US3844275A - Needle and sterilizing apparatus therefor - Google Patents

Needle and sterilizing apparatus therefor Download PDF

Info

Publication number
US3844275A
US3844275A US00228620A US22862072A US3844275A US 3844275 A US3844275 A US 3844275A US 00228620 A US00228620 A US 00228620A US 22862072 A US22862072 A US 22862072A US 3844275 A US3844275 A US 3844275A
Authority
US
United States
Prior art keywords
chamber
tube
tube means
needle
open end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00228620A
Inventor
J Elliott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00228620A priority Critical patent/US3844275A/en
Application granted granted Critical
Publication of US3844275A publication Critical patent/US3844275A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/121Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for cleaning post-use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/206Ethylene oxide

Definitions

  • the in vivo measuring apparatus includes a hollow tube which is filled with an electrolyte solution and is sealed at an open end by a fiber sea].
  • a plurality of electrodes are disposed about the tube, extend to a location adjacent the open end of the tube and are coated with electrical insulation except at that location.
  • the tube and electrode can be placed within the hollow interior of a disposable syringe needle so that the open end of the tube is adjacent the opening in the needle and thus, after the needle is inserted, the in vivo solution electrically couples the electrodes to the electrolyte in the hollow tube.
  • the tube and electrodes can be sterilized by placing them in a housing which has a chamber and some means for introducing sterilizing gas into the chamber.
  • the housing has an inner chamber for receiving a needle or other medical tool so that it is sealed within and an outer chamber containing a quantity of sterilizing gas under a pressure above atmospheric.
  • a valve communicates the two chambers and is actuable to permit gas to pass from the outer to the inner chamber to sterilize the tool.
  • a glass vial is disposed within the chamber and can be broken by pinching the housing to liberate the sterilizing gas.
  • the sterilizing gas can be injected into the sealed chamber from an exterior source.
  • a glass vial having a narrow neck is disposed within a partially flexible tube preferably with the neck away from the inserted needle. The neck can be manually broken by pinching the tube to release a sterilizing gas with the broken tip held away from the needle.
  • the invention relates to a method and apparatus for sterilizing medical tools, such as syringe needles, and to an apparatus and method for performing in vivo measurements.
  • Needles which are used with syringes for administering medicines to humans and animals, as well as for performing tests and experiments, must normally be sterilized before each use.
  • Single use disposable syringes with attached needles which are sterilized after assembly and sealed in a flexible bag are suitable for many applications.
  • the syringe required is too expensive to be practically used only once.
  • Other similar medical tools require sterilization before each use.
  • Ethylene oxide is one of the most effective of a number of sterilizing gases which can be employed to sterilize objects by surrounding them with the gas in a suitable chamber.
  • the U.S. Pat. No. to Leeds, 3,473,886, discloses such an apparatus with a chamber for receiving contact lenses which is adapted to be filled with ethylene oxide.
  • sterilization in such devices is slow and inefficient and the devices themselves are costly to construct and maintain.
  • the present invention relates in part to a method and apparatus for simply, quickly and easily sterilizing syringe needles and other similar medical tools.
  • the apparatus includes a sheath or housing which can be fitted onto a conventional syringe with the needles extending into an internal chamber which is sealed at one end by the syringe.
  • the sheath or housing walls further bound an outer chamber which is about the needle-containing chamber.
  • This outer chamber is filled with ethylene oxide or another suitable gas under pressure and communicates with the needle-containing chamber via a suitable manually actuable valve. After the needle is sealed in its chamber, the valve between the two chambers is opened so that the ethylene oxide under pressure flows into the needle-containing chamber to surround and sterilize the needle. After a short interval, sterilization is complete and the needle can be withdrawn and the process repeated with a different syringe. More gas can be added to the outer chamber through a suitable valve as needed from time to time.
  • the cap or housing is flexible and has a single internal chamber into which the needle extends and which is also sealed by the syringe.
  • a small glass vial or the like is attached to the sheath in the interior of the chamber and contains a suitable amount of ethylene oxide or other suitable gas under pressure. After the needle is disposed in the internal chamber with the syringe sealing that chamber, the vial is broken, for example, by pinching the portion of the flexible housing adjacent the vial, to liberate the gas which quickly sterilizes the needle. Normally, the housing would then be discarded after a single use.
  • the glass vial has a neck portion with the part of the tube surrounding it made flexible to permit the neck to be broken to liberate the sterilizing gas.
  • the neck faces away from the needle with the vial held in the tube so that the broken neck cannot damage the needle.
  • sterilizing gas can be injected into the housing chamber after the needle or other tool is within.
  • the invention also relates to an apparatus for performing in vivo measurements which can be sterilized with particular effectiveness according to the method and apparatus discussed above. Measuring the quantities of certain substances within the body is a medical tool which is valuable in both diagnosis and following treatment. Unfortunately, techniques now employed for such measurements are difflcult, complex and expensive. One particularly difficult problem is in sterilizing the device between uses.
  • the apparatus includes a hollow capillary tube which contains an electrolyte solution and which is sealed at one end by a fiber seal.
  • a plurality of electrodes for each measuring a different in vivo concentration are disposed about the tube and extend to the open end.
  • the tube and electrodes can be placed in a conventional, hollow, disposable syringe needle which is then inserted into the in vivo solution, for example the bloodstream. An electrical connection is thus made between the electrodes and the electrolyte and measurements from the electrodes and the electrolyte can be quickly and simply made. After each use, the needle can be discarded and the tube and electrodes placed in a sterilizing apparatus of the type described above for a short time.
  • FIG. 1 shows a cut-away view of one embodiment of this invention for sterilizing medical tools
  • FIG. 2 shows a cut-away view of the apparatus of FIG. 1 along the lines 22;
  • FIG. 3 shows a cut-away view of the valve communicating the outer chamber to the needle-containing chamber in the embodiment of FIG. 1;
  • FIG. 4 shows a further embodiment of this invention for sterilizing medical tools
  • FIG. 5 shows a further embodiment of this invention for sterilizing medical tools
  • FIG. 6 shows a cut-away view of an apparatus for performing in vivo measurements
  • FIG. 7 shows a cut-away view of the apparatus of FIG. 6 along the lines 6-6;
  • FIG. 8 shows a further embodiment of this invention for sterilizing medical tools
  • FIG. 9 shows another embodiment similar to the embodiment of FIG. 8.
  • FIGS. 1 and 2 show a cut-away view of a conventional syringe 20 having a needle 22 inserted in one embodiment of the novel sterilizing apparatus 24 of this invention.
  • Needle 22 fits within a first chamber 26 which is bounded by a first wall 28 which is preferably rigid to protect needle 24.
  • Chamber 26 is open at one end for receiving needle 22 and this end is then sealed by syringe 20. Threads on the syringe and gasket 34 can be provided if desired for better sealing.
  • a flexible outer chamber 30 is disposed about chamber 26 and is bounded by wall 28, outer wall 32, and sealing ring gasket 34.
  • a conventional valve 36 communicates chamber 26 to chamber 30 as shown in detail in FIG. 3.
  • chamber 30 is filled with a suitable sterilizing gas, preferably ethylene oxide, under a pressure which is above atmospheric.
  • a suitable sterilizing gas preferably ethylene oxide
  • the needle is first placed in chamber 26 as shown in FIG. 1.
  • valve 36 is manually opened so that the sterilizing gas in chamber 30 flows into chamber 26 until the pressure in the two chambers is roughly equal.
  • conventional valve 36 includes a first housing member 40 which extends between the two chambers and is fixedly attached between walls 28 and 32 by rings 42 and 44. Ring 42 also seals the aperture in wall 28 through which member 40 extends.
  • a valve member 46 is disposed within member 40 and normally seals aperture 48 as shown, with spring 50 continually urging member 48 upward, closing aperture 48.
  • manual pressure is exerted on the exterior of flexible wall 32 to cause member 46 to move down and open aperture 48 so that the sterilizing gas in chamber 30 flows through aperture 52, through the interior of valve 36, out aperture 48 and into chamber 26.
  • chamber 26 After chamber 26 has received a sufficient quantity of the sterilizing gas, sterilization takes place rapidly and the syringe can then be withdrawn and used.
  • Material 53 of the type which changes color when sterilization is complete can be disposed within chamber 26 and at least portions of walls 28 and 32 made transparent so that a positive indication that sterilization is complete is given. A different syringe or other can then be inserted and sterilized. Additional gas can be added to chamber 30 as necessary via conventional valve 54.
  • FIG. 4 shows a further embodiment of this invention which is intended to be used once and discarded.
  • Apparatus 70 includes a sheath or housing 72 which is attached to a ring 74 which has an aperture 76 extending through it for receiving a syringe needle as shown in FIG. I.
  • the syringe itself seals the needle in chamber 78.
  • a glass or other vial 80 is attached to sheath 72 within chamber 78 and contains an appropriate quantity of ethylene oxide or other sterilizing gas.
  • At least the portion of sheath or housing 72 adjacent vial 80 is flexible so that after the needle is in chamber 78, vial 80 can be broken, for example, by pinching flexible sheath 72, to liberate the gas which quickly sterilizes the needle.
  • the portion of housing 72 about the needle is rigid to protect.
  • a window 75 is provided for viewing material of the type which changes color when sterilization is complete. After a single use, apparatus 70 can be discarded.
  • FIG. 8 illustrates another embodiment similar to that shown in FIG. 4 whereby a glass or other vial 130 is disposed within a tube 132 having a rigid portion 134 and a flexible portion 136.
  • Tube 132 can be constructed of plastic materials or any other suitable materials.
  • Vial 130 has an extending narrow neck 140 which can be easily broken by pinching flexible portion 136 of tube 132 to liberate a sterilizing gas such as ethylene oxide.
  • a flexible stopper 142 is disposed at the open end of tube 132 for sealing tightly the tube when a medical tool such as syringe 144 is inserted as shown.
  • a suitable indicator 146 is disposed within tube 132 for visually indicating when sterilization has been completed.
  • a vial 150 containing ethylene oxide or another sterilizing gas is disposed within a chamber bounded by rigid tube portion 152 and flexible tube portion 154.
  • Vial 150 is held away from a needle or other structure which is inserted into the chamber via flexible stopper 156.
  • Vial 150 like vial 130 in FIG. 8, has a neck portion 158 which can be broken to liberate the gas in vial 150 by pinching flexible tube portion 154. The liberated gas passes along the ribs which hold vial 150 in place to sterilize the needle or other implement. The broken neck, however, cannot reach the region occupied by the needle and accordingly cannot damage it.
  • An indicator 160 is disposed within the sterilizing chamber as described above.
  • FIG. 5 shows a further embodiment whereby a medical tool to be sterilized is placed within housing 82 so that the object seals the open end thereof.
  • a needle 84 which is connected to a source 83 of ethylene oxide, or other sterilizing gas, which is at a pressure above atmospheric, is introduced into the interior of housing 82 via the opening through valve 86.
  • Valve 86 is of the type which is comprised of flexible material, such as rubber. An opening extends through the valve but is kept normally sealed by the flexible material which is in slight compression. However, a needle can be pushed through the opening to introduce gas into housing 82.
  • a pressure meter 88 is preferably provided on source 83 for indicating when the pressure is insufficient to introduce enough sterilizing gas into housing 82.
  • a window is preferably provided in housing 82, which may be intended for single or multiple use for observing material within housing 82 which changes color when sterilization is complete.
  • apparatus 100 includes a capillary tube 102, for example glass, which can be mounted within a conventional syringe 104, a portion of which is shown in FIG. 6.
  • a capillary tube 102 for example glass
  • an epoxy ring 106 holds tube 102 in place within syringe 104.
  • Tube 102 is sealed at its lower open end by a fiber seal 108.
  • seals are wellknown and permit electrical connection between an electrolyte solution such as .l NHCL and an in vivo solution exterior to the open end of tube, while at the same time preventing any significant quantities of the electrolyte from seeping into and contaminating the in vivo solution or vice-versa.
  • a conventional electrode 110 for example Calomel, is also mounted within tube 102 and in electrical connection with the electrolyte as shown.
  • a plurality of electrodes are circumferentially disposed about tube 102 and extend along its length as shown and suitable wires connect to these electrodes to connect them to devices exterior to apparatus 100.
  • five electrodes 112, 114, 116, 118 and are employed but it will, of course, be understood that any number of electrodes can be employed as desired.
  • Each electrode is used to perform a different test so that information on a number of in vivo concentrations can be derived simultaneously. Normally, different electrodes will be of different materials and the electrodes performed for measuring concentrations of different substances are well-known.
  • Each of the electrodes about tube 102 are preferably coated with a suitable electrical insulation, except at the portions adjacent the open end of tube 102.
  • a hollow needle 122 which is preferably disposable, is placed conventionally on syringe 104 with the hollow tube 102 and electrodes exterior to it extending through the needle and the open end of tube 102 adjacent the opening in needle 122.
  • Needle 122 can then be inserted into an in vivo solution, for example, the bloodstream of a human or animal or perhaps even the solution within a single cell, so that the in vivo solution electrically couples the electrolyte in tube 102 to the electrodes disposed about 102.
  • Signals can then be derived from the electrodes and employed conventionally to determine the concentrations of various substances in the vivo solution.
  • needle 122 can be discarded and tube 102 and the electrodes exterior to it sterilized by the use of one of the sterilizing apparatus described above.
  • Such apparatus provide a simple, quick and effective way to sterilize the instrument after each use.
  • a permanent, rather than disposable needle can be employed and also sterilized after each use.
  • Apparatus for performing in vivo measurement comprising:
  • hollow tube means for containing said electrolyte solution and having an open end
  • each said electrode will be in electrical connection with said electrolyte solution via said sealing means and said in vivo solution
  • Apparatus as in claim 1 further including electrical insulating material about each said electrode except for a portion of each electrode in the vicinity of said sealing means.
  • said hollow tube means includes a glass capillary tube.
  • Apparatus as in claim 1 further including a hollow needle having an opening at one end for receiving said tube means and said electrodes and an opening at the other end for communicating said in vivo solution with said tube means and said electrodes.
  • said reference electrode is a Calomel reference electrode disposed in said tube means in electrical connection with said electrolyte solution.
  • Apparatus for performing in vivo measurement comprising: an electrolyte solution hollow tube means for containing said electrolyte solution and having an open end,
  • each said electrode will be in electrical connection with said electrolyte solution via said sealing means and said in vivo solution
  • a housing having a chamber receiving said hollow tube means and electrodes exterior to it and means forming a seal with said tube means so that said chamber is sealed with said tube means and electrode in it,
  • said containing means is an outer chamber about said chamber in said housing and said communicating means includes actuable valve means communicating said outer chamber with said chamber in said housing so that gas from said outer chamber passes into said chamber in said housing to sterilize said tube means and electrode exterior to it.
  • said containing means includes a manually breakable container disposed in said chamber.
  • said communicating means includes valve means comprised of flexible material and having an aperture extending through it which is normally sealed but through which a needle can be extended to communicate a source of sterilizing gas to said chamber so that said gas passes into said chamber to sterilize said tube means and electrode exterior to it.

Abstract

An apparatus and method for sterilizing medical tools, particularly needles of syringes and a novel apparatus for performing in vivo measurements. The in vivo measuring apparatus includes a hollow tube which is filled with an electrolyte solution and is sealed at an open end by a fiber seal. A plurality of electrodes are disposed about the tube, extend to a location adjacent the open end of the tube and are coated with electrical insulation except at that location. For an in vivo measurement, the tube and electrode can be placed within the hollow interior of a disposable syringe needle so that the open end of the tube is adjacent the opening in the needle and thus, after the needle is inserted, the in vivo solution electrically couples the electrodes to the electrolyte in the hollow tube. After each measurement, the tube and electrodes can be sterilized by placing them in a housing which has a chamber and some means for introducing sterilizing gas into the chamber. In one embodiment, the housing has an inner chamber for receiving a needle or other medical tool so that it is sealed within and an outer chamber containing a quantity of sterilizing gas under a pressure above atmospheric. A valve communicates the two chambers and is actuable to permit gas to pass from the outer to the inner chamber to sterilize the tool. In a further embodiment, a glass vial is disposed within the chamber and can be broken by pinching the housing to liberate the sterilizing gas. In a third embodiment, the sterilizing gas can be injected into the sealed chamber from an exterior source. In yet another embodiment, a glass vial having a narrow neck is disposed within a partially flexible tube preferably with the neck away from the inserted needle. The neck can be manually broken by pinching the tube to release a sterilizing gas with the broken tip held away from the needle.

Description

United States Patent [191 Elliott Got. 29, 1974 NEEDLE AND STERILIZING APPARATUS THEREFOR Related U.S. Application Data [63] Continuation-in-part of Ser. No. 148,869, June 1,
1971, abandoned.
[75] Inventor:
[52] U.S. Cl. l28/2.l E, 21/82 H, 128/2 E,
204/195 B [51] Int. Cl A6lb 5/00 [58] Field of Search l28/2.l E, 2.1 R, 2 R,
128/2 S; 204/195 B, 195 R, 195 P; 21/56, 82 H, 82 R, 8 8, 90, 91, DIG. 4; 28/165, 16.6, 46 ST, 63.2 A, 63.2 R, 63.4, 63.5
[56] References Cited UNITED STATES PATENTS 1,092,716 4/1914 Hurd 206/166 2,116,283 5/1938 Romolgo.... 206/166 2,886,771 5/1959 Vincent 128/2 E 3,049,118 8/1962 Arthur et al. 128/2 E 3,294,652 12/1966 Banks et al. 204/195 R 3,476,506 11/1969 Andersen et a1 21/91 3,476,507 11/1969 Leeds 21/91 3,677,925 7/1972 Tamate et al. 204/195 R FOREIGN PATENTS OR APPLICATIONS 188,845 2/1957 Austria 128/2 E Primary ExaminerWilliam E. Kamm Attorney, Agent, or FirmCushman, Darby & Cushman [57] ABSTRACT An apparatus and method for sterilizing medical tools, particularly needles of syringes and a novel apparatus for performing in vivo measurements. The in vivo measuring apparatus includes a hollow tube which is filled with an electrolyte solution and is sealed at an open end by a fiber sea]. A plurality of electrodes are disposed about the tube, extend to a location adjacent the open end of the tube and are coated with electrical insulation except at that location. For an in vivo measurement, the tube and electrode can be placed within the hollow interior of a disposable syringe needle so that the open end of the tube is adjacent the opening in the needle and thus, after the needle is inserted, the in vivo solution electrically couples the electrodes to the electrolyte in the hollow tube. After each measurement, the tube and electrodes can be sterilized by placing them in a housing which has a chamber and some means for introducing sterilizing gas into the chamber. In one embodiment, the housing has an inner chamber for receiving a needle or other medical tool so that it is sealed within and an outer chamber containing a quantity of sterilizing gas under a pressure above atmospheric. A valve communicates the two chambers and is actuable to permit gas to pass from the outer to the inner chamber to sterilize the tool. In a further embodiment, a glass vial is disposed within the chamber and can be broken by pinching the housing to liberate the sterilizing gas. In a third embodiment, the sterilizing gas can be injected into the sealed chamber from an exterior source. In yet another embodiment, a glass vial having a narrow neck is disposed within a partially flexible tube preferably with the neck away from the inserted needle. The neck can be manually broken by pinching the tube to release a sterilizing gas with the broken tip held away from the needle.
11 Claims, 9 Drawing Figures /l a r I I Ila/If! NEEDLE AND STERILIZING APPARATUS THEREFOR This application is a continuation-in-part of Ser. No. 148,869, filed June 1, I971, now abandoned.
The invention relates to a method and apparatus for sterilizing medical tools, such as syringe needles, and to an apparatus and method for performing in vivo measurements.
Needles which are used with syringes for administering medicines to humans and animals, as well as for performing tests and experiments, must normally be sterilized before each use. Single use disposable syringes with attached needles which are sterilized after assembly and sealed in a flexible bag are suitable for many applications. However, in many instances the syringe required is too expensive to be practically used only once. Other similar medical tools require sterilization before each use.
Ethylene oxide is one of the most effective of a number of sterilizing gases which can be employed to sterilize objects by surrounding them with the gas in a suitable chamber. The U.S. Pat. No. to Leeds, 3,473,886, discloses such an apparatus with a chamber for receiving contact lenses which is adapted to be filled with ethylene oxide. However, sterilization in such devices is slow and inefficient and the devices themselves are costly to construct and maintain.
The present invention relates in part to a method and apparatus for simply, quickly and easily sterilizing syringe needles and other similar medical tools. The apparatus includes a sheath or housing which can be fitted onto a conventional syringe with the needles extending into an internal chamber which is sealed at one end by the syringe. In one embodiment, the sheath or housing walls further bound an outer chamber which is about the needle-containing chamber. This outer chamber is filled with ethylene oxide or another suitable gas under pressure and communicates with the needle-containing chamber via a suitable manually actuable valve. After the needle is sealed in its chamber, the valve between the two chambers is opened so that the ethylene oxide under pressure flows into the needle-containing chamber to surround and sterilize the needle. After a short interval, sterilization is complete and the needle can be withdrawn and the process repeated with a different syringe. More gas can be added to the outer chamber through a suitable valve as needed from time to time.
In a further embodiment, at least part of the cap or housing is flexible and has a single internal chamber into which the needle extends and which is also sealed by the syringe. A small glass vial or the like is attached to the sheath in the interior of the chamber and contains a suitable amount of ethylene oxide or other suitable gas under pressure. After the needle is disposed in the internal chamber with the syringe sealing that chamber, the vial is broken, for example, by pinching the portion of the flexible housing adjacent the vial, to liberate the gas which quickly sterilizes the needle. Normally, the housing would then be discarded after a single use. According to another embodiment, the glass vial has a neck portion with the part of the tube surrounding it made flexible to permit the neck to be broken to liberate the sterilizing gas. Preferably, the neck faces away from the needle with the vial held in the tube so that the broken neck cannot damage the needle.
In a third embodiment, sterilizing gas can be injected into the housing chamber after the needle or other tool is within.
The invention also relates to an apparatus for performing in vivo measurements which can be sterilized with particular effectiveness according to the method and apparatus discussed above. Measuring the quantities of certain substances within the body is a medical tool which is valuable in both diagnosis and following treatment. Unfortunately, techniques now employed for such measurements are difflcult, complex and expensive. One particularly difficult problem is in sterilizing the device between uses.
In the embodiment below, the apparatus includes a hollow capillary tube which contains an electrolyte solution and which is sealed at one end by a fiber seal. A plurality of electrodes for each measuring a different in vivo concentration are disposed about the tube and extend to the open end. The tube and electrodes can be placed in a conventional, hollow, disposable syringe needle which is then inserted into the in vivo solution, for example the bloodstream. An electrical connection is thus made between the electrodes and the electrolyte and measurements from the electrodes and the electrolyte can be quickly and simply made. After each use, the needle can be discarded and the tube and electrodes placed in a sterilizing apparatus of the type described above for a short time.
Many other objects and purposes of the invention will be clear from the following detailed description of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a cut-away view of one embodiment of this invention for sterilizing medical tools;
FIG. 2 shows a cut-away view of the apparatus of FIG. 1 along the lines 22;
FIG. 3 shows a cut-away view of the valve communicating the outer chamber to the needle-containing chamber in the embodiment of FIG. 1;
FIG. 4 shows a further embodiment of this invention for sterilizing medical tools;
FIG. 5 shows a further embodiment of this invention for sterilizing medical tools;
FIG. 6 shows a cut-away view of an apparatus for performing in vivo measurements; and
FIG. 7 shows a cut-away view of the apparatus of FIG. 6 along the lines 6-6;
FIG. 8 shows a further embodiment of this invention for sterilizing medical tools;
FIG. 9 shows another embodiment similar to the embodiment of FIG. 8.
DETAILED DESCRIPTION OF THE DRAWINGS Reference is now made to FIGS. 1 and 2 which show a cut-away view of a conventional syringe 20 having a needle 22 inserted in one embodiment of the novel sterilizing apparatus 24 of this invention. Needle 22 fits within a first chamber 26 which is bounded by a first wall 28 which is preferably rigid to protect needle 24. Chamber 26 is open at one end for receiving needle 22 and this end is then sealed by syringe 20. Threads on the syringe and gasket 34 can be provided if desired for better sealing. A flexible outer chamber 30 is disposed about chamber 26 and is bounded by wall 28, outer wall 32, and sealing ring gasket 34. A conventional valve 36 communicates chamber 26 to chamber 30 as shown in detail in FIG. 3.
As discussed above, chamber 30 is filled with a suitable sterilizing gas, preferably ethylene oxide, under a pressure which is above atmospheric. To sterilize needle 22, or any other medical tool, the needle is first placed in chamber 26 as shown in FIG. 1. Next, valve 36 is manually opened so that the sterilizing gas in chamber 30 flows into chamber 26 until the pressure in the two chambers is roughly equal.
Referring to FIG. 3, conventional valve 36 includes a first housing member 40 which extends between the two chambers and is fixedly attached between walls 28 and 32 by rings 42 and 44. Ring 42 also seals the aperture in wall 28 through which member 40 extends. A valve member 46 is disposed within member 40 and normally seals aperture 48 as shown, with spring 50 continually urging member 48 upward, closing aperture 48. To open valve 36, manual pressure is exerted on the exterior of flexible wall 32 to cause member 46 to move down and open aperture 48 so that the sterilizing gas in chamber 30 flows through aperture 52, through the interior of valve 36, out aperture 48 and into chamber 26.
After chamber 26 has received a sufficient quantity of the sterilizing gas, sterilization takes place rapidly and the syringe can then be withdrawn and used. Material 53 of the type which changes color when sterilization is complete can be disposed within chamber 26 and at least portions of walls 28 and 32 made transparent so that a positive indication that sterilization is complete is given. A different syringe or other can then be inserted and sterilized. Additional gas can be added to chamber 30 as necessary via conventional valve 54.
FIG. 4 shows a further embodiment of this invention which is intended to be used once and discarded. Apparatus 70 includes a sheath or housing 72 which is attached to a ring 74 which has an aperture 76 extending through it for receiving a syringe needle as shown in FIG. I. The syringe itself seals the needle in chamber 78. A glass or other vial 80 is attached to sheath 72 within chamber 78 and contains an appropriate quantity of ethylene oxide or other sterilizing gas. At least the portion of sheath or housing 72 adjacent vial 80 is flexible so that after the needle is in chamber 78, vial 80 can be broken, for example, by pinching flexible sheath 72, to liberate the gas which quickly sterilizes the needle. Preferably, the portion of housing 72 about the needle is rigid to protect. A window 75 is provided for viewing material of the type which changes color when sterilization is complete. After a single use, apparatus 70 can be discarded.
FIG. 8 illustrates another embodiment similar to that shown in FIG. 4 whereby a glass or other vial 130 is disposed within a tube 132 having a rigid portion 134 and a flexible portion 136. Tube 132 can be constructed of plastic materials or any other suitable materials. Vial 130 has an extending narrow neck 140 which can be easily broken by pinching flexible portion 136 of tube 132 to liberate a sterilizing gas such as ethylene oxide. A flexible stopper 142 is disposed at the open end of tube 132 for sealing tightly the tube when a medical tool such as syringe 144 is inserted as shown. A suitable indicator 146 is disposed within tube 132 for visually indicating when sterilization has been completed.
Similarly in the embodiment of FIG. 9 a vial 150 containing ethylene oxide or another sterilizing gas is disposed within a chamber bounded by rigid tube portion 152 and flexible tube portion 154. Vial 150 is held away from a needle or other structure which is inserted into the chamber via flexible stopper 156. Vial 150, like vial 130 in FIG. 8, has a neck portion 158 which can be broken to liberate the gas in vial 150 by pinching flexible tube portion 154. The liberated gas passes along the ribs which hold vial 150 in place to sterilize the needle or other implement. The broken neck, however, cannot reach the region occupied by the needle and accordingly cannot damage it. An indicator 160 is disposed within the sterilizing chamber as described above.
Reference is now made to FIG. 5 which shows a further embodiment whereby a medical tool to be sterilized is placed within housing 82 so that the object seals the open end thereof. Next a needle 84, which is connected to a source 83 of ethylene oxide, or other sterilizing gas, which is at a pressure above atmospheric, is introduced into the interior of housing 82 via the opening through valve 86. Valve 86 is of the type which is comprised of flexible material, such as rubber. An opening extends through the valve but is kept normally sealed by the flexible material which is in slight compression. However, a needle can be pushed through the opening to introduce gas into housing 82. A pressure meter 88 is preferably provided on source 83 for indicating when the pressure is insufficient to introduce enough sterilizing gas into housing 82. A window is preferably provided in housing 82, which may be intended for single or multiple use for observing material within housing 82 which changes color when sterilization is complete.
Reference is now made to FIGS. 6 and 7 which show an apparatus for performing in vivo measurements. As mentioned above, apparatus 100 includes a capillary tube 102, for example glass, which can be mounted within a conventional syringe 104, a portion of which is shown in FIG. 6. In this embodiment, an epoxy ring 106 holds tube 102 in place within syringe 104. Tube 102 is sealed at its lower open end by a fiber seal 108. Such seals are wellknown and permit electrical connection between an electrolyte solution such as .l NHCL and an in vivo solution exterior to the open end of tube, while at the same time preventing any significant quantities of the electrolyte from seeping into and contaminating the in vivo solution or vice-versa. A conventional electrode 110, for example Calomel, is also mounted within tube 102 and in electrical connection with the electrolyte as shown.
A plurality of electrodes are circumferentially disposed about tube 102 and extend along its length as shown and suitable wires connect to these electrodes to connect them to devices exterior to apparatus 100. In this embodiment five electrodes 112, 114, 116, 118 and are employed but it will, of course, be understood that any number of electrodes can be employed as desired. Each electrode is used to perform a different test so that information on a number of in vivo concentrations can be derived simultaneously. Normally, different electrodes will be of different materials and the electrodes performed for measuring concentrations of different substances are well-known. Each of the electrodes about tube 102 are preferably coated with a suitable electrical insulation, except at the portions adjacent the open end of tube 102.
For making an in vivo measurement, a hollow needle 122, which is preferably disposable, is placed conventionally on syringe 104 with the hollow tube 102 and electrodes exterior to it extending through the needle and the open end of tube 102 adjacent the opening in needle 122. Needle 122 can then be inserted into an in vivo solution, for example, the bloodstream of a human or animal or perhaps even the solution within a single cell, so that the in vivo solution electrically couples the electrolyte in tube 102 to the electrodes disposed about 102. Signals can then be derived from the electrodes and employed conventionally to determine the concentrations of various substances in the vivo solution.
After each use, needle 122 can be discarded and tube 102 and the electrodes exterior to it sterilized by the use of one of the sterilizing apparatus described above. Such apparatus provide a simple, quick and effective way to sterilize the instrument after each use. Alternatively, a permanent, rather than disposable needle can be employed and also sterilized after each use.
Many changes and modifications in the above embodiments of the invention can, of course, be made without departing from the spirit of the invention. Accordingly, the scope of the invention is intended to be limited only by the scope of the appended claims.
What is claimed is:
1. Apparatus for performing in vivo measurement comprising:
an electrolyte solution,
hollow tube means for containing said electrolyte solution and having an open end,
a reference electrode extending within said hollow tube means,
means for sealing said open end so that said reference electrode in said tube means when in use will be in electrical connection, via said electrolyte solution, with an in vivo solution which is exterior to said tube means about said open end,
a plurality of different electrodes disposed circumferentially about and connected to said tube means exterior to said tube means and each extending to a location adjacent said open end of said tube means so that each said electrode will be in electrical connection with said electrolyte solution via said sealing means and said in vivo solution, and
a plurality of output wires each connected to one of said electrodes.
2. Apparatus as in claim 1 further including electrical insulating material about each said electrode except for a portion of each electrode in the vicinity of said sealing means.
3. Apparatus as in claim 1 wherein said sealing means is a fiber seal.
4. Apparatus as in claim 1 wherein said hollow tube means includes a glass capillary tube.
5. Apparatus as in claim 1 further including a hollow needle having an opening at one end for receiving said tube means and said electrodes and an opening at the other end for communicating said in vivo solution with said tube means and said electrodes.
6. Apparatus as in claim 1 wherein said reference electrode is a Calomel reference electrode disposed in said tube means in electrical connection with said electrolyte solution.
7. Apparatus for performing in vivo measurement comprising: an electrolyte solution hollow tube means for containing said electrolyte solution and having an open end,
a reference electrode extending within said hollow tube means,
means for sealing said open end so that said reference electrode in said tube means when in use will be in electrical connection, via said electrolyte solution, with an in vivo solution which is exterior to said tube means about said open end,
a plurality of electrodes disposed circumferentially about and connected to said tube means exterior to said tube means and extending to a location adjacent said open end of said tube means so that each said electrode will be in electrical connection with said electrolyte solution via said sealing means and said in vivo solution,
a plurality of output wires each connected to one of said electrodes,
a housing having a chamber receiving said hollow tube means and electrodes exterior to it and means forming a seal with said tube means so that said chamber is sealed with said tube means and electrode in it,
means containing a quantity of sterilizing gas at a pressure above atmospheric, and
means for communicating and containing means and said chamber so that said gas passes into said chamber to sterilize said tube means and electrode exterior to it.
8. Apparatus as in claim 7 wherein said containing means is an outer chamber about said chamber in said housing and said communicating means includes actuable valve means communicating said outer chamber with said chamber in said housing so that gas from said outer chamber passes into said chamber in said housing to sterilize said tube means and electrode exterior to it.
9. Apparatus as in claim 8 wherein said containing means is a glass vial.
10. Apparatus as in claim 7 wherein said containing means includes a manually breakable container disposed in said chamber.
11. Apparatus as in claim 7 wherein said communicating means includes valve means comprised of flexible material and having an aperture extending through it which is normally sealed but through which a needle can be extended to communicate a source of sterilizing gas to said chamber so that said gas passes into said chamber to sterilize said tube means and electrode exterior to it.

Claims (11)

1. Apparatus for performing in vivo measurement comprising: an electrolyte solution, hollow tube means for containing said electrolyte solution and having an open end, a reference electrode extending within said hollow tube means, means for sealing said open end so that said reference electrode in said tube means when in use will be in electrical connection, via said electrolyte solution, with an in vivo solution which is exterior to said tube means about said open end, a plurality of different electrodes disposed circumferentially about and connected to said tube means exterior to said tube means and each extending to a location adjacent said open end of said tube means so that each said electrode will be in electrical connection with said electrolyte solution via said sealing means and said in vivo solution, and a plurality of output wires each connected to one of said electrodes.
2. Apparatus as in claim 1 further including electrical insulating material about each said electrode except for a portion of each electrode in the vicinity of said sealing means.
3. Apparatus as in claim 1 wherein said sealing means is a fiber seal.
4. Apparatus as in claim 1 wherein said hollow tube means includes a glass capillary tube.
5. Apparatus as in claim 1 further including a hollow needle having an opening at one end for receiving said tube means and said electrodes and an opening at the other end for communicating said in vivo solution with said tube means and said electrodes.
6. Apparatus as in claim 1 wherein said reference electrode is a Calomel reference electrode disposed in said tube means in electrical connection with said electrolyte solution.
7. Apparatus for performing in vivo measurement comprising: an electrolyte solution hollow tube means for containing said electrolyte solution and having an open end, a reference electrode extending within said hollow tube means, means for sealing said open end so that said reference electrode in said tube means when in use will be in electrical connection, via said electrolyte solution, with an in vivo solution which is exterior to said tube means about said open end, a plurality of electrodes disposed circumferentially about and connected to said tube means exterior to said tube means and extending to a location adjacent said open end of said tube means so that each said electrode will be in electrical connection with said electrolyte solution via said sealing means and said in vivo solution, a plurality of output wires each connected to one of said electrodes, a housing having a chamber receiving said hollow tube means and electrodes exterior to it and means forming a seal with said tube means so that said chamber is sealed with said tube means and electrode in it, means containing a quantity of sterilizing gas at a pressure above atmospheric, and means for communicating and containing means and said chamber so that said gas passes into said chamber to sterilize said tube means and electrode exterior to it.
8. Apparatus as in claim 7 wherein said containing means is an outer chamber about said chamber in said housing and said communicating means includes actuable valve means communicating said outer chamber with said chamber in said housing so that gas from said outer chamber passes into said chamber in said housing to sterilize said tube means and electrode exterior to it.
9. Apparatus as in claim 8 wherein said containing means is a glass vial.
10. Apparatus as in claim 7 wherein said containing means includes a manually breakable container disposed in said chamber.
11. Apparatus as in claim 7 wherein said communicating means includes valve means comprised of flexible material and having an aperture extending through it which is normally sealed but through which a needle can be extended to communicate a source of sterilizing gas to said chamber so that said gas passes into said chamber to sterilize said tube means and electrode exterior to it.
US00228620A 1971-06-01 1972-02-23 Needle and sterilizing apparatus therefor Expired - Lifetime US3844275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00228620A US3844275A (en) 1971-06-01 1972-02-23 Needle and sterilizing apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14886971A 1971-06-01 1971-06-01
US00228620A US3844275A (en) 1971-06-01 1972-02-23 Needle and sterilizing apparatus therefor

Publications (1)

Publication Number Publication Date
US3844275A true US3844275A (en) 1974-10-29

Family

ID=26846240

Family Applications (1)

Application Number Title Priority Date Filing Date
US00228620A Expired - Lifetime US3844275A (en) 1971-06-01 1972-02-23 Needle and sterilizing apparatus therefor

Country Status (1)

Country Link
US (1) US3844275A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016863A (en) * 1975-08-27 1977-04-12 Brantigan John W Tissue tonometer device for use in measuring gas in body tissue
US4175020A (en) * 1978-10-10 1979-11-20 University Of Utah Method of sterilizing reference electrodes and the like
US5046496A (en) * 1989-04-26 1991-09-10 Ppg Industries, Inc. Sensor assembly for measuring analytes in fluids
US5230427A (en) * 1991-06-12 1993-07-27 Ppg Industries, Inc. Sterilizable hermetically-sealed substantially glass container
US5680858A (en) * 1992-12-10 1997-10-28 Novo Nordisk A/S Method and apparatus for in vivo determination of the concentration in a body fluid of metabolically significant substances
US5765490A (en) * 1995-02-16 1998-06-16 Bio Merieux Device for withdrawing and/or ejecting a contaminating medium, with decontamination of the member for manipulating said medium
US6070582A (en) * 1996-09-10 2000-06-06 Sherwood Services, Ag Suction control valve
US20080237074A1 (en) * 2007-03-30 2008-10-02 Soltz Michael A Surgical instrument debris collection system
US20120122226A1 (en) * 2010-11-16 2012-05-17 Symmetry Medical Manufacturing, Inc. Apparatus and Method for Indicating Biological Content within a Container

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1092716A (en) * 1913-07-09 1914-04-07 Marcus C Hurd Sterilizing-case.
US2116283A (en) * 1937-06-02 1938-05-03 Romolgo Rhombodo Thermometer case
AT188845B (en) * 1955-01-28 1957-02-25 Hauke Rudolf Device for the electrochemical measurement of blood
US2886771A (en) * 1955-06-14 1959-05-12 George A Rubissow Fluid-testing device
US3049118A (en) * 1961-02-03 1962-08-14 Beckman Instruments Inc Ion electrode assembly
US3294652A (en) * 1963-02-25 1966-12-27 Continental Oil Co Measurement of sulfuric acid and oleum concentration
US3476507A (en) * 1967-07-10 1969-11-04 Harry R Leeds Medical sterilization apparatus
US3476506A (en) * 1965-04-14 1969-11-04 Andersen Prod H W Sterilization apparatus
US3677925A (en) * 1970-07-22 1972-07-18 Yokogawa Electric Works Ltd Apparatus for measuring ph

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1092716A (en) * 1913-07-09 1914-04-07 Marcus C Hurd Sterilizing-case.
US2116283A (en) * 1937-06-02 1938-05-03 Romolgo Rhombodo Thermometer case
AT188845B (en) * 1955-01-28 1957-02-25 Hauke Rudolf Device for the electrochemical measurement of blood
US2886771A (en) * 1955-06-14 1959-05-12 George A Rubissow Fluid-testing device
US3049118A (en) * 1961-02-03 1962-08-14 Beckman Instruments Inc Ion electrode assembly
US3294652A (en) * 1963-02-25 1966-12-27 Continental Oil Co Measurement of sulfuric acid and oleum concentration
US3476506A (en) * 1965-04-14 1969-11-04 Andersen Prod H W Sterilization apparatus
US3476507A (en) * 1967-07-10 1969-11-04 Harry R Leeds Medical sterilization apparatus
US3677925A (en) * 1970-07-22 1972-07-18 Yokogawa Electric Works Ltd Apparatus for measuring ph

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wise et al., IEEE Transactions on Bio Medical Engineering , Vol. BME 17, No. 3, July, 1970, pp. 238 247. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016863A (en) * 1975-08-27 1977-04-12 Brantigan John W Tissue tonometer device for use in measuring gas in body tissue
US4175020A (en) * 1978-10-10 1979-11-20 University Of Utah Method of sterilizing reference electrodes and the like
US5046496A (en) * 1989-04-26 1991-09-10 Ppg Industries, Inc. Sensor assembly for measuring analytes in fluids
US5230427A (en) * 1991-06-12 1993-07-27 Ppg Industries, Inc. Sterilizable hermetically-sealed substantially glass container
US5680858A (en) * 1992-12-10 1997-10-28 Novo Nordisk A/S Method and apparatus for in vivo determination of the concentration in a body fluid of metabolically significant substances
US5765490A (en) * 1995-02-16 1998-06-16 Bio Merieux Device for withdrawing and/or ejecting a contaminating medium, with decontamination of the member for manipulating said medium
US6070582A (en) * 1996-09-10 2000-06-06 Sherwood Services, Ag Suction control valve
US20080237074A1 (en) * 2007-03-30 2008-10-02 Soltz Michael A Surgical instrument debris collection system
US8734730B2 (en) 2007-03-30 2014-05-27 Covidien Lp Surgical instrument debris collection system
US20120122226A1 (en) * 2010-11-16 2012-05-17 Symmetry Medical Manufacturing, Inc. Apparatus and Method for Indicating Biological Content within a Container
US8470601B2 (en) * 2010-11-16 2013-06-25 Symmetry Medical Manufacturing, Inc. Apparatus and method for indicating biological content within a container

Similar Documents

Publication Publication Date Title
US5368029A (en) Integral catheter and blood tester
US4813432A (en) Swab transport system
US3844275A (en) Needle and sterilizing apparatus therefor
US4413628A (en) pH Monitor electrode electrolyte cartridge
EP1886622A1 (en) Endoscope sterilization appraisal apparatus
US3973555A (en) Electrode cell assembly for the continuous determination of ion concentrations in living tissues
CN103339248B (en) The pH sensor being combined with single-use bioreactor/blender
EP0186642B1 (en) Fluid and particle absorbing body for apertures in injection instruments
US20090152098A1 (en) Syringe device, system and method for delivering ozone gas
US3648693A (en) Bag apparatus for transfusion of blood or fluid involving heat shrinkable tube means
US4559052A (en) Multiple use container for the packaging of fluids
US4311793A (en) Sterilization indicator
CN106267277B (en) Biological indicator detection device for monitoring sterilization effect of lumen instruments
US4298011A (en) Blood sample collector
US4800156A (en) Anaerobic germiculture receptacle
US3433215A (en) Apparatus for placing in and retrieving a tubular probe from a body conduit
US5603817A (en) pH measuring system
US3530849A (en) Electrode for making in vivo ionic measurements of venous blood
DE3877287D1 (en) BLOOD COLLECTION DEVICE.
CN101444632A (en) Peroxide plasma body sterilizing equipment effect verification device and method and indicator used
US3993048A (en) Biomedical electrode
US2619228A (en) Hypodermic needle package
GB2030706A (en) Electrochemical sensor and method of calibration thereof
JPH10108854A (en) Inspection sample collecting kit
CN207832682U (en) Dental instrument pressuresteam sterilization process challenges device