US3848592A - Single needle alternating flow blood pump system - Google Patents

Single needle alternating flow blood pump system Download PDF

Info

Publication number
US3848592A
US3848592A US00348509A US34850973A US3848592A US 3848592 A US3848592 A US 3848592A US 00348509 A US00348509 A US 00348509A US 34850973 A US34850973 A US 34850973A US 3848592 A US3848592 A US 3848592A
Authority
US
United States
Prior art keywords
pump
blood
rotor
valve means
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00348509A
Inventor
C Willock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Althin Medical Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00348509A priority Critical patent/US3848592A/en
Priority to US05/482,424 priority patent/US3938909A/en
Application granted granted Critical
Publication of US3848592A publication Critical patent/US3848592A/en
Assigned to CD MEDICAL, INC. reassignment CD MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DWS, INC., A CORP. OF OR.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/30Single needle dialysis ; Reciprocating systems, alternately withdrawing blood from and returning it to the patient, e.g. single-lumen-needle dialysis or single needle systems for hemofiltration or pheresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/30Single needle dialysis ; Reciprocating systems, alternately withdrawing blood from and returning it to the patient, e.g. single-lumen-needle dialysis or single needle systems for hemofiltration or pheresis
    • A61M1/301Details
    • A61M1/305Control of inversion point between collection and re-infusion phase
    • A61M1/307Time control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/1253Machines, pumps, or pumping installations having flexible working members having peristaltic action by using two or more rollers as squeezing elements, the rollers moving on an arc of a circle during squeezing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/12Pressure infusion

Definitions

  • a blood pump system typically employed in dialysis, includes a blood pump for withdrawing blood via a single hypodermic needle and valve means operated in synchronism therewith for returning treated blood via the same hypodermic needle.
  • the operation of the blood pump is cyclically interrupted and the valve means opened for the alternate withdrawal and return of blood.
  • a prior art single needle system withdraws and returns blood via the same hypodermic needle and includes a pair of clamp valves employed in two connections to the hypodermic needle so that blood can be alternately withdrawn and returned therethrough.
  • the valves are solenoid operated in response to pressure detected at a dialyzer output.
  • pumping in such a system tends to produce a vacuum at the pump inlet, flattening the plastic tubing and causing cessation of system operation.
  • solenoid operated valves represents additional equipment and expense.
  • a liquid flow loop is connected at either end to a single path such as a hypodermic needle.
  • This loop includes pumping means for transporting liquid in the loop, and valve means for temporarily impeding the passage of liquid.
  • the pumping means and the valve means operate synchronously for the alternate pumping and opening of the valve means, whereby liquid is alternately withdrawn and returned via the single path.
  • the pumping means comprises a blood pump for receiving blood from a single path, and means are responsive to the blood pump operation for cyclically interrupting operation thereof whereby withdrawal of blood is interrupted.
  • the valve means is opened for returning blood via the single path.
  • FIG. 1 is a plan view of a blood pump as modified according to the present invention
  • FIG. 2 is a partially broken away side view of the modified blood pump taken at 2-2 in FIG. 1;
  • FIG. 3 is a partially broken away side view of the FIG. 1 blood pump and attachment thereto according to the present invention, said view being taken at 33 in FIG.
  • FIG. 4 is a diagram illustrating an electrical control circuit employed according to the present invention.
  • FIG. 5 is a schematic illustration of an over-all system and method according to the present invention, depicting the connection thereof to a patient.
  • the system according to the present invention utilizes a conventional blood pump of the roller-and-flexible-tube type indicated at 10, said blood pump including a rotatable rotor 12 provided with rollers 14 and 16 mounted on spindles 18 and 20, respectively, at corners of the rotor.
  • the rollers 14 and 16 alternately engage pumping segment 24 of flexible plastic tubing disposed in a semicircle around the inside of U- shaped guide 26, the pumping segment being held in position by a crossbar 28 secured to the front of the pump.
  • Movable guides 30 are also suitably mounted upon rotor 12 and act to keep the pumping segment aligned in front of the rollers 14 and 16.
  • the speed of rotor rotation is suitably controlled by an adjusting knob 32 which is operative to control the speed of the pump motor (not shown) which turns drive shaft 22.
  • an attachment having a frame 34 may be mounted on the front of the blood pump by means of bracket 36 secured to the blood pump with bolts 38 extending through and also securing crossbar 40 to the pump.
  • a pivot pin 40 extends upwardly from the forward part of the frame upon which an actuating arm generally indicated at 42 is rotatable.
  • This actuating arm includes a forward portion 44 comprising a hook-shaped rod secured to a rearward block portion 46 by means of a pair of bolts 50 extending through the block portion 46 on either side of pivot pin 40.
  • the hook-shaped rod forward portion 44 extends upwardly from the end of block 46, and over the crossbar 28 for positioning forward end 52 in the path of upper rollers 54 and 56 mounted upon spindles 18 and 20, respectively, above the conventional rollers 14 and 16.
  • the arm portion 44 is hooked toward the rotor drive shaft 22 and as the rotor 12 turns, the upper rollers 54 and 56 will successively engage forward end 52 of arm portion 44.
  • Block 46 is provided with a leaf spring 58, also secured thereto by bolts 50, which normally urges block 46 toward clamping pin 60, the latter extending upwardly from frame 34.
  • the spring 58 bears against upwardly extending spring retaining pin 62 which may be horizontally slotted to receive the leaf spring.
  • a section of flexible plastic tubing 64 is normally received between the body of block 46 and clamping pin 60 where it is normally compressed between the two, as illustrated, to close off the flow of liquid, i.e., blood, through tubing section 64.
  • This portion of tubing together with elements 46 and 60 comprise a valve or clamp according to the present invention.
  • tubing section 64 For convenience in maintaining the proper position of tubing section 64, the same is held between a pair of horizontal pins 66 and 68 extending outwardly from block 46, the latter pin having an enlarged head for retaining the tubing section 64 in position. It will be seen that as one of the rollers 54 or 56 contacts forward end 52 of arm portion 44 and causes the arm 42 to rotate in a counterclockwise direction against the bias of spring 58, the tubing section 64 will be unclamped to a valve-open position from a valve-closed position.
  • Frame 34 further houses a limit switch 70 having an actuator 72 engageable by a downward extension 74 attached to block 46. Rotation of arm 42 also operates the limit switch closing its normally open contacts and opening its normally closed contacts, as hereinafter more fully described. As also hereinafter more fully described, the operation of the limit switch disconnects the blood pump whereby the blood pump rotor 24 stops rotation in a position wherein either roller 54 or roller 56 is in contact with arm portion 44. The blood pump rotor at such time will be positioned so that both rollers 14 and 16 compress pumping segment 24 at opposite sides of U-shaped guide 26 whereby the blood pump effectively acts as a closed valve against the flow of blood into pumping segment 24.
  • timer 76 After a predetermined period of time, as selected by means of timer 76, power is restored to the blood pump motor and rotation of rotor 12 resumes until the next one of the upper rollers 54 or 56 contacts forward end 52 of arm portion 44.
  • arm 42 rotates clockwise to its normal clamping position relative to tubing section 64, and limit switch actuator 72 is also returned to its initial position awaiting the turning of blood pump rotor 12 through 180 degrees.
  • timer adjustment 78 is conveniently a conventional electric or electronic timer and is connected as hereinafter more fully described.
  • the blood pump 10 is of standard construction as hereinbefore indicated but is suitably modified by upward extension of spindles 18 and to support the upper rollers 54 and 56. Also, a cover 80 is raised above the level of rollers 5 4-and 56 by means ofupper supports 82 and 84.
  • FIG. 4 is an electrical circuit diagram illustrating the connection of limit switch 70, timer 76, and blood pump motor 86.
  • Limit switch has a normally closed contact 88 and a normally open contact 90, these contacts providing the indicated connection until actuator 72 is moved inwardly by extension 74 of block 46, whereupon the movable contact 92 opens a circuit from power line 94 to contact 88 and closes a circuit from power line 94 to contact 90.
  • One side of blood pump motor 86 is connected to power line 96, and until actuation of the limit switch, a circuit from the blood pump motor is also completed to power line 94 through contacts 92 and 88 bringing about motor operation and rotation of rotor 12.
  • the limit switch 70 disconnects motor 86 whereby blood pump rotor rotation is temporarily halted.
  • timer coil 76a of timer 76 is energized via limit switch contact 90, and at the conclusion of a preset time period operating coil 76a closes normally open contacts 76b of the timer for re-energizing blood pump motor 86, the circuit being completed from power line 94 through contacts 76b and the blood pump motor to power line 96.
  • the blood pump rotor resumes rotation and the limit switch contacts resume their position illustrated in the drawing whereby blood pump motor 86 remains energized after the timer contacts reopen.
  • the blood pump rotor will then continue rotation until the next upper roller rotates arm 42, i.e., later.
  • FIG. 5 The over-all system and method according to the present invention is illustrated in FIG. 5 wherein the blood pump and attachment are employed in a blood flow loop including the pump, a blood receiving or treatment means typically comprising a dialyzer 98, a drip bulb 100, and a valve or clamp comprising block 46 and clamping pin 60 between which tubing section 64 is received.
  • a blood flow loop comprising a blood set alternately withdraws blood from a single path comprising a hypodermic needle 102, drawing the blood through the blood pump and into the dialyzer, and then expelling blood into the hypodermic needle as the valve 46, 60 opens.
  • Y connection means 104 Common connection with both ends of the blood flow loop and the hypodermic needle is made by Y connection means 104.
  • the blood receiving means 98 comprising a dialyzer or the like is capable of receiving pressure as the membrane thereof expands slightly such that blood is forced into the hypodermic needle when valve 46, 60 opens.
  • blood is drawn from the hypodermic needle through tubing portion 106 and delivered to the dialyzer as the pump rotor rotates through 180.
  • the pump rotor stops through the action of arm 42 and limit switch 70, while valve or clamp 46, 60 opens returning blood to the hypodermic needle via tubing portion 108.
  • the blood pump rollers l4 and 16 themselves prevent the flow of blood through tubing portion 106 in the direction of the pump, i.e., the pump acts as the clamp or valve.
  • the pump resumes rotation and valve 46, 60 is reclosed so that blood is once again withdrawn from the hypodermic needle.
  • the timing of timer 76 and the speed of rotation of the blood pump are adjusted so that the time of rotation of the pump rotor through 180 is approximately one-half second,
  • the hypodermic needle 102 may be inserted in an arm vein of a patient provided with a fistula by operative procedure, the latter causing expansion of the vein and allowing easier insertion of the hypodermic needle.
  • the hypodermic needle which may comprise a 14- gauge needle, is inserted in the direction of blood flow.
  • the patient must undergo periodic dialysis and thus must reinsert the hypodermic needle at frequent intervals.
  • the system and method according to the present invention permits the insertion of only one hypodermic needle, rather than two as in the case of the more conventional procedure, and is of appreciable advantage from the patients point of view.
  • the present system can also effect 200 cc per minute transfer of blood.
  • the system according to the present invention wherein blood is alternately withdrawn from the vein of the patient and returned through a single hypodermic needle, and wherein such withdrawal and return are synchronized primarily according to the operation of the blood pump, is preferable to a system wherein a pump is continuously operated since in the latter instance undesired vacuum then produced on the input side of the pump may cause tube flattening or the like.
  • the present system does not require additional solenoid operated clamps or pressure gauge control therefor but advantageously functions in response to the cyclical operation of the blood pump itself, or in synchronism therewith.
  • a single needle alternating flow blood pump system for alternate removal of blood from a blood vessel and return to said blood vessel via a single needle, said system comprising:
  • a blood flow path including a blood pump and tubing means communicating between said needle and said blood pump for withdrawing blood from said blood vessel,
  • blood receiving means also in said blood flow path through which blood is circulated by said blood pump for subsequent return to said needle
  • valve means in said blood flow path by way of which the blood flow is returned to said needle, said valve means being normally closed for impeding the flow of blood to said needle as said pump operates to withdraw blood therefrom,
  • a flow system for alternate removal of liquid from and return of liquid to a single passage comprising:
  • roller-and-flexible-tube pump having a tube thereof inserted in said loop for producing the transport of liquid along said loop
  • said pump including a rotor carrying rollers for bearing against a tube inserted in said loop, a guide for receiving said tube, and means for rotating said rotor to force liquid along said tube,
  • valve means located in said flow loop between the outflow side of said pump and said single passage for temporarily impeding the passage of liquid
  • said means for temporarily opening said valve means comprises actuating means responsive to rotational movement of the rotor of said pump
  • valve means comprising a section of tubing normally closed by said actuating means until said pump reaches a predetermined pump rotor position
  • timing means for returning said pump to a condition of rotor rotation after a predetermined period of time.
  • a flow system for alternate removal of liquid from and return of liquid to a single passage comprising:
  • roller-and-flexible-tube pump having a tube thereof inserted in said loop for producing the transport of liquid along said loop
  • said pump including a rotor carrying rollers for bearing against a tube inserted in said loop, a guide for receiving said tube, and means for rotating said rotor to force liquid along said tube,
  • valve means located in said flow loop for temporarily impeding the passage of liquid, means, responsive to a cyclical condition of said pump, for temporarily opening said valve means and arresting operation of said pump while at least one roller of said pump engages the said tube in said pump, said means for temporarily opening said valve means comprising actuating means responsive to rotational movement of the rotor of said said valve means comprising a section of tubing comprising a portion of said loop and normally closed by said actuating means until said pump reaches a predetermined pump rotor position, said actuating means comprising a spring-biased arm normally disposed in clamping relation to said section of tubing, said arm being positioned relative to the rotor of said pump so that rotation of said rotor to a predetermined position moves said arm against spring bias for unclamping said tubing,
  • timing means for returning said pump to a condition of rotor rotation after a predetermined period of time
  • said timing means comprising timed switching means having contacts for providing power to said pump after a predetermined time period whereby said arm acts to re-clamp said tubing after said predetermined time period.
  • said means for temporarily opening said valve means and arresting operation of said pump further comprises a limit switch operated by movement of said arm, and means for connecting said limit switch in energizing relation to said pump so that operation of said limit switch disconnects said pump, said timed switching means being operated by said limit switch.

Abstract

A blood pump system, typically employed in dialysis, includes a blood pump for withdrawing blood via a single hypodermic needle and valve means operated in synchronism therewith for returning treated blood via the same hypodermic needle. The operation of the blood pump is cyclically interrupted and the valve means opened for the alternate withdrawal and return of blood.

Description

Wnited States Patent 1191 Willock Nov. 19, 1974 SINGLE NEEDLE ALTERNATING FLOW BLOOD PUMP SYSTEM [76] Inventor: Charles B. Willock, 16222 SE. Oatfield Rd., Milwaukie, Oreg. 97222 [22] Filed: Apr. 6, 1973 [21] Appl. No.: 348,509
[52] US. Cl. 128/214 R, 128/214 F, 128/DIG. 12, 417/477 [51] Int. Cl A6lm 01/03 [58] Field of Search 128/214 R, 214 E, 214 F, 128/2142, DIG. l2, DIG. 13; 417/477, 479;
[56] References Cited UNITED STATES PATENTS 1,988,624 1/1935 Kipp 128/214 x 4/1973 Casimir 417/477 9/1973 Kopp l28/2l4 R OTHER PUBLICATIONS Twiss Lancet, Nov. 1964, No. 7369, p. 1106.
Primary ExaminerDa1ton L. Truluck Attorney, Agent, or Firm-Klarquist, Sparkman, Campbell, Leigh, Hall & Whinston [57] ABSTRACT A blood pump system, typically employed in dialysis, includes a blood pump for withdrawing blood via a single hypodermic needle and valve means operated in synchronism therewith for returning treated blood via the same hypodermic needle. The operation of the blood pump is cyclically interrupted and the valve means opened for the alternate withdrawal and return of blood.
7 Claims, 5 Drawing Figures PATENI z-kav 1 9:914
SHEET 1' OF 3 SINGLE NEEDLE ALTERNATING FLOW BLOOD PUMP SYSTEM BACKGROUND OF THE INVENTION In the use of an artificial kidney, dialysis of the patients blood requires some means of withdrawing the blood from the patients body and returning the same after treatment. With cannulae, providing permanent tubular connection to the patient, connection of the patient to the dialyzer apparatus is facilitated. However, a patient may not tolerate this arrangement because of infection or the like. Alternatively, plural hypodermic needles may be inserted in a patients vein after insertion of a fistula between a vein and artery, with one needle being utilized for withdrawal of blood while a second needle is employed to return blood to the vein. A more desirable system would avoid the requirement for repeated insertion of both needles.
A prior art single needle system withdraws and returns blood via the same hypodermic needle and includes a pair of clamp valves employed in two connections to the hypodermic needle so that blood can be alternately withdrawn and returned therethrough. In this system the valves are solenoid operated in response to pressure detected at a dialyzer output. However, pumping in such a system tends to produce a vacuum at the pump inlet, flattening the plastic tubing and causing cessation of system operation. Moreover, the addition of solenoid operated valves represents additional equipment and expense.
SUMMARY OF THE INVENTION According to the present invention, a liquid flow loop is connected at either end to a single path such as a hypodermic needle. This loop includes pumping means for transporting liquid in the loop, and valve means for temporarily impeding the passage of liquid. The pumping means and the valve means operate synchronously for the alternate pumping and opening of the valve means, whereby liquid is alternately withdrawn and returned via the single path.
In accordance with a particular embodiment of the present invention, the pumping means comprises a blood pump for receiving blood from a single path, and means are responsive to the blood pump operation for cyclically interrupting operation thereof whereby withdrawal of blood is interrupted. At the same time, the valve means is opened for returning blood via the single path.
It is accordingly an object of the present invention to provide an improved alternating flow blood pump system and method for alternate removal of blood from a blood vessel and return to said blood vessel via a single needle.
It is a further object of the present invention to provide an improved single needle alternating flow blood pump system and method which is reliable in operation, and economical in construction.
It is a further object of the present invention to provide an improved single needle alternating flow blood pump system and method which is readily adapted to a conventional blood pump.
It is a further object of the present invention to provide an improved attachment for a conventional blood pump facilitating withdrawal and return of blood from a patient.
It is a further object of the present invention to provide an improved liquid flow system for withdrawing and returning liquid to a single flow path from and to a loop attached thereto.
The subject matter which I regard as my invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. The invention however, both as to organization and method of operation together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with the accompanying drawings wherein like reference characters refer to like elements.
DRAWINGS FIG. 1 is a plan view of a blood pump as modified according to the present invention;
FIG. 2 is a partially broken away side view of the modified blood pump taken at 2-2 in FIG. 1;
FIG. 3 is a partially broken away side view of the FIG. 1 blood pump and attachment thereto according to the present invention, said view being taken at 33 in FIG.
FIG. 4 is a diagram illustrating an electrical control circuit employed according to the present invention; and
FIG. 5 is a schematic illustration of an over-all system and method according to the present invention, depicting the connection thereof to a patient.
DETAILED DESCRIPTION Referring to the drawings, and particularly to FIGS. 1, 2 and 3, the system according to the present invention utilizes a conventional blood pump of the roller-and-flexible-tube type indicated at 10, said blood pump including a rotatable rotor 12 provided with rollers 14 and 16 mounted on spindles 18 and 20, respectively, at corners of the rotor. When the rotor is rotated by means of drive shaft 22, the rollers 14 and 16 alternately engage pumping segment 24 of flexible plastic tubing disposed in a semicircle around the inside of U- shaped guide 26, the pumping segment being held in position by a crossbar 28 secured to the front of the pump. As the rotor 12 rotates in a counterclockwise direction, for example, the rollers rotate around the inside of U-shaped guide 26 forcing the pumping segment against the inside wall of the U-shaped guide and pumping blood in the direction indicated by the arrows. Movable guides 30 are also suitably mounted upon rotor 12 and act to keep the pumping segment aligned in front of the rollers 14 and 16. The speed of rotor rotation is suitably controlled by an adjusting knob 32 which is operative to control the speed of the pump motor (not shown) which turns drive shaft 22.
In accordance with an aspect of the present invention, an attachment having a frame 34 may be mounted on the front of the blood pump by means of bracket 36 secured to the blood pump with bolts 38 extending through and also securing crossbar 40 to the pump. A pivot pin 40 extends upwardly from the forward part of the frame upon which an actuating arm generally indicated at 42 is rotatable. This actuating arm includes a forward portion 44 comprising a hook-shaped rod secured to a rearward block portion 46 by means of a pair of bolts 50 extending through the block portion 46 on either side of pivot pin 40. The hook-shaped rod forward portion 44 extends upwardly from the end of block 46, and over the crossbar 28 for positioning forward end 52 in the path of upper rollers 54 and 56 mounted upon spindles 18 and 20, respectively, above the conventional rollers 14 and 16. As can be seen in FIG. 1, the arm portion 44 is hooked toward the rotor drive shaft 22 and as the rotor 12 turns, the upper rollers 54 and 56 will successively engage forward end 52 of arm portion 44.
Block 46 is provided with a leaf spring 58, also secured thereto by bolts 50, which normally urges block 46 toward clamping pin 60, the latter extending upwardly from frame 34. The spring 58 bears against upwardly extending spring retaining pin 62 which may be horizontally slotted to receive the leaf spring. A section of flexible plastic tubing 64 is normally received between the body of block 46 and clamping pin 60 where it is normally compressed between the two, as illustrated, to close off the flow of liquid, i.e., blood, through tubing section 64. This portion of tubing together with elements 46 and 60 comprise a valve or clamp according to the present invention. For convenience in maintaining the proper position of tubing section 64, the same is held between a pair of horizontal pins 66 and 68 extending outwardly from block 46, the latter pin having an enlarged head for retaining the tubing section 64 in position. It will be seen that as one of the rollers 54 or 56 contacts forward end 52 of arm portion 44 and causes the arm 42 to rotate in a counterclockwise direction against the bias of spring 58, the tubing section 64 will be unclamped to a valve-open position from a valve-closed position.
Frame 34 further houses a limit switch 70 having an actuator 72 engageable by a downward extension 74 attached to block 46. Rotation of arm 42 also operates the limit switch closing its normally open contacts and opening its normally closed contacts, as hereinafter more fully described. As also hereinafter more fully described, the operation of the limit switch disconnects the blood pump whereby the blood pump rotor 24 stops rotation in a position wherein either roller 54 or roller 56 is in contact with arm portion 44. The blood pump rotor at such time will be positioned so that both rollers 14 and 16 compress pumping segment 24 at opposite sides of U-shaped guide 26 whereby the blood pump effectively acts as a closed valve against the flow of blood into pumping segment 24. After a predetermined period of time, as selected by means of timer 76, power is restored to the blood pump motor and rotation of rotor 12 resumes until the next one of the upper rollers 54 or 56 contacts forward end 52 of arm portion 44. When the blood pump rotor resumes rotation, arm 42 rotates clockwise to its normal clamping position relative to tubing section 64, and limit switch actuator 72 is also returned to its initial position awaiting the turning of blood pump rotor 12 through 180 degrees. The time during which the rotor is temporarily stopped, and tubing section 64 is unclamped, is determined by the setting of timer adjustment 78. Timer 78 is conveniently a conventional electric or electronic timer and is connected as hereinafter more fully described.
The blood pump 10 is of standard construction as hereinbefore indicated but is suitably modified by upward extension of spindles 18 and to support the upper rollers 54 and 56. Also, a cover 80 is raised above the level of rollers 5 4-and 56 by means ofupper supports 82 and 84.
FIG. 4 is an electrical circuit diagram illustrating the connection of limit switch 70, timer 76, and blood pump motor 86. Limit switch has a normally closed contact 88 and a normally open contact 90, these contacts providing the indicated connection until actuator 72 is moved inwardly by extension 74 of block 46, whereupon the movable contact 92 opens a circuit from power line 94 to contact 88 and closes a circuit from power line 94 to contact 90. One side of blood pump motor 86 is connected to power line 96, and until actuation of the limit switch, a circuit from the blood pump motor is also completed to power line 94 through contacts 92 and 88 bringing about motor operation and rotation of rotor 12. However, when the blood pump rotor moves to a position whereby arm 42 is rotated in a counter-clockwise direction, the limit switch 70 disconnects motor 86 whereby blood pump rotor rotation is temporarily halted. At the same time, timer coil 76a of timer 76 is energized via limit switch contact 90, and at the conclusion of a preset time period operating coil 76a closes normally open contacts 76b of the timer for re-energizing blood pump motor 86, the circuit being completed from power line 94 through contacts 76b and the blood pump motor to power line 96. Thereupon, the blood pump rotor resumes rotation and the limit switch contacts resume their position illustrated in the drawing whereby blood pump motor 86 remains energized after the timer contacts reopen. The blood pump rotor will then continue rotation until the next upper roller rotates arm 42, i.e., later.
The over-all system and method according to the present invention is illustrated in FIG. 5 wherein the blood pump and attachment are employed in a blood flow loop including the pump, a blood receiving or treatment means typically comprising a dialyzer 98, a drip bulb 100, and a valve or clamp comprising block 46 and clamping pin 60 between which tubing section 64 is received. A blood flow loop comprising a blood set alternately withdraws blood from a single path comprising a hypodermic needle 102, drawing the blood through the blood pump and into the dialyzer, and then expelling blood into the hypodermic needle as the valve 46, 60 opens. Common connection with both ends of the blood flow loop and the hypodermic needle is made by Y connection means 104.
The blood receiving means 98 comprising a dialyzer or the like is capable of receiving pressure as the membrane thereof expands slightly such that blood is forced into the hypodermic needle when valve 46, 60 opens. Thus, blood is drawn from the hypodermic needle through tubing portion 106 and delivered to the dialyzer as the pump rotor rotates through 180. At this time, the pump rotor stops through the action of arm 42 and limit switch 70, while valve or clamp 46, 60 opens returning blood to the hypodermic needle via tubing portion 108. At such time, the blood pump rollers l4 and 16 themselves prevent the flow of blood through tubing portion 106 in the direction of the pump, i.e., the pump acts as the clamp or valve. After a predetermined time, governed according to the timer 76, the pump resumes rotation and valve 46, 60 is reclosed so that blood is once again withdrawn from the hypodermic needle. In a typical instance, the timing of timer 76 and the speed of rotation of the blood pump are adjusted so that the time of rotation of the pump rotor through 180 is approximately one-half second,
and the temporary interruption in blood pump operation is also approximately one-half second.
The hypodermic needle 102 may be inserted in an arm vein of a patient provided with a fistula by operative procedure, the latter causing expansion of the vein and allowing easier insertion of the hypodermic needle. The hypodermic needle, which may comprise a 14- gauge needle, is inserted in the direction of blood flow. Typically, the patient must undergo periodic dialysis and thus must reinsert the hypodermic needle at frequent intervals. The system and method according to the present invention permits the insertion of only one hypodermic needle, rather than two as in the case of the more conventional procedure, and is of appreciable advantage from the patients point of view. The present system can also effect 200 cc per minute transfer of blood. The system according to the present invention, wherein blood is alternately withdrawn from the vein of the patient and returned through a single hypodermic needle, and wherein such withdrawal and return are synchronized primarily according to the operation of the blood pump, is preferable to a system wherein a pump is continuously operated since in the latter instance undesired vacuum then produced on the input side of the pump may cause tube flattening or the like. Moreover, the present system does not require additional solenoid operated clamps or pressure gauge control therefor but advantageously functions in response to the cyclical operation of the blood pump itself, or in synchronism therewith.
While I have shown and described the preferred embodiment of my invention, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from my invention in its broader aspects. 1 therefore intend the appended claims to coverall such changes and modifications as fall within the true spirit and scope of my invention.
I claim:
1. A single needle alternating flow blood pump system for alternate removal of blood from a blood vessel and return to said blood vessel via a single needle, said system comprising:
a blood flow path including a blood pump and tubing means communicating between said needle and said blood pump for withdrawing blood from said blood vessel,
blood receiving means also in said blood flow path through which blood is circulated by said blood pump for subsequent return to said needle,
valve means in said blood flow path by way of which the blood flow is returned to said needle, said valve means being normally closed for impeding the flow of blood to said needle as said pump operates to withdraw blood therefrom,
and means operatively connected to both said pump and said valve means and responsive to a given cyclical condition of said blood pump during pumping operation thereof for cyclically interrupting operation of said blood pump to interrupt withdrawal of blood for predetermined time periods after said blood pump has withdrawn substantially equal quantities of blood and for opening said valve means to return said blood to said blood vessel through said needle, whereby blood is alternately withdrawn and returned via the same needle.
2. The system according to claim 1 wherein said blood receiving means is located in said blood flow path between the outlet side of said blood pump and said needle such that blood flows through said receiving means in returning tosaid needle, and wherein said valve means is disposed in said blood flow path between said blood receiving means and said needle.
3. A flow system for alternate removal of liquid from and return of liquid to a single passage comprising:
a flow loop connected at either end thereof to said single passage for receiving liquid from said single passage and returning liquid to said single passage,
a roller-and-flexible-tube pump having a tube thereof inserted in said loop for producing the transport of liquid along said loop,
said pump including a rotor carrying rollers for bearing against a tube inserted in said loop, a guide for receiving said tube, and means for rotating said rotor to force liquid along said tube,
a valve means located in said flow loop between the outflow side of said pump and said single passage for temporarily impeding the passage of liquid,
and means operatively connected to both said pump and said valve means and responsive to a cyclical condition of said pump during pumping operation thereof, for temporarily opening said valve means and arresting operation of said pump for predetermined time periods while at least one roller of said pump engages the said tube in said pump.
4. The system according to claim 3 wherein said means for temporarily opening said valve means comprises actuating means responsive to rotational movement of the rotor of said pump,
said valve means comprising a section of tubing normally closed by said actuating means until said pump reaches a predetermined pump rotor position,
and timing means for returning said pump to a condition of rotor rotation after a predetermined period of time.
5. A flow system for alternate removal of liquid from and return of liquid to a single passage comprising:
a flow loop connected at either end thereof to said single passage for receiving liquid from said single passage and returning liquid to said single passage,
a roller-and-flexible-tube pump having a tube thereof inserted in said loop for producing the transport of liquid along said loop,
said pump including a rotor carrying rollers for bearing against a tube inserted in said loop, a guide for receiving said tube, and means for rotating said rotor to force liquid along said tube,
a valve means located in said flow loop for temporarily impeding the passage of liquid, means, responsive to a cyclical condition of said pump, for temporarily opening said valve means and arresting operation of said pump while at least one roller of said pump engages the said tube in said pump, said means for temporarily opening said valve means comprising actuating means responsive to rotational movement of the rotor of said said valve means comprising a section of tubing comprising a portion of said loop and normally closed by said actuating means until said pump reaches a predetermined pump rotor position, said actuating means comprising a spring-biased arm normally disposed in clamping relation to said section of tubing, said arm being positioned relative to the rotor of said pump so that rotation of said rotor to a predetermined position moves said arm against spring bias for unclamping said tubing,
and timing means for returning said pump to a condition of rotor rotation after a predetermined period of time, said timing means comprising timed switching means having contacts for providing power to said pump after a predetermined time period whereby said arm acts to re-clamp said tubing after said predetermined time period.
6. The system according to claim wherein said means for temporarily opening said valve means and arresting operation of said pump further comprises a limit switch operated by movement of said arm, and means for connecting said limit switch in energizing relation to said pump so that operation of said limit switch disconnects said pump, said timed switching means being operated by said limit switch.
7. The system according to claim 5 wherein said arm is rotatable, having a forward portion on one side of the 5 axis thereof engageable by the rotor of said pump,
liquid flow through said tubing.

Claims (7)

1. A single needle alternating flow blood pump system for alternate removal of blood from a blood vessel and return to said blood vessel via a single needle, said system comprising: a blood flow path including a blood pump and tubing means communicating between said needle and said blood pump for withdrawing blood from said blood vessel, blood receiving means also in said blood flow path through which blood is circulated by said blood pump for subsequent return to said needle, valve means in said blood flow path by way of which the blood flow is returned to said needle, said valve means being normally closed for impeding the flow of blood to said needle as said pump operates to withdraw blood therefrom, and means operatively connected to both said pump and said valve means and responsive to a given cyclical condition of said blood pump during pumping operation thereof for cyclically interrupting operation of said blood pump to interrupt withdrawal of blood for predetermined time periods after said blood pump has withdrawn substantially equal quantities of blood and for opening said valve means to return said blood to said blood vessel through said needle, whereby blood is alternately withdrawn and returned via the same needle.
2. The system according to claim 1 wherein said blood receiving means is located in said blood flow path between the outlet side of said blood pump and said needle such that blood flows through said receiving means in returning to said needle, and wherein said valve means is disposed in said blood flow path between said blood receiving means and said needle.
3. A flow system for alternate removal of liquid from and return of liquid to a single passage comprising: a flow loop connected at either end thereof to said single passage for receiving liquid from said single passage and returning liquid to said single passage, a roller-and-flexible-tube pump having a tube thereof inserted in said loop for producing the transport of liquid along said loop, said pump including a rotor carrying rollers for bearing against a tube inserted in said loop, a guide for receiving said tube, and means for rotating said rotor to force liquid along said tube, a valve means located in said flow loop between the outflow side of said pump and said single passage for temporarily impeding the passage of liquid, and means operatively connected to both said pump and said valve means and responsive to a cyclical condition of said pump during pumping operation thereof, for temporarily opening said valve means and arresting operation of said pump for predetermined time periods while at least one roller of said pump engages the said tube in said pump.
4. The system according to claim 3 wherein said means for temporarily opening said valve means comprises actuating means responsive to rotational movement of the rotor of said pump, said valve means comprising a section of tubing normally closed by said actuating means until said pump reaches a predetermined pump rotor position, and timing means for returning said pump to a condition of rotor rotation after a predetermined period of time.
5. A flow system for alternate removal of liquid from and return of liquid to a single passage comprising: a flow loop connected at either end thereof to said single passage for receiving liquid from said single passage and returning liquid to said single passage, a roller-and-flexible-tube pump having a tube thereof inserted in said loop for producing the transport of liquid along said loop, said pump including a rotor carrying rollers for bearing against a tube inserted in said loop, a guide for receiving said tube, and means for rotating said Rotor to force liquid along said tube, a valve means located in said flow loop for temporarily impeding the passage of liquid, means, responsive to a cyclical condition of said pump, for temporarily opening said valve means and arresting operation of said pump while at least one roller of said pump engages the said tube in said pump, said means for temporarily opening said valve means comprising actuating means responsive to rotational movement of the rotor of said pump, said valve means comprising a section of tubing comprising a portion of said loop and normally closed by said actuating means until said pump reaches a predetermined pump rotor position, said actuating means comprising a spring-biased arm normally disposed in clamping relation to said section of tubing, said arm being positioned relative to the rotor of said pump so that rotation of said rotor to a predetermined position moves said arm against spring bias for unclamping said tubing, and timing means for returning said pump to a condition of rotor rotation after a predetermined period of time, said timing means comprising timed switching means having contacts for providing power to said pump after a predetermined time period whereby said arm acts to re-clamp said tubing after said predetermined time period.
6. The system according to claim 5 wherein said means for temporarily opening said valve means and arresting operation of said pump further comprises a limit switch operated by movement of said arm, and means for connecting said limit switch in energizing relation to said pump so that operation of said limit switch disconnects said pump, said timed switching means being operated by said limit switch.
7. The system according to claim 5 wherein said arm is rotatable, having a forward portion on one side of the axis thereof engageable by the rotor of said pump, a clamping pin forming part of said valve means, said arm having a second portion on the opposite side of the axis thereof normally spring-biased against said clamping pin, said tubing being disposed between said clamping pin and said arm whereby said arm in its normally spring-biased position compresses said tubing against said clamping pin, and wherein said operation of said arm by rotation of said rotor to said predetermined position rotates said arm away from said clamping pin and allows liquid flow through said tubing.
US00348509A 1973-04-06 1973-04-06 Single needle alternating flow blood pump system Expired - Lifetime US3848592A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00348509A US3848592A (en) 1973-04-06 1973-04-06 Single needle alternating flow blood pump system
US05/482,424 US3938909A (en) 1973-04-06 1974-06-24 Single needle alternating flow blood pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00348509A US3848592A (en) 1973-04-06 1973-04-06 Single needle alternating flow blood pump system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/482,424 Division US3938909A (en) 1973-04-06 1974-06-24 Single needle alternating flow blood pump system

Publications (1)

Publication Number Publication Date
US3848592A true US3848592A (en) 1974-11-19

Family

ID=23368330

Family Applications (1)

Application Number Title Priority Date Filing Date
US00348509A Expired - Lifetime US3848592A (en) 1973-04-06 1973-04-06 Single needle alternating flow blood pump system

Country Status (1)

Country Link
US (1) US3848592A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964479A (en) * 1974-11-20 1976-06-22 Cobe Laboratories, Inc. Extracorporeal blood circulation system and drip chamber with adjustable blood level
US3985134A (en) * 1973-11-26 1976-10-12 Rhone-Poulenc S.A. Extracorporeal blood circuit
US4037599A (en) * 1976-01-26 1977-07-26 Raulerson James D Continuous flow catheter device
US4063554A (en) * 1974-11-06 1977-12-20 Willock Charles B Single needle alternating flow blood pump system
US4139008A (en) * 1975-11-21 1979-02-13 Wolfgang Wagner Controlled-dose injection apparatus
US4464164A (en) * 1982-09-24 1984-08-07 Extracorporeal Medical Specialties, Inc. Flowrate control for a blood flow system
US4486189A (en) * 1982-09-24 1984-12-04 Extracorporeal Medical Specialties, Inc. Dual mode hemodialysis system
US4490134A (en) * 1982-09-24 1984-12-25 Extracorporeal Medical Specialties, Inc. Dual phase blood flow system and method of operation
US4596550A (en) * 1982-09-24 1986-06-24 Baxter Travenol Laboratories, Inc. Method and apparatus for ultrafiltration measurement in a two pump dialysis system
US4976270A (en) * 1989-03-28 1990-12-11 Vanderbilt University Apparatus for continuously sampling plasma
US5057081A (en) * 1990-06-15 1991-10-15 Sherwood Medical Company Peristaltic infusion device
US5127908A (en) * 1990-06-15 1992-07-07 Sherwood Medical Company Peristaltic infusion device
US5133650A (en) * 1990-06-15 1992-07-28 Sherwood Medical Company Infusion device rotor shield
US5147312A (en) * 1990-06-15 1992-09-15 Sherwood Medical Company Peristaltic infusion device drip chamber yoke
US5158528A (en) * 1990-06-15 1992-10-27 Sherwood Medical Company Peristaltic infusion device and charger unit
US5181842A (en) * 1990-06-15 1993-01-26 Sherwood Medical Company Peristaltic infusion device
US20050070878A1 (en) * 2003-09-25 2005-03-31 Daniel Triplett Pre-molded bifurcation insert
US20090209918A1 (en) * 2007-09-07 2009-08-20 Imtec, Llc Method and device for dialysis
US7578662B1 (en) 2005-11-18 2009-08-25 Araz Ibragimov Peristaltic pump having pumping and occluding rollers and alternating pumping systems utilizing thereof
US20090269228A1 (en) * 2008-04-25 2009-10-29 Mcintosh Kevin D Adjustable roller pump rotor
US20100152640A1 (en) * 2008-09-05 2010-06-17 Imtecbiomedical, Inc. Methods and apparatus for vascular access

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1988624A (en) * 1933-08-08 1935-01-22 Ralph P Kipp Blood transfusion device
US3726613A (en) * 1970-10-12 1973-04-10 Casimir W Von Pulsefree peristaltic pump
US3756234A (en) * 1971-06-04 1973-09-04 Vital Assists Single needle dialysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1988624A (en) * 1933-08-08 1935-01-22 Ralph P Kipp Blood transfusion device
US3726613A (en) * 1970-10-12 1973-04-10 Casimir W Von Pulsefree peristaltic pump
US3756234A (en) * 1971-06-04 1973-09-04 Vital Assists Single needle dialysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Twiss Lancet, Nov. 1964, No. 7369, p. 1106. *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985134A (en) * 1973-11-26 1976-10-12 Rhone-Poulenc S.A. Extracorporeal blood circuit
US4063554A (en) * 1974-11-06 1977-12-20 Willock Charles B Single needle alternating flow blood pump system
US3964479A (en) * 1974-11-20 1976-06-22 Cobe Laboratories, Inc. Extracorporeal blood circulation system and drip chamber with adjustable blood level
US4139008A (en) * 1975-11-21 1979-02-13 Wolfgang Wagner Controlled-dose injection apparatus
US4037599A (en) * 1976-01-26 1977-07-26 Raulerson James D Continuous flow catheter device
US4464164A (en) * 1982-09-24 1984-08-07 Extracorporeal Medical Specialties, Inc. Flowrate control for a blood flow system
US4486189A (en) * 1982-09-24 1984-12-04 Extracorporeal Medical Specialties, Inc. Dual mode hemodialysis system
US4490134A (en) * 1982-09-24 1984-12-25 Extracorporeal Medical Specialties, Inc. Dual phase blood flow system and method of operation
US4596550A (en) * 1982-09-24 1986-06-24 Baxter Travenol Laboratories, Inc. Method and apparatus for ultrafiltration measurement in a two pump dialysis system
US4976270A (en) * 1989-03-28 1990-12-11 Vanderbilt University Apparatus for continuously sampling plasma
US5133650A (en) * 1990-06-15 1992-07-28 Sherwood Medical Company Infusion device rotor shield
US5057081A (en) * 1990-06-15 1991-10-15 Sherwood Medical Company Peristaltic infusion device
US5147312A (en) * 1990-06-15 1992-09-15 Sherwood Medical Company Peristaltic infusion device drip chamber yoke
US5158528A (en) * 1990-06-15 1992-10-27 Sherwood Medical Company Peristaltic infusion device and charger unit
US5181842A (en) * 1990-06-15 1993-01-26 Sherwood Medical Company Peristaltic infusion device
US5127908A (en) * 1990-06-15 1992-07-07 Sherwood Medical Company Peristaltic infusion device
US7896853B2 (en) 2003-09-25 2011-03-01 C. R. Bard, Inc. Pre-molded bifurcation insert
US20050070878A1 (en) * 2003-09-25 2005-03-31 Daniel Triplett Pre-molded bifurcation insert
US8357127B2 (en) 2003-09-25 2013-01-22 C. R. Bard, Inc. Pre-molded bifurcation insert
US20110098680A1 (en) * 2003-09-25 2011-04-28 C. R. Bard, Inc. Pre-molded bifurcation insert
US7578662B1 (en) 2005-11-18 2009-08-25 Araz Ibragimov Peristaltic pump having pumping and occluding rollers and alternating pumping systems utilizing thereof
US20090209918A1 (en) * 2007-09-07 2009-08-20 Imtec, Llc Method and device for dialysis
US8197236B2 (en) * 2008-04-25 2012-06-12 Medtronic, Inc. Adjustable roller pump rotor
US20090269228A1 (en) * 2008-04-25 2009-10-29 Mcintosh Kevin D Adjustable roller pump rotor
US20100152640A1 (en) * 2008-09-05 2010-06-17 Imtecbiomedical, Inc. Methods and apparatus for vascular access

Similar Documents

Publication Publication Date Title
US3848592A (en) Single needle alternating flow blood pump system
US4142845A (en) Dialysis pump system having over-center cam tracks to lock rollers against tubing
US3994294A (en) Syringe pump valving and motor direction control system
US3938909A (en) Single needle alternating flow blood pump system
EP0483794B1 (en) Transfusion pump
US4460358A (en) Combined load and latch mechanism for fluid flow control apparatus
US4077395A (en) Apparatus for taking blood samples from a living patient
US3963023A (en) Extracorporeal blood circulation system and pump
US3592183A (en) Heart assist method and apparatus
US3756234A (en) Single needle dialysis
US4190047A (en) Method and apparatus for peritoneal dialysis
US4755168A (en) Medical drainage pump with irrigation
US5151019A (en) Pumping device having inlet and outlet valves adjacent opposed sides of a tube deforming device
US3523523A (en) Power driven medical injector syringe with electromagnetic coupling means
JP2763005B2 (en) Pump cassette for liquid injection and fluid pump cassette device using the same
NO744239L (en)
US3142298A (en) Stomach pump apparatus
US4684102A (en) Pinch valve
US3872863A (en) Peritoneal dialysis apparatus
US3701350A (en) Blood exchanging apparatus and process
JP2004156584A (en) Fluid delivery mechanism
JPS633623B2 (en)
US5082014A (en) Solution pumping system including disposable pump cassette
US4968229A (en) Pressure infusion apparatus
US4063554A (en) Single needle alternating flow blood pump system

Legal Events

Date Code Title Description
AS Assignment

Owner name: CD MEDICAL, INC., 14600 N.W. 60TH AVENUE P.O. BOX

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DWS, INC., A CORP. OF OR.;REEL/FRAME:004624/0135

Effective date: 19850327