US3832776A - Electronically powered knife - Google Patents

Electronically powered knife Download PDF

Info

Publication number
US3832776A
US3832776A US00308952A US30895272A US3832776A US 3832776 A US3832776 A US 3832776A US 00308952 A US00308952 A US 00308952A US 30895272 A US30895272 A US 30895272A US 3832776 A US3832776 A US 3832776A
Authority
US
United States
Prior art keywords
blade
rod
case
drive assembly
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00308952A
Inventor
H Sawyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00308952A priority Critical patent/US3832776A/en
Application granted granted Critical
Publication of US3832776A publication Critical patent/US3832776A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3209Incision instruments
    • A61B17/3211Surgical scalpels, knives; Accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S30/00Cutlery
    • Y10S30/01Rechargeable battery operated

Definitions

  • a single blade electronically powered knife has a cylindrical case in which is located a solenoid having a centrally mounted longitudinally oscillating rod.
  • the inner end of the rod is slidably retained in a bearing which has a resilient isolation mounting within the case.
  • On the outer end of the rod is secured a mounting block which carries the knife blade and the mounting block is isolated from the case by a resilient bearing.
  • An electric power source acting through an electronic circuit housed in the case causes the solenoid to reciprocate the mounting block in a longitudinal direction and impart sinusoidal elastic longitudinal wave energy to the knife blade which translates into a cutting and parting knife blade action.
  • PAremmsePs m4 ELECTRONICALLY POWERED KNIFE SPECIFICATION Electrically powered knives heretofore available have invariably consisted of two blades mounted side by side in a handle with one or both blades so manipulated that they reciprocate longitudinally with respect to each other and produce a sawing action the nature of which is similar to that of clippers. Such blades have the disadvantage of always needing to be removed from the handle after use in order to be cleaned separately and thereafter reinserted in the handle when they are to be used again. Electric knives of this description have been relatively large knives suited mainly for carving meats and cutting bread. Although single blade knives have been employed for cutting multiple layers of textiles in the garment industry, such commercial type knives all need special accessories and special handling in order to be useful.
  • Surgical knives currently in use commonly known as scalpels, both large and small, are hand manipulated single blades in one or another of the great many forms, often involving detachable blades on a special handle for specific applications.
  • Such blades generally have microscopic saw type teeth machined into the cutting edge of the blade. Incisions and cutting are performed by oscillating the blade in a motion which is in line with the center line of the blade.
  • Another object of the invention is to provide a new and improved electrically powered single blade knife which can be self contained with the power supply compactly housed in a small handle and which is capable of making an extremely precise incision virtually without indentation of the material to be cut and which is gently parted during the cutting operation by action of the knife blade itself.
  • Still another object of the invention is to provide a new and improved single blade electronically powered knife, capable of being constructed in any one of a number of different sizes and which is suitable for precise cutting operations such as those encountered in surgery.
  • Still further among the objects of the invention is to provide a new and improved single blade electronically powered knife which is simple, positive and compact to the extent that a serviceable cutting tool of high precision cutting ability can be made and assembled without the use of complicated technique and which requires virtually a negligible amount of service, the device moreover being such that it can be powered either by a battery contained in the knife handle or by an extension to a conventional power supply.
  • the invention consists of the construction, arrangement, and combination of the various parts of the device, whereby the objects contemplated are attained, as hereinafter set forth, pointed out in the appended claims and illustrated in the accompanying drawings. 7
  • FIG. 1 is a longitudinal sectional view of the electronically powered assembly complete with blade.
  • FIG. 2 is a fragmentary plan view of the blade and the mounting.
  • FIG. 3 is-a cross-sectional view on the line 3-3 of FIG. 1.
  • FIG. 4 is a cross-sectional view on the line 44 of FIG. 1.
  • FIG. 5 is a cross-sectional view on the line 55 of FIG. 1.
  • FIG. 6 is a fragmentary longitudinal sectional view of a second form of internal construction of the device.
  • FIG.'7 is a wiring diagram of a DC. power source usable with'the device.
  • FIG. 8 is a wiring diagram for an A.C. power source.
  • FIG. 9 is a schematic view of a sinusoidal elastic longitudinal wave motion withinthe solid material of the rod, the blade and blade mounting.
  • FIG. 10 is a schematic view of ellipsoid force motions of the blade when activated.
  • a drive assembly indicated generally by the reference character 10 at one end of which is a blade mount 11 which carries a blade 12.
  • the blade 12 may be any one of a number of different blade types depending upon the size and power of the drive assembly, the blade illustrated being a scalpel.
  • the action imparted to the blade will, however, be the same whether it chances to be a scalpel, a utility knife, a carving blade, or other comparable single blade knife or chisel.
  • a solenoid 15 Located within a chamber 13 of a case 14 is a solenoid 15.
  • The'solenoid is constructed with a cylindrical outer jacket 16 of magnetic material and an inner sleeve 17 of magnetic material spaced apart at one end by use of an annular spacer block 18 of magnetic material and at the other end by use of a washer 19 of nonmagnetic material.
  • the structure thus defined forms an annular space 20 substantially occupied by a coil 21. Screws 22 extending through the case into the solenoid hold it in position where it has a snug sliding fit within the chamber 13.
  • the sleeve 17 provides a central bore 25 through which extends a relatively long rod 26, the rod being of non-magnetic material as for example, stainless steel.
  • a clapper 27 which is of magnetic material is anchored to the rod 26 by an appropriate weldment 28, the clapper extending transversely over adjacent annular edges 29 and 30 respectively of the jacket 16 and sleeve 17.
  • annular inner section 32 of a tubular joint 33 therebeing a bore 34 through the inner section which amply accommodates the rod 26.
  • a bearing of non-magnetic material is provided with a central bore 36 forming a snug and freely sliding fit for the rod 26.
  • An annular resilient spring isolation mount 37 is bonded to the intersection 32 in a recess 38.
  • the isolation mount 37 is likewise bonded to the bearing 35 in a recess 39.
  • the opposite outer end 40 of the shaft 26 is provided with threads 41 which threadedly engage a recess 42 thereby to secure the blade mount 11 in threaded engagement with the outer end of the rod.
  • the set screw 43 anchors the parts together.
  • an annular resilient spring isolation bearing 45 Separating the blade mount 11 from the case 14 is an annular resilient spring isolation bearing 45.
  • the isolation bearing is bonded to the blade mount in a recess 46 and bonded to a plug 47 in a recess 48.
  • the plug as shown, has a threaded engagement 49 in the adjacent end of the case 14.
  • the knife blade 12 there is at the base of the knife blade 12 a mass from which the blade extends, the mass being connectedto the blade 'mount 11 by a neck 51 of substantially rectangular cross-sectional configuration, the long dimension being transverse to the flat dimensionof the knife blade and the short dimension being 90 degrees removed.
  • the blade mount 1 1 can be adjusted with respect to the outside end 40 of the rod whereby to change the spacing of the clapper 27 from the adjacent edges 29 and 30 of the solenoid.
  • the form of device of FIG. 6 shows another adjustment embodied in a lock nut 55 engaging threads 56 at the inner end 31' of the rod 26.
  • annular housing 60 providing a chamber 61 may be attached to the adjacent end of the case 10.
  • the chamber 61 provides room for electric circuitry and may be made large enough to contain an appropriate conventional battery.
  • a wire 62 from the solenoid 15 passes through a wire channel 63 thence through a passage 64 into the chamber 61.
  • a cap 65 closes the outside end of the chamber and when electrical energy is to be supplied by an outside source the cap is provided with an opening 66 through which wires from the power supply may pass.
  • a DC. power circuit is shown in FIG. 7 supplied by a battery 70 from which a negative lead 71 is connected to a tap 72 at one end of a coil 73 and a positive lead 74 is connected to a tap 75 at the opposite end of the coil 73.
  • a transistoroscillator 76 connects to the positive lead 74 and from it a lead 77 connects to an intermediate coil tap 78 to provide a trigger voltage, there being a resistor 68 in the line.
  • a switch 79 in the negative lead is made use of to start and stop the operation.
  • In the oscillator circuit is a capacitor 69 connected across the coil 73 to form a tank circuit.
  • an A.C. coil 80 accommodating a push-pull solenoid, the coil being supplied by one lead 81 in which is a start/stop switch 82.
  • a second lead 83 supplies the opposite end of the coil 80.
  • the switch 79 When, for example, the DC. circuit is used for operation of the device, the switch 79 is activated causing a magnetic field to be set up in the solenoid 15 through the outer jacket 16, the inner jacket 17, the spacer block 18 and the clapper 27. This causes the clapper to be attracted toward the solenoid imparting a corresponding endwise motion to the rod 26 in a direction from left to right as viewed in FIG. 1.
  • the attraction of the clapper 27 is likewise momentarily released and the reversal of current in the coil effects an opposite endwise motion in the rod 26 in a direction from right to left as viewed in FIG. 1.
  • a sinusoidal elastic longitudinal wave energy pattern is generated represented by the nodal points 89 and anti-nodal points 85 in FIG. 9.
  • This wave pattern exists in the rod 26 and is conveyed by the rod to the blade mount 11 and mass 50 to the blade 12 where a comparable wave pattern is set up.
  • the result of this wave pattern is the ellipsoid force motions schematically shown in FIG. 10, there being an ellipsoid motion 86 in a direction toward and away from the cutting edge of the blade, an ellipsoid motion 87 in a direction transverse to the cutting edge of the blade and an ellipsoid motion 88 diagonal with respect thereto.
  • the motion in the direction in alignment with the cutting edge of the blade promotes the cutting force and the motion 87 in a direction transverse to the cutting edge causes a parting motion in whatever the material may be which is being cut.
  • the blade 12, the rod 26, the blade mount 11 and mass 50 comprise a spring mass system which is excited into an oscillating motion in line with the blade structure by means of the solenoid and its associated circuitry.
  • the sinusoidal frequency of the oscillation represents the natural frequency of the structure and its spring mass system which is always in phase with the electronic sinusoidal frequency of the system.
  • the nodal natural frequency of the structure may be conveniently chosen by design for a specific value over a range from 300 to 1,000 cycles per second.
  • the back and forth, sinusoidal oscillation, frequency of the spring mass longitudinal structure which is excited by the solenoid oscillator in turn excites the free longitudinal rod and blade into their own natural frequency which transmits throughout the extremity and including the blade itself, thus to create an elastic longitudinal sinusoidal wave motion within the metallic structure material and which corresponds to the natural frequency.
  • a structure which is excited into its own natural frequency releases force motion ellipsoid patterns in three planes as made reference to in connection with FIG. 10, this being a significant feature of the invention.
  • the sinusoidal longitudinal wave energy which travels and is released to the blade causes the blade to release ellipsoid wave energy motions within its own structure and of minute motional extent in the three planes indicated.
  • the oscillating motion of the blade causes high speed delicate cutting without causing indentation of the tissue or material to be cut, the transverse ellipsoid force motion of the blade creating its own minute parting action during incision.
  • an acceptable operating frequency range can be set up between 60 and 1,000 cycles per second.
  • a typical D.C. circuit can be made to operate satisfactorily on either a 6 volt or 12 volt D.C. battery applied across the DC. coil.
  • the feedback voltage of the coil 73 causes the cricuit to go into oscillation at a frequency determined by the resonant frequency of the rod, blade mount and blade assembly which is in effect a free-free spring mass system. It is therefore a self excited oscillator.
  • the oscillator circuit will automatically follow one of the nodes of natural frequency of the rod and blade assembly and its inherent spring mass structure by means of its own feedback nature.
  • the design of the coil is matched specifically to the characteristics of the oscillator circuit and to the resonant, frequency structure.
  • the resonant frequency of the electrical circuit therefore is in resonance and in phase with the natural frequency of the mechanical structure.
  • the total or combined electromechanical system therefore flows into electromechanical resonance thus only utilizing a minimum amount of power which is a significant aspect of the invention and work to be accomplished.
  • the frequency generated is therefore the natural frequency of the circuit and is the frequency at which it will oscillate and in phase with the natural and resonant frequency of the rod and blade assembly which comprises the spring mass structure.
  • the resonant rod and blade assembly When an A.C. coil like the A.C. coil 80 is made use of on a l volt 60 cycle power supply the resonant rod and blade assembly is designed for a fixed frequency of 60 cycles per second.
  • the resonant rod and blade assembly in such a design is designed for one of its modes of natural frequency which is excited by the fundamental frequency of 60 cycles per second.
  • a desirable structure frequency in this case has been found to be within one of the modes of natural frequency by design, which may be chosen within an acceptable range of from 120 to 300 cycles per second.
  • a drive assembly for a single blade electronically powered knife comprising: a case, longitudinally oscillatable rod extending into the case, a blade mount anchored to an outside end of the rod, a transversely and longitudinally acting resilient isolation means secured between said blade mount, said rod and the case, whereby to inhibit direct contact, and a sinusoidally oscillating electric power source acting between the case and the rod, which, when energized, imparts to the rod and to the blade mount a sinusoidal elastic longitudinal wave motion whereby to setup a sinusoidal elastic wave motion in the blade.
  • a drive assembly as in claim 1 wherein there is a blade on the blade mount, said blade having flat sides 6 and a longitudinally extending cutting edge intermediate said sides, and a spring mass structure comprising the combination of blade, blade mount, and rod, said spring mass structure having an oscillation rate at or near resonant frequency and in phase with said power.
  • a drive assembly as in claim 4 wherein there is a means acting between the rod and the blade mount to adjust the distance between the clapper and the blade mount whereby to vary the amplitude of the sinusoidal motion.
  • a drive assembly as in claim 1 wherein there is a bearing block in the case having a bearing bore therethrough reciprocatably receiving the end of the rod which is in the case, there being a transversely and longitudinally acting resilient isolation mount secured between the bearing and the case.
  • a drive assembly for a single blade electronically powered knife comprising: a case, a longitudinally oscillatable rod extending into the case, a blade mount anchored to an outside end of the rod, a resilient isolation bearing secured between the blade mount and the case, and a sinusoidally oscillating electric power source acting between the case and the rod which when energized, imparts to the rod and to the blade mount a sinusoidal elastic longitudinal wave motion whereby to set up a sinusoidal elastic wave motion in the blade, the power source being a solenoid having a central bore therethrough and the rod having a position extending through said central bore, the power source being a DC.
  • battery driven circuit comprising a coil for the solenoid, and a transistor oscillator having leads connected respectively to opposite ends of the coil and to the coil at an intermediate location, whereby to periodically pulse said solenoid.
  • a drive assembly as in claim 2 wherein there is a neck of rectangular cross sectional shape forming an interconnection between the blade mount and the blade, the long axis of said neck lying in a direction transverse to the fiat sides of the blade.

Abstract

A single blade electronically powered knife has a cylindrical case in which is located a solenoid having a centrally mounted longitudinally oscillating rod. The inner end of the rod is slidably retained in a bearing which has a resilient isolation mounting within the case. On the outer end of the rod is secured a mounting block which carries the knife blade and the mounting block is isolated from the case by a resilient bearing. An electric power source acting through an electronic circuit housed in the case causes the solenoid to reciprocate the mounting block in a longitudinal direction and impart sinusoidal elastic longitudinal wave energy to the knife blade which translates into a cutting and parting knife blade action.

Description

United States Patent [191 Sawyer ELECTRONICALLY POWERED KNIFE [76] Inventor: Harold T. Sawyer, 845 Via de la Paz, Pacific Palisades, Calif. 90272 22 Filed: Nov. 24, I972 211 App]. No.: 308,952
[52] U.S. Cl 30/272, 30/D1G. 1, 128/305, 310/30 [51] Int. Cl 1326b 7/00 [58] Field of Search 30/272, DIG. 1, 45; 310/28, 29, 30, 34; 128/303.14, 305
[56] References Cited UNITED STATES PATENTS 7 1,111,038 9/1914 Smith 30/45 2,753,470 7/1956 Armstrong..... 30/272 A 2,845,072 7/1958 Shafer 128/303.14 2,972,069 2/1961 Sproule 30/45 X 3,183,538 5/1965 Hubner 30/DlG. 1 3,484,629 12/1969 Kunz 310/30 X 3,491,279 1/1970 Rodaway 30/272 R FOREIGN PATENTS OR APPLICATIONS 1,141,564 3/1957 France 30/272 A [4 1 Sept. 3, 1974 Primary ExaminerAl Lawrence Smith Assistant Examiner-J. C. Peters 5 7 1 ABSTRACT A single blade electronically powered knife has a cylindrical case in which is located a solenoid having a centrally mounted longitudinally oscillating rod. The inner end of the rod is slidably retained in a bearing which has a resilient isolation mounting within the case. On the outer end of the rod is secured a mounting block which carries the knife blade and the mounting block is isolated from the case by a resilient bearing. An electric power source acting through an electronic circuit housed in the case causes the solenoid to reciprocate the mounting block in a longitudinal direction and impart sinusoidal elastic longitudinal wave energy to the knife blade which translates into a cutting and parting knife blade action.
11 Claims, 10 Drawing Figures PATENIEnsm I974 sum 10F 2 my M saw an; 2
PAremmsePs m4 ELECTRONICALLY POWERED KNIFE SPECIFICATION Electrically powered knives heretofore available have invariably consisted of two blades mounted side by side in a handle with one or both blades so manipulated that they reciprocate longitudinally with respect to each other and produce a sawing action the nature of which is similar to that of clippers. Such blades have the disadvantage of always needing to be removed from the handle after use in order to be cleaned separately and thereafter reinserted in the handle when they are to be used again. Electric knives of this description have been relatively large knives suited mainly for carving meats and cutting bread. Although single blade knives have been employed for cutting multiple layers of textiles in the garment industry, such commercial type knives all need special accessories and special handling in order to be useful.
Heretofore there has been little or no interest in making use of electric or electronically powered knives for extremely fine and precise cutting such as may be required, for example, in surgery. Surgical knives currently in use, commonly known as scalpels, both large and small, are hand manipulated single blades in one or another of the great many forms, often involving detachable blades on a special handle for specific applications. Such blades generally have microscopic saw type teeth machined into the cutting edge of the blade. Incisions and cutting are performed by oscillating the blade in a motion which is in line with the center line of the blade. For extremely precise work disadvantages attend blades of this kind as for example there is invariably some indentation of the skin or tissue during the cutting process which is undesirable, such being particularly noticable in delicate operations involving plastic surgery, eye operations, nerve operations and such operations where delicate tissues are involved. Since the scalpel is used in a slow back and forth motion the tissue to be cut is minutely shreaded and this is undesir' able. Further still, the scalpel blade in itself has no parting'action, that is to say parting the tissues on opposite sides of the incision, and this being necessary, it is done by hand manipulation dependent on the skill of the surgeon.
It is therefore among the objects of the invention to provide a new and improved single blade electrically powered knife which may, if desired, be permanently mounted in the handle, and which is essentially easy to clean or sterilize.
Another object of the invention is to provide a new and improved electrically powered single blade knife which can be self contained with the power supply compactly housed in a small handle and which is capable of making an extremely precise incision virtually without indentation of the material to be cut and which is gently parted during the cutting operation by action of the knife blade itself.
Still another object of the invention is to provide a new and improved single blade electronically powered knife, capable of being constructed in any one of a number of different sizes and which is suitable for precise cutting operations such as those encountered in surgery.
Still further among the objects of the invention is to provide a new and improved single blade electronically powered knife which is simple, positive and compact to the extent that a serviceable cutting tool of high precision cutting ability can be made and assembled without the use of complicated technique and which requires virtually a negligible amount of service, the device moreover being such that it can be powered either by a battery contained in the knife handle or by an extension to a conventional power supply.
With these and other objects in view,the invention consists of the construction, arrangement, and combination of the various parts of the device, whereby the objects contemplated are attained, as hereinafter set forth, pointed out in the appended claims and illustrated in the accompanying drawings. 7
FIG. 1 is a longitudinal sectional view of the electronically powered assembly complete with blade.
FIG. 2 is a fragmentary plan view of the blade and the mounting.
FIG. 3 is-a cross-sectional view on the line 3-3 of FIG. 1. g
FIG. 4 is a cross-sectional view on the line 44 of FIG. 1.
FIG. 5 is a cross-sectional view on the line 55 of FIG. 1.
FIG. 6 is a fragmentary longitudinal sectional view of a second form of internal construction of the device.
FIG.'7 is a wiring diagram of a DC. power source usable with'the device.
FIG. 8 is a wiring diagram for an A.C. power source.
FIG. 9 is a schematic view of a sinusoidal elastic longitudinal wave motion withinthe solid material of the rod, the blade and blade mounting.
FIG. 10 is a schematic view of ellipsoid force motions of the blade when activated.
In an embodiment of the invention chosen for the purpose of illustration there is shown a drive assembly indicated generally by the reference character 10 at one end of which is a blade mount 11 which carries a blade 12. The blade 12 may be any one of a number of different blade types depending upon the size and power of the drive assembly, the blade illustrated being a scalpel. The action imparted to the blade will, however, be the same whether it chances to be a scalpel, a utility knife, a carving blade, or other comparable single blade knife or chisel.
Located within a chamber 13 of a case 14 is a solenoid 15. The'solenoid is constructed with a cylindrical outer jacket 16 of magnetic material and an inner sleeve 17 of magnetic material spaced apart at one end by use of an annular spacer block 18 of magnetic material and at the other end by use of a washer 19 of nonmagnetic material. The structure thus defined forms an annular space 20 substantially occupied by a coil 21. Screws 22 extending through the case into the solenoid hold it in position where it has a snug sliding fit within the chamber 13.
The sleeve 17 provides a central bore 25 through which extends a relatively long rod 26, the rod being of non-magnetic material as for example, stainless steel. A clapper 27 which is of magnetic material is anchored to the rod 26 by an appropriate weldment 28, the clapper extending transversely over adjacent annular edges 29 and 30 respectively of the jacket 16 and sleeve 17.
To properly support an inside end 31 of the rod 26 use is made of an annular inner section 32 of a tubular joint 33, therebeing a bore 34 through the inner section which amply accommodates the rod 26. A bearing of non-magnetic material is provided with a central bore 36 forming a snug and freely sliding fit for the rod 26. An annular resilient spring isolation mount 37 is bonded to the intersection 32 in a recess 38. The isolation mount 37 is likewise bonded to the bearing 35 in a recess 39.
The opposite outer end 40 of the shaft 26 is provided with threads 41 which threadedly engage a recess 42 thereby to secure the blade mount 11 in threaded engagement with the outer end of the rod. Once in proper adjustment the set screw 43 anchors the parts together. Separating the blade mount 11 from the case 14 is an annular resilient spring isolation bearing 45. The isolation bearing is bonded to the blade mount in a recess 46 and bonded to a plug 47 in a recess 48. The plug, as shown, has a threaded engagement 49 in the adjacent end of the case 14. In the chosen embodiment there is at the base of the knife blade 12 a mass from which the blade extends, the mass being connectedto the blade 'mount 11 by a neck 51 of substantially rectangular cross-sectional configuration, the long dimension being transverse to the flat dimensionof the knife blade and the short dimension being 90 degrees removed.
For varying the amplitude of endwise motion of the rod 26 the blade mount 1 1 can be adjusted with respect to the outside end 40 of the rod whereby to change the spacing of the clapper 27 from the adjacent edges 29 and 30 of the solenoid.
The form of device of FIG. 6 shows another adjustment embodied in a lock nut 55 engaging threads 56 at the inner end 31' of the rod 26. By making use of the lock nut 55 adjustment of pressure on both the isolation mount 37 and the spring isolation bearing 45 are made use of in an opposing manner to alter the resonant frequency, depending on the direction of adjustment.
When the drive assembly is to be self contained an annular housing 60 providing a chamber 61 may be attached to the adjacent end of the case 10. The chamber 61 provides room for electric circuitry and may be made large enough to contain an appropriate conventional battery. A wire 62 from the solenoid 15 passes through a wire channel 63 thence through a passage 64 into the chamber 61. A cap 65 closes the outside end of the chamber and when electrical energy is to be supplied by an outside source the cap is provided with an opening 66 through which wires from the power supply may pass.
A DC. power circuit is shown in FIG. 7 supplied by a battery 70 from which a negative lead 71 is connected to a tap 72 at one end of a coil 73 and a positive lead 74 is connected to a tap 75 at the opposite end of the coil 73. A transistoroscillator 76 connects to the positive lead 74 and from it a lead 77 connects to an intermediate coil tap 78 to provide a trigger voltage, there being a resistor 68 in the line. A switch 79 in the negative lead is made use of to start and stop the operation. In the oscillator circuit is a capacitor 69 connected across the coil 73 to form a tank circuit.
When an A.C. power supply is to be made use of there is provided an A.C. coil 80 accommodating a push-pull solenoid, the coil being supplied by one lead 81 in which is a start/stop switch 82. A second lead 83 supplies the opposite end of the coil 80.
When, for example, the DC. circuit is used for operation of the device, the switch 79 is activated causing a magnetic field to be set up in the solenoid 15 through the outer jacket 16, the inner jacket 17, the spacer block 18 and the clapper 27. This causes the clapper to be attracted toward the solenoid imparting a corresponding endwise motion to the rod 26 in a direction from left to right as viewed in FIG. 1. When the excitation is momentarily released, the attraction of the clapper 27 is likewise momentarily released and the reversal of current in the coil effects an opposite endwise motion in the rod 26 in a direction from right to left as viewed in FIG. 1. These reversals of motion occur at a specified frequency depending upon the design of the device. Acting in the manner described a sinusoidal elastic longitudinal wave energy pattern is generated represented by the nodal points 89 and anti-nodal points 85 in FIG. 9. This wave pattern exists in the rod 26 and is conveyed by the rod to the blade mount 11 and mass 50 to the blade 12 where a comparable wave pattern is set up. The result of this wave pattern is the ellipsoid force motions schematically shown in FIG. 10, there being an ellipsoid motion 86 in a direction toward and away from the cutting edge of the blade, an ellipsoid motion 87 in a direction transverse to the cutting edge of the blade and an ellipsoid motion 88 diagonal with respect thereto. The motion in the direction in alignment with the cutting edge of the blade promotes the cutting force and the motion 87 in a direction transverse to the cutting edge causes a parting motion in whatever the material may be which is being cut.
When the electronically powered knife is to be made in a size suited to surgery, where the knife is comparable to that of the conventional scalpel, a low energy source employing a small DC. 9 to 12 volt battery is found acceptable. The blade 12, the rod 26, the blade mount 11 and mass 50, comprise a spring mass system which is excited into an oscillating motion in line with the blade structure by means of the solenoid and its associated circuitry. The sinusoidal frequency of the oscillation represents the natural frequency of the structure and its spring mass system which is always in phase with the electronic sinusoidal frequency of the system. The nodal natural frequency of the structure may be conveniently chosen by design for a specific value over a range from 300 to 1,000 cycles per second.
The back and forth, sinusoidal oscillation, frequency of the spring mass longitudinal structure which is excited by the solenoid oscillator in turn excites the free longitudinal rod and blade into their own natural frequency which transmits throughout the extremity and including the blade itself, thus to create an elastic longitudinal sinusoidal wave motion within the metallic structure material and which corresponds to the natural frequency.
A structure which is excited into its own natural frequency releases force motion ellipsoid patterns in three planes as made reference to in connection with FIG. 10, this being a significant feature of the invention. For example, the sinusoidal longitudinal wave energy which travels and is released to the blade causes the blade to release ellipsoid wave energy motions within its own structure and of minute motional extent in the three planes indicated.
The oscillating motion of the blade causes high speed delicate cutting without causing indentation of the tissue or material to be cut, the transverse ellipsoid force motion of the blade creating its own minute parting action during incision.
Depending on the ultimate use to be made of the device an acceptable operating frequency range can be set up between 60 and 1,000 cycles per second. A typical D.C. circuit can be made to operate satisfactorily on either a 6 volt or 12 volt D.C. battery applied across the DC. coil.
In the setup described for DC. operation, the feedback voltage of the coil 73 causes the cricuit to go into oscillation at a frequency determined by the resonant frequency of the rod, blade mount and blade assembly which is in effect a free-free spring mass system. It is therefore a self excited oscillator. The oscillator circuit will automatically follow one of the nodes of natural frequency of the rod and blade assembly and its inherent spring mass structure by means of its own feedback nature.
The design of the coil is matched specifically to the characteristics of the oscillator circuit and to the resonant, frequency structure. The resonant frequency of the electrical circuit therefore is in resonance and in phase with the natural frequency of the mechanical structure. The total or combined electromechanical system therefore flows into electromechanical resonance thus only utilizing a minimum amount of power which is a significant aspect of the invention and work to be accomplished. The frequency generated is therefore the natural frequency of the circuit and is the frequency at which it will oscillate and in phase with the natural and resonant frequency of the rod and blade assembly which comprises the spring mass structure.
When an A.C. coil like the A.C. coil 80 is made use of on a l volt 60 cycle power supply the resonant rod and blade assembly is designed for a fixed frequency of 60 cycles per second. The resonant rod and blade assembly in such a design is designed for one of its modes of natural frequency which is excited by the fundamental frequency of 60 cycles per second. A desirable structure frequency in this case has been found to be within one of the modes of natural frequency by design, which may be chosen within an acceptable range of from 120 to 300 cycles per second.
While the invention has herein been shown and described in what is conceived to be a practical and effective embodiment, it is recognized that departures may be made therefrom within the scope of the invention.
Having described the invention, what is claimed as new in support of Letters Patent is:
l. A drive assembly for a single blade electronically powered knife, said drive assembly comprising: a case, longitudinally oscillatable rod extending into the case, a blade mount anchored to an outside end of the rod, a transversely and longitudinally acting resilient isolation means secured between said blade mount, said rod and the case, whereby to inhibit direct contact, and a sinusoidally oscillating electric power source acting between the case and the rod, which, when energized, imparts to the rod and to the blade mount a sinusoidal elastic longitudinal wave motion whereby to setup a sinusoidal elastic wave motion in the blade.
2. A drive assembly as in claim 1 wherein there is a blade on the blade mount, said blade having flat sides 6 and a longitudinally extending cutting edge intermediate said sides, and a spring mass structure comprising the combination of blade, blade mount, and rod, said spring mass structure having an oscillation rate at or near resonant frequency and in phase with said power.
source.
3. A drive assembly as in claim 1 wherein the power source is a solenoid having a central bore therethrough and the rod extends through said central bore.
4. A drive assembly as in claim 3 wherein there is a transversely mounted clapper of magnetic material attached to the rod at a location adjacent to and spaced from one end of the solenoid forming part of a magnetic path .through the solenoid when the solenoid is energized.
5. A drive assembly as in claim 4 wherein there is a means acting between the rod and the blade mount to adjust the distance between the clapper and the blade mount whereby to vary the amplitude of the sinusoidal motion.
6. A drive assembly as in claim 1 wherein there is a bearing block in the case having a bearing bore therethrough reciprocatably receiving the end of the rod which is in the case, there being a transversely and longitudinally acting resilient isolation mount secured between the bearing and the case.
7. A drive assembly as in claim 6 wherein there is a lock nut in engagement with the bearing block and in threaded engagement with the the rod end which is in the case whereby to selectively set the assembly at a different resonant frequency.
8. A drive assembly for a single blade electronically powered knife, said drive assembly comprising: a case, a longitudinally oscillatable rod extending into the case, a blade mount anchored to an outside end of the rod, a resilient isolation bearing secured between the blade mount and the case, and a sinusoidally oscillating electric power source acting between the case and the rod which when energized, imparts to the rod and to the blade mount a sinusoidal elastic longitudinal wave motion whereby to set up a sinusoidal elastic wave motion in the blade, the power source being a solenoid having a central bore therethrough and the rod having a position extending through said central bore, the power source being a DC. battery driven circuit comprising a coil for the solenoid, and a transistor oscillator having leads connected respectively to opposite ends of the coil and to the coil at an intermediate location, whereby to periodically pulse said solenoid.
9. A drive assembly as in claim 8 wherein the frequency is between about 300 and 1,000 cycles per second.
10. A drive assembly as in claim 3 wherein the power source is an AC. push pull coil for the solenoid in communication with an A.C. electric power source operating at a per second cycle rate of between about 60 and 1,000 cycles per second.
11. A drive assembly as in claim 2 wherein there is a neck of rectangular cross sectional shape forming an interconnection between the blade mount and the blade, the long axis of said neck lying in a direction transverse to the fiat sides of the blade.

Claims (11)

1. A drive assembly for a single blade electronically powered knife, said drive assembly comprising: a case, longitudinally oscillatable rod extending into the case, a blade mount anchored to an outside end of the rod, a transversely and longitudinally acting resilient isolation means secured between said blade mount, said rod and the case, whereby to inhibit direct contact, and a sinusoidally oscillating electric power source acting between the case and the rod, which, when energized, imparts to the rod and to the blade mount a sinusoidal elastic longitudinal wave motion whereby to set up a sinusoidal elastic wave motion in the blade.
2. A drive assembly as in claim 1 wherein there is a blade on the blade mount, said blade having flat sides and a longitudinally extending cutting edge intermediate said sides, and a spring mass structure comprising the combination of blade, blade mount, and rod, said spring mass structure having an oscillation rate at or near resonant frequency and in phase with said power source.
3. A drive assembly as in claim 1 wherein the power source is a solenoid having a central bore therethrough and the rod extends through said central bore.
4. A drive assembly as in claim 3 wherein there is a transversely mounted clapper of magnetic material attached to the rod at a location adjacent to and spaced from one end of the solenoid forming part of a magnetic path through the solenoid when the solenoid is energized.
5. A drive assembly as in claim 4 wherein there is a means acting between the rod and the blade mount to adjust the distance between the clapper and the blade mount whereby to vary the amplitude of the sinusoidal motion.
6. A drive assembly as in claim 1 wherein there is a bearing block in the case having a bearing bore therethrough reciprocatably receiving the end of the rod which is in the case, there being a transversely and longitudinally acting resilient isolation mount secured between the bearing and the case.
7. A drive assembly as in claim 6 wherein there is a lock nut in engagement with the bearing block and in threaded engagement with the the rod end which is in the case whereby to selectively set the assembly at a different resonant frequency.
8. A drive assembly for a single blade electronically powered knife, said drive assembly comprising: a case, a longitudinally oscillatable rod extending into the case, a blade mount anchored to an outside end of the rod, a resilient isolation bearing secured between the blade mount and the case, and a sinusoidally oscillating electric pOwer source acting between the case and the rod which when energized, imparts to the rod and to the blade mount a sinusoidal elastic longitudinal wave motion whereby to set up a sinusoidal elastic wave motion in the blade, the power source being a solenoid having a central bore therethrough and the rod having a position extending through said central bore, the power source being a D.C. battery driven circuit comprising a coil for the solenoid, and a transistor oscillator having leads connected respectively to opposite ends of the coil and to the coil at an intermediate location, whereby to periodically pulse said solenoid.
9. A drive assembly as in claim 8 wherein the frequency is between about 300 and 1,000 cycles per second.
10. A drive assembly as in claim 3 wherein the power source is an A.C. push pull coil for the solenoid in communication with an A.C. electric power source operating at a per second cycle rate of between about 60 and 1,000 cycles per second.
11. A drive assembly as in claim 2 wherein there is a neck of rectangular cross sectional shape forming an interconnection between the blade mount and the blade, the long axis of said neck lying in a direction transverse to the flat sides of the blade.
US00308952A 1972-11-24 1972-11-24 Electronically powered knife Expired - Lifetime US3832776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00308952A US3832776A (en) 1972-11-24 1972-11-24 Electronically powered knife

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00308952A US3832776A (en) 1972-11-24 1972-11-24 Electronically powered knife

Publications (1)

Publication Number Publication Date
US3832776A true US3832776A (en) 1974-09-03

Family

ID=23196047

Family Applications (1)

Application Number Title Priority Date Filing Date
US00308952A Expired - Lifetime US3832776A (en) 1972-11-24 1972-11-24 Electronically powered knife

Country Status (1)

Country Link
US (1) US3832776A (en)

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200106A (en) * 1977-10-11 1980-04-29 Dinkelkamp Henry T Fixed arc cyclic ophthalmic surgical instrument
US4637393A (en) * 1983-06-21 1987-01-20 Microsurgical Equipment Limited Surgical instrument
US4644952A (en) * 1985-02-19 1987-02-24 Palm Beach Medical Engineering, Inc. Surgical operating instrument
US4644653A (en) * 1985-07-30 1987-02-24 Bacon Donald V Reciprocating knife
DE8800867U1 (en) * 1988-01-26 1988-06-09 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
US4832683A (en) * 1985-09-20 1989-05-23 Sumitomo Bakellite Company Limited Surgical instrument
US4852261A (en) * 1987-04-14 1989-08-01 Chicago Pneumatic Tool Company Knife insert
US4856718A (en) * 1987-12-04 1989-08-15 Better Mousetraps Inc. Food processor and food cutting devices therefor
US4922614A (en) * 1987-04-30 1990-05-08 Kai Cutlery Center Co., Ltd. Cutter
US5042592A (en) * 1988-06-23 1991-08-27 Fisher Hugh E Power tool
WO1993005718A1 (en) * 1991-09-23 1993-04-01 Visionary Medical, Inc. Intraocular surgical scissors
US5211646A (en) * 1990-03-09 1993-05-18 Alperovich Boris I Cryogenic scalpel
US5423838A (en) * 1989-11-13 1995-06-13 Scimed Life Systems, Inc. Atherectomy catheter and related components
US5513709A (en) * 1988-06-23 1996-05-07 Fisher; Hugh E. Power tool
EP0949881A1 (en) * 1996-08-29 1999-10-20 Bausch & Lomb Surgical, Inc. Surgical handpiece
US6051011A (en) * 1997-08-28 2000-04-18 Bausch & Lomb Surgical, Inc. Surgical handpiece
US6089235A (en) * 1992-11-25 2000-07-18 Scimed Life Systems, Inc. Method of using an in vivo mechanical energy source
US6364889B1 (en) * 1999-11-17 2002-04-02 Bayer Corporation Electronic lancing device
US6379371B1 (en) * 1999-11-15 2002-04-30 Misonix, Incorporated Ultrasonic cutting blade with cooling
US6443969B1 (en) 2000-08-15 2002-09-03 Misonix, Inc. Ultrasonic cutting blade with cooling
WO2002100460A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Electric lancet actuator
US20030088191A1 (en) * 2001-06-12 2003-05-08 Freeman Dominique M. Blood sampling device with diaphragm actuated lancet
US20030199900A1 (en) * 2002-04-19 2003-10-23 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20030204199A1 (en) * 2002-04-30 2003-10-30 Novak Theodore A. D. Device and method for ultrasonic tissue excision with tissue selectivity
US20030233112A1 (en) * 2001-06-12 2003-12-18 Don Alden Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US20040010279A1 (en) * 2002-04-19 2004-01-15 Freeman Dominique M. Device and method for variable speed lancet
US20040049219A1 (en) * 2002-04-19 2004-03-11 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US20040059256A1 (en) * 2001-09-26 2004-03-25 Edward Perez Method and apparatus for sampling bodily fluid
US20040073140A1 (en) * 1996-05-17 2004-04-15 Douglas Joel S. Methods and apparatus for expressing body fluid from an incision
US6988996B2 (en) 2001-06-08 2006-01-24 Roche Diagnostics Operatons, Inc. Test media cassette for bodily fluid testing device
US20060052810A1 (en) * 2002-04-19 2006-03-09 Freeman Dominique M Tissue penetration device
US20060053631A1 (en) * 2004-09-14 2006-03-16 Gregory Fossella Powered utility knife
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US20060276724A1 (en) * 2003-06-13 2006-12-07 Freeman Dominique M Method and apparatus for a point of care device
US20070101580A1 (en) * 2005-09-12 2007-05-10 Avello, Llc, A Massachusetts Limited Liability Corporation Powered Utility Knife
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US20070129650A1 (en) * 2003-05-30 2007-06-07 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7244265B2 (en) 2002-04-19 2007-07-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20070166595A1 (en) * 2003-12-12 2007-07-19 Nec Corporation Fuel cell, fuel cartridge and fuel cell system
US7247144B2 (en) 1996-05-17 2007-07-24 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US20070185412A1 (en) * 2002-04-19 2007-08-09 Dirk Boecker Method and apparatus for penetrating tissue
US7264627B2 (en) 2001-08-29 2007-09-04 Roche Diagnostics Operations, Inc. Wicking methods and structures for use in sampling bodily fluids
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20080021490A1 (en) * 2003-06-06 2008-01-24 Barry Dean Briggs Method and Apparatus for Body Fluid Sampling and Analyte Sensing
US20080021491A1 (en) * 2002-04-19 2008-01-24 Freeman Dominique M Method and apparatus for penetrating tissue
US20080027385A1 (en) * 2002-04-19 2008-01-31 Freeman Dominique M Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7374544B2 (en) 2002-04-19 2008-05-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20080119761A1 (en) * 2002-04-19 2008-05-22 Dirk Boecker Method and apparatus for penetrating tissue
US20080188883A1 (en) * 2005-07-13 2008-08-07 Roche Diagnostics Operations, Inc. Lancet device
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7563232B2 (en) 2002-04-19 2009-07-21 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7582099B2 (en) 2002-04-19 2009-09-01 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7582258B2 (en) 2002-12-23 2009-09-01 Roche Diagnostics Operations, Inc. Body fluid testing device
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US7666150B2 (en) 1996-05-17 2010-02-23 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7731900B2 (en) 2002-11-26 2010-06-08 Roche Diagnostics Operations, Inc. Body fluid testing device
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7803123B2 (en) 2001-01-22 2010-09-28 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7828749B2 (en) 1996-05-17 2010-11-09 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901363B2 (en) 1996-05-17 2011-03-08 Roche Diagnostics Operations, Inc. Body fluid sampling device and methods of use
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8021631B2 (en) 2002-12-23 2011-09-20 Roche Diagnostics Operations, Inc. Body fluid testing device
US8043317B2 (en) 2000-10-31 2011-10-25 Roche Diagnostics Operations, Inc. System for withdrawing blood
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
CN102601805A (en) * 2011-01-23 2012-07-25 吴同申 Domestic electric kitchen knife
CN102614007A (en) * 2011-01-27 2012-08-01 吴同申 Electric scalpel
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8523784B2 (en) 2001-08-29 2013-09-03 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
CN103921603A (en) * 2013-11-30 2014-07-16 庞群 Automatic handcraft pen
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
CN105105799A (en) * 2015-07-16 2015-12-02 于振海 Multifunctional dissection device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US20170209167A1 (en) * 2009-05-20 2017-07-27 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9901296B2 (en) 2000-03-04 2018-02-27 Roche Diabetes Care, Inc. Blood lancet with hygienic tip protection
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1111038A (en) * 1911-11-28 1914-09-22 Frank V Smith Magnetic vibrator.
US2753470A (en) * 1953-07-29 1956-07-03 Armstrong Ogden Vibrating apparatus
FR1141564A (en) * 1956-01-20 1957-09-04 Automatic cutting tool usable in particular in leather
US2845072A (en) * 1955-06-21 1958-07-29 William A Shafer Surgical knife
US2972069A (en) * 1958-03-03 1961-02-14 Glass Developments Ltd Ultrasonic flaw detecting apparatus
US3183538A (en) * 1962-04-28 1965-05-18 Hubner Otto Portable electric toilet apparatus
US3484629A (en) * 1968-03-01 1969-12-16 Emissa Sa Reciprocating motor structure
US3491279A (en) * 1967-10-25 1970-01-20 Keith S Rodaway Electromechanical oscillating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1111038A (en) * 1911-11-28 1914-09-22 Frank V Smith Magnetic vibrator.
US2753470A (en) * 1953-07-29 1956-07-03 Armstrong Ogden Vibrating apparatus
US2845072A (en) * 1955-06-21 1958-07-29 William A Shafer Surgical knife
FR1141564A (en) * 1956-01-20 1957-09-04 Automatic cutting tool usable in particular in leather
US2972069A (en) * 1958-03-03 1961-02-14 Glass Developments Ltd Ultrasonic flaw detecting apparatus
US3183538A (en) * 1962-04-28 1965-05-18 Hubner Otto Portable electric toilet apparatus
US3491279A (en) * 1967-10-25 1970-01-20 Keith S Rodaway Electromechanical oscillating device
US3484629A (en) * 1968-03-01 1969-12-16 Emissa Sa Reciprocating motor structure

Cited By (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200106A (en) * 1977-10-11 1980-04-29 Dinkelkamp Henry T Fixed arc cyclic ophthalmic surgical instrument
US4637393A (en) * 1983-06-21 1987-01-20 Microsurgical Equipment Limited Surgical instrument
US4644952A (en) * 1985-02-19 1987-02-24 Palm Beach Medical Engineering, Inc. Surgical operating instrument
US4644653A (en) * 1985-07-30 1987-02-24 Bacon Donald V Reciprocating knife
US4832683A (en) * 1985-09-20 1989-05-23 Sumitomo Bakellite Company Limited Surgical instrument
US4852261A (en) * 1987-04-14 1989-08-01 Chicago Pneumatic Tool Company Knife insert
US4922614A (en) * 1987-04-30 1990-05-08 Kai Cutlery Center Co., Ltd. Cutter
US4856718A (en) * 1987-12-04 1989-08-15 Better Mousetraps Inc. Food processor and food cutting devices therefor
DE8800867U1 (en) * 1988-01-26 1988-06-09 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
US5513709A (en) * 1988-06-23 1996-05-07 Fisher; Hugh E. Power tool
US5042592A (en) * 1988-06-23 1991-08-27 Fisher Hugh E Power tool
US5423838A (en) * 1989-11-13 1995-06-13 Scimed Life Systems, Inc. Atherectomy catheter and related components
US5211646A (en) * 1990-03-09 1993-05-18 Alperovich Boris I Cryogenic scalpel
US5275607A (en) * 1991-09-23 1994-01-04 Visionary Medical, Inc. Intraocular surgical scissors
WO1993005718A1 (en) * 1991-09-23 1993-04-01 Visionary Medical, Inc. Intraocular surgical scissors
US6089235A (en) * 1992-11-25 2000-07-18 Scimed Life Systems, Inc. Method of using an in vivo mechanical energy source
US8123701B2 (en) 1996-05-17 2012-02-28 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7666150B2 (en) 1996-05-17 2010-02-23 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US8231549B2 (en) 1996-05-17 2012-07-31 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7901363B2 (en) 1996-05-17 2011-03-08 Roche Diagnostics Operations, Inc. Body fluid sampling device and methods of use
US7727168B2 (en) 1996-05-17 2010-06-01 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US8690798B2 (en) 1996-05-17 2014-04-08 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US8696596B2 (en) 1996-05-17 2014-04-15 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7828749B2 (en) 1996-05-17 2010-11-09 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7247144B2 (en) 1996-05-17 2007-07-24 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US8740813B2 (en) 1996-05-17 2014-06-03 Roche Diagnostics Operations, Inc. Methods and apparatus for expressing body fluid from an incision
US20040073140A1 (en) * 1996-05-17 2004-04-15 Douglas Joel S. Methods and apparatus for expressing body fluid from an incision
US7731668B2 (en) 1996-05-17 2010-06-08 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7841991B2 (en) 1996-05-17 2010-11-30 Roche Diagnostics Operations, Inc. Methods and apparatus for expressing body fluid from an incision
EP0949881A4 (en) * 1996-08-29 2001-04-11 Bausch & Lomb Surgical Inc Surgical handpiece
EP0949881A1 (en) * 1996-08-29 1999-10-20 Bausch & Lomb Surgical, Inc. Surgical handpiece
US6051011A (en) * 1997-08-28 2000-04-18 Bausch & Lomb Surgical, Inc. Surgical handpiece
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6379371B1 (en) * 1999-11-15 2002-04-30 Misonix, Incorporated Ultrasonic cutting blade with cooling
AU777483B2 (en) * 1999-11-17 2004-10-21 Bayer Corporation Electronic lancing device
US6364889B1 (en) * 1999-11-17 2002-04-02 Bayer Corporation Electronic lancing device
US9901296B2 (en) 2000-03-04 2018-02-27 Roche Diabetes Care, Inc. Blood lancet with hygienic tip protection
US6443969B1 (en) 2000-08-15 2002-09-03 Misonix, Inc. Ultrasonic cutting blade with cooling
US10617340B2 (en) 2000-10-31 2020-04-14 Roche Diabetes Care, Inc. System for withdrawing blood
US9839387B2 (en) 2000-10-31 2017-12-12 Roche Diabetes Care, Inc. System for withdrawing blood
US8043317B2 (en) 2000-10-31 2011-10-25 Roche Diagnostics Operations, Inc. System for withdrawing blood
US8636758B2 (en) 2000-10-31 2014-01-28 Roche Diagnostics Operations, Inc. System for withdrawing blood
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8257276B2 (en) 2001-01-22 2012-09-04 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US7803123B2 (en) 2001-01-22 2010-09-28 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US6988996B2 (en) 2001-06-08 2006-01-24 Roche Diagnostics Operatons, Inc. Test media cassette for bodily fluid testing device
US8257277B2 (en) 2001-06-08 2012-09-04 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US8986223B2 (en) 2001-06-08 2015-03-24 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US7785272B2 (en) 2001-06-08 2010-08-31 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US8192372B2 (en) 2001-06-08 2012-06-05 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US20030088191A1 (en) * 2001-06-12 2003-05-08 Freeman Dominique M. Blood sampling device with diaphragm actuated lancet
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8679033B2 (en) 2001-06-12 2014-03-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8622930B2 (en) 2001-06-12 2014-01-07 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8721671B2 (en) * 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US7841992B2 (en) 2001-06-12 2010-11-30 Pelikan Technologies, Inc. Tissue penetration device
US8845550B2 (en) 2001-06-12 2014-09-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2002100460A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Electric lancet actuator
US8382683B2 (en) 2001-06-12 2013-02-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360991B2 (en) 2001-06-12 2013-01-29 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8343075B2 (en) 2001-06-12 2013-01-01 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8337421B2 (en) 2001-06-12 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8282577B2 (en) 2001-06-12 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US9937298B2 (en) 2001-06-12 2018-04-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US20060178689A1 (en) * 2001-06-12 2006-08-10 Dominique Freeman Tissue penetration device
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
EP1395185A4 (en) * 2001-06-12 2008-04-02 Pelikan Technologies Inc Electric lancet actuator
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US8216154B2 (en) 2001-06-12 2012-07-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8211037B2 (en) 2001-06-12 2012-07-03 Pelikan Technologies, Inc. Tissue penetration device
US8206319B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8206317B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8641643B2 (en) 2001-06-12 2014-02-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8162853B2 (en) 2001-06-12 2012-04-24 Pelikan Technologies, Inc. Tissue penetration device
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US8123700B2 (en) 2001-06-12 2012-02-28 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US20030233112A1 (en) * 2001-06-12 2003-12-18 Don Alden Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8016774B2 (en) 2001-06-12 2011-09-13 Pelikan Technologies, Inc. Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9694144B2 (en) 2001-06-12 2017-07-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US7001344B2 (en) 2001-06-12 2006-02-21 Pelikan Technologies, Inc. Blood sampling device with diaphragm actuated lancet
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US9802007B2 (en) 2001-06-12 2017-10-31 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7850622B2 (en) 2001-06-12 2010-12-14 Pelikan Technologies, Inc. Tissue penetration device
EP1395185A2 (en) * 2001-06-12 2004-03-10 Pelikan Technologies Inc. Electric lancet actuator
US9215993B2 (en) 2001-08-29 2015-12-22 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US7264627B2 (en) 2001-08-29 2007-09-04 Roche Diagnostics Operations, Inc. Wicking methods and structures for use in sampling bodily fluids
US8523784B2 (en) 2001-08-29 2013-09-03 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US20040059256A1 (en) * 2001-09-26 2004-03-25 Edward Perez Method and apparatus for sampling bodily fluid
US20040267160A9 (en) * 2001-09-26 2004-12-30 Edward Perez Method and apparatus for sampling bodily fluid
US7758516B2 (en) 2001-09-26 2010-07-20 Roche Diagnostics Operations, Inc. Method and apparatus for sampling bodily fluid
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US20060052810A1 (en) * 2002-04-19 2006-03-09 Freeman Dominique M Tissue penetration device
US20030199900A1 (en) * 2002-04-19 2003-10-23 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8905945B2 (en) 2002-04-19 2014-12-09 Dominique M. Freeman Method and apparatus for penetrating tissue
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8845549B2 (en) 2002-04-19 2014-09-30 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7875047B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909774B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7938787B2 (en) 2002-04-19 2011-05-10 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7959582B2 (en) 2002-04-19 2011-06-14 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7988644B2 (en) 2002-04-19 2011-08-02 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7648469B2 (en) 2002-04-19 2010-01-19 Pelikan Technologies Inc. Method and apparatus for penetrating tissue
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9907502B2 (en) 2002-04-19 2018-03-06 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9089294B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7582099B2 (en) 2002-04-19 2009-09-01 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US8157748B2 (en) 2002-04-19 2012-04-17 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7563232B2 (en) 2002-04-19 2009-07-21 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197423B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8202231B2 (en) 2002-04-19 2012-06-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7410468B2 (en) 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20040010279A1 (en) * 2002-04-19 2004-01-15 Freeman Dominique M. Device and method for variable speed lancet
US20080119761A1 (en) * 2002-04-19 2008-05-22 Dirk Boecker Method and apparatus for penetrating tissue
US7374544B2 (en) 2002-04-19 2008-05-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20040049219A1 (en) * 2002-04-19 2004-03-11 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8235915B2 (en) 2002-04-19 2012-08-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8808201B2 (en) 2002-04-19 2014-08-19 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for penetrating tissue
US20080027385A1 (en) * 2002-04-19 2008-01-31 Freeman Dominique M Method and apparatus for penetrating tissue
US20080021491A1 (en) * 2002-04-19 2008-01-24 Freeman Dominique M Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9724021B2 (en) 2002-04-19 2017-08-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9498160B2 (en) 2002-04-19 2016-11-22 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337420B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US20080009892A1 (en) * 2002-04-19 2008-01-10 Dominique Freeman Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8366637B2 (en) 2002-04-19 2013-02-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9089678B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US20070219463A1 (en) * 2002-04-19 2007-09-20 Barry Briggs Methods and apparatus for lancet actuation
US8388551B2 (en) 2002-04-19 2013-03-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for multi-use body fluid sampling device with sterility barrier release
US8403864B2 (en) 2002-04-19 2013-03-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8414503B2 (en) 2002-04-19 2013-04-09 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8430828B2 (en) 2002-04-19 2013-04-30 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7258693B2 (en) 2002-04-19 2007-08-21 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8491500B2 (en) 2002-04-19 2013-07-23 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8496601B2 (en) 2002-04-19 2013-07-30 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US20070185412A1 (en) * 2002-04-19 2007-08-09 Dirk Boecker Method and apparatus for penetrating tissue
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8562545B2 (en) 2002-04-19 2013-10-22 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8574168B2 (en) 2002-04-19 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US20070064516A1 (en) * 2002-04-19 2007-03-22 Briggs Barry D Methods and apparatus for lancet actuation
US9186468B2 (en) 2002-04-19 2015-11-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US20070167870A1 (en) * 2002-04-19 2007-07-19 Freeman Dominique M Method and apparatus for penetrating tissue
US20060085020A1 (en) * 2002-04-19 2006-04-20 Freeman Dominique M Tissue penetration device
US8636673B2 (en) 2002-04-19 2014-01-28 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7244265B2 (en) 2002-04-19 2007-07-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9339612B2 (en) 2002-04-19 2016-05-17 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8690796B2 (en) 2002-04-19 2014-04-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US8343178B2 (en) 2002-04-30 2013-01-01 Misonix, Incorporated Method for ultrasonic tissue excision with tissue selectivity
US20050273127A1 (en) * 2002-04-30 2005-12-08 Misonix, Incorporated Method for ultrasonic tissue excision with tissue selectivity
US20030204199A1 (en) * 2002-04-30 2003-10-30 Novak Theodore A. D. Device and method for ultrasonic tissue excision with tissue selectivity
US7731900B2 (en) 2002-11-26 2010-06-08 Roche Diagnostics Operations, Inc. Body fluid testing device
US8574496B2 (en) 2002-12-23 2013-11-05 Roche Diagnostics Operations, Inc. Body fluid testing device
US8383041B2 (en) 2002-12-23 2013-02-26 Roche Diagnostics Operations, Inc. Body fluid testing device
US7582258B2 (en) 2002-12-23 2009-09-01 Roche Diagnostics Operations, Inc. Body fluid testing device
US8021631B2 (en) 2002-12-23 2011-09-20 Roche Diagnostics Operations, Inc. Body fluid testing device
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US20070129650A1 (en) * 2003-05-30 2007-06-07 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US20080021490A1 (en) * 2003-06-06 2008-01-24 Barry Dean Briggs Method and Apparatus for Body Fluid Sampling and Analyte Sensing
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US10034628B2 (en) 2003-06-11 2018-07-31 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US20060276724A1 (en) * 2003-06-13 2006-12-07 Freeman Dominique M Method and apparatus for a point of care device
US7604592B2 (en) 2003-06-13 2009-10-20 Pelikan Technologies, Inc. Method and apparatus for a point of care device
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8945910B2 (en) 2003-09-29 2015-02-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US20070166595A1 (en) * 2003-12-12 2007-07-19 Nec Corporation Fuel cell, fuel cartridge and fuel cell system
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US9561000B2 (en) 2003-12-31 2017-02-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US11730507B2 (en) 2004-02-27 2023-08-22 Cilag Gmbh International Ultrasonic surgical shears and method for sealing a blood vessel using same
US9261476B2 (en) 2004-05-20 2016-02-16 Sanofi Sa Printable hydrogel for biosensors
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US20060053631A1 (en) * 2004-09-14 2006-03-16 Gregory Fossella Powered utility knife
US7178244B2 (en) 2004-09-14 2007-02-20 Avello Llc Powered utility knife
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US11006971B2 (en) 2004-10-08 2021-05-18 Ethicon Llc Actuation mechanism for use with an ultrasonic surgical instrument
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US20080188883A1 (en) * 2005-07-13 2008-08-07 Roche Diagnostics Operations, Inc. Lancet device
US8672963B2 (en) * 2005-07-13 2014-03-18 Roche Diagnostics Operations, Inc. Lancet device
US20070101580A1 (en) * 2005-09-12 2007-05-10 Avello, Llc, A Massachusetts Limited Liability Corporation Powered Utility Knife
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US11607268B2 (en) 2007-07-27 2023-03-21 Cilag Gmbh International Surgical instruments
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US11439426B2 (en) 2007-11-30 2022-09-13 Cilag Gmbh International Ultrasonic surgical blades
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US11766276B2 (en) 2007-11-30 2023-09-26 Cilag Gmbh International Ultrasonic surgical blades
US11266433B2 (en) 2007-11-30 2022-03-08 Cilag Gmbh International Ultrasonic surgical instrument blades
US11690643B2 (en) 2007-11-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical blades
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US10709906B2 (en) * 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US20170209167A1 (en) * 2009-05-20 2017-07-27 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
CN102601805A (en) * 2011-01-23 2012-07-25 吴同申 Domestic electric kitchen knife
CN102614007A (en) * 2011-01-27 2012-08-01 吴同申 Electric scalpel
US11602371B2 (en) 2012-06-29 2023-03-14 Cilag Gmbh International Ultrasonic surgical instruments with control mechanisms
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
CN103921603A (en) * 2013-11-30 2014-07-16 庞群 Automatic handcraft pen
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
CN105105799A (en) * 2015-07-16 2015-12-02 于振海 Multifunctional dissection device
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11883055B2 (en) 2016-07-12 2024-01-30 Cilag Gmbh International Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US11925378B2 (en) 2016-08-25 2024-03-12 Cilag Gmbh International Ultrasonic transducer for surgical instrument
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use

Similar Documents

Publication Publication Date Title
US3832776A (en) Electronically powered knife
US2714890A (en) Vibratory surgical instruments
US4744144A (en) Oscillating razor
US4940468A (en) Apparatus for microsurgery
US5275607A (en) Intraocular surgical scissors
US3526219A (en) Method and apparatus for ultrasonically removing tissue from a biological organism
US3899829A (en) Holder and actuator means for surgical instruments
US20080015551A1 (en) Movable Pin Ultrasonic Transducer
EP1255495A4 (en) Ultrasonic cutting and coagulation knife using transverse vibrations
CA2441765A1 (en) Ultrasonic scalpel
US6691363B2 (en) Power-driven toothbrush
WO1993005719A1 (en) Microsurgical cutting device
US3631595A (en) Electric shaver
US2054418A (en) Safety razor
US2512499A (en) Vibrating applicator
US3750279A (en) Dry shaver construction
US3491279A (en) Electromechanical oscillating device
US3480848A (en) Electronic razor
US2245981A (en) Vibratory motor
US3217409A (en) Power-driven hair clipper means with positionally adjustable hair clipping head
US20200376696A1 (en) Razor with heated and vibrating blades
US1680627A (en) Electrically-operated scissors
US1682447A (en) Clipper
GB2450532A (en) Reciprocating wet shave razor
DE60321173D1 (en) DEVICE AND METHOD FOR COLUMNING THIN BARS