US3836099A - Airfoil camber change system - Google Patents

Airfoil camber change system Download PDF

Info

Publication number
US3836099A
US3836099A US00401746A US40174673A US3836099A US 3836099 A US3836099 A US 3836099A US 00401746 A US00401746 A US 00401746A US 40174673 A US40174673 A US 40174673A US 3836099 A US3836099 A US 3836099A
Authority
US
United States
Prior art keywords
airfoil
rotatably mounted
bell cranks
camber
links
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00401746A
Inventor
Neill E O
W Brennan
G Kriechbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US00401746A priority Critical patent/US3836099A/en
Application granted granted Critical
Publication of US3836099A publication Critical patent/US3836099A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/44Varying camber
    • B64C3/48Varying camber by relatively-movable parts of wing structures

Definitions

  • ABSTRACT An airfoil camber change system for changing the camber of the leading or trailing edges of airfoils.
  • the system includes a flexible continuous upper surface, a lower surface comprising a plurality of slidable overlapping segments and one or more actuation mechanisms.
  • the actuation mechanism includes a plurality of bell cranks and links that are operatively connected to the upper and lower airfoil surfaces.
  • a primary actuator is provided to drive the actuation mechanisms. When the system is driven the actuation mechanism changes the camber profile and maintains proper separation and support of the upper and lower surfaces. The profile is changed by bending the upper constant length surface and shortening the lower surface by increasing the overlap of the slidable overlapping segments.
  • the present invention relates to an airfoil camber change mechanism and more particularly to an airfoil camber change mechanism that is rapid acting and provides a continuous smooth airfoil and a high degree of airfoil support.
  • the present invention comprises an airfoil camber change system for changing the camber of the leading or trailing edges of airfoils.
  • the system includes a flexible continuous upper surface, a lower surface comprising a plurality of slidable overlapping segments and one or more actuation mechanisms.
  • the actuation mechanism includes a plurality of bell cranks and links that are operatively connected to the upper and lower airfoil surfaces.
  • a primary actuator is provided to drive the actuation mechanisms.
  • the actuation mechanism changes the camber profile and maintains proper separation and support of the upper and lower surfaces. The profile is changed by bending the upper constant length surface and shortening the lower surface by increasing the overlap of the slidable overlapping segments.
  • An object of the present invention is to provide an airfoil camber change system that provides rapid camber changes.
  • Another object of the present invention is to provide an airfoil camber change system that provides a smooth airfoil.
  • Still another object of the present invention is to provide an airfoil camber change system that rigidly supports the airfoil surfaces.
  • Still another object of the present invention is to provide an airfoil camber change system that may be subject to high air ram forces such as encountered on high performance aircraft.
  • FIG. 1 is a schematic plan view of an aircraft employing the airfoil camber change system of the present invention
  • FIG. 2A is a side elevation of the airfoil camber change system of FIG. 1 when in the undeflected position
  • FIG. 2B is a side elevation of the airfoil camber 0 change system of FIGS. 1 and 2A when'in the deflected position.
  • FIG. 1 is schematically illustrated an aircraft having a body 11, tail section 13 and wings 15.
  • the airfoil camber change system 17 is shown on the leading edge of the wing 15.
  • the airfoil camber change system of the present invention may be also used to change the camber of the trailing edge of the wing.
  • the basic system is not limited to aircraft but may be used where contour change is desired.
  • the airfoil camber change system 17 includes a plurality of similar spaced apart actuation mechanisms 19, an upper flexible continuous airfoil surface 21, a plurality of overlapping segments 23, 25, 27 forming the lower airfoil surface.
  • Actuation of the system 17 is initiated by primary actuator 29 driving push-pull rod 31 which actuates bell cranks 33 which moves actuation links 35 in a push-pull manner. It is to be understood that many different types of primary actuation may be employed.
  • FIGS. 2A and 2B taken at section 2-2 of FIG. 1, is illustrated the side elevation of the airfoil camber change system 17 including upper surface 21, a plurality of overlapping segments 23, 25 and 27 forming the lower surface and actuation mechanism 19.
  • the actuation mechanism 19 includes a plurality of bell cranks 37, 39 and 41.
  • Bell crank 37 is rotatably mounted on lug 43 and one leg of the bell crank is rotatably mounted on actuator link 35 and the other leg is rotatably attached to one end of link 45.
  • the other end of link 45 is rotatably mounted on lug 47 that is rigidly attached to the first slidable overlapping segment 27.
  • Bell crank 39 is rotatably mounted on lug 47 and one leg of the bell crank is rotatably mounted on the end of actuator link 35 and to one end of actuator extension link 49.
  • the other leg of bell crank 39 is rotatably mounted on one end of link 51 which has its other end rotatably mounted on lug 53 which is rigidly attached to the second slidable overlapping segment 25.
  • Bell crank 41 is rotatably mounted on lug 53 and one leg of the bell crank is rotatably mounted'on the other end of extension link 49.
  • the other end of bell crank 41 is rotatably mounted on one end of link 55 which has its other end rotatably mounted on lug 57 which is rigidly attached to the third overlapping segment 23.
  • the last overlapping segment 23 is attached to the leading edge 59.
  • a plurality of spacer links 61, 63, 65, 67, 69 and 71 are provided to support the upper and lower airfoil surfaces and to maintain the desired airfoil thickness.
  • One end of spacer link 61 is rotatably mounted on lug 43 and the other end is rotatably mounted on lug 73 which is rigidly attached to upper surface 21.
  • One end of link 63 is rotatably mounted on lug 47 and the other end is rotatably mounted on lug 73.
  • One end of link 65 is rotatably mounted on lug 47 and the other end is rotatably mounted on lug 75 which is rigidly attached to upper surface 21.
  • One end of link 67 is rotatably mounted on lug 75 and the other end is rotatably mounted on lug 53.
  • link 69 is rotatably mounted on lug 53 and the other is rotatably mounted on lug 77 which is rigidly attached to upper surface 21.
  • link 71 is rotatably mounted on lug 77 and the other end is rotatably mounted on lug 57.
  • the spacer links and the airfoil surface form triangular truss segments which have high strength characteristic.
  • spacer links 63 and 65 along with segment 79, of upper airfoil surface 21, form this desired triangular truss configuration. It
  • spacer links lengths become progressively shorter to conform with the airfoil configuration both in the undeflected position shown in FIG. 2A and in the deflected position shown in FIG. 2B.
  • each of the above described links, lugs and bell cranks may in actual practice comprise pairs of links, lugs and bell cranks. This may be done to provide added strength and more rigid support.
  • said actuation mechanism including a plurality of elongated spacer means each having one end rotatably mounted on said upper surface and having the other end respectively rotatably mounted on a plurality of first pivot members respectively connected to said plurality of overlapping segments of said lower surface;
  • first means operatively interconnecting adjacent bell cranks and adjacent segments
  • said first means comprises a plurality of links
  • said second means comprises a plurality of links respectively connecting said one legs of adjacent bell cranks.
  • said upper surface includes a plurality of spaced apart second pivot members
  • first and second adjacent elongated spacer means being rotatably mounted on one of said second pivot members;
  • said plurality of bell cranks are sequentially of decreasing size.
  • each of said plurality of first pivot members are connected to the leading edge of the overlapping segment to which it is connected.

Abstract

An airfoil camber change system for changing the camber of the leading or trailing edges of airfoils. The system includes a flexible continuous upper surface, a lower surface comprising a plurality of slidable overlapping segments and one or more actuation mechanisms. The actuation mechanism includes a plurality of bell cranks and links that are operatively connected to the upper and lower airfoil surfaces. A primary actuator is provided to drive the actuation mechanisms. When the system is driven the actuation mechanism changes the camber profile and maintains proper separation and support of the upper and lower surfaces. The profile is changed by bending the upper constant length surface and shortening the lower surface by increasing the overlap of the slidable overlapping segments.

Description

United States Patent [1 1 ONeill et al.
[451 Sept. 17, 1974 AIRFOIL CAMBER CHANGE SYSTEM [75] Inventors: Edward T. ONeill, Renton; William M. Brennan, Edmonds, both of Wash; Gerhard K. Kriechbaum, Hagnau, Bodensee, Germany [73] Assignee: The United States of America as represented by the Secretary of the Navy, Washington, DC.
[22] Filed: Sept. 28, 1973 [21] Appl. No.: 401,746
Primary Examiner-Trygve M Blix Assistant ExaminerJesus D. Sotelo Attorney, Agent, or Firm-R. SJSciascia; Charles D. B. Curry [57] ABSTRACT An airfoil camber change system for changing the camber of the leading or trailing edges of airfoils. The system includes a flexible continuous upper surface, a lower surface comprising a plurality of slidable overlapping segments and one or more actuation mechanisms. The actuation mechanism includes a plurality of bell cranks and links that are operatively connected to the upper and lower airfoil surfaces. A primary actuator is provided to drive the actuation mechanisms. When the system is driven the actuation mechanism changes the camber profile and maintains proper separation and support of the upper and lower surfaces. The profile is changed by bending the upper constant length surface and shortening the lower surface by increasing the overlap of the slidable overlapping segments.
6 Claims, 3 Drawing Figures PAIENIEB SEPI mm FlG 2A AIRFOIL CAMBER CHANGE SYSTEM BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an airfoil camber change mechanism and more particularly to an airfoil camber change mechanism that is rapid acting and provides a continuous smooth airfoil and a high degree of airfoil support.
2. Description of the Prior Art Most prior airfoil camber change systems have employed relatively slow moving members that have not been subjected to high air ram forces. These relatively low speed systems have not provided the rapid time response required by high performance aircraft. In addition, these prior systems do not provide sufficient airfoil support to prevent deflection of the skin or airfoil panels. Some prior systems have employed rapid acting flaps. However, these systems have used single hinged flaps that presented abrupt changes in airfoil curvatures. The present invention overcomes these disadvantages by providing an airfoil camber change system that is rapid acting, has a smooth airfoil, has high strength and is particularly useful in high performance aircraft.
SUMMARY OF THE INVENTION Briefly, the present invention comprises an airfoil camber change system for changing the camber of the leading or trailing edges of airfoils. The system includes a flexible continuous upper surface, a lower surface comprising a plurality of slidable overlapping segments and one or more actuation mechanisms. The actuation mechanism includes a plurality of bell cranks and links that are operatively connected to the upper and lower airfoil surfaces. A primary actuator is provided to drive the actuation mechanisms. When thesystem is driven the actuation mechanism changes the camber profile and maintains proper separation and support of the upper and lower surfaces. The profile is changed by bending the upper constant length surface and shortening the lower surface by increasing the overlap of the slidable overlapping segments.
STATEMENT OF THE OBJECTS OF THE INVENTION An object of the present invention is to provide an airfoil camber change system that provides rapid camber changes.
Another object of the present invention is to provide an airfoil camber change system that provides a smooth airfoil.
Still another object of the present invention is to provide an airfoil camber change system that rigidly supports the airfoil surfaces.
Still another object of the present invention is to provide an airfoil camber change system that may be subject to high air ram forces such as encountered on high performance aircraft.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings wherein:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view of an aircraft employing the airfoil camber change system of the present invention;
FIG. 2A is a side elevation of the airfoil camber change system of FIG. 1 when in the undeflected position; and
FIG. 2B is a side elevation of the airfoil camber 0 change system of FIGS. 1 and 2A when'in the deflected position.
DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1 is schematically illustrated an aircraft having a body 11, tail section 13 and wings 15. The airfoil camber change system 17 is shown on the leading edge of the wing 15. However, it is to be understood that the airfoil camber change system of the present invention may be also used to change the camber of the trailing edge of the wing. Moreover, the basic system is not limited to aircraft but may be used where contour change is desired. The airfoil camber change system 17 includes a plurality of similar spaced apart actuation mechanisms 19, an upper flexible continuous airfoil surface 21, a plurality of overlapping segments 23, 25, 27 forming the lower airfoil surface. Actuation of the system 17 is initiated by primary actuator 29 driving push-pull rod 31 which actuates bell cranks 33 which moves actuation links 35 in a push-pull manner. It is to be understood that many different types of primary actuation may be employed.
In FIGS. 2A and 2B, taken at section 2-2 of FIG. 1, is illustrated the side elevation of the airfoil camber change system 17 including upper surface 21, a plurality of overlapping segments 23, 25 and 27 forming the lower surface and actuation mechanism 19. The actuation mechanism 19 includes a plurality of bell cranks 37, 39 and 41. Bell crank 37 is rotatably mounted on lug 43 and one leg of the bell crank is rotatably mounted on actuator link 35 and the other leg is rotatably attached to one end of link 45. The other end of link 45 is rotatably mounted on lug 47 that is rigidly attached to the first slidable overlapping segment 27. Bell crank 39 is rotatably mounted on lug 47 and one leg of the bell crank is rotatably mounted on the end of actuator link 35 and to one end of actuator extension link 49. The other leg of bell crank 39 is rotatably mounted on one end of link 51 which has its other end rotatably mounted on lug 53 which is rigidly attached to the second slidable overlapping segment 25. Bell crank 41 is rotatably mounted on lug 53 and one leg of the bell crank is rotatably mounted'on the other end of extension link 49. The other end of bell crank 41 is rotatably mounted on one end of link 55 which has its other end rotatably mounted on lug 57 which is rigidly attached to the third overlapping segment 23. The last overlapping segment 23 is attached to the leading edge 59. A plurality of spacer links 61, 63, 65, 67, 69 and 71 are provided to support the upper and lower airfoil surfaces and to maintain the desired airfoil thickness. One end of spacer link 61 is rotatably mounted on lug 43 and the other end is rotatably mounted on lug 73 which is rigidly attached to upper surface 21. One end of link 63 is rotatably mounted on lug 47 and the other end is rotatably mounted on lug 73. One end of link 65 is rotatably mounted on lug 47 and the other end is rotatably mounted on lug 75 which is rigidly attached to upper surface 21. One end of link 67 is rotatably mounted on lug 75 and the other end is rotatably mounted on lug 53. One end of link 69 is rotatably mounted on lug 53 and the other is rotatably mounted on lug 77 which is rigidly attached to upper surface 21. One end of link 71 is rotatably mounted on lug 77 and the other end is rotatably mounted on lug 57. It should be noted that the spacer links and the airfoil surface form triangular truss segments which have high strength characteristic. For example, spacer links 63 and 65 along with segment 79, of upper airfoil surface 21, form this desired triangular truss configuration. It
should be also noted that the spacer links lengths become progressively shorter to conform with the airfoil configuration both in the undeflected position shown in FIG. 2A and in the deflected position shown in FIG. 2B.
The operation of the airfoil camber change system of the present invention is as follows. When actuator link 35 is moved to the left, to a predetermined stop position, the actuation mechanism 19 retains the airfoil in the undeflected position shown in FIG. 2A. It should be particularly noted that due to air pressure on the lower overlapping segments, that the lower legs of the bell cranks and the lower links 45, 51 and 55 are in tension and therefore the pivot connection between these links and the bell crank legs will not buckle during normal operation.
When the actuator link 35 is moved to the right, to a predetermined stop position, then all three bell cranks 37, 39 and 41 rotate clockwise. This reduces the distance between lower lugs 43, 47, 53 and 57 and results in greater overlapping of slidable overlapping segments 23, 25 and 27. It should be noted that overlapping segments 23, 2S and 27 are flexible and therfore maintain a tight seal and provide a smooth lower airfoil surface. To minimize the discontinuity of the lower surface and to increase flexibility, the trailing edge of movable segments 23, 25 and 27 are made thinner than the leading edges. The legs of the bell cranks 37, 39 and 41 are made progressively shorter to achieve the desired airfoil camber. It should be particularly noted that by changing the lengths of the bell cranks and the links that virtually any camber profile can be achieved. Also, any number of overlapping segments and a corresponding increase or decrease in number of bell cranks and links may be employed. It is to be understood that each of the above described links, lugs and bell cranks may in actual practice comprise pairs of links, lugs and bell cranks. This may be done to provide added strength and more rigid support.
a. an upper airfoil surface made of continuous flexible material;
b. a lower airfoil surface comprising a plurality of overlapping segments;
c. at least one actuation mechanism for simultaneously changing the camber of saidupper and lower surfaces; j
d. said actuation mechanism including a plurality of elongated spacer means each having one end rotatably mounted on said upper surface and having the other end respectively rotatably mounted on a plurality of first pivot members respectively connected to said plurality of overlapping segments of said lower surface;
e. a plurality of bell cranks respectively rotatably mounted on said plurality of first pivot members;
f. first means operatively interconnecting adjacent bell cranks and adjacent segments;
g. second means for actuating said bell cranks to slide said overlapping segments with respect to each other; whereby h. during actuation of said second means the camber change of said upper surface is about the same as said lower surface.
2. The system of claim 1 wherein:
a. one leg of each of said plurality of bell cranks being operatively connected to said second means;
b. said first means comprises a plurality of links; and
c. the other leg of said bell cranks being respectively operatively connected to said plurality of links.
3. The system of claim 2 wherein:
a. said second means comprises a plurality of links respectively connecting said one legs of adjacent bell cranks.
4. The system of claim 1 wherein:
a. said upper surface includes a plurality of spaced apart second pivot members; Y
b. said one ends of first and second adjacent elongated spacer means being rotatably mounted on one of said second pivot members;
c. said one ends of third and fourth adjacent elongated spacer means being rotatably mounted on another of said second pivot members; whereby d. said plurality of elongated spacer means form a plurality of triangular support structures.
5. The system of claim 1 wherein:
a. said plurality of bell cranks are sequentially of decreasing size.
6. The system of claim 1 wherein:
a. each of said plurality of first pivot members are connected to the leading edge of the overlapping segment to which it is connected.

Claims (6)

1. An airfoil camber change system comprising: a. an upper airfoil surface made of continuous flexible material; b. a lower airfoil surface comprising a plurality of overlapping segments; c. at least one actuation mechanism for simultaneously changing the camber of said upper and lower surfaces; d. said actuation mechanism including a plurality of elongated spacer means each having one end rotatably mounted on said upper surface and having the other end respectively rotatably mounted on a plurality of first pivot members respectively connected to said plurality of overlapping segments of said lower surface; e. a plurality of bell cranks respectively rotatably mounted on said plurality of first pivot members; f. first means operatively interconnecting adjacent bell cranks and adjacent segments; g. second means for actuating said bell cranks to slide said overlapping segments with respect to each other; whereby h. during actuation of said second means the camber change of said upper surface is about the same as said lower surface.
2. The system of claim 1 wherein: a. one leg of each of said plurality of bell cranks being operatively connected to said second means; b. said first means comprises a plurality of links; and c. the other leg of said bell cranks being respectively operatively connected to said plurality of links.
3. The system of claim 2 wherein: a. said second means comprises a plurality of links respectively connecting said one legs of adjacent bell cranks.
4. The system of claim 1 wherein: a. said upper surface includes a plurality of spaced apart second pivot members; b. said one ends of first and second adJacent elongated spacer means being rotatably mounted on one of said second pivot members; c. said one ends of third and fourth adjacent elongated spacer means being rotatably mounted on another of said second pivot members; whereby d. said plurality of elongated spacer means form a plurality of triangular support structures.
5. The system of claim 1 wherein: a. said plurality of bell cranks are sequentially of decreasing size.
6. The system of claim 1 wherein: a. each of said plurality of first pivot members are connected to the leading edge of the overlapping segment to which it is connected.
US00401746A 1973-09-28 1973-09-28 Airfoil camber change system Expired - Lifetime US3836099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00401746A US3836099A (en) 1973-09-28 1973-09-28 Airfoil camber change system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00401746A US3836099A (en) 1973-09-28 1973-09-28 Airfoil camber change system

Publications (1)

Publication Number Publication Date
US3836099A true US3836099A (en) 1974-09-17

Family

ID=23589057

Family Applications (1)

Application Number Title Priority Date Filing Date
US00401746A Expired - Lifetime US3836099A (en) 1973-09-28 1973-09-28 Airfoil camber change system

Country Status (1)

Country Link
US (1) US3836099A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941334A (en) * 1975-03-28 1976-03-02 The Boeing Company Variable camber airfoil
JPS5164300A (en) * 1974-11-12 1976-06-03 Dornier Gmbh
US3994452A (en) * 1974-03-28 1976-11-30 The Boeing Company Variable camber airfoil
US3994451A (en) * 1974-03-28 1976-11-30 The Boeing Company Variable camber airfoil
US4040579A (en) * 1975-08-25 1977-08-09 The United States Of America As Represented By The Secretary Of The Navy Variable camber leading edge airfoil system
DE2713902A1 (en) * 1976-04-01 1977-10-06 Secr Defence Brit WINGS
US4053124A (en) * 1975-08-22 1977-10-11 The Boeing Company Variable camber airfoil
US4171787A (en) * 1977-07-21 1979-10-23 Zapel Edwin J Variable camber leading edge for airfoil
US4200253A (en) * 1977-04-06 1980-04-29 British Aerospace Aircraft wing drooping leading edge device
US4252287A (en) * 1979-03-01 1981-02-24 Dornier Gmbh Transverse force-connected body with variable profiling, particularly an airplane wing
US4553722A (en) * 1982-12-30 1985-11-19 The Boeing Company Variable-camber airfoil
US4873278A (en) * 1986-11-14 1989-10-10 General Electric Company Inhibition of irradiation yellowing in polysulfone compositions
WO1997044238A1 (en) * 1996-05-22 1997-11-27 Saab Ab Segmented flap with variable camber for aircraft wing
WO2003082671A1 (en) * 2002-03-28 2003-10-09 Richard Linsley-Hood Aerofoil with variable camber
EP1398269A1 (en) * 2002-09-10 2004-03-17 The Boeing Company Method and apparatus for controlling airflow with a leading edge device having a flexible flow surface
FR2853621A1 (en) * 2003-04-14 2004-10-15 Eads Deutschland Gmbh ADJUSTMENT MECHANISM FOR VARIABLE SHAPED WING.
US6978971B1 (en) 2004-06-15 2005-12-27 The Boeing Company Methods and apparatuses for controlling airflow proximate to engine/airfoil systems
US20060101807A1 (en) * 2004-11-12 2006-05-18 Wood Jeffrey H Morphing structure
US20060101803A1 (en) * 2004-11-12 2006-05-18 White Edward V Reduced noise jet engine
US7059563B2 (en) 2003-06-03 2006-06-13 The Boeing Company Systems, apparatuses, and methods for moving aircraft control surfaces
US20060124801A1 (en) * 2004-11-12 2006-06-15 Wood Jeffrey H Shape changing structure
EP1674389A1 (en) * 2004-12-22 2006-06-28 Airbus Deutschland GmbH (HRB 43527) Structure, in particular spar box, for forming aerodynamically active surfaces of air vehicles
US7243881B2 (en) 2003-06-03 2007-07-17 The Boeing Company Multi-function trailing edge devices and associated methods
US7264206B2 (en) 2004-09-30 2007-09-04 The Boeing Company Leading edge flap apparatuses and associated methods
US7270305B2 (en) 2004-06-15 2007-09-18 The Boeing Company Aircraft leading edge apparatuses and corresponding methods
US7300021B2 (en) 2005-05-20 2007-11-27 The Boeing Company Aerospace vehicle fairing systems and associated methods
US7309043B2 (en) 2005-04-27 2007-12-18 The Boeing Company Actuation device positioning systems and associated methods, including aircraft spoiler droop systems
US7322547B2 (en) 2005-01-31 2008-01-29 The Boeing Company Aerospace vehicle leading edge slat devices and corresponding methods
US7338018B2 (en) 2005-02-04 2008-03-04 The Boeing Company Systems and methods for controlling aircraft flaps and spoilers
US7357358B2 (en) 2004-02-27 2008-04-15 The Boeing Company Aircraft leading edge device systems and corresponding sizing methods
US7367530B2 (en) 2005-06-21 2008-05-06 The Boeing Company Aerospace vehicle yaw generating systems and associated methods
US7424350B2 (en) 2004-02-02 2008-09-09 The Boeing Company Vehicle control systems and corresponding sizing methods
US7475854B2 (en) 2005-11-21 2009-01-13 The Boeing Company Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods
US7494094B2 (en) 2004-09-08 2009-02-24 The Boeing Company Aircraft wing systems for providing differential motion to deployable lift devices
US7500641B2 (en) 2005-08-10 2009-03-10 The Boeing Company Aerospace vehicle flow body systems and associated methods
US7506842B2 (en) 2003-11-24 2009-03-24 The Boeing Company Aircraft control surface drive system and associated methods
US7578484B2 (en) 2006-06-14 2009-08-25 The Boeing Company Link mechanisms for gapped rigid krueger flaps, and associated systems and methods
US7611099B2 (en) 2005-09-07 2009-11-03 The Boeing Company Seal assemblies for use with drooped spoilers and other control surfaces on aircraft
US7708231B2 (en) 2005-11-21 2010-05-04 The Boeing Company Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods
US7721999B2 (en) 2005-05-20 2010-05-25 The Boeing Company Aerospace vehicle fairing systems and associated methods
US20100140414A1 (en) * 2008-12-09 2010-06-10 The Boeing Company Link Mechanisms, Including Stephenson II Link Mechanisms for Multi-Position Flaps and Associated Systems and Methods
US7766282B2 (en) 2007-12-11 2010-08-03 The Boeing Company Trailing edge device catchers and associated systems and methods
US20110017876A1 (en) * 2009-07-21 2011-01-27 The Boeing Company Shape-Changing Control Surface
US7954769B2 (en) 2007-12-10 2011-06-07 The Boeing Company Deployable aerodynamic devices with reduced actuator loads, and related systems and methods
USRE44313E1 (en) 1996-10-22 2013-06-25 The Boeing Company Airplane with unswept slotted cruise wing airfoil
EP2630603A1 (en) * 2010-10-19 2013-08-28 Massachusetts Institute Of Technology Methods and apparatus for digital composites
EP2727825A1 (en) * 2012-10-30 2014-05-07 C.I.R.A. (Centro Italiano Ricerche Aerospaziali) - S.C.P.A. Device for modifying the airfoil geometry
JP2014156159A (en) * 2013-02-14 2014-08-28 Univ Of Tokyo Flexible blade and marine vessel
US20150023797A1 (en) * 2013-07-16 2015-01-22 Nitin Kitchley Egbert Aerodynamic Variable Cross-Section Airfoil and Constant Lateral Surface Area Truss
US20150166172A1 (en) * 2013-12-12 2015-06-18 Airbus Defence and Space GmbH Drive mechanism for a deformable structure, structural component provided therewith and flow body and lift-assisting device
CN105015761A (en) * 2014-03-04 2015-11-04 波音公司 Morphing airfoil leading edge
US9415856B2 (en) 2014-06-04 2016-08-16 The Boeing Company Dual-rib morphing leading edge
US9506485B2 (en) 2011-11-04 2016-11-29 Massachusetts Institute Of Technology Hierarchical functional digital materials
US9566758B2 (en) 2010-10-19 2017-02-14 Massachusetts Institute Of Technology Digital flexural materials
US9690286B2 (en) 2012-06-21 2017-06-27 Massachusetts Institute Of Technology Methods and apparatus for digital material skins
WO2017176583A1 (en) * 2016-04-04 2017-10-12 Aviation Partners, Inc. Actuator for adaptive airfoil
US9809001B2 (en) 2010-10-19 2017-11-07 Massachusetts Institute Of Technology Flexural digital material construction and transduction
US10288008B2 (en) * 2012-03-05 2019-05-14 The Boeing Company Sandwich structure having hinge assemblies for accommodating differential in-plane expansion of face sheets
US10710702B2 (en) 2016-08-12 2020-07-14 Aviation Partners, Inc. Shape adaptive airfoil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1567531A (en) * 1923-03-24 1925-12-29 Magni Piero Variable fluido-dynamic wings such as for aeroplanes
US1880019A (en) * 1922-04-03 1932-09-27 Harper Carl Brown Airplane
US2022806A (en) * 1933-12-09 1935-12-03 Charles H Grant Airfoil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1880019A (en) * 1922-04-03 1932-09-27 Harper Carl Brown Airplane
US1567531A (en) * 1923-03-24 1925-12-29 Magni Piero Variable fluido-dynamic wings such as for aeroplanes
US2022806A (en) * 1933-12-09 1935-12-03 Charles H Grant Airfoil

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994452A (en) * 1974-03-28 1976-11-30 The Boeing Company Variable camber airfoil
US3994451A (en) * 1974-03-28 1976-11-30 The Boeing Company Variable camber airfoil
JPS5647037B2 (en) * 1974-11-12 1981-11-06
JPS5164300A (en) * 1974-11-12 1976-06-03 Dornier Gmbh
US3941334A (en) * 1975-03-28 1976-03-02 The Boeing Company Variable camber airfoil
US4053124A (en) * 1975-08-22 1977-10-11 The Boeing Company Variable camber airfoil
US4040579A (en) * 1975-08-25 1977-08-09 The United States Of America As Represented By The Secretary Of The Navy Variable camber leading edge airfoil system
DE2713902A1 (en) * 1976-04-01 1977-10-06 Secr Defence Brit WINGS
US4113210A (en) * 1976-04-01 1978-09-12 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Flexible aerofoils
US4200253A (en) * 1977-04-06 1980-04-29 British Aerospace Aircraft wing drooping leading edge device
US4171787A (en) * 1977-07-21 1979-10-23 Zapel Edwin J Variable camber leading edge for airfoil
US4252287A (en) * 1979-03-01 1981-02-24 Dornier Gmbh Transverse force-connected body with variable profiling, particularly an airplane wing
US4553722A (en) * 1982-12-30 1985-11-19 The Boeing Company Variable-camber airfoil
US4873278A (en) * 1986-11-14 1989-10-10 General Electric Company Inhibition of irradiation yellowing in polysulfone compositions
WO1997044238A1 (en) * 1996-05-22 1997-11-27 Saab Ab Segmented flap with variable camber for aircraft wing
US6123297A (en) * 1996-05-22 2000-09-26 Saab Aktiebolag Segmented flap with variable camber for aircraft wing
USRE44313E1 (en) 1996-10-22 2013-06-25 The Boeing Company Airplane with unswept slotted cruise wing airfoil
WO2003082671A1 (en) * 2002-03-28 2003-10-09 Richard Linsley-Hood Aerofoil with variable camber
EP1398269A1 (en) * 2002-09-10 2004-03-17 The Boeing Company Method and apparatus for controlling airflow with a leading edge device having a flexible flow surface
US6796534B2 (en) * 2002-09-10 2004-09-28 The Boeing Company Method and apparatus for controlling airflow with a leading edge device having a flexible flow surface
FR2853621A1 (en) * 2003-04-14 2004-10-15 Eads Deutschland Gmbh ADJUSTMENT MECHANISM FOR VARIABLE SHAPED WING.
US7059563B2 (en) 2003-06-03 2006-06-13 The Boeing Company Systems, apparatuses, and methods for moving aircraft control surfaces
US7243881B2 (en) 2003-06-03 2007-07-17 The Boeing Company Multi-function trailing edge devices and associated methods
US7506842B2 (en) 2003-11-24 2009-03-24 The Boeing Company Aircraft control surface drive system and associated methods
US7913955B2 (en) 2003-11-24 2011-03-29 The Boeing Company Aircraft control surface drive system and associated methods
US7424350B2 (en) 2004-02-02 2008-09-09 The Boeing Company Vehicle control systems and corresponding sizing methods
US7357358B2 (en) 2004-02-27 2008-04-15 The Boeing Company Aircraft leading edge device systems and corresponding sizing methods
US6978971B1 (en) 2004-06-15 2005-12-27 The Boeing Company Methods and apparatuses for controlling airflow proximate to engine/airfoil systems
US7270305B2 (en) 2004-06-15 2007-09-18 The Boeing Company Aircraft leading edge apparatuses and corresponding methods
US7726610B2 (en) 2004-09-08 2010-06-01 The Boeing Company Systems and methods for providing differential motion to wing high lift device
US7494094B2 (en) 2004-09-08 2009-02-24 The Boeing Company Aircraft wing systems for providing differential motion to deployable lift devices
US7828250B2 (en) 2004-09-30 2010-11-09 The Boeing Company Leading edge flap apparatuses and associated methods
US7264206B2 (en) 2004-09-30 2007-09-04 The Boeing Company Leading edge flap apparatuses and associated methods
US7546727B2 (en) 2004-11-12 2009-06-16 The Boeing Company Reduced noise jet engine
US7644575B2 (en) 2004-11-12 2010-01-12 The Boeing Company Morphing structure
US7340883B2 (en) 2004-11-12 2008-03-11 The Boeing Company Morphing structure
US20060101807A1 (en) * 2004-11-12 2006-05-18 Wood Jeffrey H Morphing structure
US8397485B2 (en) 2004-11-12 2013-03-19 The Boeing Company Morphing structure and method
US20080120979A1 (en) * 2004-11-12 2008-05-29 The Boeing Company Morphing structure
US8186143B2 (en) 2004-11-12 2012-05-29 The Boeing Company Morphing structure and method
US20060101803A1 (en) * 2004-11-12 2006-05-18 White Edward V Reduced noise jet engine
US20060124801A1 (en) * 2004-11-12 2006-06-15 Wood Jeffrey H Shape changing structure
US20100011777A1 (en) * 2004-11-12 2010-01-21 The Boeing Company Morphing structure and method
US7216831B2 (en) 2004-11-12 2007-05-15 The Boeing Company Shape changing structure
US7909292B2 (en) 2004-12-22 2011-03-22 Airbus Deutschland Gmbh Wing unit, in particular spar box, for forming aerodynamically active surfaces of an aircraft, in particular airfoils, horizontal tail units or rudder units of a plane
US7607617B2 (en) 2004-12-22 2009-10-27 Airbus Deutschland Gmbh Wing unit, in particular spar box, for forming aerodynamically active surfaces of an aircraft, in particular airfoils, horizontal tail units or rudder units of a plane
US20060226291A1 (en) * 2004-12-22 2006-10-12 Airbus Deutschland Gmbh Wing unit, in particular spar box, for forming aerodynamically active surfaces of an aircraft, in particular airfoils, horizontal tail units or rudder units of a plane
US20100006708A1 (en) * 2004-12-22 2010-01-14 Airbus Operations Gmbh Wing unit, in particular spar box, for forming aerodynamically active surfaces of an aircraft, in particular airfoils, horizontal tail units or rudder units of a plane
EP1674389A1 (en) * 2004-12-22 2006-06-28 Airbus Deutschland GmbH (HRB 43527) Structure, in particular spar box, for forming aerodynamically active surfaces of air vehicles
US7322547B2 (en) 2005-01-31 2008-01-29 The Boeing Company Aerospace vehicle leading edge slat devices and corresponding methods
US7338018B2 (en) 2005-02-04 2008-03-04 The Boeing Company Systems and methods for controlling aircraft flaps and spoilers
US7891611B2 (en) 2005-02-04 2011-02-22 The Boeing Company Systems and methods for controlling aircraft flaps and spoilers
US7309043B2 (en) 2005-04-27 2007-12-18 The Boeing Company Actuation device positioning systems and associated methods, including aircraft spoiler droop systems
US7300021B2 (en) 2005-05-20 2007-11-27 The Boeing Company Aerospace vehicle fairing systems and associated methods
US7721999B2 (en) 2005-05-20 2010-05-25 The Boeing Company Aerospace vehicle fairing systems and associated methods
US7367530B2 (en) 2005-06-21 2008-05-06 The Boeing Company Aerospace vehicle yaw generating systems and associated methods
US7500641B2 (en) 2005-08-10 2009-03-10 The Boeing Company Aerospace vehicle flow body systems and associated methods
US7611099B2 (en) 2005-09-07 2009-11-03 The Boeing Company Seal assemblies for use with drooped spoilers and other control surfaces on aircraft
US7744040B2 (en) 2005-11-21 2010-06-29 The Boeing Company Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods
US8567726B2 (en) 2005-11-21 2013-10-29 The Boeing Company Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods
US7708231B2 (en) 2005-11-21 2010-05-04 The Boeing Company Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods
US7475854B2 (en) 2005-11-21 2009-01-13 The Boeing Company Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods
US8038103B2 (en) 2005-11-21 2011-10-18 The Boeing Company Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods
US7578484B2 (en) 2006-06-14 2009-08-25 The Boeing Company Link mechanisms for gapped rigid krueger flaps, and associated systems and methods
US7954769B2 (en) 2007-12-10 2011-06-07 The Boeing Company Deployable aerodynamic devices with reduced actuator loads, and related systems and methods
US7766282B2 (en) 2007-12-11 2010-08-03 The Boeing Company Trailing edge device catchers and associated systems and methods
US8226048B2 (en) 2008-12-09 2012-07-24 The Boeing Company Link mechanisms, including Stephenson II link mechanisms for multi-position flaps and associated systems and methods
US20100140414A1 (en) * 2008-12-09 2010-06-10 The Boeing Company Link Mechanisms, Including Stephenson II Link Mechanisms for Multi-Position Flaps and Associated Systems and Methods
US20110017876A1 (en) * 2009-07-21 2011-01-27 The Boeing Company Shape-Changing Control Surface
US8382045B2 (en) 2009-07-21 2013-02-26 The Boeing Company Shape-changing control surface
US9566758B2 (en) 2010-10-19 2017-02-14 Massachusetts Institute Of Technology Digital flexural materials
EP2630603A1 (en) * 2010-10-19 2013-08-28 Massachusetts Institute Of Technology Methods and apparatus for digital composites
US9809001B2 (en) 2010-10-19 2017-11-07 Massachusetts Institute Of Technology Flexural digital material construction and transduction
EP2630603A4 (en) * 2010-10-19 2015-03-18 Massachusetts Inst Technology Methods and apparatus for digital composites
US9506485B2 (en) 2011-11-04 2016-11-29 Massachusetts Institute Of Technology Hierarchical functional digital materials
US10288008B2 (en) * 2012-03-05 2019-05-14 The Boeing Company Sandwich structure having hinge assemblies for accommodating differential in-plane expansion of face sheets
US9690286B2 (en) 2012-06-21 2017-06-27 Massachusetts Institute Of Technology Methods and apparatus for digital material skins
EP2727825A1 (en) * 2012-10-30 2014-05-07 C.I.R.A. (Centro Italiano Ricerche Aerospaziali) - S.C.P.A. Device for modifying the airfoil geometry
JP2014156159A (en) * 2013-02-14 2014-08-28 Univ Of Tokyo Flexible blade and marine vessel
US20150023797A1 (en) * 2013-07-16 2015-01-22 Nitin Kitchley Egbert Aerodynamic Variable Cross-Section Airfoil and Constant Lateral Surface Area Truss
US9592904B2 (en) * 2013-12-12 2017-03-14 Airbus Defence and Space GmbH Drive mechanism for a deformable structure, structural component provided therewith and flow body and lift-assisting device
US20150166172A1 (en) * 2013-12-12 2015-06-18 Airbus Defence and Space GmbH Drive mechanism for a deformable structure, structural component provided therewith and flow body and lift-assisting device
US9598167B2 (en) * 2014-03-04 2017-03-21 The Boeing Company Morphing airfoil leading edge
US20160009372A1 (en) * 2014-03-04 2016-01-14 The Boeing Company Morphing airfoil leading edge
CN105015761A (en) * 2014-03-04 2015-11-04 波音公司 Morphing airfoil leading edge
CN105015761B (en) * 2014-03-04 2018-12-14 波音公司 Variable Geometry Wing leading edge
US9415856B2 (en) 2014-06-04 2016-08-16 The Boeing Company Dual-rib morphing leading edge
WO2017176583A1 (en) * 2016-04-04 2017-10-12 Aviation Partners, Inc. Actuator for adaptive airfoil
US10710702B2 (en) 2016-08-12 2020-07-14 Aviation Partners, Inc. Shape adaptive airfoil

Similar Documents

Publication Publication Date Title
US3836099A (en) Airfoil camber change system
US5222699A (en) Variable control aircraft control surface
US5839698A (en) Control surface continuous seal
US2912190A (en) Variable-contour airfoil
US3743219A (en) High lift leading edge device
US4429844A (en) Variable camber aircraft wing tip
US2846165A (en) Aircraft control system
US3698668A (en) Variable camber airfoil
US6796534B2 (en) Method and apparatus for controlling airflow with a leading edge device having a flexible flow surface
US5367970A (en) Controllable camber fin
US5794893A (en) Elastomeric transition for aircraft control surface
US4015787A (en) Aircraft wing
US4252287A (en) Transverse force-connected body with variable profiling, particularly an airplane wing
US4189121A (en) Variable twist leading edge flap
US3013748A (en) Aircraft flap supporting and operating mechanism
US2650047A (en) Variable camber wing
US2319383A (en) Linkage mounting for aerodynamic members
US3446458A (en) Control devices for flexible wing aircraft
US4040579A (en) Variable camber leading edge airfoil system
US2749060A (en) Airplane wing
US5485958A (en) Mechanism for operating a cascade of variable pitch vanes
US4427169A (en) Variable camber flap end seal
FR2246444A1 (en) Aircraft with slow landing speed - wing section is variable between thin and thick in flight
US2763448A (en) Aircraft wing leading edge construction
US2022806A (en) Airfoil