US3847002A - Method of producing steel wire and strand for pre-stressed concrete construction - Google Patents

Method of producing steel wire and strand for pre-stressed concrete construction Download PDF

Info

Publication number
US3847002A
US3847002A US00319712A US31971272A US3847002A US 3847002 A US3847002 A US 3847002A US 00319712 A US00319712 A US 00319712A US 31971272 A US31971272 A US 31971272A US 3847002 A US3847002 A US 3847002A
Authority
US
United States
Prior art keywords
wire
percent
steel wire
tension
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00319712A
Inventor
A Suzuki
M Hagiwara
N Teraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZUKE METAL IND CO Ltd
SUZUKE METAL IND CO Ltd JA
Original Assignee
SUZUKE METAL IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZUKE METAL IND CO Ltd filed Critical SUZUKE METAL IND CO Ltd
Application granted granted Critical
Publication of US3847002A publication Critical patent/US3847002A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0693Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a strand configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F9/00Straining wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F9/00Straining wire
    • B21F9/005Straining wire to affect the material properties of the wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/105Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars of concrete reinforcing bars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3053Steel characterised by the carbon content having a medium carbon content, e.g. greater than 0,5 percent and lower than 0.8 percent respectively HT wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/2023Concrete enforcements

Definitions

  • Larson Attorney, Agent, or FirmWenderoth, Lind & Ponack ABSTRACT A method of producing steel wires and strands for prestressed concrete construction, with low relaxation value and excellent straightness, which comprises applying in the ordinary low-temperature annealing range of 300400C to cold drawn steel wire and strand formed therefrom containing 0.6 0.9 percent of carbon, a tension corresponding to 10-50 percent of the tensile strength of the cold drawn wire at room temperature and, at the same time, a bending stress so as to give 0.1-0.5 percent maximum surface strain.
  • FIG.1 0 SPECIMEN TREATED BY ORDINARY PROCESS O 0 SPECIMEN TREATED BY PRESENT 1 lNvENTIvE PROCESS E I 2 i Z 9. if 4 X I v E 6 I I I I TIME RE UIRED FOR EXPERIMENTS (HOUR) FIG.1
  • the present invention relates to a method of producing wire and wire strand for pre-stressed concrete construction.
  • pre-stressing wires have been increasingly in demand for large pre-stressed concrete constructions such as pre-stressed concrete pressure vessels, bridges and piles.
  • One of the objects of the present invention is to provide an advantageous method for producing steel wire and wire strand for pre-stressed concrete construction which is free from the above defects and less susceptiand other mechanical properties.
  • Another object of the present invention is to provide a method which can produce steel wire and wire strand for pre-stressed concrete construction economically and by a simplified process.
  • the objects of the present invention can be attained by applying simultaneously tension and bending stress to cold drawn steel wire or steel wire strand after working in an ordinary stress relieving temperature range.
  • the present invention is characterized in that steel wire or steel wire strand is subjected simultaneously to tension and bending stress while it is kept hot, so that the high tensile strength, high ductility and low relaxation, as well as precise straightness, required for steel wire for pre-stressed concrete construction, can be obtained.
  • hot tension and bending not only is the tension normally required for simple tension application for obtaining desired improvements is remarkably moderated, but also straighter wires are obtained. As compared with simple bending, remarkable improvements in material qualities are obtained.
  • Table 1 shows comparisons between various conventional processes and the present inventive process.
  • FIG. 1 and FIG. 2 show respectively a schematic side view of an example of the apparatus used for the present inventive process.
  • FlG. 3 shows a schematic side view of the apparatus when the present inventive process is applied to the production of steel wire strand used for pre-stressed concrete construction.
  • FIG. 4 is a schematic view for explaining the height of bending ble to stress relaxation but has excellent straightness are.
  • FIG. 5 shows the effects on the relaxation value of the degree of bending and tension.
  • FIG. 6 shows the effects on straightness of the degree of bending and tension.
  • FIG. 7 compares the relaxation curves of the steel wire strand for pre-stressed concrete construction produced by the present invention and the steel wire strand produced by an ordinary process, from the same material.
  • the main construction of the apparatus for applying the present inventive process is composed of a tension machine (2 in FIG. 1, 2' in FIG. 2) for applying tension to the steel wire and wire strand, a heating device (4 in FIG. 1, 4a and 4'12 in FIG. 2 and 12 in FIG. 3) for heating steel wire 1, a straightener (5 in FIG. 1, 5 in FIG. 2 and 13 in FIG. 3), a cooling bath (6 in FIG. 1, 6 in FIG. 2 and 14 in FIG. 3), and a pulling capstan (7 in FIG. 1, 7' in FIG. 2 and 15 in FIG. 3).
  • the tension machine for applying tension to steel wire I to be treated may be of such structure as a simple brake drum since its required pulling force is small.
  • the heating of the steel wire 1 may be done by direct resistance heating, as shown in FIG. 1, or by pre-
  • the cooling bath is important for improving the relaxation value and straightness of the processed steel wire as well as for the general feasibility of the process.
  • the pulling capstan must have a drum diameter more than 300 times that of the steel wire diameter in order to pull the tensioned steel wire and not to deteriorate its straightness.
  • the steel wire is heated mainly by an electric heating device.
  • the steel wire supplied from the carrier is subjected to tension by tension device 2, and the thus tensioned steel wire 1 is heated to a predetermined temperature by direct resistance heating in heating device 4, which is composed of first heating electrode 3 and the second electrode which works also functions as straightener 5.
  • the steel wire in the heated and tensioned condition is subjected to bending stress and straightened by straightener 5 (rollers for applying repeated bending or a rotary straightening machine, etc.).
  • the hot worked steel wire is cooled in cooling bath 6 and pulled around capstan 7.
  • second electrode 5 is used as a straightener for the reason that the temperature of the heated steel wire is highest when the wire passes the second electrode and hence it is most effective to strighten the wire at this point.
  • the steel wire is pre-heated by gas furnace 4a and is uniformly heated by electric heating device 4b having electrode rollers 3'0 and 372 so as to obtain uniform heating with relatively small temperature gradient.
  • Steel wire 1 is subjected to tension by tension device 2 and is uniformly heated by gas heating furnace 4a and electric heating device 4'b.
  • Heated steel wire 1 is straightened by a straightener 5' (rollers for applying repeated bending or a rotary straightening machine etc.), then water-cooled in cooling bath 6 and taken up by capstan 7.
  • FIG. 3 shows an arrangement of apparatus used when the present invention is applied to the production of steel wire strand for pre-stressed concrete construction.
  • Steel wire 9 is stranded into steel wire strand 10 by stranding machine 8 and the wire strand is wound once around winding drum 1].
  • steel wire strand 10 is heated by commonly used heating device 12 (induction heating furnace, tube type electric furnace. etc.), straightened by straightener 13 (rotary straightening machine, etc.), water-cooled in cooling bath l4 and taken up around capstan drum 15.
  • the tension of the steel wire strand at this time is given by the working resistance and the speed variation between the winding machine and the capstan 15.
  • the maximum strain in the case of the neutral line of a wire ofd diameter, the maximum strain can be expressed as below by the bend radius (R), the length of the chord of the bending are (l), and the height of the bending arc emax d/2/R emax 11/11 1 /4 d
  • the height of the bending are necessary to give the maximum strain e max to the wire diameter d can be expressed as below
  • the height of the bending arc is given so as to produce the surface strain necessary for a single wire on the surface of outer component wires, with regard to the flexibility of the wire strand. The value can be obtained by multiplying.
  • the bending condition will be expressed by the maximum strain for a single steel wire, while it will be expressed by the height of the bending arc and the length of the chord of the bending are for steel wire strand.
  • Example I A single cold drawn steel wire having the composition (JIS SWRS 778), shown in Table 2, of5 mm diameter is subjected to the process of the present invention at a working temperature of 340C, with a maximum strain of 0.2 0.5 percent and a specific load 10 45 percent, to determine the effects on the relaxation and a straightness.
  • FIG. 5 shows the variation in the relaxation value
  • FIG. 6 shows the variation in the straightness (expressed by the curvature of the wire).
  • the effects on the 1000 hr relaxation value and the straightness are shown in comparisonwith the results obtained by the hot simple tension process in Table 7. From the results it is apparent percent after 100 hours, with the hot simple bending that a height of bending arc of 3 to 9 mm is desirable.
  • Example 2 Steel wire strand of 9.3 mm diameter, having the Example 4 Table 8 Relaxation 88 50.2 Elonga- 92 (I000 hr) kg/mm kg/mm tion "/1 Ordinary Process 5.5 186 l67 6.0 Present Invention [.4 [86 177 6.0
  • a method of producing steel wire and strand for prestressed concrete construction, having low relaxation value and excellent straightness which comprises the steps of applying, in the ordinary low-temperature annealing range of 300 400C, to cold drawn steel wire and strand composed thereof, containing 0.6 0.9 percent of carbon, a tension corresponding to 10 7 50 percent of the tensile strength of the cold drawn wire at room temperature and, simultaneously applying a bending stress so as to give 0.1 0.5 percent maximum surface strain.

Abstract

A method of producing steel wires and strands for pre-stressed concrete construction, with low relaxation value and excellent straightness, which comprises applying in the ordinary lowtemperature annealing range of 300*-400*C to cold drawn steel wire and strand formed therefrom containing 0.6 - 0.9 percent of carbon, a tension corresponding to 10-50 percent of the tensile strength of the cold drawn wire at room temperature and, at the same time, a bending stress so as to give 0.1-0.5 percent maximum surface strain.

Description

Elite States iatet Suzuki et al.
[ Nov. 12, 1974 METHOD OF PRODUCING STEEL WIRE AND STRAND FOR PRE-STRESSED CONCRETE CONSTRUCTION Inventors: Akira Suzuki, Chibashi; Masaki Hagiwara; Nobuhiro Teraoka, both of Tokyo, all of Japan Assignce: Suzuke Metal Industry Co., Ltd.,
Kitaku, Japan Filed: Dec. 29, 1972 Appl. No.: 319,712
Foreign Application Priority Data June 13, 1972 Japan 47-58177 148/12 Int. Cl B2lf 9/00 Field of Search 148/12, 130; 266/3; 140/2; 72/128, 378, 183, 364
[56] References Cited UNlTED STATES PATENTS 3,130,088 4/1964 Cook v. 148/12 3,469,829 9/1969 Fujita et all... 3,580,746 5/1971 Behar 3,605,469 9/1971 Queralto 148/12 Primary E.\'aminerLowcll A. Larson Attorney, Agent, or FirmWenderoth, Lind & Ponack ABSTRACT A method of producing steel wires and strands for prestressed concrete construction, with low relaxation value and excellent straightness, which comprises applying in the ordinary low-temperature annealing range of 300400C to cold drawn steel wire and strand formed therefrom containing 0.6 0.9 percent of carbon, a tension corresponding to 10-50 percent of the tensile strength of the cold drawn wire at room temperature and, at the same time, a bending stress so as to give 0.1-0.5 percent maximum surface strain.
7 Claims, 7 Drawing Figures PAIENTEDHUY 2 IIIII 3.8471102 SHEEI 2 or 3 A- HOT SIMPLE TENSION PROCESS A B- PRESENT INvENTIvE PROCESS MAXIMUM STRA|N= 0.4% [6 C-PRESENT INvENTIvE PROCESS MAXIMUM STRAIN o. 3%
RELAXATION vALUE (I00 HR) I I"I ov IO I v SPECIFIC LOAD TENSION /ACTUAL ULTIMATE T NSILE STRENGTH x IOO)% FIGS PAIENIEDIIIIV I 2 I974 3847l002 sum 3 r 3 A-I-IOT SIMPLE TENSI0N PR0cESS LU B-PRESENTINVENTIVE PROCESS g MAXIMUM STRAIN =02 2 I0 0- PRESENT INvENTIvE PROCESS L6 I MAXIMUM STRAIN=O.3-O.5%
LIJ K D I (I D SPECIFIC LOAD FIG.6
0 SPECIMEN TREATED BY ORDINARY PROCESS O 0 SPECIMEN TREATED BY PRESENT 1 lNvENTIvE PROCESS E I 2 i Z 9. if 4 X I v E 6 I I I I TIME RE UIRED FOR EXPERIMENTS (HOUR) FIG.1
METHOD OF PRODUCING STEEL WIRE AND STRAND FOR PRE-STRESSED CONCRETE CONSTRUCTION The present invention relates to a method of producing wire and wire strand for pre-stressed concrete construction.
conventionally, it is common practice to straighten cold drawn wire (in the case of wire strand, straightening is done after stranding) and to subject the wire to stress relieving (low temperature annealing) for production of wire for pre-stressed concrete construction. By this stress relieving, the wire is improved in yield strength, elongation and stress relaxation, which are important properties of wire used for pre-stressed concrete construction.
Recently, low relaxation pre-stressing wires have been increasingly in demand for large pre-stressed concrete constructions such as pre-stressed concrete pressure vessels, bridges and piles.
As a method for producing such low-relaxation wire for pre-stressed concrete construction, it has been proposed to heat cold drawn plain carbon steel wire containing 0.35 0.9 percent carbon while applying tension to the wire so as to give it permanent elongation of less than 5 percent. (US. Pat. No. 3,196,052). Another method has been proposed in which wire is advanced along a rotary member of progressively increasing diameter so that strain is applied gradually to the wire in the direction of the wire advancement, the wire also being heated to a certain temperature so as to give it a predetermined permanent elongation (US. Pat. No. 3,068,353).
By the above methods, it is possible to obtain lowrelaxation wire for pre-stressed concrete construction, but it is necessary to apply a substantially large load to obtain satisfactory straightness of the wire. The result is that very dangerous operations accompanied by possible rupture of the wire are often necessary and very close control is required for the wire pulling operation. The permanent elongation in connection with specially increased temperatures is determined by the diameter of some rotary members. There is a defect, however, in that the wire is subjected to repeated bending while it passes around the rotary member, and that the wire attains a maximum temperature just before the rotary member which applys the permanent elongation, due to the direct resistance heating system, so that the wire strength and yield point being prevented. (Japanese Patent Publication Sho 45-29096). With the above proposed method, however, the straightness of the steel wire is not satisfactory and almost no improvement of 5 the relaxation value can be expected.
One of the objects of the present invention is to provide an advantageous method for producing steel wire and wire strand for pre-stressed concrete construction which is free from the above defects and less susceptiand other mechanical properties.
Another object of the present invention is to provide a method which can produce steel wire and wire strand for pre-stressed concrete construction economically and by a simplified process.
Through extensive experiments for overcoming the defects of the conventional methods and for attaining the above-mentioned objects of the present invention, -the present inventors have found that when cold drawn steel wire or steel wire strand after working is subjected simultaneously to tension and bending stress within the ordinary stress relieving temperature range, similar or lower relaxation values, compared with those obtained by conventional methods, excellent straightness, and similar or higher tensile strength and yield strength, compared with those obtained by conventional methods, can be attained very easily and stably with less ten sion.
In short, the objects of the present invention can be attained by applying simultaneously tension and bending stress to cold drawn steel wire or steel wire strand after working in an ordinary stress relieving temperature range.
As above described, the present invention is characterized in that steel wire or steel wire strand is subjected simultaneously to tension and bending stress while it is kept hot, so that the high tensile strength, high ductility and low relaxation, as well as precise straightness, required for steel wire for pre-stressed concrete construction, can be obtained. By hot tension and bending, not only is the tension normally required for simple tension application for obtaining desired improvements is remarkably moderated, but also straighter wires are obtained. As compared with simple bending, remarkable improvements in material qualities are obtained.
Table 1 shows comparisons between various conventional processes and the present inventive process.
' TABLE 1 Ordinary Process Cold drawing-[m Straightening Low temperature annealing.
Hot Simple Tension Process Cold drawing[m Hot simple tension.
Hot Simple Bending Process Cold drawing Hot simple bending.
Rresent Inventive Proee ss Cold dravgingW- V I iot tension and bending. W
is cooled only to a certain temperature and passes around the rotary member in this unsatisfactory cooled state, thus causing permanent deformation, corresponding to the curvature of the rotary members, and reduced straightness.
Meanwhile, for the method for straightening wire for pre-stressed concrete construction, it has been proposed that steel wire which has been drawn at ambient temperature be subjected to continuous repeated bending at a temperature between 150 and 450C to straighten the wire thereby reduction of tensile Before describing the present inventive process, examples of apparatus for applying the present inventive process will be explained by referring to the attached drawings.
FIG. 1 and FIG. 2 show respectively a schematic side view of an example of the apparatus used for the present inventive process. FlG. 3 shows a schematic side view of the apparatus when the present inventive process is applied to the production of steel wire strand used for pre-stressed concrete construction. FIG. 4 is a schematic view for explaining the height of bending ble to stress relaxation but has excellent straightness are. FIG. 5 shows the effects on the relaxation value of the degree of bending and tension. FIG. 6 shows the effects on straightness of the degree of bending and tension. FIG. 7 compares the relaxation curves of the steel wire strand for pre-stressed concrete construction produced by the present invention and the steel wire strand produced by an ordinary process, from the same material.
The main construction of the apparatus for applying the present inventive process is composed of a tension machine (2 in FIG. 1, 2' in FIG. 2) for applying tension to the steel wire and wire strand, a heating device (4 in FIG. 1, 4a and 4'12 in FIG. 2 and 12 in FIG. 3) for heating steel wire 1, a straightener (5 in FIG. 1, 5 in FIG. 2 and 13 in FIG. 3), a cooling bath (6 in FIG. 1, 6 in FIG. 2 and 14 in FIG. 3), and a pulling capstan (7 in FIG. 1, 7' in FIG. 2 and 15 in FIG. 3).
The tension machine for applying tension to steel wire I to be treated may be of such structure as a simple brake drum since its required pulling force is small.
The heating of the steel wire 1 may be done by direct resistance heating, as shown in FIG. 1, or by pre- The cooling bath is important for improving the relaxation value and straightness of the processed steel wire as well as for the general feasibility of the process.
The pulling capstan must have a drum diameter more than 300 times that of the steel wire diameter in order to pull the tensioned steel wire and not to deteriorate its straightness.
In the apparatus shown in FIG. 1, the steel wire is heated mainly by an electric heating device. The steel wire supplied from the carrier is subjected to tension by tension device 2, and the thus tensioned steel wire 1 is heated to a predetermined temperature by direct resistance heating in heating device 4, which is composed of first heating electrode 3 and the second electrode which works also functions as straightener 5. The steel wire in the heated and tensioned condition is subjected to bending stress and straightened by straightener 5 (rollers for applying repeated bending or a rotary straightening machine, etc.). The hot worked steel wire is cooled in cooling bath 6 and pulled around capstan 7. In this arrangement, second electrode 5 is used as a straightener for the reason that the temperature of the heated steel wire is highest when the wire passes the second electrode and hence it is most effective to strighten the wire at this point.
In the embodiment of the apparatus shown in FIG. 2, the steel wire is pre-heated by gas furnace 4a and is uniformly heated by electric heating device 4b having electrode rollers 3'0 and 372 so as to obtain uniform heating with relatively small temperature gradient. Steel wire 1 is subjected to tension by tension device 2 and is uniformly heated by gas heating furnace 4a and electric heating device 4'b. Heated steel wire 1 is straightened by a straightener 5' (rollers for applying repeated bending or a rotary straightening machine etc.), then water-cooled in cooling bath 6 and taken up by capstan 7.
FIG. 3 shows an arrangement of apparatus used when the present invention is applied to the production of steel wire strand for pre-stressed concrete construction. Steel wire 9 is stranded into steel wire strand 10 by stranding machine 8 and the wire strand is wound once around winding drum 1]. Then steel wire strand 10 is heated by commonly used heating device 12 (induction heating furnace, tube type electric furnace. etc.), straightened by straightener 13 (rotary straightening machine, etc.), water-cooled in cooling bath l4 and taken up around capstan drum 15. The tension of the steel wire strand at this time is given by the working resistance and the speed variation between the winding machine and the capstan 15.
Next, the effect of the combination of tensile and bending stress applied by the present invention will be explained in comparison with the effect of other methods, and the recommended treating conditions of the present invention will be described. For the tension, the ratio of applied tension to actual ultimate tensile strength (hereinafter called specific load) is used. For the bending, a maximum strain (6 max) appearing on the wire surface can be used as the index. Thus, as shown in FIG. 4, in the case of the neutral line of a wire ofd diameter, the maximum strain can be expressed as below by the bend radius (R), the length of the chord of the bending are (l), and the height of the bending arc emax d/2/R emax 11/11 1 /4 d The height of the bending are necessary to give the maximum strain e max to the wire diameter d can be expressed as below In the case of steel wire strand, the height of the bending arc is given so as to produce the surface strain necessary for a single wire on the surface of outer component wires, with regard to the flexibility of the wire strand. The value can be obtained by multiplying.
Hereinafter, the bending condition will be expressed by the maximum strain for a single steel wire, while it will be expressed by the height of the bending arc and the length of the chord of the bending are for steel wire strand.
Embodiments of the present invention will be explained to clarify it. However, it should be understood the present invention is not limited to these embodiments.
Example I A single cold drawn steel wire having the composition (JIS SWRS 778), shown in Table 2, of5 mm diameter is subjected to the process of the present invention at a working temperature of 340C, with a maximum strain of 0.2 0.5 percent and a specific load 10 45 percent, to determine the effects on the relaxation and a straightness. FIG. 5 shows the variation in the relaxation value and FIG. 6 shows the variation in the straightness (expressed by the curvature of the wire).
Comparison is made with the results obtained by the simple working process in the same conditions.
chemical composition shown in FIG. 4, cold drawn and stranded, is subjected to the process of the present in- The relaxation test was performed at room temperature with 70% load of ultimate tensile strength.
It is clear from FIG. 5 that relaxation loss of 2.0 2.5
Table 2 C Si Mn P S Cu SWRS77B 0.78 0.24 0.77 0.014 0.012 0.02(%) Table 3 vention at a working temperature of 340C, with a height of bending arc of 6 mm, and a length of the Maxi- Specific Relaxation* Straight chord of the bending arc of 200 mm with various spemum n Strain q Loud c/r [M100 hr) CS5 clfic loads between 10 and 40 percent The effects 0 the relaxat1on value and phys1cal properttes are shown Ordinary in Table 5 in comparison with results obtained by the Process 0 O 30 ordinary process and the hot simple bending process. Hot Simple L6 bad Just as in Example 1, remarkable improvement of the Tension 0 143 relaxation is obtained by applying both bending and Process l .0 falr tension.
Table 4 C Si Mn P S Cu SWRS77B 0.75 0.24 0.77 0.019 0.013 0.01 72 Table 5 Relaxation 6B 602/68 Elongation (100 hr) kg/mm Ordinary Process 28 I94 89 5.0
Hot Simple Bending Process 2.4 195 92 6.0
Present Specific 10 L1 194 93 6.0 Invention Load (71) 20 0.9 195 93 6.5
Hot Simple Example 3 Bending 0.3 0 2.0 had Process 04 0 had 40 Steel wire strand of 6.3 mm diameter, having the 20 L0 good chemical composition shown in FIG. 6, cold drawn and P 03 8 e 3 stranded, is subjected to the process of the present inresent goo t O I mention 20 U good ventton at a worktng temperature of 370 C, wtth a spe- 0.4 30 0.9 good cific load of 40 percent and the length of the chord of 40 0.8 good the bending arc of 200 mm, with different heights of bending are 3 to 12 mm. The effects on the 1000 hr relaxation value and the straightness are shown in comparisonwith the results obtained by the hot simple tension process in Table 7. From the results it is apparent percent after 100 hours, with the hot simple bending that a height of bending arc of 3 to 9 mm is desirable.
process, is remarkably reduced when tension is applied, and this effect is considerable when compared with that obtained by the simple tensioning process. The same can be said of the effect on the straightness shown in FIG. 6. It is indicated that the effect is remarkable when the maximum strain is 0.2 to 0.5 percent, especially 0.3 to 0.4 percent, and the specific load is 10 to 45 percent, especially 25 to 45 percent.
Example 2 Steel wire strand of 9.3 mm diameter, having the Example 4 Table 8 Relaxation 88 50.2 Elonga- 92 (I000 hr) kg/mm kg/mm tion "/1 Ordinary Process 5.5 186 l67 6.0 Present Invention [.4 [86 177 6.0
As described above, a similar or lower relaxation value than that of the conventional processes can be obtained with less tension, as well as excellent straightness and similar or higher tensile strength, yield point and elongation are easily and stably obtained by the present invention, and thus it can be concluded the present invention is of considerable industrial value.
What is claimed is:
l. A method of producing steel wire and strand for prestressed concrete construction, having low relaxation value and excellent straightness, which comprises the steps of applying, in the ordinary low-temperature annealing range of 300 400C, to cold drawn steel wire and strand composed thereof, containing 0.6 0.9 percent of carbon, a tension corresponding to 10 7 50 percent of the tensile strength of the cold drawn wire at room temperature and, simultaneously applying a bending stress so as to give 0.1 0.5 percent maximum surface strain.
2. A method according to claim 1 in which the tension applied to the wire corresponds to 10 20 percent of the tensile strength of the wire at room temperature and in which bending stress is applied so as to give 0.4 0.5 percent maximum surface strain.
3. A method according to claim 1 in which the tension applied to the steel wire corresponds to 15 30 percent of the tensile strength of the wire and in which bending stress is applied so as to give 0.3 0.4 percent maximum surface strain.
4. A method according to claim 1 in which the tension applied to the steel wire corresponds to 25 45 percent of the tensile strength of the wire and in which bending stress is applied so as to give 0.25 0.45 percent maximum surface strain.
5. A method according to claim 1 in which the tension applied to the wire corresponds to 30 40 percent of the tensile strength of the wire and in which bending stress is applied so as to give 0.3 0.4 percent maximum surface strain.
6. A method according to claim 1 in which the tension applied to the wire corresponds to 35 45 percent of the tensile strength of the wire and in which bending stress is applied so as to give 0.2 0.3 percent maximum surface strain.
7. A method according to claim 1 in which the tension applied to the wire corresponds to 40 50 percent of the tensile strength of the wire, and in which bending stress is applied so as to give 0.1 0.2 percent maxi-

Claims (7)

1. A METHOD OF PRODUCING STEEL WIRE AND STRAND FOR PRESTRESSED CONCRETE CONSTRUCTION, HAVING LOW RELAXATION VALUE AND EXCELLENT STRAIGHTNESS, WHICH COMPRISES THE STEPS OF APPLYING, IN THE ORDINARY LOW-TEMPERATURE ANNEALING RANGE OF 300* - 400*C, TO COLD DRAWN STEEL WIRE AND STRAND COMPOSED THEREOF, CONTAINING 0.6 - 0.9 PERCENT OF CARBON, A TENSION CORRESPONDING TO 10 - 50 PERCENT OF THE TENSILE STRENGTH OF THE COLD DRAWN WIRE AT ROOM TEMPERATURE AND, SIMULTANEOUSLY APPLYING A BENDING STRESS SO AS TO GIVE 0.1 - 0.5 PERCENT MAXIMUM SURFACE STRAIN.
2. A method according to claim 1 in which the tension applied to the wire corresponds to 10 - 20 pErcent of the tensile strength of the wire at room temperature and in which bending stress is applied so as to give 0.4 - 0.5 percent maximum surface strain.
3. A method according to claim 1 in which the tension applied to the steel wire corresponds to 15 - 30 percent of the tensile strength of the wire and in which bending stress is applied so as to give 0.3 - 0.4 percent maximum surface strain.
4. A method according to claim 1 in which the tension applied to the steel wire corresponds to 25 - 45 percent of the tensile strength of the wire and in which bending stress is applied so as to give 0.25 - 0.45 percent maximum surface strain.
5. A method according to claim 1 in which the tension applied to the wire corresponds to 30 - 40 percent of the tensile strength of the wire and in which bending stress is applied so as to give 0.3 - 0.4 percent maximum surface strain.
6. A method according to claim 1 in which the tension applied to the wire corresponds to 35 - 45 percent of the tensile strength of the wire and in which bending stress is applied so as to give 0.2 - 0.3 percent maximum surface strain.
7. A method according to claim 1 in which the tension applied to the wire corresponds to 40 - 50 percent of the tensile strength of the wire, and in which bending stress is applied so as to give 0.1 - 0.2 percent maximum surface strain.
US00319712A 1972-06-13 1972-12-29 Method of producing steel wire and strand for pre-stressed concrete construction Expired - Lifetime US3847002A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47058177A JPS4917362A (en) 1972-06-13 1972-06-13

Publications (1)

Publication Number Publication Date
US3847002A true US3847002A (en) 1974-11-12

Family

ID=13076706

Family Applications (1)

Application Number Title Priority Date Filing Date
US00319712A Expired - Lifetime US3847002A (en) 1972-06-13 1972-12-29 Method of producing steel wire and strand for pre-stressed concrete construction

Country Status (2)

Country Link
US (1) US3847002A (en)
JP (1) JPS4917362A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404047A (en) * 1980-12-10 1983-09-13 Lasalle Steel Company Process for the improved heat treatment of steels using direct electrical resistance heating
US4938811A (en) * 1988-07-15 1990-07-03 Sumitomo Electric Industries, Ltd. Steel wire for a spring and method for the production thereof
US5868050A (en) * 1994-04-29 1999-02-09 Mannesmann Aktiengesellschaft Process and device for the continuous, chipless separation of individual rings from tubular workpieces
NL1011151C2 (en) * 1999-01-27 2000-07-31 Bekaert Sa Nv Mat stacking for use in concrete construction parts; mat as part thereof and construction part of concrete with a mat stack.
EP1437451A1 (en) * 2003-01-08 2004-07-14 Fontainunion S.A. Wire-shaped element for reinforcing concrete
EP1988210A1 (en) * 2006-02-23 2008-11-05 Sumitomo (Sei) Steel Wire Corp. High-strength pc steel stranded wire, process for manufacturing the same, and concrete structure utilizing the wire
US20130269308A1 (en) * 2012-04-12 2013-10-17 Kurosawa Construction Co., Ltd. Double rustproof pc strand
CN103590539A (en) * 2013-10-17 2014-02-19 天津鑫坤泰预应力专业技术有限公司 Finished steel strand bundle
US20180297408A1 (en) * 2013-07-29 2018-10-18 Nv Bekaert Sa Straight steel monofilament for a belt ply
CN110914461A (en) * 2017-07-17 2020-03-24 弘德产业株式会社 Steel cord for reinforcing tire and single steel wire having excellent straight-line quality and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238418A (en) * 1985-04-15 1986-10-23 Sumitomo Metal Ind Ltd Drawing device for wire rod having excellent linearity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130088A (en) * 1958-12-31 1964-04-21 Armco Steel Corp Thermal-flattening of metallic strip
US3469829A (en) * 1966-06-16 1969-09-30 Nippon Kokan Kk Apparatus for producing wire of high tensile strength
US3580746A (en) * 1966-10-04 1971-05-25 Trefileries & Cableries De Bou Process for the modification of the mechanical characteristics of carbon steel wire
US3605469A (en) * 1967-09-23 1971-09-20 Martin T Queralto Method and apparatus for improving the properties of steel rope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234016B2 (en) * 1973-06-27 1977-09-01

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130088A (en) * 1958-12-31 1964-04-21 Armco Steel Corp Thermal-flattening of metallic strip
US3469829A (en) * 1966-06-16 1969-09-30 Nippon Kokan Kk Apparatus for producing wire of high tensile strength
US3580746A (en) * 1966-10-04 1971-05-25 Trefileries & Cableries De Bou Process for the modification of the mechanical characteristics of carbon steel wire
US3605469A (en) * 1967-09-23 1971-09-20 Martin T Queralto Method and apparatus for improving the properties of steel rope

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404047A (en) * 1980-12-10 1983-09-13 Lasalle Steel Company Process for the improved heat treatment of steels using direct electrical resistance heating
US4938811A (en) * 1988-07-15 1990-07-03 Sumitomo Electric Industries, Ltd. Steel wire for a spring and method for the production thereof
US5868050A (en) * 1994-04-29 1999-02-09 Mannesmann Aktiengesellschaft Process and device for the continuous, chipless separation of individual rings from tubular workpieces
NL1011151C2 (en) * 1999-01-27 2000-07-31 Bekaert Sa Nv Mat stacking for use in concrete construction parts; mat as part thereof and construction part of concrete with a mat stack.
WO2000045007A1 (en) * 1999-01-27 2000-08-03 N.V. Bekaert S.A. Mat pile for use in concrete construction parts, mat as a component thereof, and a concrete construction part provided with a mat pile
EP1437451A1 (en) * 2003-01-08 2004-07-14 Fontainunion S.A. Wire-shaped element for reinforcing concrete
BE1015295A3 (en) * 2003-01-08 2005-01-11 Fontainunion S A Building element for concrete.
US7861507B2 (en) 2006-02-23 2011-01-04 Sumitomo (Sei) Steel Wire Corp. High-strength prestressing strand, method for manufacturing the same, and concrete construction using the same
EP1988210A4 (en) * 2006-02-23 2010-04-28 Sumitomo Sei Steel Wire Corp High-strength pc steel stranded wire, process for manufacturing the same, and concrete structure utilizing the wire
US20100108197A1 (en) * 2006-02-23 2010-05-06 Sumitomo (Sei) Steel Wire Corp. High-strength pc steel stranded wire, process for manufacturing the same, and concrete structure utilizing the wire
EP1988210A1 (en) * 2006-02-23 2008-11-05 Sumitomo (Sei) Steel Wire Corp. High-strength pc steel stranded wire, process for manufacturing the same, and concrete structure utilizing the wire
CN101326325B (en) * 2006-02-23 2012-11-28 住友电工钢线株式会社 High-strength PC steel stranded wire, process for manufacturing the same, and concrete structure utilizing the wire
US8833050B2 (en) * 2012-04-12 2014-09-16 Kurosawa Construction Co., Ltd. Double rustproof PC strand
US20130269308A1 (en) * 2012-04-12 2013-10-17 Kurosawa Construction Co., Ltd. Double rustproof pc strand
US20180297408A1 (en) * 2013-07-29 2018-10-18 Nv Bekaert Sa Straight steel monofilament for a belt ply
US11072205B2 (en) * 2013-07-29 2021-07-27 Nv Bekaert Sa Straight steel monofilament for a belt ply
CN103590539A (en) * 2013-10-17 2014-02-19 天津鑫坤泰预应力专业技术有限公司 Finished steel strand bundle
CN103590539B (en) * 2013-10-17 2016-08-17 天津鑫坤泰预应力专业技术有限公司 A kind of finished steel strand bundle
CN110914461A (en) * 2017-07-17 2020-03-24 弘德产业株式会社 Steel cord for reinforcing tire and single steel wire having excellent straight-line quality and method for manufacturing the same
EP3620543A4 (en) * 2017-07-17 2020-12-16 Hongduk Industrial Co., Ltd. Steel cord and single steel wire having excellent straightness quality for reinforcing tire and manufacturing method thereof
CN110914461B (en) * 2017-07-17 2021-09-28 弘德产业株式会社 Steel cord for reinforcing tire and single steel wire having excellent straight-line quality and method for manufacturing the same

Also Published As

Publication number Publication date
JPS4917362A (en) 1974-02-15

Similar Documents

Publication Publication Date Title
US3847002A (en) Method of producing steel wire and strand for pre-stressed concrete construction
US4759806A (en) Process for manufacturing pearlitic steel wire and product made thereby
US3196052A (en) Prestressing wire and method of manufacturing the same
JP3387149B2 (en) Wire for reinforced high-strength steel wire and method of manufacturing the same
JP6485612B1 (en) High strength steel wire
US3580746A (en) Process for the modification of the mechanical characteristics of carbon steel wire
US3573999A (en) Mechanical strength of metals
US7861507B2 (en) High-strength prestressing strand, method for manufacturing the same, and concrete construction using the same
JP4377715B2 (en) High strength PC steel wire with excellent twisting characteristics
US10465270B1 (en) Cables having conductive elements formed from aluminum alloys processed with high shear deformation processes
GB2289231A (en) High-adhesion/high-strength deformed steel bar and method for manufacturing the same
WO1991012346A1 (en) Process for producing steel wire for drawing
KR100216420B1 (en) High strength steel strand for prestressed concrete and method for manufacturing the same
US6221183B1 (en) High-strength and low-thermal-expansion alloy, wire of the alloy and method of manufacturing the alloy wire
US3699797A (en) Hot worked steel method and product
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JP2756003B2 (en) High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same
JP3216404B2 (en) Method of manufacturing wire for reinforced high strength steel wire
JPH04346618A (en) Drawn steel wire rod
JPS5910522B2 (en) copper coated aluminum wire
JP2862206B2 (en) High-strength PC steel strand and method for producing the same
JP3182984B2 (en) Manufacturing method of high strength extra fine steel wire
US3336784A (en) Method of drawing wire rope
US3718442A (en) Stranded steel wire structures
EP0435051A2 (en) Method for producing high temperature superconductor wires with high critical current and their application for making superconducting devices