the polyaminopolyureylene resins, such as antibacterials, fluorescent brighteners, and bluing agents.
  • Such compositions generally consist essentially of about 8% to 40% by weight of non-soap anionic or detergent, about 0.1% to 3% by Weight of active material, about 0.5% to 3.5 by weight of APU resin and the balance water-soluble inorganic or organic builder salt.
  • Suitable builders include sodium sulfate, sodium carbonate, and sodium nitrilotriacetate as well as the corresponding potassium compounds.
  • Other compositions are sodium carboxymethylcellulose, polyvinylalcohol, per fume, color, etc.
  • the foregoing laundering detergents may also be prepared in liquid form.
  • Suitable liquids consist essentially of about to 20% by weight of non-soap anionic or nonionic detergent, to 25% by Weight of potassium pyrophosphate, sodium silicate orsodium nitrilotriacetate, 4% to 12% by Weight of sodium or potassium xylene or toluenesulfonate, 0.1% to 3.0% by Weight of active material, 0.5% to 3.5% by weight of APU resin, and the balance primarily Water.
  • Suitable additives which may be added are sodium carboxymethylcellulose, thickeners, color, and perfume.
  • the detergent material may be soap, anionic, amphoteric, nonionic or mixtures of the foregoing detergents.
  • the bars may include color, perfume, free fatty acids, sodium chloride, and fatty acid alkanolamide suds builders.
  • detergent compositions can be prepared by methods well known in the art.
  • shampoos and built liquid detergents are prepared by mixing
  • particulate laundering detergents are prepared by mixing, chemical drying or spray drying.
  • the ability of the APU resins to potentiate the deposition of the Water-insoluble materials which function as antibacterial agents onto porteinaceous substrates, such as hair and skin, is demonstrated in the following radioactive substantivity test.
  • Substantivity is determined by stirring a 1.27-centirneter diameter circular gelatin disk weighing about 40 milligrams for above five minutes in 10 grams of an aqueous medium containing a known concentration of radioactive tagged material such as zinc 2-pyridinethiol-1-oxide, rinsing the disk five times in 10 milliliters of Water, drying, and measuring the radiation emission with the aid of a radiation detector.
  • the absolute degree of deposition of the material is determined by comparing the observed counts with the counts emitted by a 'kIlOWIl weight of the radioactive material.
  • the effect of APU resin on deposition can be readily ascertained by repeating the test with a known weight of APU present.
  • the effect of detergents can be quantitatively measured by including detergents in the test composition.
  • Example 1 An aqueous dispersion of Zinc Z-pyridinethiol-l-oxide 18 prepared by dispersing 0.04 grams of radioactive zinc 2-pyridinethiol-1-oxide containing zinc 65 in one gram of water. The resultant aqueous dispersion is diluted with 8.96 grams of water With agitation, and the substantivity of the diluted dispersion is determined using the foregoing substantivity procedure. The results of the evaluation indicate 40.9 micrograms of zinc-2-pyridinethiol-l-oxide are deposited on the disk from the aqueous mixture containing 0.4% by weight of the 2-pyridinethiol-1-oxide.
  • Example 2 When the procedure of Example 1 is repeated using an aqueous solution of 0.25% by Weight of radioactive (C-14) cetyl trimethylammonium bromide (CTAB) at pH 4.5 as the test medium, 294 micrograms of CTAB are deposited on the gelatin disk. Repetition of this test in the presence of 0.75% by weight of the APU resin used in Example 1 results in the deposition of 679 micrograms of CTAB, an increase in deposition of about When the pH of the test solution is increased to 8.5, a deposition of 259 micrograms of CT AB is obtained in the absence of APU resin and a deposition of 734 micrograms is obtained in the presence of 3% by weight of the APU resin of Example 1. Thus, a increase in deposition CTAB is noted at pH 8.5.
  • C-14 radioactive cetyl trimethylammonium bromide
  • Example 3 Example 2 is repeated with the exception that a 10% aqueous ethanol mixture is substituted for Water in the test solution and the pH is adjusted to 6.5.
  • a deposition value of 202 micrograms of CTAB is noted in the absence of APU resin, and a deposition value of 643 micrograms of CTAB is noted in the presence of 0.75% by weight of the APU resin of Example 1. This represents an increase in depositon of about 220
  • only 227 micrograms of CTAB are deposited when the concentration of CTAB in the test solution is increased to 1% by weight.
  • the APU resin is significantly more effective in enhancing deposition than an increase in the CTAB concentration from 0.25 to 1%, a 300% increase.
  • Example 4 When the procedure of Example 1 is repeated using a 0.5%-by-Weight aqueous alcoholic (70%) dispersion of radioactive (C-14) bis(3,5,6 trichloro-2-hydroxyphenyl) methane as the test solution, the radioactivity of the gelatin disk averages 2,100 counts per minute (c.p.m.). Repetition of the test in the presence of 1.25% concentration of the APU resin of Example 1 results in an average radioactivity of 13,200- c.p.m. Thus, the presence of the APU resin increases the deposition of the antimicrobial compound by about 500%. Substantially similar results are noted when either lamb skin or human callus tissue is substituted for the gelatin disk in the foregoing experiment.
  • the APU resin of Example 1 can be replaced by either a resin having a molecular weight of about 4,600 and the repeating unit HCH N+(CH (CH NHC(O)NHH- or a resin having a molecular weight of about 6,700 and the repeating unit with substantially similar results.
  • the substituted methane may be substituted with 5-chloro-2(2,4 dichlorophenoxy) phenol with substantially similar results.
  • Example 5 Tests of the following shampoo illustrate the improved effects attributable to the APU resin. This shampoo is effective to inhibit the growth of Pityrosporum ovale.
  • radioactive disks obtained using the foregoing evaluation technique are plated in a standard agar medium inoculated with P. ovale, and the diameters of the zone of inhibition are measured after twenty-four hours of incubation. These results are shown in Table I together with results of nonradioactive disks. [Resin A alone has no zone of inhibition.
  • Example 6 Example 5 is repeated with the exception that concentration of zinc 2-pyridinethiol-1-oxide in the shampoo is reduced to 0.4% 17.4 micrograms of zinc 2-pyridinethiol l-oxide are deposited on the disk. In the absence of the 2% of APU resin, 6.1 micrograms of zinc 2-pyridinethioll-oxide are deposited on the disk. Again, APU resin significantly enhances the deposit of zinc 2-pyridinethiol-1- oxide on a proteinaceous substrate.
  • Example 7 The following liquid detergent composition is an effective antimicrobial detergent.
  • Example 8 Another antimicrobial liquid detergent composition having a pH of 8.2 follows.
  • Cocoamidopropyl dimethyl betaine* 22.4 Sodium N-(Z-hydroxyhexadecyl) methyl taurate-.. 6.0 Sodium hexylbenzene sufonate 0.8 Lauryl dimethyl amine oxide 0.6 Tribomosalicylanilide 1.0 Resin A 3.0 Water Balance *Coco corresponds to the mixture of alkyls derived from a middle cut of coconut oil, that is, 1% C10, 65% C12, 27% C14, and 7% Cm.
  • composition When the foregoing composition is formulated with a radioactive (C-l4 tagged) tribromosalicylanilide and the deposition evaluated as described in Example 1, 1.5 micrograms of antibacterial agent are noted on the gelatin disk. As only 0.5 micrograms are deposited in the absence of the APU resin, use of the APU resin increases deposit by 200%.
  • Example 9 Substitution of 1% of trichlorocarbanilide for the tribromosalicylanilide in the composition of Example 8 yields substantially similar results.
  • Example 10 A lotion shampoo composition exhibiting effectiveness against P. ovale follows.
  • APU resin achieves a 133% increase in deposition of that agent.
  • Example 11 The following composition is an improved shampoo composition.
  • Triethanolamine lauryl sulfate 21 Coconut monoethanolamide Triethanolamine 0.7 Sodium chloride 0.8 Methyl cellulose 0.9 Ethanol 7.0 Resin A 3.0 Fluorescent agent 1.0 Water Balance
  • the fluorescent agents listed in Table III When the foregoing composition is formulated with the fluorescent agents listed in Table III and a 1.25% concentration thereof is used to contact a 1" x 1" W001 swatch for five minutes, the fluorescent values in Table III are obtained on the wool swatch after it is rinsed with five consecutive Ill-milliliter portions of water and air dried.
  • Alkyl group corresponds to the mixture of alkyls obtained from middle cut of coconut oil.
  • Wilson Protein WSP-X25O obtained by enzymatic hydrolysis of collagen and having an average molecular weight of about 1,000.
  • the effectiveness of the aminopolyureylene resin in improving the conditioning properties of the protein is shown by the following procedure.
  • a bleached hair tress about 2.5 inches (weight 55 grams) is placed in contact with 55 grams of the shampoo composition of Example 12 and the contact is maintained for 30 minutes.
  • the hair tress is then removed from the shampoo, subjected to five consecutive rinses with 55 milliliters of deionized water each 1 5 time, air dried, and analyzed spectrophotometircally for hydroxyproline.
  • Hydroxyproline is an amino acid found in hydrolyzed protein, but not in hair.
  • the protein and aminopolyureylene resin are soluble in the shampoo composition having a pH of 7.5 and the test results for the composition are set forth in Table IV.
  • aminopolyureylene resin improves the deposition of water-soluble protein onto hair and thereby achieves improved conditioning effects.
  • Example 12 Substitution of a benzophenone ultraviolet absorber or a silicone for the gelatin in Example 12 provides composi tions having substantially similar improved effects.
  • Example 13 A heavy-duty liquid detergent composition having improved resistance to color fading because of ultraviolet light follows:
  • 2,2-hydroxy-4,4-dimethoxybenzophenone may be substituted for the benzophenone in the composition of Example 13 with substantially similar improved effects.
  • Example 14 A built particulate laundry detergent composition exhibiting improved antibacterial effectiveness has the following composition:
  • Example 15 A detergent bar composition exhibiting improved resistance to copper discoloration has the following composition.
  • a detergent composition consisting essentially of from 2% to 99% by weight of a water-soluble organic detergent selected from the group consisting of anionic, nonionic, amphoteric, zwitterionic, polar nonionic, and cationic detergents; from .05 to by weight of an aminopolyureylene resin having a molecular weight in the range of 300 to 100,000 and having the following repeating unit:
  • composition in accordance with claim 2 wherein said active material is selected from the group consisting of disod ium 4,4 bis[4-anilino-6-methoxyanilino-s-triazin- 2yl animal-2,2 stilbene disulionate, disodium 4,4 bis (4,6 dianilino-s-triaziniyl amino) 2 2 stilbene disulfonate, Quaternized-l-Msulfonylq-dimflhyl aminopropyl amido) -v pheny'l-3-p-ehlorophenyl pyrazoline, 2-styrylnaphth (1,2-d) oxazole, and 4 methyl, 7 diethyl amino coumarin.
  • said active material is selected from the group consisting of disod ium 4,4 bis[4-anilino-6-methoxyanilino-s-triazin- 2yl animal-2,2 stilbene disulionate, disodium 4,4 bis
  • said active material is said ultraviolet absorber.
  • composition in accordance with Claim 2 wherein said detergent is selected from the group consisting of anionic, nonionic, polar nonionic, amphoteric and zvvitterionic detergents and said active material is said stilbene disulfonate fluorescent brightener.

Abstract

DETERGENT COMPOSITIONS COMPRISING A MIXTURE OF 2% TO 99% BY WEIGHT OF A WATER-SOLUBLE ORGANIC DETERGENT, 0.5% TO 5% BT WEIGHT OF AN AMINOPOLYUREYLENE RESIN HAVING A MOLECULAR WEIGHT IN THE RANGE OFABOUT 300 TO 100,000 AND 0.05% TO 5% BY WEIGHT OF AN ACTIVE MATERIAL WHICH IS AN ULTRAVIOLET ABSORBER OR A FLUORESCENT BRIGHTENER.

Description

United States Patent 3,832,310 DETERGENT COMPOSITIONS CONTAINING AMINOPOLYUREYLENE RESIN AND OPTI- CAL BRIGHTENERS Paul Sheldon Grand, South Bound Brook, N.J., assignor to Colgate Palmolive Company, New York, N.Y. No Drawing. Original application Nov. 16, 1970, Ser. No. 90,154, now Patent No. 3,726,815. Divided and this application Nov. 22, 1972, Ser. No. 308,885
Int. Cl. C11d 1/48, 1/50, 3/26 US. Cl. 252-543 8 Claims ABSTRACT OF THE DISCLOSURE Detergent compositions comprising a mixture of 2% to 99% by weight of a water-soluble organic detergent, 0.5% to by weight of an aminopolyureylene resin having a molecular weight in the range of about 300 to 100,000 and 0.05 to 5% by weight of an active material which is an ultraviolet absorber or a fluorescent brightener.
This is a divisional of application Ser. No. 90,154, filed Nov. 16, 1970, now Pat. No. 3,726,815.
DISCLOSURE The invention relates to improved compositions comprising a water-soluble and/or water-insoluble active material having the capacity to impart a residual characteristic to surfaces treated therewith such as antibacterial compounds, tarnish inhibitors, ultra-violet absorbers, fluorescent brighteners, bluing agents and skin treating materials and an aminopolyureylene (APU) resin in an amount effective to enhance the effects of the active materials. The APU resins appear to enhance the deposition and/or retention of the water-soluble and water-insoluble active substances on the surfaces contacted therewith.
The capacity of the APU resin to improve the effectiveness of the active materials on surfaces contacted there with surprisingly is maintained in the presence of watersoluble organic detergents and, therefore, detergent compositions containing the mixture of active material and APU resin represent preferred embodiments. Such detergent compositions include dishwashing detergents, shampoos, laundry detergents, hard-surface cleaners and toilet bars. The effectiveness of the APU resins in the presence of minor and major amounts of water-soluble organic detergents is surprising because the effectiveness of the active materials is due to the deposition and/or retention of the active materials on surfaces contacted therewith and detergents normally tend to minimize deposition and retention of such materials on the washed surfaces. Thus, usually only a small percentage of the active materials in a detergent composition is actually retained on a particular surface or substrate after washing and, optionally, rinsing. Accordingly, to achieve a particular level of activity, the concentrations of active material must be increasedwith an attendant increase in costwhen used as a component in a detergent composition.
While the mechanism by which the improved effects are obtained is not understood, it appears that the APU resin may unite either with the active material or the contacted surface to increase the affinity of the active material for the surface. In many cases, an increase in the weight of active material retained by the surface has been quantitatively verified. However, no absolute mechanism has been defined and the invention is not limited to any particular theory.
Generally, the improved compositions of this invention consist essentially of a mixture of an aminopolyureylene resin having a molecular weight in the range of about 300 to 100,000 and a water-soluble or water-insoluble 3,832,310 Patented Aug. 27, 1974 active material having the capacity to impart a residual property to surfaces treated therewith and selected from the group consisting of (A) antibacterial compounds, (B) tarnish inhibitors, (C) ultra-violet absorbers, (D) optical brighteners, (E) bluing agents and (F) skin-treating compounds, the weight ratio of resin to active material being effective to improve the effects of the active material and selected from the range of 1:1 to 20:1 preferably 1:1 to 5:1. Preferred compositions are detergent compositions comprising 2% to 99% by weight of a water-soluble, organic detergent, 0.05% to 5% by Weight of aminopolyureylene resin and about 0.05 to 5% by weight of active material.
Also, within the scope of the invention is a method for improving the effectiveness of active materials on surfaces contacted therewith which comprises contacting the surface with a water solution or dispersion of the active material and an effective amount of the aminopolyureylene resin sutficient to improve the effect of the active material retained on the treated surface after the contacting solution is removed.
The APU resins suitable for use in the described compositions and method have a molecular weight in the range of about 300 to 100,000 and are characterized by the following repeating unit:
(CH ),,X-(CH NHC(Y)NH-} wherein X is NH, NC to C alkyl,
GET-CH2 CH3 CH3 N N, N+ 1 I+ CH2CHz ICH3, (I3H2CHGH2OH,
(3113 (3H8 N+ N+ (EHzCHCHzCl, or JHzCH-CH2,
YisOorS,andnis2or3.
Such APU resins and their cosmetic effectiveness are set forth in the copending application of Paul Grand entitled Cosmetic Compositions filed of even date herewith.
Thus, suitable APU resins include both the polyureaand the polythiourea-containing compounds. Preferred APU resins have a repeating unit where Y is oxygen, n is 3, and X is selected from the group consisting of NC alkyl and CH2CH2 Generally, the number of repeating units in the resin will be sufficient to yield a polymer having a molecular weight in the range of about 300 to 100,000. Preferred APU resins have an average molecular weight in the range of 1,000 to 20,000 and a particularly preferred resin is the reaction product of equimolar quantities of N-methyl, bis(3-amino-propyl) amine and urea having a molecular weight of about 4,300.
The molecular weight of the APU resins is based upon aqueous gel permeation chromatographic analysis. The separation is carried out in oxalic acid solution, adjusted to pH 3.5, on three Corning controlled-pore glass columns (nominal pore sizes 175, 125 and A.) in series. Detection is by differential refractometer. Reference compounds are dextran polysaccharides of moleucular weights of 150,000, 110,000, 40,000, 20,000 and 10,000 and sucrose and galactose.
The APU resins which can be used in the compositions of this invention are prepared by reacting, for example, 145 grams of N-methyl bis (3-aminopropyl) amine (1.0 mole) and 60 grams of urea (1.0 mole) in a 3-necked flask equipped with a therometer, mechanical stirrer, condenser, and nitrogen sparge tube. Nitrogen is bubbled slowly through the solution throughout the course of the reaction. The solution is heated to 140 C. over a 20- minute interval where ammonia begins to evolve. The solution is further heated to 250 C. over a 30-minute interval and allowed to cool. The product is a hard, resinous powder (Resin A) having a molecular weight of about 4,300. The secondary amine analogues can be made by the above process if his (3-aminopropyl) amine or bis (2-aminoethyl) amine are reacted with urea or thiourea. The piperazine analogues are made by reacting N,N- di(3-aminopropyl) piperazine or N,N'-di (Z-aminoethyl) piperazine with urea or thiourea. The N-C to C alkyl analogues are prepared by reacting N-C to C alkyl bis(3-aminopropyl) amine or N-C to C alkyl bis(2- aminoethyl) amine with urea or thiourea. Additional analogues are prepared by the following reactions:
Resin A epichlorohydrin N+ JH2-CHCH2Cl H analogues CH OH, I analogues NaOH N ()HFCHCHZCI HzCH-CH2 analogues CH; CH
N+ analogues H20 N+ (JHzCH-CH1 3HzCH-CHzOH O ()H analogues CH3 Resin A dimethyl sulfate 1%? analogues The preparation of the remaining analogues is well within the skill of the art following the above techniques.
The active materials which are potentiated by the APU resin are well known and have been used for treating surfaces and substrates to impart certain residual characteristics to the contacted surfaces. The treated surfaces or substrates include proteinaceous materials such as hair and skin, textiles such as cotton, rayon and synthetic fibers, and porcelain, wood, plastic and metal. Such active materials may be water-soluble such as cetyl dimethyl benzyl ammonium bromide and gelatin or water-insoluble such as zine 2-pyridinethiol-1-oxide and optical brighteners. To facilitate activity and utility, the Water-insoluble materials are usually in the form of finely divided particles having a diameter in the range of about 0.5 to 50 microns. Suitable active materials include antibacterial compounds, tarnish inhibitors, ultra-violet absorbers, optical brighteners, bluing agents and skin treating materials such as hydrolyzed proteins, silicones and polyacrylamides.
Antibacterial compounds which may be used in the compositions include water-soluble and water-insoluble salts of Z-pyridinethiol-l-oxide, substituted salicylanilides, substituted carbanilides, halogenated bisphenols, monohigher alkyl quaternary ammonium salts, and 5,7 diiodo- 8-hydroxyquinoline.
Preferred antibacterial compounds include the waterinsoluble salts, e.g., zinc, cadium, zirconium, tin and aluminum, and water-soluble salts, e.g., sodium and potassium, of Z-pyridinethiol-l-oxide which has the following structural formula in tautomeric form.
The zinc and sodium salts of Z-pyridinethiol-l-oxide are particularly preferred.
Other suitable antibacterial compounds are the substituted bisphenols having the formula OH OH Xn X wherein X is a halogen such as chlorine or bromine, n is 1-3 and R is an alkylene of '1-4 carbon atoms or divalent sulfur. Typical compounds include bis(3,5,6-trichloro-2- hydroxyphenyl) methane or sulfide, bis(5-chloro-2-hydroxyphenyl)methane and bis (3,5-dichloro 2 hydroxyphenyllmethane or sulfide.
Suitable antibacterial substituted salicylani'lides have the structural formula wherein Y is hydrogen, halogen, or trifiuoromethyl, W is halogen or ethoxy, and W is hydrogen or halogen. Included among the suitable carbanilides are 3,4,4'-trichlor-ocarbanilide; 4,4'-trifluoromethyl-3',4,4' trichlorocarbanilide; 3,3-bis(trifiuoromethyl-4-ethoXy-4' chlorocarbanilide; and 3,5 bis(trifluoromethyl) 4 chlorocarbanilide.
Other antibacterial materials are the mono-higher-alkyl quaternary ammonium salts having the following struc tural formula:
R2 [R1l IR3] A wherein R is C to C alkyl, R and R are each C -C alkyl, R; is (D C alkyl or benzyl and A is an anion selected from the group consisting of chlorine, bromine, iodine, and methosulfate. A preferred compound is cetyl trimethyl ammonium bromide.
Additional useful antimicrobial compounds include 5,7- di-iodo 8 hydroxy quinoline, 1,6 di(4 chlorophenyldiguanado) hexane, and 5-chloro-2(2,4-dichlorophenoxy) phenol, C to C isoquinolinium halides, such as lauryl isoquinolinium bromide, and C3-C22 alkyl pyridinium halide.
The tarnish inhibitors potentiated by A=PU resins include, for example, benzotriazole and ethy-lenethiourea.
Ultraviolet absorbers potentiated by APU resins 'have the structural formula where X, Y, and Z are selected from the group consisting of hydrogen, hydroxy, C to C alkoxy and carboxy, at least one of said X, Y, and Z being oxy. Preferred compounds include Z-hydroxy-4-n-octoxy-benzophenone and 2-hydroxy-4-methoxy-Z'-carboxy-benzophenone.
The optical or fuoroescent brightener active materials which are potentiated by the APU resins are selected from the group consisting of stilbene disulfonates, quaternized aminoalkyl substituted phenyl su-lfonamides of aryl pyrazolines, substituted styrylnaphth oxazoles, and substituted aminocoumarins.
Suitable stilbene disulfonate fluorescent brighteners have the formula X K N C-NH- -CH=CH NH-C N l SOQNa O Na X X wherein X is GHQ-CH1 OH, NHQ N/ o,
CHzC 2 CH CHgOH N or NHQOCH;
CHzCH2OH and Y is NHQ, momoniomz, or NEG-00m.
Suitable compounds are disodinm 4,4 bis [4-anilino-6- methoxyanilino-s-triazin-Z-yl amino] 2,2 stilbene disulfonate and disodium 4,4 bis(4,6 dianilino s triazin-2-yl amino) 2,2 stil'bene-disulfonate.
Suitable quaternized aminoalkyl substituted phenyl sulfonamides of aryl pyrazoline have the following formula:
HzJ3JJH-X Wherein X is hydrogen, phenyl, or halogenated phenyl with not more than one X being hydrogen and Y is a quaternized Q-somnnmmxnn wherein R is C -C alkyl and R and R are each selected from the group consisting of hydrogen and C C alkyl. A typical compound is quaternized-l-p(sulfonyl-" -di-methyl aminopropyl amido) phenyl 3 p chlorophenyl pyrazoline.
Suitable oxazole fluorescent brighteners have the structural formula:
CCH=CH R r wherein R is hydrogen or C -C alkyl. A preferred compound is 4 methyl, 7 dimethyl amino coumarin.
A bluing material which is potentiated by APU resin is ultramarine blue. This is a well-known blue pigment occurring naturally as mineral the lapis lazuli. It can be made, for example, by igniting a mixture of kaolin, sodium carbonate or sulfate, sulfur, and carbon. It is insoluble in water and is stable when in contact with bleaching agents, alkali, and light. Details for synthetic ultramarines are given in the text Ultramarines, Their History and Characteristics, Reckitts (Colours) Ltd., Hull, England. Preferred are micropulverized, synthetic ultramarine blues, particularly grades RS4'RS8 provided by Reckitts. The pigment is in the form of particles substantially all of which exhibit a diameter of less than about 0.05 millimeter, and is characterized by the ability to impart a faint blue visible shade to fabrics treated therewith without staining such fabrics when used at recommended concentration and fashion, being generally considered to be non-substantive, or at least non-accumulative, on fabrics.
The skin-treating materials which are enhanced by the APU resins are the water-soluble, substantive proteins. Such proteins are substantive to the hair and skin in the presence of detergents. Suitable proteins are water-soluble polypeptides, having a molecular Weight in the range of about (amino acid) to about 20,000, preferably from about 800 to 12,000. Such polypeptides are obtained by hydrolysis of protein materials such as hides, gelatin, collagen, and the like, with collagen protein being preferred, using well-known processes. During hydrolysis the protein materials are gradually broken down into their constituent polypeptides and amino acids by prolonged heating with acids, e.g., sulfuric acid, or alkalis, e.g., sodium hydroxide, or treatment with enzymes, e.g., peptidases. First, high molecular weight polypeptides are formed, and as hydrolysis proceeds these are converted progressively to simpler and simpler polypeptides, to tripeptides, dipeptides, and finally to amino acids. It is obvious that the polypeptides derived from proteins are complex mixtures. The preferred hydrolysates are obtained from boneor skin-derived collagen protein by enzymatic hydrolysis and are sold under the trade names WSP-X-250 and WSP-X1000 of Wilson Pharmaceutical and Chemical Corporation.
Other skin-treating materials whose skin-slip or antifriction properties are enhanced by APU resins include ethylene oxide polymers having a molecular weight in the range of about 500,000 to 1,000,000 which are sold under the trade name Polyox.
The water-soluble organic detergent materials which can be used in forming the preferred detergent compositions of this invention may be selected from the group consisting of anionic, nonionic, amphoteric, zwitterionic, polar nonionic, and cationic detergents, and mixtures of two or more of the foregoing detergents.
The anionic surface-active agents include those surfaceactive or detergent compounds which contain an organic hydrophobic group containing generally 8 to 26 carbon atoms and preferably 10 to 18 carbon atoms in their molecular structure, and at least one water-solubilizing group selected from the group of sulfonate, sulfate, carboxylate, phosphonate and phosphate so as to form a water-soluble detergent.
Examples of suitable anionic detergents which fall within the scope of the anionic detergent class include the water-soluble salts, for example, the sodium, ammonium, and alkylolammonium salts, of higher fatty acids or resin salts containing about 8 to 20 carbon atoms, preferably 10 to 18 carbon atoms. Suitable fatty acids can be obtained from oils and waxes of animal or vegetable origin, for example, tallow, grease, coconut oil, tall oil and mixtures thereof. Particularly useful are the sodium and potassium salts of the fatty acid mixtures derived from coconut oil and tallow, for example, sodium coconut soap and potassium tallow soap.
The anionic class of deteregents also include the watersoluble sulfated and sulfonated synthetic detergents having an alkyl radical of 8 to 26, and preferably about 12 to 22 carbon atoms. (The term alkyl includes the alkyl portion of the higher acyl radicals.) a
Examples of the sulfonated anionic detergents are the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, for example, the sodium, potassium, and ammonium salts of higher alkyl benzene sulfonates, higher alkyl toluene sulfonates, higher alkyl phenol sulfonates and higher naphthalene sulfonates. A preferred sulfonate is linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers, that is, wherein the benzene ring 18 preferably attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low. Partlcularly preferred materials are set forth in U.S. P'at. 3,320,174.
Other suitable anionic detergents are the olefin sulfonates, including long-chain alkene sulfonates, longchain hydroxyalkane sulfonates or mixtures of alkene sulfonates and hydroxylalkane sulfonates. These olefin sulfonate detergents may be prepared in a known manuser by the reaction of S with long-chain olefins contaming 8 to 25, preferably 12 to 21 carbon atoms and having the formula RCH=CHR where R is a higher alkyl group of 6 to 23 carbons and R is an alkyl group of 1 to 17 carbons or hydrogen to form a mixture of sultones and alkene sulfonic acids which is then treated to convert the sultones to sulfonates. Other examples of sulfate or sulfonate detergents are paraffin sulfonates containing about to 20 and preferably about to carbon atoms, for example, the primary paraffin sulfonates are made by reacting long-chain alpha olefins and bisulfites are paraflin sulfonates having the sulfonated group distributed along the paraffin chain as shown in U.S. Pats. 2,503,280; 2,507,088; 3,260,741; 3,372,188; and German Pat. 735,096; sodium and potassium sulfates of higher alcohols containing 8 to 18 carbon atoms such as sodium lauryl sulfate and sodium tallow alcohol sulfate; sodium and potassium salts of tx-sulfofatty acid esters containing about 10 to 20 carbon atoms in the acyl group, for example, methyl wsulfomyristate and methyl wsulfotallowate, ammonium sulfates of monoor di-glycerides of higher (C -C fatty acids, for example, stearic monoglyceride monosulfate; sodium and alkylolammonium salts of alkyl polyethenoxy ether sulfates produced by condensing 1 to 5 moles of ethylene oxide with one mole of higher (C -C alcohol; sodium higher alkyl ir us) glyceryl ether sulfonates; and sodium or potassium alkyl phenol polyethenoxy ether sulfates with about 1 to 6 oxyethylene groups per molecule and in which the alkyl radicals contain about 8 to about 12 carbon atoms.
The suitable anionic detergents include also the C to C acyl sarcosinates (for example, sodium lauroyl sarcrosinate), sodium and potassium salts of the reaction product of higher fatty acids containing 8 to 18 carbon atoms in the molecule esterified with isethionic acid, and sodium and potassium salts of the C to C acyl N- methyl taurides, for example, sodium cocoyl methyl taurate and potassium stearoyl methyl taurate.
Anionic phosphate surfactants in which the anionic solubilizing group attached to the hydrophobic group is an oxyacid of phosphorous are also useful in the detergent compositions. Suitable phosphate surfactants are the sodium, potassium, and ammonium alkyl phosphate esters such as in which R represents an alkyl chain containing from about 8 to 20 carbon atoms or an alkyl phenyl group having 8 to 20 carbon atoms and M represents a soluble cation. The compounds formed by including about 1 to 40 moles of ethylene oxide in the foregoing esters, for example, [RO(EtO)n] PO M, are also satisfactory.
The particular anionic detergent salt will be suitably selected, depending upon the particular formulation and the proportions therein. Suitable salts include the ammonium, substituted ammonium (mono-, di, and tri ethanolammonium), alkali metal (such as sodium and potassium) and alkaline earth metal (such as calcium and magnesium) salts. Preferred salts are the ammonium, triethanolammonium, sodium, and potassium salts of the higher alkyl sulfates and the C to C acyl sarcosinates.
The nonionic snythetic organic detergents are generally the condensation product of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups. Practically any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a nonionic detergent. Further, the length of the polyetheneoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
The nonionic detergents include the polyethylene oxide condensate of one mole of alkyl phenol containing from about 6 to 12 carbon atoms in a straightor branchedchain configuration with about 5 to 30 moles of ethylene oxide, for example, nonyl phenol condensed with 9 moles of ethylene oxide, dodecyl phenol condensed with 15 moles of ethylene and dinonyl phenol condensed with 15 moles of ethylene oxide. Condensation products of the corresponding alkyl thiophenols with 5 to 30 moles of ethylene oxide are also suitable.
Still other suitable nonionics are the polyoxyethylene polyoxypropylene adducts of l-butanol. The hydrophobe of these anionics has a minimum molecular weight of 1,000 and consists of an aliphatic monohydric alcohol containing from 1 to 8 carbon atoms to which is attached a heteric chain of oxyethylene and oxypropylene. The weight ratio of oxypropylene to oxyethylene covers the range of 95:5 to :15. Attached to this is the hydrophilic polyoxyethylene chain which is from 44.4 to 54.6 of the total molecular weight.
Also included in the nonionic detergent class are the condensation products of a higher alcohol containing about 8 to 18 carbon atoms in a straight or branchedchain configuration condensed with about 5 to 30 moles of ethylene oxide, for example, lauryl-myristyl alcohol condensed with about 16 moles of ethylene oxide.
A particularly useful group of nonionics is marketed under the trade name Pluronics. The compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4,000 and preferably 1,200 to 2,500. The addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole. The molecular weight of the block polymers varies from 1,000 to 15,000, and the polyethylene oxide content may comprise 20% to 80% by weight.
Zwitterionic detergents such as the betaines and sulfobetaines having the following formula are also useful:
wherein R is an alkyl group containing about 8 to 18 carbon atoms, R and R are each an alkylene or hydroxyalkylene group containing about 1 to 4 carbon atoms, R, is an alkylene or hydroxyalkylene group containing 1 to 4 carbon atoms, and X is C or 8:0. The alkyl group can contain one or more intermediate linkages such as amido, ether, or polyether linkages or nonfunctional substituents such as hydroxyl or halogen which do not substantially affect the hydrophobic character of the group. When X is C, the detergent is called a betaine; and when X is 620, the detergent is called a sulfobetaine or sultaine. Preferred betaine and sulfobetaine detergents are l-(lauryl dimethylammonio) acetate, l-(myristyl dimethylammonio) propane-3-sulfonate, and l-(myristyldimethylammonio -2-hydroxy-propane-3-sulfonate.
The polar nonionic detergents are those in which the tween two atoms, for example, N O, P O, As O, and hydrophilic group contains a semi-polar bond directly be- S O. There is charge separation between the two directly bonded atoms, but the detergent molecule bears no net charge and does not dissociate into ions.
The polar nonionic detergents of this invention include open-chain aliphatic amine oxides of the general formula R R R N- O. For the purpose of this invention R is an alkyl, alkenyl, or monohydroxyalkyl radical having about 10 to 16 carbon atoms, R and R are each selected from the group consisting of methyl, ethyl, propyl, ethanol, and propanol radicals.
Other operable polar nonionic detergents are the openchain aliphatic phosphine oxides having the general formula R R R O wherein R is an alkyl, alkenyl, or monohydroxyalkyl radical ranging in chain length from 10 to 18 carbon atoms, and R and R are each alkyl and monohydroxyalkyl radicals containing from 1 to 3 carbon toms.
Examples of suitable ampholytic detergents include the alkyl beta-aminopropionates, RN(H)C H COOM; the alkylbetaiminodipropionates, RN(C H COOM) the alkyl and hydroxy alkyl taurinates, RN(CH )C H SO M; and the long-chain imidazole derivatives having the following formulas:
wherein R is an acyclic group of about 7 to 17 carbon atoms, W is selected from the group of R OH, RgCOOM, and R OR Y is selected from the group consisting of OH-, R OSO- R is an alkylene or hydroxyalkylene group containing 1 to 4 carbon atoms, R is selected from the group consisting of alkyl, alkyl aryl and fatty acyl glyceride groups having 6 to 18 carbon atoms in the alkyl or an acyl group; and M is a water-soluble cation, for example, sodium, potassium, ammonium, for alkylolammonium.
Formula I detergents are disclosed in Volume II of Surface Active Agents and Detergents and Formula II detergents are described in US. 2,773,068; US. 2,781,354; and US 2,781,357. The acyclic groups may be derived from coconut oil fatty acids (a mixture of fatty acids containing 8 to 18 carbon atoms), lauric fatty acid, and oleic fatty acid, and the preferred groups are C to C alkyl groups. Preferred detergents are sodium N-lauryl betaaminopropionate, disodium N-lauryl iminodipropionate, and the disodium salt of 2-lauryl-cycloimidium 1 hy droxyl, l-ethoxyethanoic acid, l-ethanoic acid.
Cationic surface active agents may also be employed. Such agents are those surface active detergent compounds which contain an organic hydrophobic group and a cationic solubilizing group. Typical cationic solubilizing groups are amine and quaternary groups.
Examples of suitable synthetic cationic detergents are normal primary amines RNH wherein R is C to C the diamines such as those of the type RNHC H NH wherein R is an alkyl group of about 12 to 22 carbon atoms, such as N-Z-aminoethyl stearyl amine and N-2- aminoethyl myristyl amine; amide-linked amines such as those of the type R CONHC H NH wherein R is an alkyl group of 8 to carbon atoms, such as N-Z-amino ethylstearyl amide and N-amino ethylmyristyl amide; quaternary ammonium compounds wherein typically one of the groups linked to the nitrogen atom is an alkyl group of about 8 to 22 carbon atoms and three of the groups linked to the nitrogen atom are alkyl groups which contain 1 to 3 carbon atoms, including alkyl groups bearing inert substituents, such as phenyl groups, and there is present an anion such as halogen, acetate, methosulfate, etc. The alkyl group may contain intermediate linkages such as amide which do not substantially affect the hydropho-bic character of the group, for example, stearyl amido propyl quaternary ammonium chloride. Typical quaternary ammonium detergents are ethyl-dimethyl-stearyl ammonium chloride, benzyl-dimethylstearyl ammonium chloride, trimethyl-stearyl ammonium chloride, trimethyl-cetyl ammonium bromide, dimethyl-ethyl-lauryl ammonium chloride, dimethyl-propyl-myristyl ammonium chloride, and the corresponding methosulfates and acetates.
Preferred detergent compositions of this invention are the liquid, antimicrobial shampoo compositions suitable for washing the hair and scalp. Such compositions consist essentially of about 10% to by weight of a detergent selected from the group consisting of non-soap aionic, amphoteric, and zwitterionic detergents from 0.1% to 3% by weight of water-soluble or water-insoluble particulate antimicrobial active material, 0.5% to 3.5% of aminopolyureylene resin, and the balance primarly water. The shampoo compositions may also include minor amounts of ethanol or isopropanol perfume, color, stearate opacifying agents, ethylene diamine tetracetate or citrate sequestering agents, thickening agents, and fatty acid alkylolamide foam boosters.
Other detergent compositions falling within the scope of the invention are the heavy-duty laundering compositions containing APU polymers and at least one of the active materials potentiated by the polyaminopolyureylene resins, such as antibacterials, fluorescent brighteners, and bluing agents. Such compositions generally consist essentially of about 8% to 40% by weight of non-soap anionic or detergent, about 0.1% to 3% by Weight of active material, about 0.5% to 3.5 by weight of APU resin and the balance water-soluble inorganic or organic builder salt. Suitable builders include sodium sulfate, sodium carbonate, and sodium nitrilotriacetate as well as the corresponding potassium compounds. Other compositions are sodium carboxymethylcellulose, polyvinylalcohol, per fume, color, etc.
The foregoing laundering detergents may also be prepared in liquid form. Suitable liquids consist essentially of about to 20% by weight of non-soap anionic or nonionic detergent, to 25% by Weight of potassium pyrophosphate, sodium silicate orsodium nitrilotriacetate, 4% to 12% by Weight of sodium or potassium xylene or toluenesulfonate, 0.1% to 3.0% by Weight of active material, 0.5% to 3.5% by weight of APU resin, and the balance primarily Water. Suitable additives which may be added are sodium carboxymethylcellulose, thickeners, color, and perfume.
In bar form, the detergent material may be soap, anionic, amphoteric, nonionic or mixtures of the foregoing detergents. In addition to the usual proportions of APU resin and active material, the bars may include color, perfume, free fatty acids, sodium chloride, and fatty acid alkanolamide suds builders.
Each of the foregoing detergent compositions can be prepared by methods well known in the art. For example, shampoos and built liquid detergents are prepared by mixing, and particulate laundering detergents are prepared by mixing, chemical drying or spray drying.
The ability of the APU resins to potentiate the deposition of the Water-insoluble materials which function as antibacterial agents onto porteinaceous substrates, such as hair and skin, is demonstrated in the following radioactive substantivity test. Substantivity is determined by stirring a 1.27-centirneter diameter circular gelatin disk weighing about 40 milligrams for above five minutes in 10 grams of an aqueous medium containing a known concentration of radioactive tagged material such as zinc 2-pyridinethiol-1-oxide, rinsing the disk five times in 10 milliliters of Water, drying, and measuring the radiation emission with the aid of a radiation detector. The absolute degree of deposition of the material is determined by comparing the observed counts with the counts emitted by a 'kIlOWIl weight of the radioactive material. The effect of APU resin on deposition can be readily ascertained by repeating the test with a known weight of APU present. Similarly, the effect of detergents can be quantitatively measured by including detergents in the test composition.
The following examples are illustrative of the compositions falling within the scope of this invention.
Example 1 An aqueous dispersion of Zinc Z-pyridinethiol-l-oxide 18 prepared by dispersing 0.04 grams of radioactive zinc 2-pyridinethiol-1-oxide containing zinc 65 in one gram of water. The resultant aqueous dispersion is diluted with 8.96 grams of water With agitation, and the substantivity of the diluted dispersion is determined using the foregoing substantivity procedure. The results of the evaluation indicate 40.9 micrograms of zinc-2-pyridinethiol-l-oxide are deposited on the disk from the aqueous mixture containing 0.4% by weight of the 2-pyridinethiol-1-oxide. When the foregoing experiment is repeated in the presence of an amino polyureylene resin (Resin A) having a molecular weight of about 4,300 and the repeating unit E(OH N(CH )(CH N(H)C(O)N(H)}, 122 micrograms of zince Z-pyridinethiol-l-oxide are deposited on the disk at a concentration of 0.5% of said resin in the aqueous test dispersion. Thus, the presence of 0.5% of APU resin results in a 200% increase in the deposition of zinc-2-pyridinethiol-1-oxide from an aqueous medium.
Use of a resin having a molecular weight of about 5,600 and N,N'-di(3-aminopropyl) piperazine as the repeating unit in the foregoing test yields comparable results.
Example 2 When the procedure of Example 1 is repeated using an aqueous solution of 0.25% by Weight of radioactive (C-14) cetyl trimethylammonium bromide (CTAB) at pH 4.5 as the test medium, 294 micrograms of CTAB are deposited on the gelatin disk. Repetition of this test in the presence of 0.75% by weight of the APU resin used in Example 1 results in the deposition of 679 micrograms of CTAB, an increase in deposition of about When the pH of the test solution is increased to 8.5, a deposition of 259 micrograms of CT AB is obtained in the absence of APU resin and a deposition of 734 micrograms is obtained in the presence of 3% by weight of the APU resin of Example 1. Thus, a increase in deposition CTAB is noted at pH 8.5.
Example 3 Example 2 is repeated with the exception that a 10% aqueous ethanol mixture is substituted for Water in the test solution and the pH is adjusted to 6.5. A deposition value of 202 micrograms of CTAB is noted in the absence of APU resin, and a deposition value of 643 micrograms of CTAB is noted in the presence of 0.75% by weight of the APU resin of Example 1. This represents an increase in depositon of about 220 For comparison, only 227 micrograms of CTAB are deposited when the concentration of CTAB in the test solution is increased to 1% by weight. Thus, the APU resin is significantly more effective in enhancing deposition than an increase in the CTAB concentration from 0.25 to 1%, a 300% increase.
Example 4 When the procedure of Example 1 is repeated using a 0.5%-by-Weight aqueous alcoholic (70%) dispersion of radioactive (C-14) bis(3,5,6 trichloro-2-hydroxyphenyl) methane as the test solution, the radioactivity of the gelatin disk averages 2,100 counts per minute (c.p.m.). Repetition of the test in the presence of 1.25% concentration of the APU resin of Example 1 results in an average radioactivity of 13,200- c.p.m. Thus, the presence of the APU resin increases the deposition of the antimicrobial compound by about 500%. Substantially similar results are noted when either lamb skin or human callus tissue is substituted for the gelatin disk in the foregoing experiment.
The APU resin of Example 1 can be replaced by either a resin having a molecular weight of about 4,600 and the repeating unit HCH N+(CH (CH NHC(O)NHH- or a resin having a molecular weight of about 6,700 and the repeating unit with substantially similar results. Similarly, the substituted methane may be substituted with 5-chloro-2(2,4 dichlorophenoxy) phenol with substantially similar results.
Example 5 Tests of the following shampoo illustrate the improved effects attributable to the APU resin. This shampoo is effective to inhibit the growth of Pityrosporum ovale.
Percent by weight Triethanolamine lauryl sufate l0 Lauryldimethyl amine oxide 10 Cocomonoethanol amide 5 Ethyl alcohol 10 Zinc Z-pyridinethiol-l-oxide 1.6 Resin A a 2.0 Water Balance Aminopolyureylene resin having a molecular weight of -E(CH2)3N(CH3) (CH2)3N(H)C(O)N(H)}.
When the foregoing composition is formulated with a radioactive zinc 2-pyridinethiol-1-oxide (Zn 65) material and is evaluated using the substantivity procedures of Example 1, 20.8 micrograms of radioactive zinc 2-pyridinethiol-l-oxide are noted on the gelatin disk. In this evaluation, 2.5 grams of shampoo are diluted with 7.5 grams of water to simulate normal use dilution of shampoos, and the diluted shampoo is test solution. Under such conditions, the concentration of zinc 2-pyridinethiol-1-oxide in the test solution is 0.4% by weight, and the concentration of APU resin is 0.5% by weight. Repetition of the foregoing test with an identical composition not containing APU resin results in the deposition of 8.7 micrograms of zinc Z-pyridinethiol-l-oxide. Thus, use of APU resin in combination with zinc Z-pyridinethiol-l-oxide in the presence of detergents results in an increase in deposition of about 140%.
To confirm that increased deposition results in enhanced residual activity, radioactive disks obtained using the foregoing evaluation technique are plated in a standard agar medium inoculated with P. ovale, and the diameters of the zone of inhibition are measured after twenty-four hours of incubation. These results are shown in Table I together with results of nonradioactive disks. [Resin A alone has no zone of inhibition.
TABLE 1 Zoneof inhibition after 24. hours (mm.)
Zinc-2-pyridinethiol-1oxide Radioactive- D Y es Non-radioactive. No..
Do Y es APU resin TABLE II Zone of inhibition (mm.)
Qne Two incubation mcubations Three ineubations APU resin No Yes These results indicate that the presence of APU resin results in improved antimicrobial effectiveness of the Zinc- 2-pyridinethiol-1-oxide and longer-lasting effectiveness.
Example 6 Example 5 is repeated with the exception that concentration of zinc 2-pyridinethiol-1-oxide in the shampoo is reduced to 0.4% 17.4 micrograms of zinc 2-pyridinethiol l-oxide are deposited on the disk. In the absence of the 2% of APU resin, 6.1 micrograms of zinc 2-pyridinethioll-oxide are deposited on the disk. Again, APU resin significantly enhances the deposit of zinc 2-pyridinethiol-1- oxide on a proteinaceous substrate.
Example 7 The following liquid detergent composition is an effective antimicrobial detergent.
Percent by weight Sodium lauryl triethenoxy ether sulfate 8.0 Lauryl dimethyl amine oxide 7.5 Sodium Z-pyridinethiol-l-oxide 2.0 Resin A 1.0 Water Balance 14 When the composition is formulated with radioactive sodium 2-pyridinethiol-l-oxide, the zone of inhibition determined as described in Example 5, the gelatin disk exhibits a halo diameter of 54.2 mm. when tested against P. ovale. In the absence of APU resin, a halo diameter of 37.5 mm. is observed. These results show that APU resin improves the effectiveness of the water-soluble sodium 2- pyridinethiol-l-oxide material as well as the water-soluble zinc-2-pyridinethiol-1 oxide.
Example 8 Another antimicrobial liquid detergent composition having a pH of 8.2 follows.
Percent by weight Cocoamidopropyl dimethyl betaine* 22.4 Sodium N-(Z-hydroxyhexadecyl) methyl taurate-.. 6.0 Sodium hexylbenzene sufonate 0.8 Lauryl dimethyl amine oxide 0.6 Tribomosalicylanilide 1.0 Resin A 3.0 Water Balance *Coco corresponds to the mixture of alkyls derived from a middle cut of coconut oil, that is, 1% C10, 65% C12, 27% C14, and 7% Cm.
When the foregoing composition is formulated with a radioactive (C-l4 tagged) tribromosalicylanilide and the deposition evaluated as described in Example 1, 1.5 micrograms of antibacterial agent are noted on the gelatin disk. As only 0.5 micrograms are deposited in the absence of the APU resin, use of the APU resin increases deposit by 200%.
Example 9 Substitution of 1% of trichlorocarbanilide for the tribromosalicylanilide in the composition of Example 8 yields substantially similar results.
Example 10 A lotion shampoo composition exhibiting effectiveness against P. ovale follows.
Percent by weight When the foregoing shampoo having a pH of 8.8 is formulated with radioactive 5,7-diiodo-8-hydroxyquinoline (I- and the deposition evaluated using the procedure of Example 5, the APU resin results in a 220% increase in the deposition of the antimicrobial agent. Improved deposition is also obtained when the pH of the composition to 7.8.
When the concentration of 5,7-diiodo-8-hydroxyquinoline is reduced to 1% in the composition of Example 10, APU resin achieves a 133% increase in deposition of that agent.
I 15 Example 11 The following composition is an improved shampoo composition.
Percent by weight Triethanolamine lauryl sulfate 21 Coconut monoethanolamide Triethanolamine 0.7 Sodium chloride 0.8 Methyl cellulose 0.9 Ethanol 7.0 Resin A 3.0 Fluorescent agent 1.0 Water Balance When the foregoing composition is formulated with the fluorescent agents listed in Table III and a 1.25% concentration thereof is used to contact a 1" x 1" W001 swatch for five minutes, the fluorescent values in Table III are obtained on the wool swatch after it is rinsed with five consecutive Ill-milliliter portions of water and air dried.
TABLE III Relative fluores- Flnorescent agent Resin cence Disodium 4,4bis[4-ani1ino'6-methoxyani1ino-5- N o 11 triazin-2yl-amino]-2,2-stilbene disulfonate. Yes. 12
Quaternized 1-p-(sulfonyl-v-dimethyl-aminopropyl No 27 amido) -phenyl3-p-chlorophenyl-pyrazo1ine. Yes. 74
No 15 2 strylnaphth (1,2 d) oxazole 80 Disodium 4,4bis[4,G-dianilino-s-triazin-Zyl-amino]- N o 47 2,2-stilbene disulfonate. Yes. 55
Substituted amino-coumarin purchased under the N0 87 trade name Uvitex SWN. Yes- 93 The foregoing results show that APU resin improve the brightening effectiveness of fluorescent agents of the anionic type (stilbene disulfonate), nonionic (oxazole) and the cationic type (pyrazoline). The improvement noted in fluorescence varies from 7% to 200% Example 12 The following composition is an improved conditioning shampoo.
1 Alkyl group corresponds to the mixture of alkyls obtained from middle cut of coconut oil.
2 Wilson Protein WSP-X25O obtained by enzymatic hydrolysis of collagen and having an average molecular weight of about 1,000.
The effectiveness of the aminopolyureylene resin in improving the conditioning properties of the protein is shown by the following procedure. A bleached hair tress about 2.5 inches (weight 55 grams) is placed in contact with 55 grams of the shampoo composition of Example 12 and the contact is maintained for 30 minutes. The hair tress is then removed from the shampoo, subjected to five consecutive rinses with 55 milliliters of deionized water each 1 5 time, air dried, and analyzed spectrophotometircally for hydroxyproline. (Hydroxyproline is an amino acid found in hydrolyzed protein, but not in hair.) The protein and aminopolyureylene resin are soluble in the shampoo composition having a pH of 7.5 and the test results for the composition are set forth in Table IV.
TABLE IV Protein I Resin A, deposited, Protein, percent percent by percent by by weig t weight weight 1 1 Hydroxyproline content expressed as protein.
The foregoing tabulation shows that aminopolyureylene resin improves the deposition of water-soluble protein onto hair and thereby achieves improved conditioning effects.
Substitution of a benzophenone ultraviolet absorber or a silicone for the gelatin in Example 12 provides composi tions having substantially similar improved effects.
When resins having an average molecular weight in the range of 1,000 to 20,000 and a repeating unit of L OH .I
are substituted for the resin in the composition of Example 12, substantially similar results are obtained.
Other compositions exhibiting improved effectiveness because of the presence of an aminopolyureylene resin therein follow:
Example 13 A heavy-duty liquid detergent composition having improved resistance to color fading because of ultraviolet light follows:
2,2-hydroxy-4,4-dimethoxybenzophenone may be substituted for the benzophenone in the composition of Example 13 with substantially similar improved effects.
Example 14 A built particulate laundry detergent composition exhibiting improved antibacterial effectiveness has the following composition:
Percent by weight Sodium tridecylbenzene sulfonate 17.5 Sodium tn'polyphosphate 40.0 Sodium silicate (1Na O:2.35SiO 7.0 Sodium sulfate 23.1 Tribromosalicylanilide 0.4 Resin A 3.0 Sodium carboxymethylcellulose 0.5 Water 8.5
17 Fabrics laundered in the foregoing composition exhibit improved antimicrobial efiectiveuess.
Example 15 A detergent bar composition exhibiting improved resistance to copper discoloration has the following composition.
Percent by weight Sodium N lauryl B iminodipropionate 8.75 Sodium C to C alkane sulfonate 24.25 Sodium tallow soap 26.40 Sodium tridecylbenzene sulfonate 7.30 Syrupy phosphoric acid (85%) 7.30 Stearic Acid 3.60 Benzotriazole 0.5 Resin A 4.0 Water Balance Ethylene thiourea may be substituted for benzotriazole in the composition of Eample 15 with substantially similar results.
While the improved properties appear to be due primarily to enhanced deposition and/r retention of both' water-soluble and water-insoluble materials due to the presence of the aminopolyureylene resin in the comp0si-" will be apparent to those skilled in the art that similar results may be obtained when the aminopolyureylene resin is used in combination with a wide variety of water-' soluble and water-insoluble substances in addition to those specifically described.
What is claimed is:
1. A detergent composition consisting essentially of from 2% to 99% by weight of a water-soluble organic detergent selected from the group consisting of anionic, nonionic, amphoteric, zwitterionic, polar nonionic, and cationic detergents; from .05 to by weight of an aminopolyureylene resin having a molecular weight in the range of 300 to 100,000 and having the following repeating unit:
(C 2)n( (CH2)11NHC(Y)NH} wherein X is NH, NC to C alkyl,
CH CH CH: CH: l 1 N\ /N, N+ 1 1+ CHr-CH: HI CHsCH(OH)CHzCl,
$H| or N+ CHgCH-CHz, 0
YisOorSandnisZor 3;andfrom .05 to 5% by consisting of an ultraviolet absorber having the formula Z OH I 0 I C 18 wherein X, Y and Z are each selected from the group 'cons isting of hydrogen, hydroxy, C to C, alkexy, and carboxy or a fluorescent brightener selected from the group consisting of (A) stilbene disulfonates having the formula wherein X is C Hr-G H:
on, zen-Q, N o,
CHs-CH| mcmcmom, or NHQOCH:
andYis NEG. mcmomon), or zen-Q0011;
(l3) quaternized aminoalkyl substituted phenyl sulfoamide of aryl pyrazolines having the formula x it wherein X is hydrogen, phenyl or halogenated phenyl, with not more than one X being hydrogen, and Y is a quaternized Q5 omunumg (R1) wherein R is C, to C alkyl and R and R; are each selected from the group consisting of hydrogen and C to C alkyl; (C) oxazoles having the formula wherein A and B are ditierent and represent oxygen wherein R is hydrogen or C, to C alkyl.
2. A composition in'aceordance with claim 1 wherein said resin has an average molecular weight in the range of 1000 to 20,000 and in said repeating unit Y is O and n is 3. 1
3. A composition in accordance with claim 2 wherein said active material is selected from the group consisting of disod ium 4,4 bis[4-anilino-6-methoxyanilino-s-triazin- 2yl animal-2,2 stilbene disulionate, disodium 4,4 bis (4,6 dianilino-s-triaziniyl amino) 2 2 stilbene disulfonate, Quaternized-l-Msulfonylq-dimflhyl aminopropyl amido) -v pheny'l-3-p-ehlorophenyl pyrazoline, 2-styrylnaphth (1,2-d) oxazole, and 4 methyl, 7 diethyl amino coumarin.
said active material is said ultraviolet absorber.
5. A composition in accordance with Claim 2. wherein said active material is said oxazole fluorescent brightener.
6. A composition in accordance with Claim 2 wherein said detergent is selected from the group consisting of anionic, nonionic, polar nonionic, amphoteric and zvvitterionic detergents and said active material is said stilbene disulfonate fluorescent brightener.
7. A composition in accordance with Claim 2 wherein said detergent is selected from the group consisting of nonionic, polar nonionic and zwitterionic detergents and said active material is said pyrazoline fluorescent brightener. I
8. A composition in accordance with Claim 1 wherein said detergent is present in an amount of about 8% to 40%, said active material is present in an amount of about 0.1% to 3%, said resin is present in an amount 20 of about 0.5% to 3.5% by weight and the balance is a water-soluble inorganic or organic builder salt.
References Cited UNITED STATES PATENTS 3,036,076 5/1962 Gabler et al. 252543 X 3,222,201 12/1965 Boyle et al. 252-542 X 3,313,734 4/1967 Lang et al. 252542 3,394,173 7/1968 Hauseman 252543 UX 3,407,196 10/ 1968 Liechti et a1 252542 X 3,489,686 1/1970 Parran 252542 X 3,689,435 9/1972 Berni et al.
BENJAMIN R. PADGETT, Primary Examiner US. Cl. X.R.
252542, 544, 548, 550, 558, Dig\.'2
US00308885A 1970-11-16 1972-11-22 Detergent compositions containing aminopolyureylene resin and optical brighteners Expired - Lifetime US3832310A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US90133A US3703480A (en) 1970-11-16 1970-11-16 Fabric-softener compositions
US00090154A US3726815A (en) 1970-11-16 1970-11-16 Compositions containing amino-polyureylene resin
AU34526/71A AU460548B2 (en) 1971-10-13 Compositions containing aminopolyureylene resin
CA125,548A CA970909A (en) 1970-11-16 1971-10-19 Fabric-softener compositions
GB4937671A GB1357960A (en) 1970-11-16 1971-10-25 Surface treating compositions
DE19712155224 DE2155224A1 (en) 1970-11-16 1971-11-06 Preparations containing aminopolycarbamide resins
BE775158A BE775158A (en) 1970-11-16 1971-11-10 COMPOSITIONS CONTAINING AMINOPOLYUREYLENE RESINS
CA127,541A CA955390A (en) 1970-11-16 1971-11-12 Compositions containing aminopolyureylene resin
AT976571A AT322708B (en) 1970-11-16 1971-11-12 PREPARATIONS CONTAINING AMINOPOLYCARBAMIDE RESINS
SE7114616A SE401608B (en) 1970-11-16 1971-11-15 MIXTURES CONTAINING AMINOPOLYUREYLENE RESIN
NL7115801A NL7115801A (en) 1970-11-16 1971-11-16
FR7140963A FR2114751A5 (en) 1970-11-16 1971-11-16
US00308885A US3832310A (en) 1970-11-16 1972-11-22 Detergent compositions containing aminopolyureylene resin and optical brighteners
US308884A US3875071A (en) 1970-11-16 1972-11-22 Antimicrobial detergent composition containing aminopolyureylene resin
US05/760,619 US4312855A (en) 1970-11-16 1977-01-14 Compositions containing aminopolyureylene resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9015470A 1970-11-16 1970-11-16
US9013370A 1970-11-16 1970-11-16
US00308885A US3832310A (en) 1970-11-16 1972-11-22 Detergent compositions containing aminopolyureylene resin and optical brighteners
US308884A US3875071A (en) 1970-11-16 1972-11-22 Antimicrobial detergent composition containing aminopolyureylene resin

Publications (1)

Publication Number Publication Date
US3832310A true US3832310A (en) 1974-08-27

Family

ID=27492378

Family Applications (4)

Application Number Title Priority Date Filing Date
US90133A Expired - Lifetime US3703480A (en) 1970-11-16 1970-11-16 Fabric-softener compositions
US00090154A Expired - Lifetime US3726815A (en) 1970-11-16 1970-11-16 Compositions containing amino-polyureylene resin
US308884A Expired - Lifetime US3875071A (en) 1970-11-16 1972-11-22 Antimicrobial detergent composition containing aminopolyureylene resin
US00308885A Expired - Lifetime US3832310A (en) 1970-11-16 1972-11-22 Detergent compositions containing aminopolyureylene resin and optical brighteners

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US90133A Expired - Lifetime US3703480A (en) 1970-11-16 1970-11-16 Fabric-softener compositions
US00090154A Expired - Lifetime US3726815A (en) 1970-11-16 1970-11-16 Compositions containing amino-polyureylene resin
US308884A Expired - Lifetime US3875071A (en) 1970-11-16 1972-11-22 Antimicrobial detergent composition containing aminopolyureylene resin

Country Status (9)

Country Link
US (4) US3703480A (en)
AT (1) AT322708B (en)
BE (1) BE775158A (en)
CA (2) CA970909A (en)
DE (1) DE2155224A1 (en)
FR (1) FR2114751A5 (en)
GB (1) GB1357960A (en)
NL (1) NL7115801A (en)
SE (1) SE401608B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058480A (en) * 1973-09-14 1977-11-15 Ciba-Geigy Corporation Non-dusting, readily free-flowing granules of optical brighteners
US4108800A (en) * 1975-03-26 1978-08-22 Milliken Research Corporation Cleaning composition
US4148743A (en) * 1976-06-04 1979-04-10 Colgate-Palmolive Company Process for making a toilet soap bar containing polyethylene oxide
EP0055857A2 (en) * 1980-12-30 1982-07-14 Union Carbide Corporation Potentiation of topical compositions
US4719099A (en) * 1977-03-15 1988-01-12 L'oreal Composition and process for the treatment of keratin materials with polymers
US4938951A (en) * 1980-12-30 1990-07-03 Union Carbide Chemicals And Plastics Company Inc. Potentiation of topical compositions wherein a uniform microdispersion of active agent is formed
US4950412A (en) * 1985-01-15 1990-08-21 Lever Brothers Company Fabric conditioning composition
US5122304A (en) * 1991-01-31 1992-06-16 Basf Corporation Stable aqueous dispersions of fluorescent brightening agents of the coumarine type and method of preparing same
US5256336A (en) * 1991-01-31 1993-10-26 Basf Corporation Stable aqueous dispersions of fluorescent brightening agents of the coumarine type and method of preparing same
US5352389A (en) * 1991-07-08 1994-10-04 Crinos Industria Farmacobiologica Spa Composition for the cleaning of the skin, scalp and hair

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312855A (en) * 1970-11-16 1982-01-26 Colgate-Palmolive Company Compositions containing aminopolyureylene resin
JPS5010439B2 (en) * 1971-11-15 1975-04-21
US4000077A (en) * 1972-05-04 1976-12-28 Colgate-Palmolive Company Enhancement of cationic softener
FR2193869B1 (en) * 1972-07-25 1977-04-01 Colgate Palmolive Co
US4049558A (en) * 1972-07-25 1977-09-20 Colgate-Palmolive Co. Free flowing phosphate ester compositions for post addition to detergents
US3920564A (en) * 1972-09-20 1975-11-18 Colgate Palmolive Co Softener-detergent composition
US3979307A (en) * 1972-09-20 1976-09-07 Texaco Inc. Fabric softener composition
US3892669A (en) * 1972-10-27 1975-07-01 Lever Brothers Ltd Clear fabric-softening composition
US3920563A (en) * 1972-10-31 1975-11-18 Colgate Palmolive Co Soap-cationic combinations as rinse cycle softeners
US3861870A (en) * 1973-05-04 1975-01-21 Procter & Gamble Fabric softening compositions containing water-insoluble particulate material and method
US3973065A (en) * 1973-10-04 1976-08-03 Microfibres, Inc. Synthetic suede
US3997453A (en) * 1974-02-11 1976-12-14 Colgate-Palmolive Company Softener dispersion
US4427410A (en) 1974-09-06 1984-01-24 Colgate-Palmolive Company Fabric softening composition containing molecular sieve zeolite
US4610796A (en) * 1974-09-06 1986-09-09 The Colgate-Palmolive Co. Fabric softener composition containing molecular sieve zeolite
GB1553201A (en) * 1975-04-18 1979-09-26 Colgate Palmolive Co Method of cleaning glass or glazed articles
GB1558481A (en) * 1976-02-10 1980-01-03 Unilever Ltd Process for making detergent compositions
DE2651898A1 (en) * 1976-11-13 1978-05-18 Hoechst Ag SOFTENING DETERGENT
GB1580205A (en) * 1976-07-26 1980-11-26 Unilever Ltd Liquid systems
JPS5352799A (en) * 1976-10-19 1978-05-13 Kao Corp Fabric softening agent composition
ZA776315B (en) * 1976-11-16 1979-05-30 Colgate Palmolive Co Emollient bath
US4157388A (en) * 1977-06-23 1979-06-05 The Miranol Chemical Company, Inc. Hair and fabric conditioning compositions containing polymeric ionenes
US4228044A (en) * 1978-06-26 1980-10-14 The Procter & Gamble Company Laundry detergent compositions having enhanced particulate soil removal and antiredeposition performance
US4259217A (en) * 1978-03-07 1981-03-31 The Procter & Gamble Company Laundry detergent compositions having enhanced greasy and oily soil removal performance
NL7815014A (en) * 1977-06-29 1979-10-31 Procter & Gamble LIQUID DETERGENT FOR BETTER REMOVAL OF GREASE DIRT.
US4222905A (en) * 1978-06-26 1980-09-16 The Procter & Gamble Company Laundry detergent compositions having enhanced particulate soil removal performance
US4196104A (en) * 1977-09-26 1980-04-01 The Procter & Gamble Company Process for producing antistatic, fabric-softening detergent composition
EP0002084A1 (en) * 1977-11-17 1979-05-30 THE PROCTER & GAMBLE COMPANY Granular detergent compositions for improved greasy soil removal
US4237016A (en) * 1977-11-21 1980-12-02 The Procter & Gamble Company Textile conditioning compositions with low content of cationic materials
US4265772A (en) * 1978-11-16 1981-05-05 The Procter & Gamble Company Antistatic, fabric-softening detergent additive
GR67665B (en) * 1979-05-21 1981-09-02 Unilever Nv
US4399045A (en) * 1980-11-18 1983-08-16 The Procter & Gamble Company Concentrated fabric softening compositions
US4392965A (en) * 1981-11-12 1983-07-12 Woodward Fred E Laundry softener antistatic composition
US4439335A (en) * 1981-11-17 1984-03-27 The Procter & Gamble Company Concentrated fabric softening compositions
US4632772A (en) * 1982-02-22 1986-12-30 Dexide, Inc. Mild antimicrobial detergent composition
US4493773A (en) * 1982-05-10 1985-01-15 The Procter & Gamble Company Low phosphate, softening laundry detergent containing ethoxylated nonionic, alkylpolysaccharide and cationic surfactants
US4826689A (en) * 1984-05-21 1989-05-02 University Of Rochester Method for making uniformly sized particles from water-insoluble organic compounds
DE3521498A1 (en) * 1984-06-20 1986-01-16 Lion Corp., Tokio/Tokyo ADDITIVE FOR DETERGENT GRANULES
US4783484A (en) * 1984-10-05 1988-11-08 University Of Rochester Particulate composition and use thereof as antimicrobial agent
GB8500959D0 (en) * 1985-01-15 1985-02-20 Unilever Plc Fabric conditioning method
US4806263A (en) * 1986-01-02 1989-02-21 Ppg Industries, Inc. Fungicidal and algicidal detergent compositions
DE3639635A1 (en) * 1986-11-20 1988-06-01 Ulrich Jordan Disinfectant
GB9026050D0 (en) * 1990-11-30 1991-01-16 Unilever Plc Process and composition for treating fabrics
GB9503474D0 (en) * 1995-02-22 1995-04-12 Ciba Geigy Ag Compounds and their use
JP4390159B2 (en) * 1995-11-17 2009-12-24 モーメンティブ・パフォーマンス・マテリアルズ・インク Glossing method by fluorescence of cosmetic composition
US5837274A (en) * 1996-10-22 1998-11-17 Kimberly Clark Corporation Aqueous, antimicrobial liquid cleaning formulation
DE10230026A1 (en) * 2002-07-04 2004-01-22 Beiersdorf Ag Cosmetic preparation for the treatment of dry or sensitive skin
WO2006066204A1 (en) * 2004-12-17 2006-06-22 Dow Global Technologies, Inc. Use of water-soluble polymers to improve stability of diiodomethyl-para-tolylsulfone in complex matrices
EP1859103B1 (en) * 2005-01-05 2015-04-08 Dow Global Technologies LLC Enhanced efficacy of fungicides in paper and paperboard
WO2007050700A2 (en) * 2005-10-25 2007-05-03 Dow Global Technologies Inc. Antimicrobial composition and method
US11178924B2 (en) * 2016-08-24 2021-11-23 Daniel Robert Schlatterer Two toned gowns for operating room personnel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156672A (en) * 1959-05-11 1964-11-10 Tno Linear polyureas prepared from half-polymers
US3506720A (en) * 1963-02-22 1970-04-14 Geigy Chem Corp Halogenated hydroxy-diphenyl ethers
US3311594A (en) * 1963-05-29 1967-03-28 Hercules Inc Method of making acid-stabilized, base reactivatable amino-type epichlorohydrin wet-strength resins
US3240664A (en) * 1964-02-03 1966-03-15 Hercules Powder Co Ltd Polyaminoureylene- epichlorohydrin resins and use in forming wet strength paper
US3489686A (en) * 1965-07-30 1970-01-13 Procter & Gamble Detergent compositions containing particle deposition enhancing agents
US3668135A (en) * 1967-07-25 1972-06-06 Henkel & Cie Gmbh Antimicrobic washing agents, washing adjuvants and cleaning agents
US3681249A (en) * 1968-07-26 1972-08-01 Ciba Geigy Corp Unsymmetrical diphenyl carbonates
US3725547A (en) * 1970-10-08 1973-04-03 Procter & Gamble Synergistic antibacterial combination

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058480A (en) * 1973-09-14 1977-11-15 Ciba-Geigy Corporation Non-dusting, readily free-flowing granules of optical brighteners
US4108800A (en) * 1975-03-26 1978-08-22 Milliken Research Corporation Cleaning composition
US4148743A (en) * 1976-06-04 1979-04-10 Colgate-Palmolive Company Process for making a toilet soap bar containing polyethylene oxide
US4719099A (en) * 1977-03-15 1988-01-12 L'oreal Composition and process for the treatment of keratin materials with polymers
EP0055857A2 (en) * 1980-12-30 1982-07-14 Union Carbide Corporation Potentiation of topical compositions
EP0055857A3 (en) * 1980-12-30 1983-08-03 Union Carbide Corporation Potentiation of topical compositions
US4938951A (en) * 1980-12-30 1990-07-03 Union Carbide Chemicals And Plastics Company Inc. Potentiation of topical compositions wherein a uniform microdispersion of active agent is formed
US4950412A (en) * 1985-01-15 1990-08-21 Lever Brothers Company Fabric conditioning composition
US5122304A (en) * 1991-01-31 1992-06-16 Basf Corporation Stable aqueous dispersions of fluorescent brightening agents of the coumarine type and method of preparing same
US5256336A (en) * 1991-01-31 1993-10-26 Basf Corporation Stable aqueous dispersions of fluorescent brightening agents of the coumarine type and method of preparing same
US5352389A (en) * 1991-07-08 1994-10-04 Crinos Industria Farmacobiologica Spa Composition for the cleaning of the skin, scalp and hair

Also Published As

Publication number Publication date
AU3452671A (en) 1973-04-19
GB1357960A (en) 1974-06-26
FR2114751A5 (en) 1972-06-30
US3726815A (en) 1973-04-10
NL7115801A (en) 1972-05-18
SE401608B (en) 1978-05-22
AT322708B (en) 1975-06-10
US3703480A (en) 1972-11-21
CA955390A (en) 1974-10-01
CA970909A (en) 1975-07-15
DE2155224A1 (en) 1972-05-18
US3875071A (en) 1975-04-01
BE775158A (en) 1972-03-01

Similar Documents

Publication Publication Date Title
US3832310A (en) Detergent compositions containing aminopolyureylene resin and optical brighteners
US4312855A (en) Compositions containing aminopolyureylene resin
US3489686A (en) Detergent compositions containing particle deposition enhancing agents
US3761418A (en) Detergent compositions containing particle deposition enhancing agents
US3723325A (en) Detergent compositions containing particle deposition enhancing agents
US3849548A (en) Cosmetic compositions
US5009813A (en) Composition for hair treatment agent
US4087518A (en) Foaming and conditioning protein-containing detergent compositions
US3280179A (en) Processes for producing acyclic surfactant sulfobetaines
US3761417A (en) Detergent compositions containing particle deposition enhancing agents
EP0122324B1 (en) Polyquaternary ammonium compounds and cosmetic compositions containing them
US3785985A (en) Cosmetic and textile-treating compositions
US3223647A (en) Mild detergent compositions
GB2035362A (en) Detergent compositions
US2992994A (en) Detergent composition for the hair
IE56872B1 (en) Detergent compositions
US4374056A (en) Lowly irritating detergent
IE41913B1 (en) Shampoo compositions
US4876034A (en) Secondary amidoamino acid based detergent composition
US3753916A (en) Detergent compositions containing particle deposition enhancing agents
US6365143B1 (en) Cleansing composition and method for removing chemically bound residues and mineral deposits from hair
US4478734A (en) Detergent composition comprising a mixture of an N-acyllysine and anionic surface active agents, possessing unique properties in soft and hard water
US3723357A (en) Liquid detergent compositions
US5900232A (en) Cosmetic compositions containing at least one anionic surfactant of alkylgalactoside uronate type and at least one cationic polymer, and uses thereof in the treatment of keratinous substances
CA1165659A (en) Surfactant compositions