US3838242A - Surgical instrument employing electrically neutral, d.c. induced cold plasma - Google Patents

Surgical instrument employing electrically neutral, d.c. induced cold plasma Download PDF

Info

Publication number
US3838242A
US3838242A US00256714A US25671472A US3838242A US 3838242 A US3838242 A US 3838242A US 00256714 A US00256714 A US 00256714A US 25671472 A US25671472 A US 25671472A US 3838242 A US3838242 A US 3838242A
Authority
US
United States
Prior art keywords
anode
gas
cathode
instrument
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00256714A
Inventor
R Goucher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOGLE KEARNS INT
Original Assignee
HOGLE KEARNS INT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOGLE KEARNS INT filed Critical HOGLE KEARNS INT
Priority to US00256714A priority Critical patent/US3838242A/en
Application granted granted Critical
Publication of US3838242A publication Critical patent/US3838242A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/908Patient protection from electric shock

Definitions

  • This invention relates generally to plasma scalpel devices which emit a flow of plasma for cutting or cauterizing tissue. It is specifically directed to such a device particularly useful for producing electrically neutral, D.C.-induced plasmas.
  • cold plasma includes all plasmas which evidence a low wall-heating effect, whether or not such plasmas exhibit the appearance and/or other physical characteristics normally associated with the specific cold plasmas and glow discharge phenomena heretofore recognized in the art.
  • the term refers generally to plasmas in substantial thermal nonequilibrium; i.e., those which exhibit a much lower tactile or gas temperature than the temperature equivalent of the energy level of the free electrons in the plasma.
  • the present invention provides a surgical instrument capable of producing electrically neutral, D.C.-induced cold plasmas in a form suitable for surgical applications.
  • the instrument includes, inter alia, an elongate body in which is disposed a conduit made of electrically conductive material.
  • the conduit concurrently serves to carry an electric current and a stream of surgical gas to an anode near the forward end of the instrument.
  • the carrier gas passes around the anode, through a constrictor nozzle and then through an annular cathode which is fixed coaxially with respect to the anode to the forward end of the instrument.
  • the electric field established between the anode and cathode generates plasma in the carrier gas which leaves the annular cathode in a directed stream.
  • a cooling jacket surrounds the conduit and serves concomitantly as an electrical conductor to the cathode. Means are provided to convey cooling liquid into and from the jacket.
  • a sheath which includes a dielectric lining overlaid by a metallic skin is provided over the cooling jacket.
  • a safety circuit may be connected to the skin to prevent the development of excessive potential differences between the cathode and the outer skin.
  • FIG. 1 is a pictorial view, partially cut away and in section, of a preferred embodiment of the plasma scalpels of the invention
  • FIG. 2 is a pictorial view of the scalpel of FIG. 1 slightly modified
  • FIG. 3 is a side view in section of the scalpel shown in FIG. 2;
  • FIG. 4 is an exploded detail, in section, of structure at the forward end of the scalpel of FIGS. 1, 2 and 3;
  • FIG. 5 is a schematic diagram of a safety circuit for use with the scalpel of FIGS. 2 and 3;
  • FIG. 6 is a detail in cross section of a connector for use with the illustrated instruments.
  • the illustrated instrument 10 has an elongate body comprising a cooling jacket generally designated 12 in which water or other cooling liquid is circulated.
  • the illustrated jacket 12 is a tube-within-a-tube arrangement having a cylindrical inner wall 14 spaced coaxially from a cylindrical outer wall 16 by respective, radially extending end walls 17 and 18. Together, the walls define an enclosed annular space.
  • the walls of the jacket are made of an electrically conductive material.
  • An inlet conduit 21 connects into the jacket at an aperture 23 formed through the outer wall 16 near the forward end of the instrument, and an outlet conduit 24 connects into the jacket through an aperture 26 near the rear of the instrument. Cooling liquid flows through the inlet conduit 21 into the jacket, thence circulates the length of the jacket before exiting therefrom via outlet conduit 24.
  • the flow direction is indicated by the arrows in FIG. 1.
  • the conduits 21, 22 are rigid.
  • Flexible tubes 26 (shown in FIG. 2) may be connected to the distal ends of the conduits so that the instrument can be freely moved about.
  • FIGS. 2 and 3 illustrate a configuration of the instrument with an insulating sheath 30 secured about the cooling jacket 12.
  • the sheath is connected to chassis or earth ground and is isolated from the cathode which is normally at D.C. ground potential. Such isolation is desirable because it is possible for the D.C. ground potential to shift significantly from chassis ground potential. The most likely discharge path in that event would be through the body of either the surgeon or the patient.
  • the sheath 30 may include a dielectric lining 31 overlaid with a metallic skin 32.
  • the skin 32 provides a protective cover which is readily sterilized for antiseptic use.
  • dielectric lining 31 may be heat-shrinkable plastic fitted to the cooling jacket as shown.
  • the metallic skin 32 may comprise one or more coatings of metal applied by well-known dipping, spraying or electroplating techniques.
  • the outer surface of the skin is desirably of nickel or similar metal acceptable for hospital use.
  • the grounded metallic skin of the sheath provides adequate protection against accidental discharges.
  • the safety circuit of FIG. is desirably incorporated in the power supply for the scape]. This circuit automatically shuts off the power supply and connects the DC. and chassis grounds in response to shifts in their relative potentials. The hazards of sparking and shocking are thereby eliminated.
  • the particular configuration of the sheath is of no consequence so long as the instrument can be firmly held.
  • the overall shape and dimensions of the instrument are important.
  • the utility and acceptance of any surgical instrument depends largely upon the facility with which it can be manipulated by a surgeon.
  • An important aspect of the presently claimed instrument is that it can be constructed on a scale comparable to an ordinary scalpel, yet generate a reliable and controllable plasma suitable for surgical use.
  • both cylindrical walls of the cooling jacket 12 serve as conductors for carrying an electric current to the cathode 86 of the instrument.
  • cathode conductor as used hereinafter particularly refers to the inner cylindrical wall 14.
  • This cathode conductor coaxially surrounds a metallic tube 33 which carries an electric current to the anode 75 of the instrument.
  • This metallic tube 33 is referred to hereinafter as the anode tube or anode conductor.
  • the cathode conductor is insulated from the anode conductor, and together the two conductors comprise a coaxial electrical line. In the illustrated embodiment, the conductors are finitely spaced apart and air therebetween effects an electrical insulation.
  • a bushing-like insulator member 37 made of dielectric material is fitted around the anode tube 33 and spaces it from the cathode conductor 14 at the rear of the instrument.
  • the bushing 37 has a circumferential shoulder 38 of greater diameter than the cathode conductor 14 abut the end of that conductor.
  • the anode tube includes an integral collar 41 which abuts the forward end of the bushing 37.
  • a cap 39 is threaded or otherwise releasably fixed over the rear of the jacket 12 and has a central aperture 43 formed therethrough which is of such size as to allow the end of the anode conductor and a portion of the bushing 37 to extend therethrough.
  • the shoulder 38 of the bushing is, however, clamped between the rear of the jacket 12 and the cap 39. Consequently, the cap secures in position the bushing, which in turn abuts the collar 41 to prevent the anode conductor from slipping rearward.
  • the cap 39 is made of an electrically conductive material and serves as a lead to the cathode conductor.
  • the cap 39 is insulated from the anode conductor by the bushing 37.
  • the interior of the tube provides a closed channel for carrying a stream of gas to the tip of the instrument.
  • the gas is supplied to the tube through a flexible hose 51 fitted to its rearwardly protruding end, entering through side ports 54.
  • the hose houses a current-carrying wire 53 which may or may not be insulated.
  • the wire 53 is connected, e.g., by soldering, to the wall of the anode tube 33.
  • TI-Ie connector includes a rigid block 59 having intersecting channels 61 and 62 formed therein.
  • the end of the hose 51 is connected into channel 61 by a threaded adapter 64.
  • the wire 53 extends through the channel 61 to another adapter 66 for connection to a power source (not shown) through an insulated wire 68.
  • a fitting 69 leads from the connector block 59 to the gas source.
  • the connector block may, of course, be electrically insulated from both the power source and the gas source.
  • the forward end of the anode tube 33 is spaced from the inner wall of the jacket by an annular spacer 71 (see especially FIG. 3) made of insulating material.
  • the spacer lies wholly somewhat behind the forward end of the anode tube and effects a seal between the anode tube and the inner wall of the jacket 12 to prevent gas which leaves the anode tube from flowing back into the instrument.
  • the spacer may be epoxied or otherwise fixed to the anode tube. Ahead of the spacer 71, the wall of the anode tube is perforated and gas carried inside the tube can escape therefrom through the perforations 72.
  • An electrically conducting tip 75 is secured to the forward end of the anode tube and is, in fact, the anode of the instrument. Preferably, this tip prevents gas from exiting out'the anode tube end and, consequently, the total gas flow is out the perforations 72 in the tube wall.
  • a cylindrical, gas entry member 76 which is formed of a dielectric material, is fitted around the anode 75.
  • the gas entry member 76 insulates the carrier gas from the inner wall of the jacket, and holds the anode in proper position with respect to the flowing gas.
  • the member 76 has an enlarged central recess 77 formed in its rearward end; an axial channel extends from the recess to the forward end of the member and closely surrounds the anode 75.
  • a plurality of gas ports 79 extend from the recess to the forward face of the member 76 and carry substantially all of the gas to the tip of the anode 75. These gas ports 79 are desirably formed to impart a helical movement to the gas exiting therefrom.
  • the constrictor is preferably made of dielectric material, such as boron nitride, and includes a converging axial channel 82. This channel surrounds the tip of the anode, and communicates, at its enlarged end, with the gas ports in the cylindrical member 76.
  • the wall of the converging channel maintains the gas which flows from the ports insulated from the inner wall 14 of the cooling jacket.
  • the anode extends into, but not all the way through, the channel 82. Gas passing the anode 75 enters a nozzle throat portion 83 of the constrictor section 81.
  • the cathode 86 of the instrument Abutting the forward end of the constrictor is the cathode 86 of the instrument.
  • the cathode is annular and fits within (i.e., is surrounded by) the inner wall 14 of the cooling jacket 12.
  • the cathode may be brazed or otherwise fixed to the jacket to make a good electrical connection therewith.
  • the orifice diameter 86 of the cathode is somewhat larger than the throat 83 of the constrictor member 81 and functions as a nozzle exit. As shown, the cathode 86 desirably terminates at the end wall 17 of the cooling jacket.
  • the anode tube 33 is prevented from slipping forward in the instrument by the above-described structure. That is, the spacer 71 is fixed to the anode tube and presses, via member 76 and constrictor 81, against,
  • the cathode 86 which is fixed to the cooling jacket.
  • the anode tube is readily removable from the rear of the instrument by releasing the cap 39.
  • a direct current (DC) voltage source (not shown) is connected to the instrument.
  • the positive terminal of the source is connected to the anode lead wire 53 and the negative terminal (or ground) is connected to the cap 39.
  • a current flows to the anode 75 and away from the cathode 86, but because the anode is spaced apart from the cathode, the current flow stops once the potential drop across these electrodes equals the potential of the DC. source.
  • gas is delivered to the instrument through the hose 51.
  • a typical gas flow is 1.0 CFH (STP).
  • STP gas flows through the anode tube 33 to its forward end thence escapes through the perforations into the plenum 77. From the plenum the gas flows through the gas ports 79 into the entry section 82 of the nozzle (81 and 86).
  • the voltage of the source is increased until the ionization potential of the gas is exceeded.
  • the gas then ignites; i.e., it is transformed into a plasma state under the influence of the potential difference between the anode and the cathode.
  • the plasma exits the orifice 87 of the cathode 86 in a directed jet stream.
  • the characteristics of the plasma produced by the claimed instrument depend upon the amount of current available to it from the source. Increasing the power applied to the gas results in very small increases in the voltage drop across the plasma but correspondingly large increases in the current carried by plasma until the critical arcing level is exceeded; i.e., the power level at which the plasma converts to a hot plasma (at substantial thermal equilibrium).
  • a notable characteristic of the claimed instrument is the ease with which the character of the plasma may be controlled.
  • the arrangement of the annular cathode with respect to the anode assures an electrically neutral plasma, which is beneficial for surgical use.
  • Cathodes of copper, tungsten or alloys thereof are generally satisfactory.
  • a satisfactory anode material is nichrome wire.
  • the electric field between the anode and cathode produces a certain amount of heat.
  • the cooling liquid which circulates through the jacket 12 as previously described effectively removes such heat. Accordingly, the
  • the cooling liquid is ordinary tap water.
  • Lines 101 and 102 are the usual volt A.C. lines leading to a conventional transformer (not shown) which generates the voltage supplied to the instrument.
  • a connection is made by line 106 from line 101 to line 102 through the periphery winding 107 of a conventional transformer 108.
  • the secondary winding of the transformer 108 is connected to chassis ground at 109 by center tap line 111, and to DC. ground return 110 through a high value resistor 112.
  • the output lines 116 and 117 of the secondary winding are connected to a conventional full wave bridge rectifier 118 which converts the alternating current in the secondary to a direct current across the bridge output lines 121 and 122.
  • the potential across the lines 121 and 122 is about 16 volts.
  • Grounded capacitors 124 and 125 may be connected to the output lines 121 and 122, repsectively, to smooth the output voltage.
  • Line 121 leads from solenoid 126 to the collector of an ordinary PNP transistor 131.
  • the emitter of that transistor is common to chassis ground (via line and to the emitter of an ordinary NPN transistor 137.
  • the collector of this second transistor 137 connects to the output line 122 coming from the solenoid 127.
  • the two transistors are connected in common-emitter, base-input arrangement so that the current which the transistors conduct is readily controlled by the potential applied between the transistors common base and emitter leads 134, 135.
  • the emitter lead 135 is at chassis potential.
  • the base lead 141 is ordinarily at ground or zero potential; it connects through series opposed zener diodes 144 and 146 (having, for example, about 5 volt values) to a relatively small resistor, which is connected in series with the DC. ground return 110.
  • the series opposed zener diodes do not conduct current in either direction.
  • a current flows through the diodes. When such a current flows, it causes the transistor output to vary considerably. Accordingly, the current through the respective solenoids 126 or 127, depending upon the polarity of the accumulated charge, changes and one or the other of the solenoids acts to break the power supply circuit, as hereinafter explained.
  • a line 151 is connected across the I20 volt A.C. lines 101 and 102 to control solenoid 153. That solenoid, in turn, can move to actuate a switch 154 in the main line 101. Ordinarily, the solenoid 153 retains the switch closed so that current flows through line 101.
  • Two switches 161 and 162 are connected along line 151 (as indicated by the dotted-lines) to the solenoids 126 and 127. Ordinarily, those solenoids allow the switches 161 and 162 to remain closed so that current flows through line 151. However, when the output current of the transistors changes due to a base current in the transistors 131 and 137, at least one of the solenoids is activated and opens the switch to which it is connected. In that event, line 151 becomes an open circuit and solenoid 153 is released andvopens the switch 154 whereupon the source of power for the power supply 163 is cut.
  • a button or switch 164 is closed which short-circuits the two switches 126 and 127. Solenoid 154 is thus energized to close switch 154.
  • a manual switch 167 may also be provided in line 151 to selectively manually cut the current in the line 101.
  • a surgical instrument for generating an electrically neutral, D.C.-induced, cold plasma comprising:
  • nozzle means contained within and at the forward end of said body member, said nozzle means including a nonconductive entry portion, a nonconductive throat portion and a conductive exit portion formed as an annular cathode element;
  • gas supply means extending from communication with said entry portion of said nozzle, through said hollow interior and out the rearward end of said body member for connection to a source of gas;
  • anode means fixed to the forward end of said gas supply means and disposed within said entry portion of said nozzle in coaxial arrangement with said cathode such that gas delivered to the gas supply means flows around said anode, through the nozzle, and out through the cathode;
  • said gas supply means includes a tube made of electrically conductive material, means are provided to electrically insulate said-tube from said body, and the wall of said tube serves as the conductor means for connecting said anode to said power supply.
  • said body comprises an annular cooling jacket and including means for delivering cool liquid thereinto and for removing warmed liquid therefrom.
  • cooling jacket is made of electrically conductive material and serves as conductor means for connecting said cathode to said power supply.
  • said gas supply means includes a tube made of electrically conductive material, means are provided to electrically insulate said tube from said body, and the wall of said tube serves as the conductor means for connecting said anode to said power supply.
  • gas entry element includes a plenum chamber in open communication with said perforations and longitudinal parts openly connecting said plenum chamber with said entry portion of said nozzle.
  • said protective sheath further comprises a metallic skin which is fixed over said dielectric lining and is insulated thereby from said jacket.

Abstract

A surgical instrument (plasma scalpel) generates an electric field plasma in a carrier gas for cutting and/or cauterizing tissue. The instrument includes a tubular conductor for carrying both current and gas to an anode. The gas flows from the tubular conductor, around the surface of an anode, and thence through an annular cathode. The electric field between the anode and cathode excites the gas to a plasma state, and the excited gas then flows in a directed stream through the cathode and out the end of the instrument. The tubular conductor is surrounded by a cooling jacket which concomitantly serves as an electrical conductor to the cathode. A dielectric sheath may be provided over the cooling jacket. This sheath may be overlaid with a conductive skin connected to earth ground to prevent an excessive electric charge from accumulating thereon. The conductive skin is preferably grounded through a circuit breaking device to cut off all power to the instrument if the potential of the skin differs greatly from the potential of the cathode.

Description

[ Sept. 24, 1974 5/1972 Sunnen et 219/121 P SURGICAL INSTRUMENT EMPLOYING ELECTRICALLY NEUTRAL, D.C. INDUCED COLD PLASMA Primary ExamirierBruce A. Reynolds [75] Inventor: Robert G. Goucher, Salt Lake City, p "l or Firm David VTraSk; Richard Utah BOJfiIlOWSkl ABSTRACT Assignee: Hogle-Kearns International, Salt Lake City, Utah l4 l n m n 3 3 1 1 B l 3% PH %6 m fl .25 9 1 2 3 12 mm; P 5M 2 l Wm 7 ""0 w m m m3 9 ""1 4 u A. l "m3 MH a x m "m6 n 00 M 2 m man u u n& 0 u n N L 0 Au d k S .Ld .1 I II F A U IF ll l .1] 2 l 2 8 2 2 5 55 l. .l. .l. [l
[56] References Cited ment. The tubular conductor is surrounded by a cool- NITED STATES PATENTS U ing jacket which concomitantly serves as an electrical conductor to the cathode. A dielectric sheath may be provided over the cooling jacket. This sheath may be overlaid with a conductive skin connected to earth Meredith 219/75 ground to prevent an excessive electric charge from accumulating thereon. The conductive skin is preferably grounded through a circuit breaking device to cut PPPSSX lllng 22296 llll 999 ll]. 2 222 2 Borneman..... off all power to the instrument if the potential of the skin differs greatly from the potential of the cathode.
219/121 219/121 P Dobbs et al. 11 Claims, 6 Drawing Figures Kemeny et a1 Wciman "C S 2m g h ammab GFGDG 37800 66677 99999 2 070 1131 06825 5208 aaaszaz PATENTED 35 241914 SIEHIWZ SURGICAL INSTRUMENT EMPLOYING ELECTRICALLY NEUTRAL, D.C. INDUCED COLD PLASMA RELATED APPLICATIONS Commonly assigned, copending application Ser. No. 79,840, filed Oct. l2, 1970, now abandoned, discloses and claims methods and apparatus for plasma surgery. According to that application, a cold plasma is established and attenuated to a small cross section. This plasma is applied to tissue to produce an incision. Commonly assigned, copending application Ser. No. 253,494, filed May 15, 1972, claims the additional discovery that an electrically neutral, D.C.-induced cold plasma is especially useful for surgical applications, and discloses surgical apparatus suitable for producing such a plasma. The present application discloses such apparatus more fully and claims the same.
BACKGROUND OF THE INVENTION 1. Field This invention relates generally to plasma scalpel devices which emit a flow of plasma for cutting or cauterizing tissue. It is specifically directed to such a device particularly useful for producing electrically neutral, D.C.-induced plasmas.
2. State of the Art The use of D.C. arc plasma for surgery is suggested by U.S. Pat. No. 3,434,476, which discloses and claims apparatus intended for use as a surgical scalpel. The apparatus thus disclosed is apparently incapable of producing plasmas which are not substantially at thermal equilibrium. This instrument is reported to be unsafe for actual clinical use because it tends to char tissue. It is recognized in the disclosure of the aforementioned application Ser. No. 79,840 that plasmas of metastable noble gas are preferred for surgical applications. The apparatus there disclosed produces rf-induced plasmas which, although cold, are not electrically neutral.
As used hereinafter, the term cold plasma includes all plasmas which evidence a low wall-heating effect, whether or not such plasmas exhibit the appearance and/or other physical characteristics normally associated with the specific cold plasmas and glow discharge phenomena heretofore recognized in the art. The term refers generally to plasmas in substantial thermal nonequilibrium; i.e., those which exhibit a much lower tactile or gas temperature than the temperature equivalent of the energy level of the free electrons in the plasma.
SUMMARY OF THE INVENTION The present invention provides a surgical instrument capable of producing electrically neutral, D.C.-induced cold plasmas in a form suitable for surgical applications. The instrument includes, inter alia, an elongate body in which is disposed a conduit made of electrically conductive material. The conduit concurrently serves to carry an electric current and a stream of surgical gas to an anode near the forward end of the instrument. The carrier gas passes around the anode, through a constrictor nozzle and then through an annular cathode which is fixed coaxially with respect to the anode to the forward end of the instrument. The electric field established between the anode and cathode generates plasma in the carrier gas which leaves the annular cathode in a directed stream. A cooling jacket surrounds the conduit and serves concomitantly as an electrical conductor to the cathode. Means are provided to convey cooling liquid into and from the jacket. In one embodiment of the invention, a sheath which includes a dielectric lining overlaid by a metallic skin is provided over the cooling jacket. A safety circuit may be connected to the skin to prevent the development of excessive potential differences between the cathode and the outer skin.
BRIEF DESCRIPTION OF THE DRAWINGS The present invention may be better understood by referring to the following description and appended drawings which are offered by way of illustration and not in limitation of the invention, the scope of which is defined by the appended claims and equivalents. Specific reference herein to details of the illustrated embodiment is thus not intended to restrict the scope of the claims, which themselves recite those features regarded as essential to the invention.
In the drawings:
FIG. 1 is a pictorial view, partially cut away and in section, of a preferred embodiment of the plasma scalpels of the invention;
FIG. 2 is a pictorial view of the scalpel of FIG. 1 slightly modified;
FIG. 3 is a side view in section of the scalpel shown in FIG. 2;
FIG. 4 is an exploded detail, in section, of structure at the forward end of the scalpel of FIGS. 1, 2 and 3;
FIG. 5 is a schematic diagram of a safety circuit for use with the scalpel of FIGS. 2 and 3; and
FIG. 6 is a detail in cross section of a connector for use with the illustrated instruments.
DESCRIPTION OF THE PREFERRED EMBODIMENT The illustrated instrument 10 has an elongate body comprising a cooling jacket generally designated 12 in which water or other cooling liquid is circulated. The illustrated jacket 12 is a tube-within-a-tube arrangement having a cylindrical inner wall 14 spaced coaxially from a cylindrical outer wall 16 by respective, radially extending end walls 17 and 18. Together, the walls define an enclosed annular space. Preferably, the walls of the jacket are made of an electrically conductive material.
An inlet conduit 21 connects into the jacket at an aperture 23 formed through the outer wall 16 near the forward end of the instrument, and an outlet conduit 24 connects into the jacket through an aperture 26 near the rear of the instrument. Cooling liquid flows through the inlet conduit 21 into the jacket, thence circulates the length of the jacket before exiting therefrom via outlet conduit 24. The flow direction is indicated by the arrows in FIG. 1. Preferably, the conduits 21, 22 are rigid. Flexible tubes 26 (shown in FIG. 2) may be connected to the distal ends of the conduits so that the instrument can be freely moved about.
FIGS. 2 and 3 illustrate a configuration of the instrument with an insulating sheath 30 secured about the cooling jacket 12. The sheath is connected to chassis or earth ground and is isolated from the cathode which is normally at D.C. ground potential. Such isolation is desirable because it is possible for the D.C. ground potential to shift significantly from chassis ground potential. The most likely discharge path in that event would be through the body of either the surgeon or the patient.
Aside from the sheath, the instrument shown in FIGS.
2 and 3 is identical to that shown in FIG. I. The sheath 30 may include a dielectric lining 31 overlaid with a metallic skin 32. The skin 32 provides a protective cover which is readily sterilized for antiseptic use. The
dielectric lining 31 may be heat-shrinkable plastic fitted to the cooling jacket as shown. The metallic skin 32 may comprise one or more coatings of metal applied by well-known dipping, spraying or electroplating techniques. The outer surface of the skin is desirably of nickel or similar metal acceptable for hospital use.
Ordinarily, the grounded metallic skin of the sheath provides adequate protection against accidental discharges. Nevertheless, the safety circuit of FIG. is desirably incorporated in the power supply for the scape]. This circuit automatically shuts off the power supply and connects the DC. and chassis grounds in response to shifts in their relative potentials. The hazards of sparking and shocking are thereby eliminated.
The particular configuration of the sheath is of no consequence so long as the instrument can be firmly held. However, the overall shape and dimensions of the instrument are important. The utility and acceptance of any surgical instrument depends largely upon the facility with which it can be manipulated by a surgeon. An important aspect of the presently claimed instrument is that it can be constructed on a scale comparable to an ordinary scalpel, yet generate a reliable and controllable plasma suitable for surgical use.
Preferably, both cylindrical walls of the cooling jacket 12 serve as conductors for carrying an electric current to the cathode 86 of the instrument. However, the term cathode conductor as used hereinafter particularly refers to the inner cylindrical wall 14. This cathode conductor, in turn, coaxially surrounds a metallic tube 33 which carries an electric current to the anode 75 of the instrument. This metallic tube 33 is referred to hereinafter as the anode tube or anode conductor. The cathode conductor is insulated from the anode conductor, and together the two conductors comprise a coaxial electrical line. In the illustrated embodiment, the conductors are finitely spaced apart and air therebetween effects an electrical insulation.
A bushing-like insulator member 37 made of dielectric material is fitted around the anode tube 33 and spaces it from the cathode conductor 14 at the rear of the instrument. The bushing 37 has a circumferential shoulder 38 of greater diameter than the cathode conductor 14 abut the end of that conductor. The anode tube includes an integral collar 41 which abuts the forward end of the bushing 37. A cap 39 is threaded or otherwise releasably fixed over the rear of the jacket 12 and has a central aperture 43 formed therethrough which is of such size as to allow the end of the anode conductor and a portion of the bushing 37 to extend therethrough. The shoulder 38 of the bushing is, however, clamped between the rear of the jacket 12 and the cap 39. Consequently, the cap secures in position the bushing, which in turn abuts the collar 41 to prevent the anode conductor from slipping rearward.
The cap 39 is made of an electrically conductive material and serves as a lead to the cathode conductor. An
electrical wire, not shown, connects the cap to DC.
ground potential. The cap 39 is insulated from the anode conductor by the bushing 37.
While the wall of the anode tube 33 conducts an electric current to the anode of the instrument, the interior of the tube provides a closed channel for carrying a stream of gas to the tip of the instrument. The gas is supplied to the tube through a flexible hose 51 fitted to its rearwardly protruding end, entering through side ports 54. The hose houses a current-carrying wire 53 which may or may not be insulated. The wire 53 is connected, e.g., by soldering, to the wall of the anode tube 33.
The emote end 51a of the hose 51 is connected to a gas supply source (not shown) by connector assembly generally designated 57 in FIG. 6. TI-Ie connector includes a rigid block 59 having intersecting channels 61 and 62 formed therein. The end of the hose 51 is connected into channel 61 by a threaded adapter 64. The wire 53 extends through the channel 61 to another adapter 66 for connection to a power source (not shown) through an insulated wire 68. A fitting 69 leads from the connector block 59 to the gas source. The connector block may, of course, be electrically insulated from both the power source and the gas source.
Referring to the instrument proper 30, the forward end of the anode tube 33 is spaced from the inner wall of the jacket by an annular spacer 71 (see especially FIG. 3) made of insulating material. The spacer lies wholly somewhat behind the forward end of the anode tube and effects a seal between the anode tube and the inner wall of the jacket 12 to prevent gas which leaves the anode tube from flowing back into the instrument. The spacer may be epoxied or otherwise fixed to the anode tube. Ahead of the spacer 71, the wall of the anode tube is perforated and gas carried inside the tube can escape therefrom through the perforations 72.
An electrically conducting tip 75 is secured to the forward end of the anode tube and is, in fact, the anode of the instrument. Preferably, this tip prevents gas from exiting out'the anode tube end and, consequently, the total gas flow is out the perforations 72 in the tube wall.
A cylindrical, gas entry member 76, which is formed of a dielectric material, is fitted around the anode 75. The gas entry member 76 insulates the carrier gas from the inner wall of the jacket, and holds the anode in proper position with respect to the flowing gas. Accordingly, the member 76 has an enlarged central recess 77 formed in its rearward end; an axial channel extends from the recess to the forward end of the member and closely surrounds the anode 75. With the instrument assembled, the rearward end of the member 76 abuts the forward end of the spacer and the recess 77 forms a small plenum for the gas flowing out of the anode tube 33. A plurality of gas ports 79 extend from the recess to the forward face of the member 76 and carry substantially all of the gas to the tip of the anode 75. These gas ports 79 are desirably formed to impart a helical movement to the gas exiting therefrom.
Ahead of the member 76, but still within the jacket, is a cylindrical constrictor or nozzle entry section 81. The constrictor is preferably made of dielectric material, such as boron nitride, and includes a converging axial channel 82. This channel surrounds the tip of the anode, and communicates, at its enlarged end, with the gas ports in the cylindrical member 76. The wall of the converging channel maintains the gas which flows from the ports insulated from the inner wall 14 of the cooling jacket. The anode extends into, but not all the way through, the channel 82. Gas passing the anode 75 enters a nozzle throat portion 83 of the constrictor section 81.
Abutting the forward end of the constrictor is the cathode 86 of the instrument. The cathode is annular and fits within (i.e., is surrounded by) the inner wall 14 of the cooling jacket 12. The cathode may be brazed or otherwise fixed to the jacket to make a good electrical connection therewith. The orifice diameter 86 of the cathode is somewhat larger than the throat 83 of the constrictor member 81 and functions as a nozzle exit. As shown, the cathode 86 desirably terminates at the end wall 17 of the cooling jacket.
The anode tube 33 is prevented from slipping forward in the instrument by the above-described structure. That is, the spacer 71 is fixed to the anode tube and presses, via member 76 and constrictor 81, against,
the cathode 86 which is fixed to the cooling jacket. As previously described, however, the anode tube is readily removable from the rear of the instrument by releasing the cap 39.
In operation, a direct current (DC) voltage source (not shown) is connected to the instrument. The positive terminal of the source is connected to the anode lead wire 53 and the negative terminal (or ground) is connected to the cap 39. Initially, a current flows to the anode 75 and away from the cathode 86, but because the anode is spaced apart from the cathode, the current flow stops once the potential drop across these electrodes equals the potential of the DC. source. Concurrently, gas is delivered to the instrument through the hose 51. A typical gas flow is 1.0 CFH (STP). The gas flows through the anode tube 33 to its forward end thence escapes through the perforations into the plenum 77. From the plenum the gas flows through the gas ports 79 into the entry section 82 of the nozzle (81 and 86).
The voltage of the source is increased until the ionization potential of the gas is exceeded. The gas then ignites; i.e., it is transformed into a plasma state under the influence of the potential difference between the anode and the cathode. The plasma exits the orifice 87 of the cathode 86 in a directed jet stream. The characteristics of the plasma produced by the claimed instrument depend upon the amount of current available to it from the source. Increasing the power applied to the gas results in very small increases in the voltage drop across the plasma but correspondingly large increases in the current carried by plasma until the critical arcing level is exceeded; i.e., the power level at which the plasma converts to a hot plasma (at substantial thermal equilibrium). A notable characteristic of the claimed instrument is the ease with which the character of the plasma may be controlled. The arrangement of the annular cathode with respect to the anode assures an electrically neutral plasma, which is beneficial for surgical use. Cathodes of copper, tungsten or alloys thereof are generally satisfactory. A satisfactory anode material is nichrome wire.
The electric field between the anode and cathode produces a certain amount of heat. The cooling liquid which circulates through the jacket 12 as previously described effectively removes such heat. Accordingly, the
instrument is at all times comfortable to touch. Usually, the cooling liquid is ordinary tap water.
The safety circuit of FIG. 5 prevents a large net electric charge with respect to DC. ground potential from building on the metal skin of the sheath of the instrument. Lines 101 and 102 are the usual volt A.C. lines leading to a conventional transformer (not shown) which generates the voltage supplied to the instrument. A connection is made by line 106 from line 101 to line 102 through the periphery winding 107 of a conventional transformer 108. The secondary winding of the transformer 108 is connected to chassis ground at 109 by center tap line 111, and to DC. ground return 110 through a high value resistor 112. The output lines 116 and 117 of the secondary winding are connected to a conventional full wave bridge rectifier 118 which converts the alternating current in the secondary to a direct current across the bridge output lines 121 and 122. Preferably, the potential across the lines 121 and 122 is about 16 volts. Grounded capacitors 124 and 125 may be connected to the output lines 121 and 122, repsectively, to smooth the output voltage.
Each of the lines 121 and 122 lead toordinary solenoids (126 and 127) respectively; when the voltage is held constant, the solenoids are inactive. Line 121 leads from solenoid 126 to the collector of an ordinary PNP transistor 131. The emitter of that transistor is common to chassis ground (via line and to the emitter of an ordinary NPN transistor 137. The collector of this second transistor 137 connects to the output line 122 coming from the solenoid 127. The two transistors are connected in common-emitter, base-input arrangement so that the current which the transistors conduct is readily controlled by the potential applied between the transistors common base and emitter leads 134, 135.
The emitter lead 135 is at chassis potential. The base lead 141 is ordinarily at ground or zero potential; it connects through series opposed zener diodes 144 and 146 (having, for example, about 5 volt values) to a relatively small resistor, which is connected in series with the DC. ground return 110. Ordinarily, the series opposed zener diodes do not conduct current in either direction. However, if the potential difference between chassis ground and DC. ground exceeds the zener breakdown point, as when a large net charge accumulates on the skin of the sheath, a current flows through the diodes. When such a current flows, it causes the transistor output to vary considerably. Accordingly, the current through the respective solenoids 126 or 127, depending upon the polarity of the accumulated charge, changes and one or the other of the solenoids acts to break the power supply circuit, as hereinafter explained.
A line 151 is connected across the I20 volt A.C. lines 101 and 102 to control solenoid 153. That solenoid, in turn, can move to actuate a switch 154 in the main line 101. Ordinarily, the solenoid 153 retains the switch closed so that current flows through line 101. Two switches 161 and 162 are connected along line 151 (as indicated by the dotted-lines) to the solenoids 126 and 127. Ordinarily, those solenoids allow the switches 161 and 162 to remain closed so that current flows through line 151. However, when the output current of the transistors changes due to a base current in the transistors 131 and 137, at least one of the solenoids is activated and opens the switch to which it is connected. In that event, line 151 becomes an open circuit and solenoid 153 is released andvopens the switch 154 whereupon the source of power for the power supply 163 is cut.
To reset the safety circuit, a button or switch 164 is closed which short-circuits the two switches 126 and 127. Solenoid 154 is thus energized to close switch 154. A manual switch 167 may also be provided in line 151 to selectively manually cut the current in the line 101.
I claim: 1. A surgical instrument for generating an electrically neutral, D.C.-induced, cold plasma, comprising:
an elongate body member with a hollow interior;
nozzle means contained within and at the forward end of said body member, said nozzle means including a nonconductive entry portion, a nonconductive throat portion and a conductive exit portion formed as an annular cathode element;
conductor means for connecting said cathode element to the negative side of a DC. power supply;
gas supply means extending from communication with said entry portion of said nozzle, through said hollow interior and out the rearward end of said body member for connection to a source of gas;
anode means fixed to the forward end of said gas supply means and disposed within said entry portion of said nozzle in coaxial arrangement with said cathode such that gas delivered to the gas supply means flows around said anode, through the nozzle, and out through the cathode; and
conductor means for connecting said anode to the positive side of a DC. power supply.
2. An instrument according to claim 1, wherein said gas supply means includes a tube made of electrically conductive material, means are provided to electrically insulate said-tube from said body, and the wall of said tube serves as the conductor means for connecting said anode to said power supply.
3.-An instrument according to claim 1, wherein said body comprises an annular cooling jacket and including means for delivering cool liquid thereinto and for removing warmed liquid therefrom.
4. An instrument according to claim 3, wherein said cooling jacket is made of electrically conductive material and serves as conductor means for connecting said cathode to said power supply.
5. An instrument according to claim 4, wherein said gas supply means includes a tube made of electrically conductive material, means are provided to electrically insulate said tube from said body, and the wall of said tube serves as the conductor means for connecting said anode to said power supply.
6. An instrument according to claim 5, wherein said anode forms a closure at the end of said tube and perforations are formed through the wall of said tube behind said anode so that carrier gas is forced through said perforations and said perforations are disposed within a gas entry element abutting the entry portion of said nozzle and openly communicating therewith.
7. An instrument according to claim 6, wherein the gas entry element includes a plenum chamber in open communication with said perforations and longitudinal parts openly connecting said plenum chamber with said entry portion of said nozzle.
8. An instrument according to claim 5, wherein a protective sheath is provided about said electrically conductive cooling jacket and said sheath includes a lining of dielectric material. 1
9. An instrument according to claim 8, wherein said protective sheath further comprises a metallic skin which is fixed over said dielectric lining and is insulated thereby from said jacket.
10. An instrument according to claim 9, wherein said skin is connected to earth ground.
11. An instrument according to claim 10, wherein said skin is connected to ground through a safety circuit, the elements of said circuit being actuated by differences in potential between earth ground and the cathode to cut the supply of electric power to said instrument.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION luLvut Nu 3,838, 2'?- hutml SQPEQFWbGl" Inventofls) Robert G. Ceucher It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Col. 4, line 13, change "emote" to "remote"; g g Col. 4, line 2 6,insert "agai n after-the word referting;
Col. 4, line 15, change "'I'He" to --The--',
C01. 5, line 12 chehgeLF'Se" to "em;
Col. 6, fine chetige "perieher y" t o --prirT1er y 1 Gel. 6, line 22, change "repsectively" to "respectively".
Signed and sealed this 7th day of January 1975.
(SEAL) Attest:
r-zccov-n. GIBSON JR.: c. r-mRs'HALL DANN Attesting Officer I Commissioner of Patents FORM PO-IOSD (10-69) USCIOMM-DC 6O376-P69 U.S. GOYERNMENT PRINTING OFFICE: 1969 O-366-3S4

Claims (11)

1. A surgical instrument for generating an electrically neutral, D.C.-induced, cold plasma, comprising: an elongate body member with a hollow interior; nozzle means contained within and at the forward end of said body member, said nozzle means including a nonconductive entry portion, a nonconductive throat portion and a conductive exit portion formed as an annular cathode element; conductor means for connecting said cathode element to the negative side of a D.C. power supply; gas supply means extending from communication with said entry portion of said nozzle, through said hollow interior and out the rearward end of said body member for connection to a source of gas; anode means fixed to the forward end of said gas supply means and disposed within said entry portion of said nozzle in coaxial arrangement with said cathode such that gas delivered to the gas supply means flows around said anode, through the nozzle, and out through the cathode; and conductor means for connecting said anode to the positive side of a D.C. power supply.
2. An instrument according to claim 1, wherein said gas supply means includes a tube made of electrically conductive material, means are provided to electrically insulate saId tube from said body, and the wall of said tube serves as the conductor means for connecting said anode to said power supply.
3. An instrument according to claim 1, wherein said body comprises an annular cooling jacket and including means for delivering cool liquid thereinto and for removing warmed liquid therefrom.
4. An instrument according to claim 3, wherein said cooling jacket is made of electrically conductive material and serves as conductor means for connecting said cathode to said power supply.
5. An instrument according to claim 4, wherein said gas supply means includes a tube made of electrically conductive material, means are provided to electrically insulate said tube from said body, and the wall of said tube serves as the conductor means for connecting said anode to said power supply.
6. An instrument according to claim 5, wherein said anode forms a closure at the end of said tube and perforations are formed through the wall of said tube behind said anode so that carrier gas is forced through said perforations and said perforations are disposed within a gas entry element abutting the entry portion of said nozzle and openly communicating therewith.
7. An instrument according to claim 6, wherein the gas entry element includes a plenum chamber in open communication with said perforations and longitudinal parts openly connecting said plenum chamber with said entry portion of said nozzle.
8. An instrument according to claim 5, wherein a protective sheath is provided about said electrically conductive cooling jacket and said sheath includes a lining of dielectric material.
9. An instrument according to claim 8, wherein said protective sheath further comprises a metallic skin which is fixed over said dielectric lining and is insulated thereby from said jacket.
10. An instrument according to claim 9, wherein said skin is connected to earth ground.
11. An instrument according to claim 10, wherein said skin is connected to ground through a safety circuit, the elements of said circuit being actuated by differences in potential between earth ground and the cathode to cut the supply of electric power to said instrument.
US00256714A 1972-05-25 1972-05-25 Surgical instrument employing electrically neutral, d.c. induced cold plasma Expired - Lifetime US3838242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00256714A US3838242A (en) 1972-05-25 1972-05-25 Surgical instrument employing electrically neutral, d.c. induced cold plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00256714A US3838242A (en) 1972-05-25 1972-05-25 Surgical instrument employing electrically neutral, d.c. induced cold plasma

Publications (1)

Publication Number Publication Date
US3838242A true US3838242A (en) 1974-09-24

Family

ID=22973305

Family Applications (1)

Application Number Title Priority Date Filing Date
US00256714A Expired - Lifetime US3838242A (en) 1972-05-25 1972-05-25 Surgical instrument employing electrically neutral, d.c. induced cold plasma

Country Status (1)

Country Link
US (1) US3838242A (en)

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958096A (en) * 1974-12-23 1976-05-18 The United States Of America As Represented By The United States Energy Research And Development Administration Welding arc gap ionization device
US4035603A (en) * 1976-03-31 1977-07-12 Union Carbide Corporation Fault detector system for starting plasma arc working apparatus
US4055741A (en) * 1975-12-08 1977-10-25 David Grigorievich Bykhovsky Plasma arc torch
US4184492A (en) * 1975-08-07 1980-01-22 Karl Storz Endoscopy-America, Inc. Safety circuitry for high frequency cutting and coagulating devices
EP0067702A2 (en) * 1981-06-16 1982-12-22 Sumitomo Electric Industries Limited Laser scalpel including a safety device
EP0277233A1 (en) * 1986-08-11 1988-08-10 2-i MOSKOVSKY GOSUDARSTVENNY MEDITSINSKY INSTITUT IMENI N.I. PIROGOVA Device for plasma-arc cutting of biological tissues
US4781175A (en) * 1986-04-08 1988-11-01 C. R. Bard, Inc. Electrosurgical conductive gas stream technique of achieving improved eschar for coagulation
US5277696A (en) * 1991-11-19 1994-01-11 Delma Elektro- Und Medizinische Apparatebau Gesellschaft Mbh Medical high frequency coagulation instrument
EP0624344A2 (en) * 1993-04-13 1994-11-17 SĂ–RING MEDIZIN TECHNIK GmbH Diathermy handpiece with endoscopic probe
US5669904A (en) * 1995-03-07 1997-09-23 Valleylab Inc. Surgical gas plasma ignition apparatus and method
US5669907A (en) * 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
US5688269A (en) * 1991-07-10 1997-11-18 Electroscope, Inc. Electrosurgical apparatus for laparoscopic and like procedures
US5769841A (en) * 1995-06-13 1998-06-23 Electroscope, Inc. Electrosurgical apparatus for laparoscopic and like procedures
US5807269A (en) * 1991-01-29 1998-09-15 Baxter International Inc. Thermodilution catheter having a safe, flexible heating element
WO1999015091A1 (en) * 1997-09-22 1999-04-01 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
WO2002030308A1 (en) 2000-10-12 2002-04-18 Naim Erturk Tanrisever Plasma arc sur surgical device and method
US20030065324A1 (en) * 1998-09-29 2003-04-03 Platt Robert C. Swirling system for ionizable gas coagulator
US20030093073A1 (en) * 1999-10-05 2003-05-15 Platt Robert C. Articulating ionizable gas coagulator
US20030105458A1 (en) * 1999-10-05 2003-06-05 Platt Robert C. Multi-port side-fire coagulator
US6723091B2 (en) * 2000-02-22 2004-04-20 Gyrus Medical Limited Tissue resurfacing
US20040167512A1 (en) * 1996-03-21 2004-08-26 Stoddard Robert Bryant Electrosurgical gas attachment
US20040186470A1 (en) * 2000-02-22 2004-09-23 Gyrus Medical Limited Tissue resurfacing
US20050149012A1 (en) * 2000-02-22 2005-07-07 Gyrus Medical Limited Tissue resurfacing
US20050171528A1 (en) * 2004-02-03 2005-08-04 Sartor Joe D. Self contained, gas-enhanced surgical instrument
US20060009763A1 (en) * 2000-02-22 2006-01-12 Rhytech Limited Tissue treatment system
US20060041253A1 (en) * 2004-08-17 2006-02-23 Newton David W System and method for performing an electrosurgical procedure
US20060041252A1 (en) * 2004-08-17 2006-02-23 Odell Roger C System and method for monitoring electrosurgical instruments
US20060041251A1 (en) * 2004-08-17 2006-02-23 Odell Roger C Electrosurgical system and method
US20060052772A1 (en) * 2004-02-03 2006-03-09 Sartor Joe D Gas-enhanced surgical instrument
US20060116674A1 (en) * 2000-02-22 2006-06-01 Rhytec Limited Method of regenerating the recticular architecture of the dermis
US20060189973A1 (en) * 2004-04-29 2006-08-24 Van Der Weide Daniel W Segmented catheter for tissue ablation
US20060200122A1 (en) * 2004-02-03 2006-09-07 Sherwood Services Ag Portable argon system
US20060276781A1 (en) * 2004-04-29 2006-12-07 Van Der Weide Daniel W Cannula cooling and positioning device
US20070016181A1 (en) * 2004-04-29 2007-01-18 Van Der Weide Daniel W Microwave tissue resection tool
US20070027446A1 (en) * 2000-02-22 2007-02-01 Rhytec Limited Method of removing a tattoo
US20070029292A1 (en) * 2005-07-08 2007-02-08 Nikolay Suslov Plasma-generating device, plasma surgical device and use of a plasma surgical device
US20070049918A1 (en) * 2005-08-24 2007-03-01 Van Der Weide Daniel W Microwave device for vascular ablation
US20070073287A1 (en) * 2000-02-22 2007-03-29 Rhytec Limited Method of remodelling stretch marks
US20070208337A1 (en) * 2006-03-03 2007-09-06 Sherwood Services Ag Manifold for gas enhanced surgical instruments
US20070213709A1 (en) * 2006-03-08 2007-09-13 Sherwood Services Ag Tissue coagulation method and device using inert gas
US20070213704A1 (en) * 1999-05-24 2007-09-13 Arqos Surgical Inc. Electrical discharge devices and techniques for medical procedures
US20070282319A1 (en) * 2006-03-24 2007-12-06 Micrablate, Inc. Center fed dipole for use with tissue ablation systems, devices and methods
US20080033424A1 (en) * 2006-03-24 2008-02-07 Micrablate Transmission line with heat transfer ability
US20080045938A1 (en) * 2006-07-14 2008-02-21 Micrablate Energy delivery systems and uses thereof
US20090039790A1 (en) * 2007-08-06 2009-02-12 Nikolay Suslov Pulsed plasma device and method for generating pulsed plasma
US20090054896A1 (en) * 2005-04-25 2009-02-26 Gregory Fridman Control of mucus membrane bleeding with cold plasma
US20090076505A1 (en) * 2007-09-13 2009-03-19 Arts Gene H Electrosurgical instrument
US20090112204A1 (en) * 2007-10-26 2009-04-30 Encision, Inc. Multiple Parameter Fault Detection in Electrosurgical Instrument Shields
US20100023008A1 (en) * 2008-07-24 2010-01-28 Heard David N Suction Coagulator
US20100042094A1 (en) * 2008-08-14 2010-02-18 Arts Gene H Surgical Gas Plasma Ignition Apparatus and Method
US20100042088A1 (en) * 2008-08-14 2010-02-18 Arts Gene H Surgical Gas Plasma Ignition Apparatus and Method
US20100145253A1 (en) * 2005-04-25 2010-06-10 Drexel University Methods for non-thermal application of gas plasma to living tissue
US7785322B2 (en) 2000-02-22 2010-08-31 Plasmogen Inc. Tissue treatment system
US7833222B2 (en) 2004-02-03 2010-11-16 Covidien Ag Gas-enhanced surgical instrument with pressure safety feature
US20100305565A1 (en) * 2000-08-01 2010-12-02 Arqos Surgical, Inc. Voltage threshold ablation apparatus
US7928338B2 (en) 2007-02-02 2011-04-19 Plasma Surgical Investments Ltd. Plasma spraying device and method
US20110095689A1 (en) * 2009-10-27 2011-04-28 Tyco Healthcare Group Lp Inductively-Coupled Plasma Device
US20110121735A1 (en) * 2000-02-22 2011-05-26 Kreos Capital Iii (Uk) Limited Tissue resurfacing
US8007494B1 (en) 2006-04-27 2011-08-30 Encision, Inc. Device and method to prevent surgical burns
US20110282341A1 (en) * 2010-05-11 2011-11-17 Electromedical Associates, Llc Brazed electrosurgical device
US8105325B2 (en) 2005-07-08 2012-01-31 Plasma Surgical Investments Limited Plasma-generating device, plasma surgical device, use of a plasma-generating device and method of generating a plasma
US8109928B2 (en) 2005-07-08 2012-02-07 Plasma Surgical Investments Limited Plasma-generating device, plasma surgical device and use of plasma surgical device
US8123744B2 (en) 2006-08-29 2012-02-28 Covidien Ag Wound mediating device
US8226643B2 (en) 2004-02-03 2012-07-24 Covidien Ag Gas-enhanced surgical instrument with pressure safety feature
US20120187841A1 (en) * 2009-08-03 2012-07-26 Leibniz-Institut fuer Plasma. und Tech. e. V. Device for generating a non-thermal atmospheric pressure plasma
US8251989B1 (en) 2006-06-13 2012-08-28 Encision, Inc. Combined bipolar and monopolar electrosurgical instrument and method
US20120245580A1 (en) * 2011-03-21 2012-09-27 Arqos Surgical, Inc. Medical ablation system and method of use
US8575843B2 (en) 2008-05-30 2013-11-05 Colorado State University Research Foundation System, method and apparatus for generating plasma
US8613742B2 (en) 2010-01-29 2013-12-24 Plasma Surgical Investments Limited Methods of sealing vessels using plasma
US8668687B2 (en) 2010-07-29 2014-03-11 Covidien Lp System and method for removing medical implants
US8735766B2 (en) 2007-08-06 2014-05-27 Plasma Surgical Investments Limited Cathode assembly and method for pulsed plasma generation
US20140378892A1 (en) * 2011-06-01 2014-12-25 Michael Keidar System And Method For Cold Plasma Therapy
US20150011930A1 (en) * 2012-03-02 2015-01-08 Japan Science And Technology Agency Bubble-spraying member and method for producing same, gas-liquid- spraying member and method for producing same, local ablation device and local ablation method, injection device and injection method, plasma-bubble-spraying member, and healing device and healing method
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
US9028656B2 (en) 2008-05-30 2015-05-12 Colorado State University Research Foundation Liquid-gas interface plasma device
US9089319B2 (en) 2010-07-22 2015-07-28 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
US9119649B2 (en) 2009-07-28 2015-09-01 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9192438B2 (en) 2011-12-21 2015-11-24 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9204918B2 (en) 2011-09-28 2015-12-08 RELIGN Corporation Medical ablation system and method of use
US9247983B2 (en) 2011-11-14 2016-02-02 Arqos Surgical, Inc. Medical instrument and method of use
US9272359B2 (en) 2008-05-30 2016-03-01 Colorado State University Research Foundation Liquid-gas interface plasma device
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US9314294B2 (en) 2008-08-18 2016-04-19 Encision, Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US9585675B1 (en) 2015-10-23 2017-03-07 RELIGN Corporation Arthroscopic devices and methods
US9603656B1 (en) 2015-10-23 2017-03-28 RELIGN Corporation Arthroscopic devices and methods
US9681913B2 (en) 2015-04-21 2017-06-20 RELIGN Corporation Arthroscopic devices and methods
US9833281B2 (en) 2008-08-18 2017-12-05 Encision Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US9861440B2 (en) 2010-05-03 2018-01-09 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US20180036059A1 (en) * 2016-08-02 2018-02-08 Covidien Lp System and method for catheter-based plasma coagulation
US9888954B2 (en) 2012-08-10 2018-02-13 Cook Medical Technologies Llc Plasma resection electrode
US10004556B2 (en) 2013-05-10 2018-06-26 Corinth MedTech, Inc. Tissue resecting devices and methods
US10022140B2 (en) 2016-02-04 2018-07-17 RELIGN Corporation Arthroscopic devices and methods
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10531917B2 (en) 2016-04-15 2020-01-14 Neuwave Medical, Inc. Systems and methods for energy delivery
US10595889B2 (en) 2016-04-11 2020-03-24 RELIGN Corporation Arthroscopic devices and methods
US10952792B2 (en) 2015-10-26 2021-03-23 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11006995B2 (en) * 2009-08-25 2021-05-18 Leibniz-Institut Fuer Plasmaforschung Und Technologie E.V. Device for the planar treatment of areas of human or animal skin or mucous membrane surfaces by means of a cold atmospheric pressure plasma
US11065023B2 (en) 2017-03-17 2021-07-20 RELIGN Corporation Arthroscopic devices and methods
US11172953B2 (en) 2016-04-11 2021-11-16 RELIGN Corporation Arthroscopic devices and methods
US11207119B2 (en) 2016-03-11 2021-12-28 RELIGN Corporation Arthroscopic devices and methods
US11426231B2 (en) 2017-01-11 2022-08-30 RELIGN Corporation Arthroscopic devices and methods
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
US11832879B2 (en) 2019-03-08 2023-12-05 Neuwave Medical, Inc. Systems and methods for energy delivery
US11849992B1 (en) * 2021-01-14 2023-12-26 Mark G. Fontenot Increasing plasma generated species (PGS) in non-thermal plasma (NTP) medical treatment
US11882643B2 (en) 2020-08-28 2024-01-23 Plasma Surgical, Inc. Systems, methods, and devices for generating predominantly radially expanded plasma flow

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2376265A (en) * 1943-02-25 1945-05-15 Northrop Aircraft Inc Inert gas blanketed arc welding torch
US3077108A (en) * 1958-02-20 1963-02-12 Union Carbide Corp Supersonic hot gas stream generating apparatus and method
US3300561A (en) * 1962-09-29 1967-01-24 Centre Nat Rech Scient Methods and devices for heating substances by means of radiant energy and plasma heat sources
US3407281A (en) * 1967-09-20 1968-10-22 Cabot Corp Plasma producing apparatus
US3521023A (en) * 1968-07-03 1970-07-21 North American Rockwell Plasma torch
US3532851A (en) * 1964-06-05 1970-10-06 Trw Inc Antishock safety feature for stud welding apparatus
US3536888A (en) * 1968-08-15 1970-10-27 Lawrence A Borneman Splatter-free welding gun
US3538378A (en) * 1967-06-13 1970-11-03 Westinghouse Electric Corp Electrical circuit apparatus for detecting when the current which normally produces an arc between electrodes takes a different path
US3598944A (en) * 1965-06-28 1971-08-10 Peter Weimar A device for the heat treatment of powdery substances by means of a high-temperature plasma
US3628079A (en) * 1969-02-20 1971-12-14 British Railways Board Arc plasma generators
US3660630A (en) * 1969-03-31 1972-05-02 Soudure Electr High temperature heating

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2376265A (en) * 1943-02-25 1945-05-15 Northrop Aircraft Inc Inert gas blanketed arc welding torch
US3077108A (en) * 1958-02-20 1963-02-12 Union Carbide Corp Supersonic hot gas stream generating apparatus and method
US3300561A (en) * 1962-09-29 1967-01-24 Centre Nat Rech Scient Methods and devices for heating substances by means of radiant energy and plasma heat sources
US3532851A (en) * 1964-06-05 1970-10-06 Trw Inc Antishock safety feature for stud welding apparatus
US3598944A (en) * 1965-06-28 1971-08-10 Peter Weimar A device for the heat treatment of powdery substances by means of a high-temperature plasma
US3538378A (en) * 1967-06-13 1970-11-03 Westinghouse Electric Corp Electrical circuit apparatus for detecting when the current which normally produces an arc between electrodes takes a different path
US3407281A (en) * 1967-09-20 1968-10-22 Cabot Corp Plasma producing apparatus
US3521023A (en) * 1968-07-03 1970-07-21 North American Rockwell Plasma torch
US3536888A (en) * 1968-08-15 1970-10-27 Lawrence A Borneman Splatter-free welding gun
US3628079A (en) * 1969-02-20 1971-12-14 British Railways Board Arc plasma generators
US3660630A (en) * 1969-03-31 1972-05-02 Soudure Electr High temperature heating

Cited By (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958096A (en) * 1974-12-23 1976-05-18 The United States Of America As Represented By The United States Energy Research And Development Administration Welding arc gap ionization device
US4184492A (en) * 1975-08-07 1980-01-22 Karl Storz Endoscopy-America, Inc. Safety circuitry for high frequency cutting and coagulating devices
US4055741A (en) * 1975-12-08 1977-10-25 David Grigorievich Bykhovsky Plasma arc torch
US4035603A (en) * 1976-03-31 1977-07-12 Union Carbide Corporation Fault detector system for starting plasma arc working apparatus
EP0067702A2 (en) * 1981-06-16 1982-12-22 Sumitomo Electric Industries Limited Laser scalpel including a safety device
EP0067702A3 (en) * 1981-06-16 1984-01-04 Sumitomo Electric Industries Limited Laser scalpel including a safety device
US4781175A (en) * 1986-04-08 1988-11-01 C. R. Bard, Inc. Electrosurgical conductive gas stream technique of achieving improved eschar for coagulation
EP0277233A1 (en) * 1986-08-11 1988-08-10 2-i MOSKOVSKY GOSUDARSTVENNY MEDITSINSKY INSTITUT IMENI N.I. PIROGOVA Device for plasma-arc cutting of biological tissues
EP0277233A4 (en) * 1986-08-11 1988-12-12 Mo Med Inst Pirogova Device for plasma-arc cutting of biological tissues.
US5807269A (en) * 1991-01-29 1998-09-15 Baxter International Inc. Thermodilution catheter having a safe, flexible heating element
US5688269A (en) * 1991-07-10 1997-11-18 Electroscope, Inc. Electrosurgical apparatus for laparoscopic and like procedures
US5277696A (en) * 1991-11-19 1994-01-11 Delma Elektro- Und Medizinische Apparatebau Gesellschaft Mbh Medical high frequency coagulation instrument
EP0624344A3 (en) * 1993-04-13 1995-03-08 Soering Med Tech Gmbh Diathermy handpiece with endoscopic probe.
EP0624344A2 (en) * 1993-04-13 1994-11-17 SĂ–RING MEDIZIN TECHNIK GmbH Diathermy handpiece with endoscopic probe
US5669907A (en) * 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
US5669904A (en) * 1995-03-07 1997-09-23 Valleylab Inc. Surgical gas plasma ignition apparatus and method
US6213999B1 (en) * 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US5769841A (en) * 1995-06-13 1998-06-23 Electroscope, Inc. Electrosurgical apparatus for laparoscopic and like procedures
US7033353B2 (en) 1996-03-21 2006-04-25 Sherwood Services Ag Electrosurgical gas attachment
US20040167512A1 (en) * 1996-03-21 2004-08-26 Stoddard Robert Bryant Electrosurgical gas attachment
WO1999015091A1 (en) * 1997-09-22 1999-04-01 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US20030065324A1 (en) * 1998-09-29 2003-04-03 Platt Robert C. Swirling system for ionizable gas coagulator
US6666865B2 (en) 1998-09-29 2003-12-23 Sherwood Services Ag Swirling system for ionizable gas coagulator
US20070213704A1 (en) * 1999-05-24 2007-09-13 Arqos Surgical Inc. Electrical discharge devices and techniques for medical procedures
US20030105458A1 (en) * 1999-10-05 2003-06-05 Platt Robert C. Multi-port side-fire coagulator
US20030093073A1 (en) * 1999-10-05 2003-05-15 Platt Robert C. Articulating ionizable gas coagulator
US20100063501A9 (en) * 1999-10-05 2010-03-11 Platt Robert C Multi-port side-fire coagulator
US7955330B2 (en) 1999-10-05 2011-06-07 Covidien Ag Multi-port side-fire coagulator
US20100016856A1 (en) * 1999-10-05 2010-01-21 Platt Jr Robert C Articulating Ionizable Gas Coagulator
US7578818B2 (en) 1999-10-05 2009-08-25 Covidien Ag Articulating ionizable gas coagulator
US20050015086A1 (en) * 1999-10-05 2005-01-20 Platt Robert C. Multi-port side-fire coagulator
US6852112B2 (en) 1999-10-05 2005-02-08 Sherwood Services Ag Multi-port side-fire coagulator
US6911029B2 (en) 1999-10-05 2005-06-28 Sherwood Services Ag Articulating ionizable gas coagulator
US7927330B2 (en) 1999-10-05 2011-04-19 Covidien Ag Multi-port side-fire coagulator
US8251995B2 (en) 1999-10-05 2012-08-28 Covidien Ag Articulating ionizable gas coagulator
US20050197658A1 (en) * 1999-10-05 2005-09-08 Platt Robert C. Articulating ionizable gas coagulator
US6723091B2 (en) * 2000-02-22 2004-04-20 Gyrus Medical Limited Tissue resurfacing
US20070027446A1 (en) * 2000-02-22 2007-02-01 Rhytec Limited Method of removing a tattoo
US7300436B2 (en) 2000-02-22 2007-11-27 Rhytec Limited Tissue resurfacing
US20050256519A1 (en) * 2000-02-22 2005-11-17 Rhytec Limited Tissue resurfacing
US20110121735A1 (en) * 2000-02-22 2011-05-26 Kreos Capital Iii (Uk) Limited Tissue resurfacing
US20050149012A1 (en) * 2000-02-22 2005-07-07 Gyrus Medical Limited Tissue resurfacing
US20040186470A1 (en) * 2000-02-22 2004-09-23 Gyrus Medical Limited Tissue resurfacing
US20060116674A1 (en) * 2000-02-22 2006-06-01 Rhytec Limited Method of regenerating the recticular architecture of the dermis
US7862564B2 (en) 2000-02-22 2011-01-04 Plasmogen Inc. Method of remodelling stretch marks
US7335199B2 (en) 2000-02-22 2008-02-26 Rhytec Limited Tissue resurfacing
US7785322B2 (en) 2000-02-22 2010-08-31 Plasmogen Inc. Tissue treatment system
US20070073287A1 (en) * 2000-02-22 2007-03-29 Rhytec Limited Method of remodelling stretch marks
US20060009763A1 (en) * 2000-02-22 2006-01-12 Rhytech Limited Tissue treatment system
US20100305565A1 (en) * 2000-08-01 2010-12-02 Arqos Surgical, Inc. Voltage threshold ablation apparatus
US8333763B2 (en) 2000-08-01 2012-12-18 Arqos Surgical, Inc. Voltage threshold ablation apparatus
US20030069576A1 (en) * 2000-10-12 2003-04-10 Tanrisever Naim Erturk Quantum energy surgical device and method
US6475215B1 (en) 2000-10-12 2002-11-05 Naim Erturk Tanrisever Quantum energy surgical device and method
WO2002030308A1 (en) 2000-10-12 2002-04-18 Naim Erturk Tanrisever Plasma arc sur surgical device and method
US6780184B2 (en) * 2000-10-12 2004-08-24 Tanrisever Naim Ertuerk Quantum energy surgical device and method
US20100069902A1 (en) * 2004-02-03 2010-03-18 Covidien Ag Self Contained, Gas-Enhanced Surgical Instrument
US8414578B2 (en) 2004-02-03 2013-04-09 Covidien Ag Self contained, gas-enhanced surgical instrument
US8226644B2 (en) 2004-02-03 2012-07-24 Covidien Ag Gas-enhanced surgical instrument
US8226643B2 (en) 2004-02-03 2012-07-24 Covidien Ag Gas-enhanced surgical instrument with pressure safety feature
US20050171528A1 (en) * 2004-02-03 2005-08-04 Sartor Joe D. Self contained, gas-enhanced surgical instrument
US7833222B2 (en) 2004-02-03 2010-11-16 Covidien Ag Gas-enhanced surgical instrument with pressure safety feature
US8157795B2 (en) 2004-02-03 2012-04-17 Covidien Ag Portable argon system
US20060200122A1 (en) * 2004-02-03 2006-09-07 Sherwood Services Ag Portable argon system
US20060052772A1 (en) * 2004-02-03 2006-03-09 Sartor Joe D Gas-enhanced surgical instrument
US7628787B2 (en) 2004-02-03 2009-12-08 Covidien Ag Self contained, gas-enhanced surgical instrument
US7572255B2 (en) 2004-02-03 2009-08-11 Covidien Ag Gas-enhanced surgical instrument
US20060189973A1 (en) * 2004-04-29 2006-08-24 Van Der Weide Daniel W Segmented catheter for tissue ablation
US7467015B2 (en) 2004-04-29 2008-12-16 Neuwave Medical, Inc. Segmented catheter for tissue ablation
US20060276781A1 (en) * 2004-04-29 2006-12-07 Van Der Weide Daniel W Cannula cooling and positioning device
US20070016181A1 (en) * 2004-04-29 2007-01-18 Van Der Weide Daniel W Microwave tissue resection tool
US10342614B2 (en) 2004-04-29 2019-07-09 Wisconsin Alumni Research Foundation Triaxial antenna for microwave tissue ablation
US7465302B2 (en) 2004-08-17 2008-12-16 Encision, Inc. System and method for performing an electrosurgical procedure
US20060041251A1 (en) * 2004-08-17 2006-02-23 Odell Roger C Electrosurgical system and method
US20060041252A1 (en) * 2004-08-17 2006-02-23 Odell Roger C System and method for monitoring electrosurgical instruments
US8758336B2 (en) 2004-08-17 2014-06-24 Encision, Inc. System and method for monitoring electrosurgical systems
US7422589B2 (en) 2004-08-17 2008-09-09 Encision, Inc. System and method for performing an electrosurgical procedure
US20060041253A1 (en) * 2004-08-17 2006-02-23 Newton David W System and method for performing an electrosurgical procedure
US20100145253A1 (en) * 2005-04-25 2010-06-10 Drexel University Methods for non-thermal application of gas plasma to living tissue
US8521274B2 (en) 2005-04-25 2013-08-27 Drexel University Methods for non-thermal application of gas plasma to living tissue
US8388618B2 (en) 2005-04-25 2013-03-05 Drexel University Control of mucus membrane bleeding with cold plasma
US20090054896A1 (en) * 2005-04-25 2009-02-26 Gregory Fridman Control of mucus membrane bleeding with cold plasma
US10201067B2 (en) 2005-07-08 2019-02-05 Plasma Surgical Investments Limited Plasma-generating device, plasma surgical device and use of a plasma surgical device
US8109928B2 (en) 2005-07-08 2012-02-07 Plasma Surgical Investments Limited Plasma-generating device, plasma surgical device and use of plasma surgical device
US8337494B2 (en) 2005-07-08 2012-12-25 Plasma Surgical Investments Limited Plasma-generating device having a plasma chamber
US8105325B2 (en) 2005-07-08 2012-01-31 Plasma Surgical Investments Limited Plasma-generating device, plasma surgical device, use of a plasma-generating device and method of generating a plasma
US9913358B2 (en) 2005-07-08 2018-03-06 Plasma Surgical Investments Limited Plasma-generating device, plasma surgical device and use of a plasma surgical device
US8465487B2 (en) 2005-07-08 2013-06-18 Plasma Surgical Investments Limited Plasma-generating device having a throttling portion
US20070029292A1 (en) * 2005-07-08 2007-02-08 Nikolay Suslov Plasma-generating device, plasma surgical device and use of a plasma surgical device
WO2007014208A2 (en) * 2005-07-25 2007-02-01 Micrablate, Llc Cannula cooling and positioning device
WO2007014208A3 (en) * 2005-07-25 2007-06-07 Micrablate Llc Cannula cooling and positioning device
US20070049918A1 (en) * 2005-08-24 2007-03-01 Van Der Weide Daniel W Microwave device for vascular ablation
US7691102B2 (en) 2006-03-03 2010-04-06 Covidien Ag Manifold for gas enhanced surgical instruments
US20100154904A1 (en) * 2006-03-03 2010-06-24 Covidien Ag Manifold For Gas Enhanced Surgical Instruments
US20070208337A1 (en) * 2006-03-03 2007-09-06 Sherwood Services Ag Manifold for gas enhanced surgical instruments
US8460290B2 (en) 2006-03-08 2013-06-11 Covidien Ag Tissue coagulation method and device using inert gas
US20070213709A1 (en) * 2006-03-08 2007-09-13 Sherwood Services Ag Tissue coagulation method and device using inert gas
US20100114096A1 (en) * 2006-03-08 2010-05-06 Covidien Ag Tissue Coagulation Method and Device Using Inert Gas
US7648503B2 (en) 2006-03-08 2010-01-19 Covidien Ag Tissue coagulation method and device using inert gas
US10363092B2 (en) 2006-03-24 2019-07-30 Neuwave Medical, Inc. Transmission line with heat transfer ability
US8672932B2 (en) 2006-03-24 2014-03-18 Neuwave Medical, Inc. Center fed dipole for use with tissue ablation systems, devices and methods
US11944376B2 (en) 2006-03-24 2024-04-02 Neuwave Medical, Inc. Transmission line with heat transfer ability
US20080033424A1 (en) * 2006-03-24 2008-02-07 Micrablate Transmission line with heat transfer ability
US20070282319A1 (en) * 2006-03-24 2007-12-06 Micrablate, Inc. Center fed dipole for use with tissue ablation systems, devices and methods
US8007494B1 (en) 2006-04-27 2011-08-30 Encision, Inc. Device and method to prevent surgical burns
US8251989B1 (en) 2006-06-13 2012-08-28 Encision, Inc. Combined bipolar and monopolar electrosurgical instrument and method
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11389235B2 (en) 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US20080045938A1 (en) * 2006-07-14 2008-02-21 Micrablate Energy delivery systems and uses thereof
US11596474B2 (en) 2006-07-14 2023-03-07 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11576723B2 (en) 2006-07-14 2023-02-14 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11576722B2 (en) 2006-07-14 2023-02-14 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US8123744B2 (en) 2006-08-29 2012-02-28 Covidien Ag Wound mediating device
US7928338B2 (en) 2007-02-02 2011-04-19 Plasma Surgical Investments Ltd. Plasma spraying device and method
US7589473B2 (en) 2007-08-06 2009-09-15 Plasma Surgical Investments, Ltd. Pulsed plasma device and method for generating pulsed plasma
US8030849B2 (en) 2007-08-06 2011-10-04 Plasma Surgical Investments Limited Pulsed plasma device and method for generating pulsed plasma
US8735766B2 (en) 2007-08-06 2014-05-27 Plasma Surgical Investments Limited Cathode assembly and method for pulsed plasma generation
US20090039790A1 (en) * 2007-08-06 2009-02-12 Nikolay Suslov Pulsed plasma device and method for generating pulsed plasma
US20090076505A1 (en) * 2007-09-13 2009-03-19 Arts Gene H Electrosurgical instrument
US9757183B2 (en) 2007-10-26 2017-09-12 Encision Inc. Multiple parameter fault detection in electrosurgical instrument shields
US9254165B2 (en) 2007-10-26 2016-02-09 Encision, Inc. Multiple parameter fault detection in electrosurgical instrument shields
US20090112204A1 (en) * 2007-10-26 2009-04-30 Encision, Inc. Multiple Parameter Fault Detection in Electrosurgical Instrument Shields
US8460284B2 (en) 2007-10-26 2013-06-11 Encision, Inc. Multiple parameter fault detection in electrosurgical instrument shields
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
US9272359B2 (en) 2008-05-30 2016-03-01 Colorado State University Research Foundation Liquid-gas interface plasma device
US9287091B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation System and methods for plasma application
US9028656B2 (en) 2008-05-30 2015-05-12 Colorado State University Research Foundation Liquid-gas interface plasma device
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US8575843B2 (en) 2008-05-30 2013-11-05 Colorado State University Research Foundation System, method and apparatus for generating plasma
US8328804B2 (en) 2008-07-24 2012-12-11 Covidien Lp Suction coagulator
US8808287B2 (en) 2008-07-24 2014-08-19 Covidien Lp Suction coagulator
US20100023008A1 (en) * 2008-07-24 2010-01-28 Heard David N Suction Coagulator
US9028490B2 (en) 2008-07-24 2015-05-12 Covidien Lp Suction coagulator
US20100042094A1 (en) * 2008-08-14 2010-02-18 Arts Gene H Surgical Gas Plasma Ignition Apparatus and Method
US20100042088A1 (en) * 2008-08-14 2010-02-18 Arts Gene H Surgical Gas Plasma Ignition Apparatus and Method
US8226642B2 (en) 2008-08-14 2012-07-24 Tyco Healthcare Group Lp Surgical gas plasma ignition apparatus and method
US9314294B2 (en) 2008-08-18 2016-04-19 Encision, Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US9833281B2 (en) 2008-08-18 2017-12-05 Encision Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US9119649B2 (en) 2009-07-28 2015-09-01 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11013557B2 (en) 2009-07-28 2021-05-25 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10357312B2 (en) 2009-07-28 2019-07-23 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9877783B2 (en) 2009-07-28 2018-01-30 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9566115B2 (en) 2009-07-28 2017-02-14 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US8994271B2 (en) * 2009-08-03 2015-03-31 Leibniz—Institut fuer Plasmaforschung und Technologie E. V. Device for generating a non-thermal atmospheric pressure plasma
US20120187841A1 (en) * 2009-08-03 2012-07-26 Leibniz-Institut fuer Plasma. und Tech. e. V. Device for generating a non-thermal atmospheric pressure plasma
US11006995B2 (en) * 2009-08-25 2021-05-18 Leibniz-Institut Fuer Plasmaforschung Und Technologie E.V. Device for the planar treatment of areas of human or animal skin or mucous membrane surfaces by means of a cold atmospheric pressure plasma
US8878434B2 (en) 2009-10-27 2014-11-04 Covidien Lp Inductively-coupled plasma device
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
US20110095689A1 (en) * 2009-10-27 2011-04-28 Tyco Healthcare Group Lp Inductively-Coupled Plasma Device
US8613742B2 (en) 2010-01-29 2013-12-24 Plasma Surgical Investments Limited Methods of sealing vessels using plasma
US10524862B2 (en) 2010-05-03 2020-01-07 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10603106B2 (en) 2010-05-03 2020-03-31 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9861440B2 (en) 2010-05-03 2018-01-09 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9872729B2 (en) 2010-05-03 2018-01-23 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11490960B2 (en) 2010-05-03 2022-11-08 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US20110282341A1 (en) * 2010-05-11 2011-11-17 Electromedical Associates, Llc Brazed electrosurgical device
US9168084B2 (en) * 2010-05-11 2015-10-27 Electromedical Associates, Llc Brazed electrosurgical device
US10492845B2 (en) 2010-07-22 2019-12-03 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
US10463418B2 (en) 2010-07-22 2019-11-05 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
US10631911B2 (en) 2010-07-22 2020-04-28 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
US9089319B2 (en) 2010-07-22 2015-07-28 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
US8668687B2 (en) 2010-07-29 2014-03-11 Covidien Lp System and method for removing medical implants
US20210145502A1 (en) * 2011-03-21 2021-05-20 RELIGN Corporation Medical ablation system and method of use
US8323280B2 (en) * 2011-03-21 2012-12-04 Arqos Surgical, Inc. Medical ablation system and method of use
US20120245580A1 (en) * 2011-03-21 2012-09-27 Arqos Surgical, Inc. Medical ablation system and method of use
US20130296849A1 (en) * 2011-03-21 2013-11-07 Arqos Surgical, Inc. Medical ablation system and method of use
US10292751B2 (en) 2011-03-21 2019-05-21 RELIGN Corporation Medical ablation system and method of use
US11712282B2 (en) * 2011-03-21 2023-08-01 RELIGN Corporation Medical ablation system and method of use
US9277954B2 (en) * 2011-03-21 2016-03-08 Arqos Surgical, Inc. Medical ablation system and method of use
US10213614B2 (en) * 2011-06-01 2019-02-26 U.S. Patent Innovations, LLC System and method for cold plasma therapy
US20140378892A1 (en) * 2011-06-01 2014-12-25 Michael Keidar System And Method For Cold Plasma Therapy
US11672586B2 (en) 2011-09-28 2023-06-13 RELIGN Corporation Medical ablation system and method of use
US9795434B2 (en) 2011-09-28 2017-10-24 RELIGN Corporation Medical ablation system and method of use
US11229477B2 (en) 2011-09-28 2022-01-25 RELIGN Corporation Medical ablation system and method of use
US9592085B2 (en) 2011-09-28 2017-03-14 RELIGN Corporation Medical ablation system and method of use
US9204918B2 (en) 2011-09-28 2015-12-08 RELIGN Corporation Medical ablation system and method of use
US9247983B2 (en) 2011-11-14 2016-02-02 Arqos Surgical, Inc. Medical instrument and method of use
US10342603B2 (en) 2011-11-14 2019-07-09 RELIGN Corporation Medical instrument and method of use
US11638607B2 (en) 2011-12-21 2023-05-02 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9192438B2 (en) 2011-12-21 2015-11-24 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10667860B2 (en) 2011-12-21 2020-06-02 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10716610B2 (en) * 2012-03-02 2020-07-21 Japan Science And Technology Agency Bubble jetting member and method for producing same, gas/liquid jetting member and method for producing same, localized ablation device and localized ablation method, injection device and injection method, plasma-bubble jetting member, and therapeutic device and therapeutic method
US11730531B2 (en) 2012-03-02 2023-08-22 Japan Science And Technology Agency Bubble jetting member and method for producing same, gas/liquid jetting member and method for producing same, localized ablation device and localized ablation method, injection device and injection method, plasma-bubble jetting member, and therapeutic device and therapeutic method
US20150011930A1 (en) * 2012-03-02 2015-01-08 Japan Science And Technology Agency Bubble-spraying member and method for producing same, gas-liquid- spraying member and method for producing same, local ablation device and local ablation method, injection device and injection method, plasma-bubble-spraying member, and healing device and healing method
US9888954B2 (en) 2012-08-10 2018-02-13 Cook Medical Technologies Llc Plasma resection electrode
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US10524848B2 (en) 2013-03-06 2020-01-07 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US10004556B2 (en) 2013-05-10 2018-06-26 Corinth MedTech, Inc. Tissue resecting devices and methods
US10582966B2 (en) 2015-04-21 2020-03-10 RELIGN Corporation Arthroscopic devices and methods
US9681913B2 (en) 2015-04-21 2017-06-20 RELIGN Corporation Arthroscopic devices and methods
US9585675B1 (en) 2015-10-23 2017-03-07 RELIGN Corporation Arthroscopic devices and methods
US9603656B1 (en) 2015-10-23 2017-03-28 RELIGN Corporation Arthroscopic devices and methods
US11234759B2 (en) 2015-10-23 2022-02-01 RELIGN Corporation Arthroscopic devices and methods
US10327842B2 (en) 2015-10-23 2019-06-25 RELIGN Corporation Arthroscopic devices and methods
US11419670B2 (en) 2015-10-23 2022-08-23 RELIGN Corporation Arthroscopic devices and methods
US10568685B2 (en) 2015-10-23 2020-02-25 RELIGN Corporation Arthroscopic devices and methods
US11678935B2 (en) 2015-10-26 2023-06-20 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10952792B2 (en) 2015-10-26 2021-03-23 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10022140B2 (en) 2016-02-04 2018-07-17 RELIGN Corporation Arthroscopic devices and methods
US11771456B2 (en) 2016-02-04 2023-10-03 RELIGN Corporation Arthroscopic devices and methods
US11207119B2 (en) 2016-03-11 2021-12-28 RELIGN Corporation Arthroscopic devices and methods
US11622784B2 (en) 2016-04-11 2023-04-11 RELIGN Corporation Arthroscopic devices and methods
US11172953B2 (en) 2016-04-11 2021-11-16 RELIGN Corporation Arthroscopic devices and methods
US10595889B2 (en) 2016-04-11 2020-03-24 RELIGN Corporation Arthroscopic devices and methods
US11395699B2 (en) 2016-04-15 2022-07-26 Neuwave Medical, Inc. Systems and methods for energy delivery
US10531917B2 (en) 2016-04-15 2020-01-14 Neuwave Medical, Inc. Systems and methods for energy delivery
US20180036059A1 (en) * 2016-08-02 2018-02-08 Covidien Lp System and method for catheter-based plasma coagulation
US11376058B2 (en) 2016-08-02 2022-07-05 Covidien Lp System and method for catheter-based plasma coagulation
US10524849B2 (en) * 2016-08-02 2020-01-07 Covidien Lp System and method for catheter-based plasma coagulation
US11426231B2 (en) 2017-01-11 2022-08-30 RELIGN Corporation Arthroscopic devices and methods
US11065023B2 (en) 2017-03-17 2021-07-20 RELIGN Corporation Arthroscopic devices and methods
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
US11832879B2 (en) 2019-03-08 2023-12-05 Neuwave Medical, Inc. Systems and methods for energy delivery
US11882643B2 (en) 2020-08-28 2024-01-23 Plasma Surgical, Inc. Systems, methods, and devices for generating predominantly radially expanded plasma flow
US11849992B1 (en) * 2021-01-14 2023-12-26 Mark G. Fontenot Increasing plasma generated species (PGS) in non-thermal plasma (NTP) medical treatment

Similar Documents

Publication Publication Date Title
US3838242A (en) Surgical instrument employing electrically neutral, d.c. induced cold plasma
US3870047A (en) Electrosurgical device
US3804096A (en) Electrosurgical device
US6213999B1 (en) Surgical gas plasma ignition apparatus and method
US5669904A (en) Surgical gas plasma ignition apparatus and method
AU624554B2 (en) Gas coagulation device
US3929137A (en) Sonic warning for electrosurgical device
CA1222290A (en) Medical or dental probe with self-heating tip and methods for making
US3089496A (en) Control system for surgical apparatus
US7361175B2 (en) Plasma surgical device
US3035580A (en) Surgical needle
US4911159A (en) Electrosurgical instrument with electrical contacts between the probe and the probe holder
US6582427B1 (en) Electrosurgery system
US4116198A (en) Electro - surgical device
US7517347B2 (en) Electrosurgical instrument for an endoscope or a catheter
US6565558B1 (en) High-frequency device for generating a plasma arc for the treatment of biological tissue
AU688649B2 (en) Plasma enhanced bipolar electrosurgical system
JP2018504202A (en) Plasma discharge tube device that can be inserted and withdrawn
US2545865A (en) Electrosurgical instrument
AU2284100A (en) Electrode assembly for a surgical instrument provided for carrying out an electrothermal coagulation of tissue
GB1563108A (en) Apparatus for disintegrating concretions in human ducts
Unwin A versatile high frequency radio microcautery
KR19990087471A (en) Electrosurgical devices to prevent capacitive coupling and undesirable current path formation
JP3380394B2 (en) Discharge injection nozzle for plasma surgery
US3961630A (en) Protective circuit for radio-frequency electrosurgical device