US3850697A - Process for making electrochemical electrodes - Google Patents

Process for making electrochemical electrodes Download PDF

Info

Publication number
US3850697A
US3850697A US00188376A US18837671A US3850697A US 3850697 A US3850697 A US 3850697A US 00188376 A US00188376 A US 00188376A US 18837671 A US18837671 A US 18837671A US 3850697 A US3850697 A US 3850697A
Authority
US
United States
Prior art keywords
pile
fibers
electrode
metallic
filaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00188376A
Inventor
P Brown
M Tremblay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brunswick Corp
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Priority to US00188376A priority Critical patent/US3850697A/en
Application granted granted Critical
Publication of US3850697A publication Critical patent/US3850697A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D39/00Pile-fabric looms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the metallic yarn may comprise a [52] U S Cl 136/120 FC blended yarn formed of staple metal fibers and con- [511 [n.t .Cl "Hon" 13/04 ventional nonmetanic textile fibers, or m be formed 1 [58] 28/76 P of continuous metal filament material.
  • the metal fi- 28/72 76 139/425 bers,tor filaments, are preferably formed with rough, unmachined, unburnished, fracture-free outer surfaces [561 References Cited for improved retention in the velvet pile fabric.
  • This invention is in the field of electrochemistry and, more particularly, is a new electrochemical electrode for fuel cells, batteries and other electrochemical systems which require high usable surface areas on their electrodes to make the systems economical for commercialization.
  • the fine capillary-like wicks preferably containing continuous metallic filaments are oriented in the direction of mass flow (perpendicular rather than parallel to the gaselectrolyte interface) to aid rather than hinder liquid and ionic mass transport.
  • the fabric supporting the pile yarns acts as a current collector.
  • fluids other than electrolytes and fuel or oxidizer gases may be used.
  • the electrochemical electrodes of this invention comprise a pile or velvet-like fabric wherein at least a portion of the woven fabric and/or pile yarn is metallic.
  • the electrodes may also include a metallic portion of i the textile in the form of small diameter metal filaments or fibers which may be blended with conventional textile materials or comprise the entire yarn. Further, the
  • r yarn maybe a spun yarn comprising metal fibers.
  • the metal fibers and filaments may have further improved retention and conductivity in the fabric by means of bonding.
  • the bonding may be effected by metallurgical processes such as sintering, brazing, or welding operations and sacrificial materials may be employed for maintaining 'a desired association of the metal fibers and filaments.
  • adhesive bonding means when adhesive bonding means are used, they may comprise electrically conductive adhesives
  • the particular metal material used may be preselected to provide desired catalytic performance, wear, and abrasion, and other physical and chemical characteristics.
  • FIG. 3 is a broken isometric view of a tow of filaments so formed
  • FIG. 4 is an enlarged transverse cross-section of a filament illustrating the rough unmachined outer surface thereof
  • FIG. 5 is a transverse section of an uncut velvet or pile fabric electrode
  • FIG. 6 is a transverse section of a modified form of a pile fabric electrode
  • FIG. 8 is a fragmentary enlarged elevation of yarns such as used in the pile fabrics of FIGS. 5 and 6;
  • FIG. 9 is a schematic elevation of an apparatus for providing sintered bonds between the metallic portions of the fabric.
  • FIG. 10 is a fragmentary perspective view of a piece of pile electrode embodying the invention.
  • FIG. 1 1 is a transverse cross-section of a coated fiber for use in the pile fabric.
  • FIG. 12 is a schematic view of a fuel cell incorporating electrodes of this invention.
  • an electrochemical electrode is shown to comprise a pile, plush or velvet-like textile fabric as may be formed on conventional textile forming apparatus.
  • the pile electrode comprises metallic filaments or fibers distributed in the yarns of the woven fabric and- /or pile.
  • the electrode s woven fabric is formed of a plurality of vertical warp yarns l2 and horizontal filling, or weft, yarns 13.
  • the warp yarns 12 are identified as ends and the filling yarns 13 are identified as picks.
  • the pile yarn 14 is introduced which extends outwardly from the surface of the fabric to define the pile, plush or velvet-like surface 15, as shown in FIG. 10.
  • the pile yarn may comprise an extra warp end or an extra filling pick as desired.
  • the base fabric 11 may be a warp knitted material or another kind of ordered or geometrically regular material (such as a sliver knit) or it may be a random web material.
  • FIGS. 5 and 6 two different methods of forming such a pile electrode are illustrated.
  • the warp ends 12 are interlaced in spaced or ordered relationship to two sets of filling picks, or weft yarns 13.
  • the pile yarn 14 is interlaced with the spaced filling picks 13 to define a plurality of outwardly disposed turned portions .or piles 16.
  • the piles 16 may be cut as by shearing or other suitable conventional cutting methods to obtain a velvet surface if open-ended wicks are desired.
  • FIG. 6 another form of plush or velvet electrode material 10b is shown to comprise a fabric wherein the warp ends 12 are interlaced about the filling picks 13 with additional warp ends 12 extending generally rectilinearly through the weave.
  • the pile yarn 141 is interlaced only with the upper set of filling picks l3 and may be formed around suitable cutting knives 17 which, in the final step of forming the material, are moved outwardly to sever the piles 16.
  • Electrodes similar to those shown in FIGS. 5 and 6 can be made in a single operation in which a yarn system comprises the base fiber and fiber introduced in sliver form extending outward from the base fiber comprise the pile. This process is sometimes referred to as sliver knitting.
  • the invention includes the blending in of metallic, or metallic coated fibers or filaments.
  • the yarns may comprise staple length metal fibers 18 blended with conventional staple length textile fibers 19 which may include material such as cotton, wool, glass or plastics or other polymerics which may provide required wicking or structural characteristics.
  • yarns may include non-metallic fibers 50 coated with a metallic surface 51.
  • the yarns may be formed of continuous metal filaments 20 as illustrated in FIG. 8b.
  • the fibers 18 and filaments 20 are formed to have a rough, unmachined, unburnished, fracture-free outer surface 21, as shown in FIG. 4, to provide improved retention of the yarns, higher surface area and better conductivity between the pile yarns and the remainder of the electrode 10.
  • FIGS. l-3 one highly desirable method of forming such yarns is by providing a plurality of metal rods 22 in a suitable matrix 23 to define a composite 24 which is suitably constricted. As shown in FIG. 1, the composite may be constricted by drawing through a suitable die 25 to produce a reduced composite 26.
  • the composite may be successively reduced as many times as desired until the composite is reduced to a small size wherein the rods 22 are of filamentary diameter.
  • the final composite 27 may be one having filaments 28 therein of an extremely small size, such as down to 50 microns or less. It has been found that such a process produces fine filaments down to one micron, or less, in continuous lengths, such small filaments providing improved flexibility and usefulness in the pile electrode material 10 as such fine wires permit the use of substantially conventional textile apparatus in forming fabrics utilizing such filaments and fibers formed therefrom.
  • An excellent example of a method of forming such filaments and fibers is that disclosed in Roberts et al U.S. Pat. No.
  • an excellent electrochemical electrode 10 may be formed of such filaments or fibers, where the warp ends 12 and the filling picks 13 of the woven fabrics 11 are formed of nickel.
  • the fibers may have a diameter of approximately 25 microns down to 1 micron or less.
  • the pile yarns may incorporate such metallic filaments or fibers having a diameter similar to the diameter of the woven fabric yarns or smaller.
  • the fibers are provided as staple length metal fibers, they may be blended with conventional textile fibers, such as cotton, wool, plastics, or glass, etc.
  • the blend may be one wherein the metal fibers are present in the ratio of from less than 1 to percent by weight in any, some or one of the yarns, staples or slivers contained in the electrochemical electrode.
  • the yarn may be provided with twist as desired.
  • a manufacturers twist may be utilized to provide a highly satisfactory blended yarn for this purpose.
  • the rough outer surface of the fibers provides an improved interlocked association of the metal fibers with the organic fibers.
  • the metal fibers may be metallurgically bonded by a process such as sintering, brazing, or welding or alternatively they may be adhesively bonded. More specifically, an improved strong woven fabric 11 may be formed by sintering the woven warp and filling yarns to form an effectively bonded joint at the points of contact to serve as current collector. Similarly, other ordered materials as well as random web base fabrics 1 1 may be bonded to assure a desired distribution of the metal filaments or fibers. Suit- I able sacrificial materials include synthetic, plastic or a the cutting of the pile yarns to define the plush or velvet surface be performed prior to the sintering operation if cut pile yarns are desired.
  • the metal filaments may be made extremely small in diameter to provide desired flexibility and to provide blending characteristics in the yarn.
  • the warp ends and filling picks may be formed from filaments 28 provided in tows, such as 8 micron 300 end, 12 micron 90 end, 12 micron 300 end, 25 micron 90 end, 4 micron 1,000 end, 2 micron 1,000 end, 4 micron 5,000 end, 2 micron 5,000 end tows, etc.
  • Such tows preferably are provided with a suitable twist for facilitated weaving.
  • the pile material illustratively, may be formed of tows such as 2 micron 300, 1,000, 500, etc., end; 4 micron 300, 1,000, 5,000, etc, end; 8 micron 300, etc. end tows, which similarly may be provided with suitable twists, such as 2 to 5 turns per inch twists as desired.
  • the filling picks 13 may be provided in spaced planar arrangements which are spaced apart at a preselected distance.
  • the spacingas indicated may vary from approximately 0.020 inch to approximately /2 inch.
  • the extension of the pile fibers from the base fabric may, illustratively, be approximately 0.010 to 8 inches as de- 1 sired.
  • the metal material of the different yarns may be varied as desired. Where the pile yarns are the primary locus of electrochemical activity, only they need be formed of a precious metal, such as platinum or gold, where the amount of precious material must be minimized. Materials for the remaining yarns may be selected to meet strength and conductivity requirements. Thus, different selections of the metallic materials may be made as desired by the user not: only for mechanical properties considerations, but also for corrosion considerations, etc.
  • the yarn originally As an unleached composite in which the filaments or fibers are retained in a surrounding matrix body.
  • the composite may be woven into the velvet as a yarn and upon completion of the weaving, the matrix material may be removed as by leaching to free the individual small diameter filaments or fibers in the form of a tow.
  • such a composite formation may be utilized in connection with the yarns or fibers of the fabric base: as well as with the yarns of the pile portions of the velvet.
  • FIG. 12 a schematic view of a fuel cell incorporating electrodes 101 of this invention.
  • the fuel cell 100 comprises an electrolyte 102, which may be an acid or base or a molten carbonate, a pair of gas manifolds 104 and 106 for fuel and oxidizer gases and a pair of electrodes 101 interfaced between the electrolyte 102 and the gas manifolds 104 and 106.
  • each electrode incorporates a woven fabric including warp ends 12 and filling picks l3 and pile yarn 14 interlocked with the fabric forming a pile surface projecting from one face of the fabric into the adjacent gas manifold.
  • the pile yarn is at least partially metallic and can be either cut or uncut.

Abstract

An electrochemical electrode of a metallic velvet-like material comprising a woven textile pile fabric wherein at least a portion of the woven base fabric and/or the velvet surface-forming pile yarns is metallic is described. The metallic yarn may comprise a blended yarn formed of staple metal fibers and conventional nonmetallic textile fibers, or may be formed of continuous metal filament material. The metal fibers, or filaments, are preferably formed with rough, unmachined, unburnished, fracture-free outer surfaces for improved retention in the velvet pile fabric. The electrode has particular application in fuel cells, batteries and other electrochemical systems where high usable surface areas (per unit volume) are needed to promote three-phase reactions.

Description

United States Patent Brown et a1. Nov. 26, 1974 [54] PROCESS FOR MAKING 3,394,213 7/1969 CR;t )be(rjts et a1. 264/174 TR ELE TR DE 3,461,513 8 1969 irar et a1 1 28/72 P ELEC OCHEMICAL C 0 3,563,801 2/1971 Cox 136/120 [75] Inventors: Perry H. Brown, Norwell; Maurice Tremblay Westbom, both of Primary Examiner-L. Dewayne Rutledge Mass Assistant Examiner-M. J. Andrews [73 Assignee; Brunswick Corp, Chicago, I". Attorney, Agent, or Firm.lohn Heimovics; Donald Fil Oct l2 19 1 S. Olexa; Sheldon L. Epstem e 21 Appl. No.: 188,376 B RACT Related Us Application Data An electrochemical electrode of a metallic velvet-like [60] Division of Ser No 5 882 Jan 26 1970 whichi a material Comprising Woven textile pile fabrlc continuationdnl 861 Se t 5 wherein at least a portion of the woven base fabric 969 abandoneg p and/or the velvet surface-forming pile yarns is metallic is described. The metallic yarn may comprise a [52] U S Cl 136/120 FC blended yarn formed of staple metal fibers and con- [511 [n.t .Cl "Hon" 13/04 ventional nonmetanic textile fibers, or m be formed 1 [58] 28/76 P of continuous metal filament material. The metal fi- 28/72 76 139/425 bers,tor filaments, are preferably formed with rough, unmachined, unburnished, fracture-free outer surfaces [561 References Cited for improved retention in the velvet pile fabric. The
' electrode has particular application in fuel cells, bat- UNITED STATES PATENTS teries and other electrochemical systems where high glerriam usable surface areas (per unit volume) are needed to aesar 3,284,243 11/1966 Von Sturm 136/120 FC promote three phflse reactlonsl 3.378.999 4/1968 Roberts et a1. 29/193 x 4 Cla ra mg Figur s LOAD t O 0 l4 l4 PAIENIELW 3350.697
amma l6 INVEN TORS MAURICE H. TREMBLAY PERRY/l. BROWN BACKGROUND OF THE INVENTION CROSS-REFERENCE This application is a division of Application Ser. No. 5,882 filed on Jan. 26, 1970 which-in-tum is a continuation-in-part of our applicationSer. No. 861,024 filed on Sept. 25, 1969, now abandoned.
FIELD OF THE INVENTION This invention is in the field of electrochemistry and, more particularly, is a new electrochemical electrode for fuel cells, batteries and other electrochemical systems which require high usable surface areas on their electrodes to make the systems economical for commercialization.
DESCRIPTION OF THE PRIOR ART In a number of electrochemical systems, poor elec- In order to overcome this limitation on the usable surface area of an electrochemical electrodewhich can trode performance prevents commercialization. In the case of a system such as the fuel cell, poor electrode performance is believed to be caused by limited surface areas available to promote the required three-phase electrode reactions in which both the electrolyte and either the fuel or oxidizer gas are brought together at common points on the electrode surface. Detailed descriptions of this problem and suggested solutions apformance noted when finer powders and fibers are used suggests that surface area limitations are of prime importance. The problem that has arisen is that there is little chance to make further increases in surface area now that particle and fiber dimensions of approximately 1 micron have been realized.
A careful analysis of electrode structure and per formance in a typical three-phase (gas-electrolytemetal) reaction reveals that a very small percentage of the available surface area of a conventional electrode is actually used to promote and support 'a reaction. A typical prior art fuel cell electrode comprises a porous powdered metal compacted structure or a randomly oriented fiber metal web which may be 1-20 mils or more in thickness. The electrode is partially flooded from one side with an electrolyte such as an acid, a base, or a molten carbonate. A gas such as hydrogen (at the anode) or air (at the cathode) enters the electrode from the other side. By one of a number of techniques, a stable gas-electrolyte interface is established within the electrode. Recalling that the combined, si-
multaneous presence of gas, electrolyte and electrode is necessary to have a reaction, it is interesting to note promote a reaction for a fuel cell or other system, the electrodes of this invention were developed. Typically, those electrodes comprise a pile or velvet-like or plushlike fabric wherein the pile comprises spun yarns which act as wicks for the electrolyte (in the case of fuel cells) and which may be covered by only a few microns of electrolyte. With such a thin coating, the gas (in the case of a fuel cell) can readily permeate through the electrolyte layer to the metal electrode to initiate and sustain an efficient three-phase reaction. The fine capillary-like wicks preferably containing continuous metallic filaments are oriented in the direction of mass flow (perpendicular rather than parallel to the gaselectrolyte interface) to aid rather than hinder liquid and ionic mass transport. In addition the fabric supporting the pile yarns acts as a current collector. In systems other than fuel cells, fluids other than electrolytes and fuel or oxidizer gases may be used.
DESCRIPTION OF A PREFERRED EMBODIMENT The electrochemical electrodes of this invention comprise a pile or velvet-like fabric wherein at least a portion of the woven fabric and/or pile yarn is metallic. The electrodes may also include a metallic portion of i the textile in the form of small diameter metal filaments or fibers which may be blended with conventional textile materials or comprise the entire yarn. Further, the
r yarn maybe a spun yarn comprising metal fibers. The
metal filaments or fibers may have a diameter of down to 1 micron or smaller to provide desirable flexibility and uniformity of blend whereby the pile fabric may be formed by substantially conventional textile forming apparatus. The metal fibers may comprise staple length fibers or may comprise continuous filaments as desired. In the preferred form, the fibers or filaments may have a rough unmachined, unbumished, fracture-free outer surface for improved retention, higher surface area and good electric conductivity between the fibers in the pile fabric. The fibers may be metallic throughout, or may comprise nonmetallic fibers having anelectrically conductive metallic coating.
The metal fibers and filaments may have further improved retention and conductivity in the fabric by means of bonding. The bonding may be effected by metallurgical processes such as sintering, brazing, or welding operations and sacrificial materials may be employed for maintaining 'a desired association of the metal fibers and filaments. Alternatively, when adhesive bonding means are used, they may comprise electrically conductive adhesives The particular metal material used may be preselected to provide desired catalytic performance, wear, and abrasion, and other physical and chemical characteristics.
BRIEF DESCRIPTION OF THE DRAWING Other features and advantages of the invention will be apparent from the following description taken in connection with the accompanying drawing wherein:
FIG. 1 is a schematic view illustrating a drawing step in the formation of metallic filaments for use in making a pile or velvet-like textile electrochemical electrode embodying the invention;
FIG. 2 is a schematic view illustrating a further step in the formation of metallic filaments wherein the matrix material is removed;
FIG. 3 is a broken isometric view of a tow of filaments so formed;
FIG. 4 is an enlarged transverse cross-section of a filament illustrating the rough unmachined outer surface thereof;
FIG. 5 is a transverse section of an uncut velvet or pile fabric electrode;
FIG. 6 is a transverse section of a modified form of a pile fabric electrode;
FIG. 7 is a fragmentary face view of the fabric of FIG.
FIG. 8 is a fragmentary enlarged elevation of yarns such as used in the pile fabrics of FIGS. 5 and 6;
FIG. 9 is a schematic elevation of an apparatus for providing sintered bonds between the metallic portions of the fabric;
FIG. 10 is a fragmentary perspective view of a piece of pile electrode embodying the invention;
FIG. 1 1 is a transverse cross-section of a coated fiber for use in the pile fabric; and
FIG. 12 is a schematic view of a fuel cell incorporating electrodes of this invention.
In the exemplary embodiment of the invention as disclosed in the drawing, an electrochemical electrode, generally designated 10, is shown to comprise a pile, plush or velvet-like textile fabric as may be formed on conventional textile forming apparatus. In a preferred form, the pile electrode comprises metallic filaments or fibers distributed in the yarns of the woven fabric and- /or pile. As illustrated in FIG. 7, the electrode s woven fabric, generally designated 11, is formed of a plurality of vertical warp yarns l2 and horizontal filling, or weft, yarns 13. In textile industry terminology, the warp yarns 12 are identified as ends and the filling yarns 13 are identified as picks. In forming the electrode material 10, the pile yarn 14 is introduced which extends outwardly from the surface of the fabric to define the pile, plush or velvet-like surface 15, as shown in FIG. 10. The pile yarn may comprise an extra warp end or an extra filling pick as desired. Alternatively and illustratively, the base fabric 11 may be a warp knitted material or another kind of ordered or geometrically regular material (such as a sliver knit) or it may be a random web material.
Referring to FIGS. 5 and 6, two different methods of forming such a pile electrode are illustrated. Thus, in the pile electrode 10a shown in FIG. 5, the warp ends 12 are interlaced in spaced or ordered relationship to two sets of filling picks, or weft yarns 13. The pile yarn 14 is interlaced with the spaced filling picks 13 to define a plurality of outwardly disposed turned portions .or piles 16. The piles 16 may be cut as by shearing or other suitable conventional cutting methods to obtain a velvet surface if open-ended wicks are desired.
In FIG. 6, another form of plush or velvet electrode material 10b is shown to comprise a fabric wherein the warp ends 12 are interlaced about the filling picks 13 with additional warp ends 12 extending generally rectilinearly through the weave. The pile yarn 141 is interlaced only with the upper set of filling picks l3 and may be formed around suitable cutting knives 17 which, in the final step of forming the material, are moved outwardly to sever the piles 16.
Alternatively electrodes similar to those shown in FIGS. 5 and 6 can be made in a single operation in which a yarn system comprises the base fiber and fiber introduced in sliver form extending outward from the base fiber comprise the pile. This process is sometimes referred to as sliver knitting.
As indicted briefly above, the invention includes the blending in of metallic, or metallic coated fibers or filaments. Thus, as shown in FIG. 8a, the yarns may comprise staple length metal fibers 18 blended with conventional staple length textile fibers 19 which may include material such as cotton, wool, glass or plastics or other polymerics which may provide required wicking or structural characteristics. As shown in FIG. 11, yarns may include non-metallic fibers 50 coated with a metallic surface 51.
If desired, the yarns may be formed of continuous metal filaments 20 as illustrated in FIG. 8b. In the preferred embodiment, the fibers 18 and filaments 20 are formed to have a rough, unmachined, unburnished, fracture-free outer surface 21, as shown in FIG. 4, to provide improved retention of the yarns, higher surface area and better conductivity between the pile yarns and the remainder of the electrode 10. Referring to FIGS. l-3, one highly desirable method of forming such yarns is by providing a plurality of metal rods 22 in a suitable matrix 23 to define a composite 24 which is suitably constricted. As shown in FIG. 1, the composite may be constricted by drawing through a suitable die 25 to produce a reduced composite 26. The composite may be successively reduced as many times as desired until the composite is reduced to a small size wherein the rods 22 are of filamentary diameter. Thus, as shown in FIG. 2, the final composite 27 may be one having filaments 28 therein of an extremely small size, such as down to 50 microns or less. It has been found that such a process produces fine filaments down to one micron, or less, in continuous lengths, such small filaments providing improved flexibility and usefulness in the pile electrode material 10 as such fine wires permit the use of substantially conventional textile apparatus in forming fabrics utilizing such filaments and fibers formed therefrom. An excellent example of a method of forming such filaments and fibers is that disclosed in Roberts et al U.S. Pat. No. 3,394,213 issued July 23, 1968 for a Method of Forming Filaments, and owned by the assignee hereof, to which reference may be had for a detailed disclosure of such a method of forming the desirable rough, unmachined surfaced fibers having high surface areas.
As indicated above, the present invention comprehends providing the electrochemical electrode 10 with at least a portion of the yarns formed of such metallic filaments or fibers as spun yarns. Illustratively, an excellent electrochemical electrode 10 may be formed of such filaments or fibers, where the warp ends 12 and the filling picks 13 of the woven fabrics 11 are formed of nickel. The fibers may have a diameter of approximately 25 microns down to 1 micron or less. The pile yarns may incorporate such metallic filaments or fibers having a diameter similar to the diameter of the woven fabric yarns or smaller. Where the fibers are provided as staple length metal fibers, they may be blended with conventional textile fibers, such as cotton, wool, plastics, or glass, etc. The blend may be one wherein the metal fibers are present in the ratio of from less than 1 to percent by weight in any, some or one of the yarns, staples or slivers contained in the electrochemical electrode.
In forming such a spun, blended yarn, the yarn may be provided with twist as desired. A manufacturers twist may be utilized to provide a highly satisfactory blended yarn for this purpose. The rough outer surface of the fibers provides an improved interlocked association of the metal fibers with the organic fibers.
To provide improved retention of the metal fibers in the pile electrode material 10, the metal fibers may be metallurgically bonded by a process such as sintering, brazing, or welding or alternatively they may be adhesively bonded. More specifically, an improved strong woven fabric 11 may be formed by sintering the woven warp and filling yarns to form an effectively bonded joint at the points of contact to serve as current collector. Similarly, other ordered materials as well as random web base fabrics 1 1 may be bonded to assure a desired distribution of the metal filaments or fibers. Suit- I able sacrificial materials include synthetic, plastic or a the cutting of the pile yarns to define the plush or velvet surface be performed prior to the sintering operation if cut pile yarns are desired.
As indicated above, the metal filaments may be made extremely small in diameter to provide desired flexibility and to provide blending characteristics in the yarn. Illustratively, the warp ends and filling picks may be formed from filaments 28 provided in tows, such as 8 micron 300 end, 12 micron 90 end, 12 micron 300 end, 25 micron 90 end, 4 micron 1,000 end, 2 micron 1,000 end, 4 micron 5,000 end, 2 micron 5,000 end tows, etc.
Such tows preferably are provided with a suitable twist for facilitated weaving. The pile material, illustratively, may be formed of tows such as 2 micron 300, 1,000, 500, etc., end; 4 micron 300, 1,000, 5,000, etc, end; 8 micron 300, etc. end tows, which similarly may be provided with suitable twists, such as 2 to 5 turns per inch twists as desired.
As shown in FIG. 5, and asindicated briefly above, the filling picks 13 may be provided in spaced planar arrangements which are spaced apart at a preselected distance. The spacingas indicated may vary from approximately 0.020 inch to approximately /2 inch. The extension of the pile fibers from the base fabric may, illustratively, be approximately 0.010 to 8 inches as de- 1 sired.
The metal material of the different yarns may be varied as desired. Where the pile yarns are the primary locus of electrochemical activity, only they need be formed of a precious metal, such as platinum or gold, where the amount of precious material must be minimized. Materials for the remaining yarns may be selected to meet strength and conductivity requirements. Thus, different selections of the metallic materials may be made as desired by the user not: only for mechanical properties considerations, but also for corrosion considerations, etc.
For ease in forming of the piles where the smaller diameter filaments or fibers are utilized, such as fibers 4 microns and smaller in diameter, it may be desirable to provide the yarn originally as an unleached composite in which the filaments or fibers are retained in a surrounding matrix body. The composite may be woven into the velvet as a yarn and upon completion of the weaving, the matrix material may be removed as by leaching to free the individual small diameter filaments or fibers in the form of a tow. Obviously, such a composite formation may be utilized in connection with the yarns or fibers of the fabric base: as well as with the yarns of the pile portions of the velvet.
In FIG. 12, a schematic view of a fuel cell incorporating electrodes 101 of this invention. The fuel cell 100 comprises an electrolyte 102, which may be an acid or base or a molten carbonate, a pair of gas manifolds 104 and 106 for fuel and oxidizer gases and a pair of electrodes 101 interfaced between the electrolyte 102 and the gas manifolds 104 and 106. As illustrated here, each electrode incorporates a woven fabric including warp ends 12 and filling picks l3 and pile yarn 14 interlocked with the fabric forming a pile surface projecting from one face of the fabric into the adjacent gas manifold. The pile yarn is at least partially metallic and can be either cut or uncut.
The foregoing disclosure of specific embodiments is illustrativeof the broad inventive concepts of this invention which apply to other electrochemical systems such as batteries, reformers and the like.
We claim:
l. The process of making an electrochemical electrode comprising the steps of:
a. forming the pile of a pile fabric with a composite metal wire, said wire comprising a plurality of metal filaments surrounded by a sacrificial metal matrix; and
(b) removing the sacrificial metal matrix thereby providing the metal filament piles of the electrode.
2. The process of claim 1 wherein the pile is cut.
3. The process of claim 1 wherein the pile is plush. I
4. The process of claim 1 wherein the pile is velvet like.

Claims (4)

1. The process of making an electrochemical electrode comprising the steps of: a. forming the pile of a pile fabric with a composite metal wire, said wire comprising a plurality of metal filaments surrounded by a sacrificial metal matrix; and (b) removing the sacrificial metal matrix thereby providing the metal filament piles of the electrode.
2. The process of claim 1 wherein the pile is cut.
3. The process of claim 1 wherein the pile is plush.
4. The process of claim 1 wherein the pile is velvet like.
US00188376A 1969-09-25 1971-10-12 Process for making electrochemical electrodes Expired - Lifetime US3850697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00188376A US3850697A (en) 1969-09-25 1971-10-12 Process for making electrochemical electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86102469A 1969-09-25 1969-09-25
US00188376A US3850697A (en) 1969-09-25 1971-10-12 Process for making electrochemical electrodes

Publications (1)

Publication Number Publication Date
US3850697A true US3850697A (en) 1974-11-26

Family

ID=26884023

Family Applications (1)

Application Number Title Priority Date Filing Date
US00188376A Expired - Lifetime US3850697A (en) 1969-09-25 1971-10-12 Process for making electrochemical electrodes

Country Status (1)

Country Link
US (1) US3850697A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199493A1 (en) * 1985-04-18 1986-10-29 Imperial Chemical Industries Plc Electrode for electrochemical cell
WO1992016956A1 (en) * 1991-03-20 1992-10-01 Composite Materials Technology, Inc. Porous electrolytic anode
WO2001088935A1 (en) * 2000-05-18 2001-11-22 Peratech Ltd. Flexible switching devices
US7186356B2 (en) 2001-06-07 2007-03-06 Peratech Ltd. Analytical device
EP2702624A1 (en) * 2011-04-26 2014-03-05 The University Of Nottingham An anode and cathode for a microbial fuel cell and a microbial fuel cell incorporating the anode or cathode
US9546429B1 (en) * 2013-04-12 2017-01-17 Microrganic Technologies Inc Multi-strand electrode and method of making
US20200069250A1 (en) * 2017-03-10 2020-03-05 Myant Inc. Method of forming a three-dimensional conductive knit patch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099067A (en) * 1957-09-13 1963-07-30 Union Carbide Corp Plastic fibers
US3236693A (en) * 1963-10-11 1966-02-22 Socony Mobil Oil Co Inc Electrode for fuel cells
US3284243A (en) * 1961-12-14 1966-11-08 Siemens Ag Gas diffusion of electrodes of oriented porosity and process of producing such electrodes
US3378999A (en) * 1965-06-17 1968-04-23 Brunswick Corp Metallic yarn structure
US3394213A (en) * 1964-03-02 1968-07-23 Roehr Prod Co Inc Method of forming filaments
US3461513A (en) * 1967-02-20 1969-08-19 American Velcro Inc Separable fastening device
US3563801A (en) * 1969-11-20 1971-02-16 Cambridge Thermionic Corp Flocked plate structure for electric batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099067A (en) * 1957-09-13 1963-07-30 Union Carbide Corp Plastic fibers
US3284243A (en) * 1961-12-14 1966-11-08 Siemens Ag Gas diffusion of electrodes of oriented porosity and process of producing such electrodes
US3236693A (en) * 1963-10-11 1966-02-22 Socony Mobil Oil Co Inc Electrode for fuel cells
US3394213A (en) * 1964-03-02 1968-07-23 Roehr Prod Co Inc Method of forming filaments
US3378999A (en) * 1965-06-17 1968-04-23 Brunswick Corp Metallic yarn structure
US3461513A (en) * 1967-02-20 1969-08-19 American Velcro Inc Separable fastening device
US3563801A (en) * 1969-11-20 1971-02-16 Cambridge Thermionic Corp Flocked plate structure for electric batteries

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199493A1 (en) * 1985-04-18 1986-10-29 Imperial Chemical Industries Plc Electrode for electrochemical cell
WO1992016956A1 (en) * 1991-03-20 1992-10-01 Composite Materials Technology, Inc. Porous electrolytic anode
WO2001088935A1 (en) * 2000-05-18 2001-11-22 Peratech Ltd. Flexible switching devices
US20060255903A1 (en) * 2000-05-18 2006-11-16 Peratech Ltd. Flexible switching devices
US7301435B2 (en) 2000-05-18 2007-11-27 Peratech Limited Flexible switching devices
US7186356B2 (en) 2001-06-07 2007-03-06 Peratech Ltd. Analytical device
EP2702624A1 (en) * 2011-04-26 2014-03-05 The University Of Nottingham An anode and cathode for a microbial fuel cell and a microbial fuel cell incorporating the anode or cathode
US9546429B1 (en) * 2013-04-12 2017-01-17 Microrganic Technologies Inc Multi-strand electrode and method of making
US20200069250A1 (en) * 2017-03-10 2020-03-05 Myant Inc. Method of forming a three-dimensional conductive knit patch

Similar Documents

Publication Publication Date Title
EP1050915B1 (en) Material for electrode
US2616165A (en) Electrode for electrolytic devices and methods of making same
US5589301A (en) Battery electrode substrates and method of making same
EP0698935A1 (en) Flexible carbon fiber electrode with low elasticity modulus and high electrical conductivity, battery employing the carbon fiber electrode, and methode of manufacture
US3850697A (en) Process for making electrochemical electrodes
US4010004A (en) Velvet fabric
KR20150022750A (en) Improved lead-acid battery construction
JPS58181269A (en) Grating for storage battery electrode, producing method, storage battery electrode containing same grating and storage battery
US3905831A (en) Electrochemical electrodes
JP2003533000A (en) Multi-layer electrode
US5362580A (en) Lightweight battery electrode and method of making it
US3481790A (en) Seawater reserve battery having magnesium anode and lead dioxide-graphite fabric cathode
US3284243A (en) Gas diffusion of electrodes of oriented porosity and process of producing such electrodes
AU683396B2 (en) Method of making a battery plate
US3838983A (en) Velvet fabric
EP0079666B1 (en) Battery electrodes
US3657014A (en) Porous electrode-support for alkaline accumulators
US3689320A (en) Method for making a battery plate using cellulosic material
US5677088A (en) Nickel electrode plate for an alkaline storage battery
US3224905A (en) Tubes for holding the active material in electrode plates of galvanic elements
US3953913A (en) Velvet fabric
EP1162296A1 (en) Carbon fiber woven fabric and method for production thereof
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
CN101150193A (en) Battery electrode substrate, and electrode employing the same
JPS61158669A (en) Electrode plate for bipolar-type fuel cell