US3842932A - Sound-trap muffler - Google Patents

Sound-trap muffler Download PDF

Info

Publication number
US3842932A
US3842932A US00302758A US30275872A US3842932A US 3842932 A US3842932 A US 3842932A US 00302758 A US00302758 A US 00302758A US 30275872 A US30275872 A US 30275872A US 3842932 A US3842932 A US 3842932A
Authority
US
United States
Prior art keywords
chambers
muffler
bore
larger
smaller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00302758A
Inventor
S Gibel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00302758A priority Critical patent/US3842932A/en
Application granted granted Critical
Publication of US3842932A publication Critical patent/US3842932A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1838Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
    • F01N13/1844Mechanical joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/10Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling in combination with sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1838Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
    • F01N13/1844Mechanical joints
    • F01N13/1855Mechanical joints the connection being realised by using bolts, screws, rivets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1888Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells
    • F01N13/1894Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells the parts being assembled in longitudinal direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • F01N2310/02Mineral wool, e.g. glass wool, rock wool, asbestos or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/24Methods or apparatus for fitting, inserting or repairing different elements by bolts, screws, rivets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/18Dimensional characteristics of gas chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

Muffler for sound transmitted by low-volume exhausts comprising a structure providing a plurality of aligned cylindrical chambers having acoustic surfaces of alternate large and smaller diameters, and concentric dividers substantially centered in the larger chambers, whereby the area between the periphery of each divider and the adjacent walls of a larger chamber is at least equal to the area of the otherwise open bore through the aligned chambers. Restriction of flow of gas through the muffler is minimized and the diameter of the divider is at least equal to the diameter of the bore, whereby the mean free path for sound waves through the aligned chambers is equal to at least substantially twice the length of the bore to thereby trap and adsorb sound waves transmitted by the air in the aligned chambers.

Description

UnitedStates Patent 1191 Gibel 1 1 SOUND-TRAP MUFFLER [76] Inventor: Stephen J. Gibel, 5846 Edgerton Rd., North Royalton, Ohio 44133 [58] Field of Search... 181/35 R, 3 6 R, 36 C, 47 R, 181/40, 46, 42, 49, 50, 55, 57, 63, 68, 69, 71,72,47 B, 368
[56] References Cited 5] Oct. 22, 1974 Primary Examiner-Richard B. Wilkinson Assistant Examiner-Vit W. Miska Attorney, Agent, or Firm-Ely & Golrick nate large and smaller diameters, and concentric dividers substantially centered in the larger chambers, whereby the area between the periphery of each divider and the adjacent walls of a larger chamber is at least equal to the area of the otherwise open bore through the aligned chambers. Restriction of flow of gas through the muffler is minimized and the diameter UNITED STATES PATENTS of the divider is at least equal to the diameter of the 1,067,467 7/1913 Collins 181/69 o h e y he mean free p th for sound waves 1,067,468 7/1917 Collins 181/69 through the aligned chambers is equal to at least sub- FOREIGN PATENTS OR APPLICATIONS stantlally twlce the length of the bore to thereby trap 1 295 934 M969 G 81/47 A and adsorb sound waves transm1tted by the an m the ermany 454,537 6/1968 Switzerland 181/53 ahgned chambers 270,541 5/1927 Great Britain 181/69 5 Claims, 3 Drawing Figures a /2 I bk":
i 9; i in 24 new PAIENIED ZW 2,600,236 (issued June 10, 1951); 2,815,088 (issued Dec. 9, 1957); 3,380,553 (issued Apr. 30, 1968) and my subsequent issued and pending applications. These and competitive mufflers largely depend for the attenuation of :the sound energy in the above exhausts by (a) a dissipation of the sound energy through expansion and/or turbulence within the muffler and (b) dissipa- .tion and dissemination of the exhaust to theatmosphere through porous walls of acoustic material in an expansion chamber due to a pressure differential between the ambient atmosphere and the expanded exhaust within the ultimate expansion chamber of the muffler.
The above-described mufflers, or others depending merely upon the internal baffling of high velocity air and gases introduced into them, have been signally unsuccessful, however, in silencing the sound energy transmitted by low-volume and low velocity exhausts of, for example, vacuum pumps. The noise of such latter exhausts, often of low frequencies (in the order of 50 to 150 Hertz), can be very annoying and distracting and may constitute occupational safety and health hazards. Because of the low volume of air or gas discharged through such devices, particularly as they approach the very low vacuums now in wide commercial use or as they maintain a low sub-atmospheric pressure insuction devices, the volume and velocity of such exhausts neither'permit the attenuation of their sound energy (created by the operating mechanisms within the vacuum pumps) nor, because the static .pressure within the muffler is practically atmospheric, is there a pressure differential to force air by which the sound is conveyed through the .porous walls of acoustic material.
"Heretofore, the only solution to meeting the regulatory standards for silencing such exhausts has been to provide mufflers having an exceptionally large internal volume (especially with respect to the low volume of exhausted air) whereby the sound energy in the essentially static air within the muffler is absorbed and dissipated by .the mass of material from which the muffler is'madeQThe very bulk of such mufflers not only increases the .cost of them but renders them impractical or unacceptable where the muffler hasto be located in close quarters.
It is an object and advantage of this invention to provide a compact and highly efficient muffler for such low-velocity exhausts. It is of a relatively simple and .easily assembled construction and, thus, of substantiallylowercost than any muffler of comparative effectiveness. Although mufflers made according to this invention.employconventional sound-absorbing acoustic materials, the relatively low mass of such material requiredandthe consequent relatively low internal and external volume ofthe mufflers indicate that the effectiveness of mufflers madeaccording to this invention is not solely due to absorption of the sound energy of the acoustic material, as in prior art large volume mufflers, of comparable effectiveness for such exhausts. Rather, analysis of the sound waves in the internal chambers and at the outlet of these mufflers suggests that the mufflers construction creates out-of-phase sound waves within their essentially static internal volumes of air, lopping off the crests of the sound waves and altering their laminar flow paths, although further and more exhaustive studies and analyses may develop other explanations for the operativeness of mufflers made according to this invention.
Mufflers made according to this invention are also highly effective in silencing the sound of the frequently comparatively large volume of exhausted air and/or other gases, which may have to be handled as vacuum pumps commence to evacuate a closed chamber. These mufflers also provide very low to practically zero backpressure, likewise a pre-requisite for efficient operation of vacuum pumps and the like.
Other objects and advantages of this invention will be apparent from the following specification, claims, and drawings, in which:
FIG. 1 is a side elevation, partly in section to show the internal construction of a preferred embodiment of mufflers made according to this invention.
FIG. 2 is a cross-section taken along the line 22 of FIG. 1.
FIG. 3 is a side elevation, partlyin section, showing another embodiment of this invention.
Referring to the preferred embodiment shown in FIG. 1, the muffler 10 is comprised of a pair of end caps 11, each provided with a pipe-threaded central tubular boss 12, permitting either end to be connected to the exhaust port or line of a vacuum pump, for example. Each end cap is provided with a flange 13 providing an internal shoulder to receive the ends of an external tubular cylindrical wall 14 held under compression by the pair of internal tie bolts 15 extending between the end caps 11.
The external wall 14 is preferably of relatively lightgauge sheet metal sufficient to carry the load of the tie bolts 15 and to protect and support the internal rings of acoustic material 20 defining the sound traps of the muffler. Because such external walls in cylindrical mufflerssilencing high-volume exhausts are generally perforate to permit the dissemination of exhaust air therethrough, the wall 14 may likewise be perforated to indicate that the muffler 10 is, in fact, a muffler, but preferably the wall 14 is imperforate, both to reduce cost and protect the acoustic-material from absorption of oil and other liquids or soil which may contact the muffler during handling and use so as to become absorbed in the acoustic material 20 and, thereby, reduce its effectiveness.
The internal acoustic material 20 in the muffler 10 comprises a stack of alternate rings 21 and 23 having an outer diameter substantially equal to the internal diameter of the wall 14. The rings 21 have an inner diameter substantially equal to or slightly greater than the bore of the bosses 12 and an axial thickness substantially equal to their inner diameter, whereby the chamber 22 provided by each ring 21 is substantially square (i.e., its axial length is substantially equal to its diameter). Each alternate ring 23 is of an axial length substantially equal to that of a ring 21, but its internal diameter, providing a chamber 24, is appreciably larger, in the order of 2.5 to 3+ times the diameter of R the bore of. the adjacent smaller chamber 22 but sufficiently less than the internal diameter of the chamber 24 so as to provide an annular passageway 26 within the chamber 24. The area of the passageway 26 is at least equal to the cross-sectional area of the bore of the bosses 12 and thereby minimizes restriction of flow of air through the muffler 10. The rings 21 and partitions 25 are pierced to permit the stacking of them on the tie bolts 15. To maintain the central spacing of the partitions 25 in the chambers 24, small tubular sleeves 27 may be carried on the tie bolts 15 on each side of a path tition 25.
The acoustic material of-the rings 21 and 23 and partitions 25 is preferably made of fiber loosely felted to provide a material of low-density and anechoic properties; for structural stability the fibers may be lightly resin-bonded. It has been found that the acoustic material of the rings 23 and partitions 25 may be denser, providing structural stability for diverting the path of the sound waves through the muffler without noticeably decreasing its effectiveness.
For reasons not yet understood the effectiveness of the muffler drops sharply if the stack of alternate chambers provides less than twolarger chambers 24 and three smaller chambers 22; the effectiveness is appreciably increased with the arrangement providing three larger chambers 24, as shown in FIG. 1. Additional pairs ofalternate large and small chambers may be added to the stack, but the increase in effectiveness of the muffler becomes asymptotic.
The modification 100 shown in FIG. 3 is similar to that shown in FIG. 1, comprising end caps 111, with bosses 112 and connected by tie rods 115 to support an outer wall 114. Internally, alternate rings of acoustic material 121 and 123, corresponding to rings 21 and 23, are stacked to provide alternate chambers 122 and 124. An internal perforate tube 130, however, extends through these chambers, the internal diameter of the tube 130 constituting a connection of the bores of the bosses 112. At the axial center of each chamber 124, however, the tube 130 is blocked by a partition 125, preferably of acoustic material similar to that employed for the partitions 25. The perforated material of the central tube 130 may be perforated metal or screening whose open area is in the order of 50% of its total area whereby no substantial resistance is effected with respect to the low volume of air which flows through the muffler but the mean free path for sound waves in the muffler is in the order of twice the axial length, of the tubes 130.
Other modifications and variations of this specific embodiment of this invention as disclosed herein may 4 be made by those skilled in the art without departing from the spirit and scope of this invention as defined in the appended'claims.
What is claimed is: a J I l. A muffler for a low-volume exhaust comprising a casing having end closures therefor, each closure having an opening into the interior of said casing andat least one such opening permitting connection to an exhaust outlet, a plurality of adjacent axially concentric ring structures within said casing, said ring structures having alternate larger and smaller inner diameters, the axial thicknessesiand inner diameters of said ring structures defining alternate large and small volume chambers, the cross-sectional areas of said chambers being aligned with said casing openings and the crosssectional area of the smaller chambers being at least as large as the cross-sectional area of either of said casing openings to provide a bore through said muffler, and a w- -part'ition located within each of the larger chambers andclosing off said bore thereat and means to support said partitions so as to provide a passageway around each partition having a total cross-sectional area not.
less than the cross-sectional area of said bore but whereby, the mean free path through said muffler is longer than the axial length of said bore through said chambers, said .chambers having surface portions of substantially anechoic acoustic material whereby said chambers provide traps for soundwaves therewithin.
2. A muffler as defined in claim 1 in which said chambers are formed by stacked rings of said acoustic material, the axial length of the rings defining the smaller chambers being'substantially'equal to the diameter of said bore, and at least a pair of rings defining said larger chambers and each having an axiallength substantially equal to the axial length of the rings defining adjacent smaller chambers. f r
3. A muffler as defined in claim 2, in which the volume of each of said larger chambers is at least six times the volume of one of said smaller chambers.
4. A muffler as defined in claim 3 in which said partitions are supported within said larger chambers and extend radially beyond the bore openings in said adjacent smaller chambers, the surfaces of each of said partitions being spaced from adjacent surfaces of the larger chamber in which it is supported to provide a passageway around it, each such passageway having a total cross-sectional area not less than the cross-sectional area of said bore.
5. A muffler as defined in claim 3 in which a perforate tube extending between the openings in said casing fits the bores of said smaller rings, partitions blocking said tube and located within the portions of said tube passing through said larger chambers, the perforations

Claims (5)

1. A muffler for a low-volume exhaust comprising a casing having end closures therefor, each closure having an opening into the interior of said casing and at least one such opening permitting connection to an exhaust outlet, a plurality of adjacent axially concentric ring structures within said casing, said ring structures having alternate larger and smaller inner diameters, the axial thicknesses and inner diameters of said rinG structures defining alternate large and small volume chambers, the crosssectional areas of said chambers being aligned with said casing openings and the cross-sectional area of the smaller chambers being at least as large as the cross-sectional area of either of said casing openings to provide a bore through said muffler, and a partition located within each of the larger chambers and closing off said bore thereat and means to support said partitions so as to provide a passageway around each partition having a total cross-sectional area not less than the crosssectional area of said bore but whereby the mean free path through said muffler is longer than the axial length of said bore through said chambers, said chambers having surface portions of substantially anechoic acoustic material whereby said chambers provide traps for sound waves therewithin.
2. A muffler as defined in claim 1 in which said chambers are formed by stacked rings of said acoustic material, the axial length of the rings defining the smaller chambers being substantially equal to the diameter of said bore, and at least a pair of rings defining said larger chambers and each having an axial length substantially equal to the axial length of the rings defining adjacent smaller chambers.
3. A muffler as defined in claim 2, in which the volume of each of said larger chambers is at least six times the volume of one of said smaller chambers.
4. A muffler as defined in claim 3 in which said partitions are supported within said larger chambers and extend radially beyond the bore openings in said adjacent smaller chambers, the surfaces of each of said partitions being spaced from adjacent surfaces of the larger chamber in which it is supported to provide a passageway around it, each such passageway having a total cross-sectional area not less than the cross-sectional area of said bore.
5. A muffler as defined in claim 3 in which a perforate tube extending between the openings in said casing fits the bores of said smaller rings, partitions blocking said tube and located within the portions of said tube passing through said larger chambers, the perforations in said tube being substantially evenly distributed therein and providing opening areas on either side of each partition into an adjacent larger chamber, the total area of such opening areas on either side of each of said partitions being at least as large as the cross-sectional area of said tube.
US00302758A 1972-11-01 1972-11-01 Sound-trap muffler Expired - Lifetime US3842932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00302758A US3842932A (en) 1972-11-01 1972-11-01 Sound-trap muffler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00302758A US3842932A (en) 1972-11-01 1972-11-01 Sound-trap muffler

Publications (1)

Publication Number Publication Date
US3842932A true US3842932A (en) 1974-10-22

Family

ID=23169084

Family Applications (1)

Application Number Title Priority Date Filing Date
US00302758A Expired - Lifetime US3842932A (en) 1972-11-01 1972-11-01 Sound-trap muffler

Country Status (1)

Country Link
US (1) US3842932A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015683A (en) * 1975-12-29 1977-04-05 Purex Corporation Ltd. Noise suppressor for vacuum sweeper and the like
US4031979A (en) * 1975-04-24 1977-06-28 Raleigh Roger W Adjustable muffler for model aircraft type engines
EP0127550A2 (en) * 1983-05-31 1984-12-05 Mareau née Gayton, Betty Silencer for a compressed-air system
US5097924A (en) * 1988-06-08 1992-03-24 Mcneil (Ohio) Corporation Muffler for a compressed air driven motor
US5767459A (en) * 1996-11-18 1998-06-16 Ingersoll-Rand Company Muffler for pneumatic devices
US6425412B2 (en) 2000-02-03 2002-07-30 Robert E. Sterling Dual spring exhaust valve linkage assembly
WO2002084084A1 (en) * 1998-01-13 2002-10-24 Sterling Robert Earl Pneumatic hand tool exhaust muffler having inner and outer tubes
US6668971B2 (en) 1998-01-13 2003-12-30 Robert E. Sterling Pneumatic hand tool exhaust muffler having inner and outer tubes
US20040055815A1 (en) * 1998-01-13 2004-03-25 Sterling Robert E. Muffler for pneumatic hand tool
US20050023077A1 (en) * 2003-07-28 2005-02-03 Sishtla Vishnu M. Muffler for noise reduction
US20050126382A1 (en) * 2003-12-15 2005-06-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Silencer
US7216739B2 (en) 1998-01-13 2007-05-15 Exhaust Technologies, Inc. Muffler for pneumatic hand tool
US20080178877A1 (en) * 2001-02-28 2008-07-31 Hyperbaric Oxygen Therapy System Controls Safety Mechanism for Hyperbaric Oxygen Therapy System
US20110005860A1 (en) * 2009-07-13 2011-01-13 Kwin Abram Exhaust component with reduced pack
US20110214935A1 (en) * 2010-03-08 2011-09-08 Huntair, Inc. Methods and systems for integrating sound attenuation into a filter bank
CN102392718A (en) * 2011-10-01 2012-03-28 韩杰 Silencer
US20130058802A1 (en) * 2010-05-18 2013-03-07 Graco Minnesota Inc. Low ice pneumatic motor exhaust muffler
US8931591B2 (en) * 2012-09-28 2015-01-13 Fisher Controls International Llc Simplified modal attenuator
US20150159528A1 (en) * 2013-12-09 2015-06-11 Dayco Ip Holdings, Llc Noise attenuation unit for engine systems
US9376946B1 (en) 2015-04-02 2016-06-28 Fisher Controls International Llc Modal attenuator
US9382826B1 (en) 2015-01-09 2016-07-05 Dayco Ip Holdings, Llc Noise attenuating member for noise attenuating units in engines
US9534704B2 (en) 2013-10-08 2017-01-03 Dayco Ip Holdings, Llc Noise attenuation in a check valve unit or apparatus for producing vacuum
US10024339B2 (en) 2014-05-30 2018-07-17 Dayco Ip Holdings, Llc Vacuum creation system having an ejector, pneumatic control valve and optionally an aspirator
US10100720B2 (en) 2015-01-09 2018-10-16 Dayco Ip Holdings, Llc Crankcase ventilating evacuator
US10107240B2 (en) 2014-04-04 2018-10-23 Dayco Ip Holdings, Llc Check valves and Venturi devices having the same
US10190455B2 (en) 2015-10-28 2019-01-29 Dayco Ip Holdings, Llc Venturi devices resistant to ice formation for producing vacuum from crankcase gases
US10316864B2 (en) 2015-04-13 2019-06-11 Dayco Ip Holdings, Llc Devices for producing vacuum using the venturi effect
US10422351B2 (en) 2015-07-17 2019-09-24 Dayco Ip Holdings, Llc Devices for producing vacuum using the venturi effect having a plurality of subpassageways and motive exits in the motive section
US20210080151A1 (en) * 2017-10-11 2021-03-18 Carrier Corporation Muffler with metallic meshed rings

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031979A (en) * 1975-04-24 1977-06-28 Raleigh Roger W Adjustable muffler for model aircraft type engines
US4015683A (en) * 1975-12-29 1977-04-05 Purex Corporation Ltd. Noise suppressor for vacuum sweeper and the like
EP0127550A2 (en) * 1983-05-31 1984-12-05 Mareau née Gayton, Betty Silencer for a compressed-air system
EP0127550A3 (en) * 1983-05-31 1986-12-30 Henri Gayton Silencer for a compressed-air system
US5097924A (en) * 1988-06-08 1992-03-24 Mcneil (Ohio) Corporation Muffler for a compressed air driven motor
US5767459A (en) * 1996-11-18 1998-06-16 Ingersoll-Rand Company Muffler for pneumatic devices
US6668971B2 (en) 1998-01-13 2003-12-30 Robert E. Sterling Pneumatic hand tool exhaust muffler having inner and outer tubes
WO2002084084A1 (en) * 1998-01-13 2002-10-24 Sterling Robert Earl Pneumatic hand tool exhaust muffler having inner and outer tubes
US20040055815A1 (en) * 1998-01-13 2004-03-25 Sterling Robert E. Muffler for pneumatic hand tool
US6926117B2 (en) 1998-01-13 2005-08-09 Exhaust Technologies, Inc. Muffler for pneumatic hand tool
US7216739B2 (en) 1998-01-13 2007-05-15 Exhaust Technologies, Inc. Muffler for pneumatic hand tool
US6425412B2 (en) 2000-02-03 2002-07-30 Robert E. Sterling Dual spring exhaust valve linkage assembly
US20080185003A1 (en) * 2001-02-28 2008-08-07 Hyperbaric Oxygen Therapy System Controls Safety mechanism for hyperbaric oxygen therapy system
US8899233B2 (en) 2001-02-28 2014-12-02 Hyperbaric Technology, Inc. Method for enabling transfer of an object from an interior of an airlock to a pressure vessel attached to the airlock
US8011470B2 (en) * 2001-02-28 2011-09-06 Hyperbaric Technology, Inc. Compressor silencer for hyperbaric oxygen therapy system
US7900629B2 (en) 2001-02-28 2011-03-08 Hyperbaric Technology, Inc. Safety mechanism for hyperbaric oxygen therapy system
US20080178877A1 (en) * 2001-02-28 2008-07-31 Hyperbaric Oxygen Therapy System Controls Safety Mechanism for Hyperbaric Oxygen Therapy System
US20050023077A1 (en) * 2003-07-28 2005-02-03 Sishtla Vishnu M. Muffler for noise reduction
US7100737B2 (en) * 2003-07-28 2006-09-05 Carrier Corporation Muffler for noise reduction
US7325474B2 (en) * 2003-12-15 2008-02-05 Kabushiki Kaisha Kobe Seiko Sho Silencer
US20050126382A1 (en) * 2003-12-15 2005-06-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Silencer
US20110005860A1 (en) * 2009-07-13 2011-01-13 Kwin Abram Exhaust component with reduced pack
US8087492B2 (en) * 2010-03-08 2012-01-03 Huntair, Inc. Methods and systems for integrating sound attenuation into a filter bank
US20110214935A1 (en) * 2010-03-08 2011-09-08 Huntair, Inc. Methods and systems for integrating sound attenuation into a filter bank
US9464630B2 (en) * 2010-05-18 2016-10-11 Graco Minnesota Inc. Low ice pneumatic motor exhaust muffler
US20130058802A1 (en) * 2010-05-18 2013-03-07 Graco Minnesota Inc. Low ice pneumatic motor exhaust muffler
CN105332894A (en) * 2010-05-18 2016-02-17 格瑞克明尼苏达有限公司 Low ice pneumatic motor exhaust muffler
CN102392718A (en) * 2011-10-01 2012-03-28 韩杰 Silencer
US8931591B2 (en) * 2012-09-28 2015-01-13 Fisher Controls International Llc Simplified modal attenuator
US9534704B2 (en) 2013-10-08 2017-01-03 Dayco Ip Holdings, Llc Noise attenuation in a check valve unit or apparatus for producing vacuum
US9617958B2 (en) * 2013-12-09 2017-04-11 Dayco Ip Holdings, Llc Noise attenuation unit for engine systems
US10077746B2 (en) 2013-12-09 2018-09-18 Dayco Ip Holdings, Llc Noise attenuation unit for engine systems
US20150159528A1 (en) * 2013-12-09 2015-06-11 Dayco Ip Holdings, Llc Noise attenuation unit for engine systems
US10190549B2 (en) 2014-04-04 2019-01-29 Dayco Ip Holdings, Llc Check valves and venturi devices having the same
US10107240B2 (en) 2014-04-04 2018-10-23 Dayco Ip Holdings, Llc Check valves and Venturi devices having the same
US10024339B2 (en) 2014-05-30 2018-07-17 Dayco Ip Holdings, Llc Vacuum creation system having an ejector, pneumatic control valve and optionally an aspirator
US10100720B2 (en) 2015-01-09 2018-10-16 Dayco Ip Holdings, Llc Crankcase ventilating evacuator
US9382826B1 (en) 2015-01-09 2016-07-05 Dayco Ip Holdings, Llc Noise attenuating member for noise attenuating units in engines
US9376946B1 (en) 2015-04-02 2016-06-28 Fisher Controls International Llc Modal attenuator
US10316864B2 (en) 2015-04-13 2019-06-11 Dayco Ip Holdings, Llc Devices for producing vacuum using the venturi effect
US10422351B2 (en) 2015-07-17 2019-09-24 Dayco Ip Holdings, Llc Devices for producing vacuum using the venturi effect having a plurality of subpassageways and motive exits in the motive section
US10190455B2 (en) 2015-10-28 2019-01-29 Dayco Ip Holdings, Llc Venturi devices resistant to ice formation for producing vacuum from crankcase gases
US20210080151A1 (en) * 2017-10-11 2021-03-18 Carrier Corporation Muffler with metallic meshed rings
US11808490B2 (en) * 2017-10-11 2023-11-07 Carrier Corporation Muffler with metallic meshed rings

Similar Documents

Publication Publication Date Title
US3842932A (en) Sound-trap muffler
US4267899A (en) Muffler assembly
US4645032A (en) Compact muffler apparatus and associated methods
US2640557A (en) Retroverted passage type muffler with outer conduit formed of sound absorbing material
US3196977A (en) Sound attenuation control means including diffuser for high velocity streams
JPH02112913U (en)
KR930016660A (en) Exhaust Side Silencer of Compressor
US7350620B2 (en) Compact silencer
US2940538A (en) Silencer
JP5788683B2 (en) Silencer
US2184891A (en) Silencer
US3941206A (en) Noise attenuating snubber
US4185715A (en) Sound-attenuating muffler for exhaust gases
US3854548A (en) Silencing apparatus
US2416452A (en) Muffler
US3419107A (en) Manifold muffler arrangement
US2189424A (en) Surge filter for pulsating gases
US3679024A (en) Muffler
GB1394605A (en) Sound muffler
RU2151889C1 (en) Gas jet noise silencer
US3715010A (en) Multiple collimator muffler
CN211082408U (en) Microperforated panel combined type silencer
JP4296107B2 (en) Silencer
JPH01296040A (en) Noise damping device using resonance for air supply duct
JPS6221702Y2 (en)