US3852204A - Lubricant compositions - Google Patents

Lubricant compositions Download PDF

Info

Publication number
US3852204A
US3852204A US00073572A US7357270A US3852204A US 3852204 A US3852204 A US 3852204A US 00073572 A US00073572 A US 00073572A US 7357270 A US7357270 A US 7357270A US 3852204 A US3852204 A US 3852204A
Authority
US
United States
Prior art keywords
percent
polybutene
lubricant
additive
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00073572A
Inventor
G Souillard
Quaethoven F Van
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Petrochemicals and Refining USA Inc
Original Assignee
Cosden Oil and Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosden Oil and Chemical Co filed Critical Cosden Oil and Chemical Co
Application granted granted Critical
Publication of US3852204A publication Critical patent/US3852204A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • C10M2203/1045Aromatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • C10M2203/1085Residual fractions, e.g. bright stocks used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • C10M2205/0265Butene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/285Esters of aromatic polycarboxylic acids
    • C10M2207/2855Esters of aromatic polycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/024Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating

Definitions

  • ABSTRACT Lubricant compositions comprising:
  • This invention relates to lubrication of high and low speed four-stroke, spark-ignition and compressionignition engines, and two-stroke marine diesel engines which operate by having the lubricant directly injected into the cylinders, and particularly to a lubricant comprising a mixture of a liquid polybutene, mineral oil and a lubricant additive; and to operation of' such fourstroke and two-stroke engines with this lubricant.
  • Still another cause of premature wear of the piston and the cylinder walls is due to the lubricating system, which is by injection for the two-stroke marine diesel engines.
  • the lubricating system which is by injection for the two-stroke marine diesel engines.
  • increasingly high pressures exist between the cylinder walls and the piston rings and also larger spacing of the lubrication inlets on the cylinder walls, the size of which are now designed larger and larger, causes the injected lubricant to spread thereover with greater difficulty. This hinders uniformity and complete lubrication and, therefore, leads to an abnormal wear of the engine.
  • the present lubricant is superior to other common lubricants in that occasional contact with water or glycol from the cooling system will not result in precipitation of additives which remain homogeneously sus- 1 pended despite such aqueous contact and contamination.
  • a crankcase lubricant for four-cycle engines, spark-ignited as well as compression-ignited engines, markedly superior to solve the lubrication problems listed is provided by a composition comprising 10 to 24 percent liquid polybutene, 5 to percent mineral lubricating oil and l to 15 percent, preferably 3 to 15 percent, additive as defined below, the proportions being by weight.
  • the polybutene hereof is a light liquid polybutene or polyisobutylene or mixtures thereof; the polybutene is preferably hydrogenated.
  • the polybutene preferably has a viscosity ranging from 30 SSU at 210F (2.0 cst at 989C) to about 600 SSU at 2l0F (130 cst at 989C) and a molecular weight ranging from about 250 to 950.
  • the mineral oil component hereof is selected from any commercial lubricating mineral oil having a preferred viscosity in the range of about 50 to 1,000 SSU at F.
  • the additives useful herein are mineral oil sulfonic acid superbased with an alkali-forming metal oxide or hydroxide such as of an alkali or alkaline earth metal, typically potassium or sodium oxide or hydroxide, or calcium, magnesium, barium or strontium oxide or hy droxide. It is preferred to use the calcium petroleum sulfonic acid herein referred to as calcium sulfonate.
  • Such sulfonate is prepared by sulfonation of crude or fine petroleum fractions at a temperature of 50 200F, by reacting with a sulfonating agent, typically fuming sulfuric acid, for a period of about 30 60 minutes.
  • the mineral oil is a refined petroleum fraction solvent, refined with a solvent such as propane to remove usual impurities such as asphalt and waxes.
  • the base oil to be sulfonated may be any common oil, typically mid-continent oil, having a viscosity range of 50 230 SSUat 210F.
  • the sulfonated product soluble in the oil base is neutralized with calcium or barium oxide or hydroxide.
  • Such calcium petroleum sulfonic acid is available as a commercial product, for instance, Lubrizol 239, formed as described above.
  • the additive may further include a viscosity index improver such as polymethacrylate having a molecular weight range between about l0,000 20,000, typically about 15,000; and zinc dialkyldithiophosphate, typically zinc diethyldithiophosphate and diisobutyl catechol.
  • a viscosity index improver such as polymethacrylate having a molecular weight range between about l0,000 20,000, typically about 15,000
  • zinc dialkyldithiophosphate typically zinc diethyldithiophosphate and diisobutyl catechol.
  • typically useful additives may be a mixture of a superbased phosphonate and sulfonate of barium, both formed from mineral oil, such mixture typically having a sulfur content of 0.9 percent by weight, a phosphorous content of 1.44 percent by weight and a barium content of 7.05 percent by weight.
  • a third useful additive is one of the so-called ashless types, and consists of an alkenyl succinimide formed by reacting an alkylene polyamine consisting typically of triethylene tetramine or tetraethylene pentamine with alkenyl succinic anhydride to form the imide, the alkenyl substituent being an olefine of from about two to about sixteen carbon atoms, usually isobutylene or polyisobutylene. The preparation of that compound is as described in U.S. Pat. No. 3,310,492.
  • the polybutene imparts greater adhesion and rapid spread as well as increased anti-rust properties.
  • the formulation includes a quantity of polybutene in the range of l to 75 percent, preferably 12 to 24 percent.
  • An increased quantity of a specific additive is preferred; namely; a sulfonated mineral oil superbased with an alkaline earth metal oxideor-hydroxide, preferably of calcium, magnesium or barium formed as stated above, which is used in the preferred range of to 30 percent
  • the quantity of the mineral oil component is the remainder and is in the range of 5 to 80 percent, all proportions being by weight.
  • the viscosity and molecular weight characteristics of the preferred polybutene and mineral oil for both types of lubricant are the same as those given above.
  • a preferred method of forming the polybutene is shown in United States patent to Jackson, US. Pat. No. 2,957,930, issued Oct. 23, 1960. Such method forms a superior product in that the polybutene is formed more homogeneously in a narrow molecular weight range.
  • composition hereof adheres to the metal surfaces over long storage periods so that the anti-rust additive the compositioncontains is able to exert its full anti-rust effect.
  • FIG. 1 illustrates graphically the comparative results upon the relative merits of three oils -mineral oil, mineral oil and polyisobutylene, and mineral oil and hydrogenated isobutylene upon a piston skirt;
  • FIG. 2 has the same graphical illustrations as to the effect of these oils upon the piston lands
  • FIG. 3 graphically illustrates the effect of these same oils upon the piston grooves
  • FIG. 4 illustrates graphically the spreading effect of mineral oil containing additive A as identified before Table VI below, and
  • FIG. 5 comparatively graphically identifies a mixture of polyisobutylene and mineral oil.
  • EXAMPLE 1 Thermal Behaviour Test on the Antar Cokefaction Bench The purpose of this test is to determine the tendency of a lubricating oil to form varnish and carbon deposits in contact with a hot surface, such deposits being insoluble in petroleum ether.
  • the projection system is composed of a broom made of fine steel rods which dip into the oil, the broom being rotated at exactly 1,000 rpm by an electric motor.
  • the apparatus is practically closed and the cooling of the walls,.obtained through water circulation, brings about a condensation of the vapors, thereby ensuring an almost thorough recycling of the tested oil.
  • the hot metallic surface is represented by the external part of the bottom of an aluminum alloy Becker (of a composition similar to that of the pistons of a thermal engine) within which heating resistance are installed.
  • a control and regulation system connected to calibrated thermocouples keeps the hot surface within very narrow temperature limits; indeed, the amount of deposits formed increases almost exponentially with the temperature above 220/240C.
  • test conditions for an oil containing additives are as follows:
  • the additive X used below is composed predominantly of mixed barium superbased phosphonate and sulfonate having a sulfur content of 0.9 percent by weight, a barium content of 7.05 percent by weight, and a phosphorous content of 1.44 percent by weight, the balance being mineral oil residues with both phosphonates and sulfonates.
  • the total additive further contains about 2 percent of polymethacrylate having a molecular weight of about 15,000 and 1 percent of zinc diethyldithiophosphate.
  • a four-stroke single-cylinder diesel engine of 553 cm was used in accordance with the modified IP.l75/60T procedure of the War Office. This procedure is more severe than the standard CEC/AT4 method.
  • compositions 2 and 3 containing polybutene gave good results.
  • the additive Y is a commercial additive of the Ba and Ca superbased sulfonated mineral oil having a Ba content of 3.45 percent by wt., a Ca content of 3.55 percent by wt. and a S content of 2.3 percent by wt.
  • compositions 2 and 3 clearly show that the addition of a certain amount of polybutene greatly improves the ratings of the SNCB test.
  • the additive Z is a commercial additive of the Ba and Ca superbased sulfonated mineral oil having a Ba content of 4.3 percent by wt., a Ca content of 3.4 percent by weight and a S content of 2.4 percent by wt.
  • composition 1 Composition 2
  • Composition 3 Composition of the oil W/W 92% mineral oil 76% mineral oil 76% mineral oil 8 additive Y 8% additive Y 8% additive Y 16% polyybutene 16% hydrogenated polybutene Piston ring sticking I35 35 35 35 Scruper-ring sludge I 10 10 10 Carbon deposits in 9 9.25 10 the third groove.
  • the gasoline Petter tests are run with an oil having a paraffinic nature, and refined with a solvent.
  • the Ford test with the Cortina engine is commonly used for the purpose of studying the behaviour of oils at these high temperatures. This test is run on a four cylinder 1,500 cm engine under full load (48 HP at 35,000 r.p.m.) during 100 hours.
  • Additive A is a commercial additive comprising a Zn diethyldithiophosphate antioxidant having a Zn content of 8.6 by weight, and a P content of 7.7 percent by weight, and a detergent which is a Mg and Ca mineral oil sulfonate having an Mg content of 0.68 percent by weight and a Ca content of 0.23 percent by weight.
  • the skirt of the Becher is representative of the piston
  • the results presented in the table below were ob- I5 tained from three base oils having the same final viscosity; namely, 7 E50 or 53 cst at 50C.
  • curves are obtained which can be graphically derived in order to establish the spreading rate.
  • straight lines may be drawn between representative points and the angular coefficients of these straight lines taken as an average of the spreading rate under the test conditions.
  • the fuel used was a 600 Redwood preheated to 60C Lubrication is of the waste lubrication type; each cylinder having a mechanical lubricating system with multiple pumps of the type ASEA n BSP 4, which lubricates the cylinder (through four inlets), the piston trunnion and the big-end bearing.
  • the wear of the cylinder liner and of the rings is measured b. deposit, sludge and varnish on the piston and visiting ports are rated
  • the skirt rating is achieved by using the CRC/AT4 procedure, with a rating of 10 for an absolutely clean piston and a rating of for a piston completely covered with carbon.
  • This diesel engine uses a fuel with a viscosity of up to 3,000 sec.Redwood. It was found that the use of composition n '1 on this engine reduces the wear expressed in millimeters per 100 hrs. running by 50 percent.
  • a lubricant for internal combustion engines comprising from 10 to 75 percent of liquid polybutene having a viscosity in the range of about 30 up to 600 SSU at 210F and a molecular weight of less than about 1,000, to 80 percent mineral lubricating oil having a viscosity in the range of about 50 to 1,000 SSU at 100F, and 3 to 30 percent of a sulfonic acid superbased with an alkaline earth metal selected from the group consisting of calcium, barium and magnesium, the proportions being by weight.
  • Crackcase lubricant as defined in claim 1 for fourstroke spark-ignition and compression ignition engines comprising from to 24 percent of liquid polybutene.
  • Cylinder spray lubricant for low speed marine diesel engines as defined in claim 1 comprising from 10 to 24 percent of said liquid polybutene, 5 to 80 percent of said mineral lubricating oil and 5 to percent of said superbased sulfonate additive, the proportions being by weight.
  • a lubricant for internal combustion engines as defined in claim 1 further containing a small but effective quantity (comprising from 10 to of liquid polybutene having a viscosity in the range of about 30 up to 600 SSU at 210F and a molecular weight of less than about 1000, 5 to mineral lubricating oil having a viscosity in the range of about 50 to 1000 SSU at F, and 3 to 30%) of an alkylene polyamine amide TABLE X]
  • a small but effective quantity comprising from 10 to of liquid polybutene having a viscosity in the range of about 30 up to 600 SSU at 210F and a molecular weight of less than about 1000, 5 to mineral lubricating oil having a viscosity in the range of about 50 to 1000 SSU at F, and 3 to 30%
  • an alkylene polyamine amide TABLE X
  • EXAMPLE 9 The lubricating composition described under n 1 of Example 8 has been used successfully for many months of an alkenyl succinic acid in which the alkylene polyamine is triethylene tetramine or tetraethylene pentamine.
  • a lubricant for internal combustion engines as defined in claim 1 further containing a small but effective quantity of an alkylene polyamine amide of an alkenyl succinic acid in which the alkylene polyamine is triethylene tetramine or tetraethylene pentamine.

Abstract

Lubricant compositions comprising: lubr A. 5-80 PERCENT MINERAL OIL B. 10-75 PERCENT LIQUID POLYBUTENE C. 3-30 PERCENT SUPERBASED ALKALINE EARTH METAL SULFONATE D. MINOR AMOUNT OF ALKENYL SUCCINIMIDE.

Description

United States Patent [191 Souillard et a1.
1 1 *Dec. 3, 1974 LUBRICANT COMPOSITIONS Inventors: Georges Jules Pierre Souillard;
Frederic Francois Paul Van Quaethoven, both of Wezembeek-Oppem, Belgium Related U.S. Application Data Continuation-impart of Ser. No. 555,050, June 3, 1966, abandoned, Continuation-impart of Ser. No. 73,575, Sept. 18, 1970, Pat. No. 3,753,905, which is a continuation-in-part of Ser. No. 778.858, Nov. 25, 1968, abandoned.
Foreign Application Priority Data Aug. 24, 1966 Belgium 23479 Aug. 24, 1966 Belgium 23769 U.S. Cl.... 252/33.4, 252/33, 252/51.5 A, 252/59 Int. Cl ..C10m l/40, C10m1/3-2, C10m1/18 Field of Search 252/33, 32.7 E, 59, 33.4, 252/51.5 A
References Cited UNITED STATES PATENTS 2,227,692 1/1941 Barnard 2. 2/59 2,304,874 12/1942 Barnurd.. 2. 2/59 3,004,837 10/1961 Riemcnschncidcr. 1152/59 3,076,841 2/1963 Hutchings ct 111.11 252/33 3,085,978 4/1963 Mitacek ct a1... 2. 2/59 3,105,049 9/1963 Voorhces 252/33 3,158,572 11/1964 Andress 252/33 3,285,851 11/1966 Dyer 252/333 3,298,951 l/1967 Guminski 252/33.3 3,321,399 5/1967 Verstecg et 211. 252/33 3,377,281 4/1968 Gower 252/33.3
FOREIGN PATENTS OR APPLICATIONS 940,143 10/1963 Great Britain 252/59 Primary Exqminer-Danie1 E. Wyman Assistant Examiner-I. Vaughn [57] ABSTRACT Lubricant compositions comprising:
a. 5-80 percent mineral oil b. 10-75 percent liquid polybutene c. 3-30 percent superbased alkaline earth metal sulfonate (1. minor amount of alkenyl succinimide.
7 Claims, 5 Drawing Figures PISTON LANDS MERIT PATENIELUEE 3mm sum 1 of 2.
MINERAL on.
HYDROGENATED m PISTON SKIRT MERJT DURATION HOURS MINERAL OIL-I- HYDROGENATED P.I.B.
MINERAL OIL P.I.B
KITNERTILT ol DURATION HOURS NERAL OIL P.I.B.
wNERAL OIL HYDROGENA'TED P.|.B.
MINERAL OIL PISTON GROOVES MERIT DURATION HOURS /N 1 5 N TORS GEORGES JULES P/ERRE SOU/LLARD FREDER/(K FRANCO/5 PAUL VAN QUAETHOVEN A 7' TORNEV PATENTEL DEC snmam z A M M 04H w MA w M P m Y m Ew h N wmm fiw TIME IN MINUTES SPREAD/N6 OF MAR/NE MINERAL OILS ON POL/SHED CAST IRON VERSUS T/ME MINERAL OIL POLYISOBUTYLENE 5O T'IME IN MINUTES SPREAD/N6 OF BASE O/LS ON POL/SHED CAST IRON VERSUS TIME IN l ENTORS E RRE SOU/LLARD GEORGES JULES Pl FREOE'R/CK F RANCO/S PAUL VAN QUAEWOVEN LUBRICANT COMPOSITIONS This application is a continuation-in-part of my copending application, Ser. No. 555,050, filed June 3, l966, and now abandoned; a continuation-in-part of our copending application, Ser. No. 73,575, filed Sept. 18, 1970, now US. Pat. No. 3,753,905, issued Aug. 2 l, 1973; in turn a continuation-in-part of application Ser. No. 778,858, filed Nov. 25, 1968, and now abandoned.
This invention relates to lubrication of high and low speed four-stroke, spark-ignition and compressionignition engines, and two-stroke marine diesel engines which operate by having the lubricant directly injected into the cylinders, and particularly to a lubricant comprising a mixture of a liquid polybutene, mineral oil and a lubricant additive; and to operation of' such fourstroke and two-stroke engines with this lubricant.
The known lubricating compositions are not fully satisfactory for lubrication of the present modern engines of these types which impose more severe requirements.
It is also common to run two-cycle marine engines, and especially the low-speed diesel engines, with lowpriced fuels which contain important quantities of asphalts and sulfur, products which directly or indirectly cause rapid wear of the cylinders. Such low-grade fuels burn in these engines with production of sulfur oxides which by condensing on the cylinder walls lead to the formation of corrosive sulfurous and sulfuric acid which not only shortens the life of the engine because of their corrosive action, but also increases the quantity of deposits formed during combustion which also promotes engine wear. The amount of deposits formed during the combustion of the fuel increases with the asphalt content of the fuel.
Still another cause of premature wear of the piston and the cylinder walls is due to the lubricating system, which is by injection for the two-stroke marine diesel engines. In these engines, increasingly high pressures exist between the cylinder walls and the piston rings and also larger spacing of the lubrication inlets on the cylinder walls, the size of which are now designed larger and larger, causes the injected lubricant to spread thereover with greater difficulty. This hinders uniformity and complete lubrication and, therefore, leads to an abnormal wear of the engine. The use of a high base content lubricant for the neutralization of corrosive acids formed during the combustion of the fuel, does not meet the other causes of wear such as the abrasive deposits and the great need for spreading of the lubricant injected into the cylinder with this type of marine engine.
The high-speed running of four-stroke engines with every-day higher specific outputs and power-to-weight ratios, leads to increasing maximal temperatures. When the known lubricants are submitted to such temperatures, they tend to decompose excessively with formation of objectionable products. At the high temperature conditions, the decomposition products polymerize, forming deposits (varnish and so-called lacquer deposits) on and between the moving parts, particularly on the cylinder head, the piston skirt and grooves which often results in low and high temperature seizure. Moreover, deposits in the combustion chamber and on the cylinder head disturb the fuel ignition pattern so that ignition is caused not only by the spark plug, but at random from the numerous hot spots created by the deposits. The result is a completely abnormal, often smokey, combustion of lower efficiency and reduced engine life; and for spark-ignited engines, high octane requirements. Such conditions are exaggerated by recently required forced gas recycle for crankcase ventilation which increases the deposits on the inlet valves and in the combustion chamber, and increases the corrosion problems encountered with conventional four-stroke lubricants.
The present lubricant is superior to other common lubricants in that occasional contact with water or glycol from the cooling system will not result in precipitation of additives which remain homogeneously sus- 1 pended despite such aqueous contact and contamination.
According to one aspect of the invention, a crankcase lubricant for four-cycle engines, spark-ignited as well as compression-ignited engines, markedly superior to solve the lubrication problems listed, is provided by a composition comprising 10 to 24 percent liquid polybutene, 5 to percent mineral lubricating oil and l to 15 percent, preferably 3 to 15 percent, additive as defined below, the proportions being by weight.
The polybutene hereof is a light liquid polybutene or polyisobutylene or mixtures thereof; the polybutene is preferably hydrogenated.
The polybutene preferably has a viscosity ranging from 30 SSU at 210F (2.0 cst at 989C) to about 600 SSU at 2l0F (130 cst at 989C) and a molecular weight ranging from about 250 to 950.
The mineral oil component hereof is selected from any commercial lubricating mineral oil having a preferred viscosity in the range of about 50 to 1,000 SSU at F.
The additives useful herein are mineral oil sulfonic acid superbased with an alkali-forming metal oxide or hydroxide such as of an alkali or alkaline earth metal, typically potassium or sodium oxide or hydroxide, or calcium, magnesium, barium or strontium oxide or hy droxide. It is preferred to use the calcium petroleum sulfonic acid herein referred to as calcium sulfonate. Such sulfonate is prepared by sulfonation of crude or fine petroleum fractions at a temperature of 50 200F, by reacting with a sulfonating agent, typically fuming sulfuric acid, for a period of about 30 60 minutes. Usually the mineral oil is a refined petroleum fraction solvent, refined with a solvent such as propane to remove usual impurities such as asphalt and waxes. The base oil to be sulfonated may be any common oil, typically mid-continent oil, having a viscosity range of 50 230 SSUat 210F. The sulfonated product soluble in the oil base is neutralized with calcium or barium oxide or hydroxide. Such calcium petroleum sulfonic acid is available as a commercial product, for instance, Lubrizol 239, formed as described above. The additive may further include a viscosity index improver such as polymethacrylate having a molecular weight range between about l0,000 20,000, typically about 15,000; and zinc dialkyldithiophosphate, typically zinc diethyldithiophosphate and diisobutyl catechol.
Other typically useful additives may be a mixture of a superbased phosphonate and sulfonate of barium, both formed from mineral oil, such mixture typically having a sulfur content of 0.9 percent by weight, a phosphorous content of 1.44 percent by weight and a barium content of 7.05 percent by weight.
A third useful additive is one of the so-called ashless types, and consists of an alkenyl succinimide formed by reacting an alkylene polyamine consisting typically of triethylene tetramine or tetraethylene pentamine with alkenyl succinic anhydride to form the imide, the alkenyl substituent being an olefine of from about two to about sixteen carbon atoms, usually isobutylene or polyisobutylene. The preparation of that compound is as described in U.S. Pat. No. 3,310,492.
In a second aspect of this invention, where the lubricant is sprayed into the cylinder for two-cycle low speed marine diesel lubrication, the polybutene imparts greater adhesion and rapid spread as well as increased anti-rust properties. The formulation includes a quantity of polybutene in the range of l to 75 percent, preferably 12 to 24 percent. An increased quantity of a specific additive is preferred; namely; a sulfonated mineral oil superbased with an alkaline earth metal oxideor-hydroxide, preferably of calcium, magnesium or barium formed as stated above, which is used in the preferred range of to 30 percent The quantity of the mineral oil component is the remainder and is in the range of 5 to 80 percent, all proportions being by weight. The viscosity and molecular weight characteristics of the preferred polybutene and mineral oil for both types of lubricant are the same as those given above.
A preferred method of forming the polybutene is shown in United States patent to Jackson, US. Pat. No. 2,957,930, issued Oct. 23, 1960. Such method forms a superior product in that the polybutene is formed more homogeneously in a narrow molecular weight range.
Because of the polymeric structure of the polybutene, it decomposes at a relatively low temperature leaving only minor amounts of deposits which are more friable and easily blown out into the exhaust system. Also, because of the presence of liquid polybutene, the
composition hereof adheres to the metal surfaces over long storage periods so that the anti-rust additive the compositioncontains is able to exert its full anti-rust effect.
'In the high efficiency and supercharged two-cycle marine diesel engines, running temperature and pressure are very high. Under these conditions the conventional oils decompose with formation of oxidation and decomposition products which polymerize and lead to the formation of deposits on and between the different parts of the engine, and particularly on the skirt and in the grooves of the pistonas well as in the combustion chamber. Those deposits promote piston ring sticking and decrease the heat exchange between the piston skirt and the cylinder. In the very high efficiency and supercharged engines lubricated with conventional oils cokefied deposits may also occur on the piston undercrown, act as a thermal insulator on the heat transfer on the head of the piston, and thereby increase the temperature of the piston and induce seizure. The polybutene in this lubricant contributes a marked reduction of the amounts of objectionable deposits. Moreover, the use of polybutene in a marine two-cycle engine gives the composition a remarkable spreading property in contrast to the spreading of conventional oils.
Finally, this combination of mineral oil with polybutene and additives selected is overall superior as a lubricant for these engines as shown in the following examples.
The several figures of drawing graphically illustrate the test results: i 1
FIG. 1 illustrates graphically the comparative results upon the relative merits of three oils -mineral oil, mineral oil and polyisobutylene, and mineral oil and hydrogenated isobutylene upon a piston skirt;
FIG. 2 has the same graphical illustrations as to the effect of these oils upon the piston lands;
FIG. 3 graphically illustrates the effect of these same oils upon the piston grooves;
FIG. 4 illustrates graphically the spreading effect of mineral oil containing additive A as identified before Table VI below, and
FIG. 5 comparatively graphically identifies a mixture of polyisobutylene and mineral oil.
EXAMPLE 1 Thermal Behaviour Test on the Antar Cokefaction Bench The purpose of this test is to determine the tendency of a lubricating oil to form varnish and carbon deposits in contact with a hot surface, such deposits being insoluble in petroleum ether.
This laboratory method of deteriorating an oil as a Test Method and Material Used An oil volume of 450 cm, kept at a moderate temperature (as in the case of an engine crankcase is projected continuously in the form of droplets on a hot metallic surface (as in the case of a cylinder, a piston and so on) from where it is allowed to fall down.
The projection system is composed of a broom made of fine steel rods which dip into the oil, the broom being rotated at exactly 1,000 rpm by an electric motor.
The apparatus is practically closed and the cooling of the walls,.obtained through water circulation, brings about a condensation of the vapors, thereby ensuring an almost thorough recycling of the tested oil. I The hot metallic surface is represented by the external part of the bottom of an aluminum alloy Becker (of a composition similar to that of the pistons of a thermal engine) within which heating resistance are installed.
A control and regulation system connected to calibrated thermocouples keeps the hot surface within very narrow temperature limits; indeed, the amount of deposits formed increases almost exponentially with the temperature above 220/240C.
The test conditions for an oil containing additives are as follows:
l 2 hours Plate temperature: Duration of the test:
The results of tests run on the cokefaction bench with a multigrade lw/30 type oil of the S1 level are presented on Table 1 hereunder.
The additive X used below is composed predominantly of mixed barium superbased phosphonate and sulfonate having a sulfur content of 0.9 percent by weight, a barium content of 7.05 percent by weight, and a phosphorous content of 1.44 percent by weight, the balance being mineral oil residues with both phosphonates and sulfonates. The total additive further contains about 2 percent of polymethacrylate having a molecular weight of about 15,000 and 1 percent of zinc diethyldithiophosphate.
TABLE I The the following rating: ring sticking formation of carbon and lacquers deposits At the end of the test, the engine is dismantled and carefully examined according to an IP merit rating in WhlCl'l the following points are considered:
degree of piston ring sticking scraper ring sludge deposit formation on the piston skirt after washing according to a certain procedure Tests on the cokefaetion bench The results obtained on the cokefaction bench are considerably improved by the use of polybutene. The following engine tests confirm the laboratory results.
EXAMPLE 2 Comparison trials were conducted on Petter Diesel AVl with various formulations with varying oil/polybutene ratios.
A four-stroke single-cylinder diesel engine of 553 cm was used in accordance with the modified IP.l75/60T procedure of the War Office. This procedure is more severe than the standard CEC/AT4 method.
The running conditions of the modified IP.l75/60T War Office method are presented hereunder.
Speed r.p.m I500 [0 Load HP set by adjusting the consumption Oil temperature "C 63 t 2 Temperature of the coolant C inlet 88 i 2 outlet 95 i 2 Coolant liquid kerosene Kerosene flow rate L/H 1090 1 45 Oil pressure kg/cm 2.5 t 0.4 Gas oil consumption kg/h I088 1- 0.023 Injection APMH l Duration H 100 Oil capacity 2.270 kg deposit formation on the lands of the piston deposit formation in the piston grooves deposit formation inside the piston The tests were run with the following lubricating compositions belonging to the multigrade low/30 type of S1 level with respect to the additives (the percents being expressed by weight and X is the same additive as in Example 1).
1 85 percent mineral oil 15 percent additive X 2 45 percent mineral oil 40 percent polybutene 15 percent additive X 3 percent mineral oil 40 percent hydrogenated polybutene 15 percent additive X The ratings obtained after 100, 200 and 300 hours of running are presented in F [OS 1, 2 and 3 respectively.
In order to control the detergent properties of the oils over a long period of time, the duration of the test was extended to cover 3 100 hours without oil change. The evolution of the detergency of the oils with time for the three main rating points of the engine; namely, the skirt, the lands, and the piston grooves, is also shown Table II.
It will be noted that the compositions 2 and 3 containing polybutene gave good results. Composition 3, containing hydrogenated polybutene, is the best. The skirt and lands ratings brings it to the S3 oil level. The ratings of an S3-type oil, based on mineral oil after 100 and 200 hours, is presented in Table II for comparison purposes.
.TABLE II Petter Diesel AVl Rotor tests of Hultigrade Oils 15$ additive X 85$ mineral oil 151 additive x 151 additive X 2 polybutene hydrogen 1 611 mineral oil Multigrede k1 polybutene 1% mineral oil mineral oil ilOOh-i 200h.: 300h.:lh.i 200a. i399h.il00h.i 200a. isoon. 200a.
Piston ring sticking m. 10 :10 1o :10 10 1o :19 10 1o :10 i 10 1o Scraper ring sludge nu lfl :10 l0 ilO 'ilO 10 E10 :10 1O :10 l0 l0 Piston skirt after washing m. 10 9.69: 9.63: 9.63: 9.59: 9.51 9.11: 9.16: 9.15 9.85 1o 10 Piston lands (average of 3) max/10 ake; M17; ;.25: 5 4.63 M08: 7.12: 6.5 6A6 6.5 3.83 Carbon in piston grooves (l se of 3) g m- 1 T-5 6-83: 5-92: 8-75: 7.33 12: 8. 02: 7.33 7.08 6A2 6A2 lacquer in pilton grooves (average of 3) lie-1. 8-75 9.25: 8.75: 8 8.67 9.58: 9 9A2 9-53 1.75 z. 6.92 Inside of piston m. 10 3 z h z 6.75 z 3.5
EXAMPLE 3 polybutene 8 percent additive Y, all percentages Various lubricating compositions have been tried according to the SNCF-SNCB procedure. This cyclic test with the Petter Diesel AVI lasts about 150 hours and includes three 45 hour cycles with a high temperature refrigeration and oil, alternating with three 5 hour cycles running on no load and at a low temperature, with 10 cm of a glycol and water mixture being introduced in the crankcase at the beginning of each cycle.
After about 150 hours, the engine is completely dismantled and examined according to a rating system close to that of the CEC/AT4 method with regard to:
ring sticking the sludge and lacquer deposits on the piston skirts before and after cleaning piston ring scraper sludge blocking carbon and lacquer deposits on the cylinder walls deposits on the piston lands deposits on the piston grooves deposits on the main parts by a direct measure of the sludge thickness with a graduated guage The total merit is then established by adding the i above elements, each of which is modified by a factor according to its importance.
3.5 for ring sticking 3 for the piston skirt before and after washing 2 for the main parts 0.5 for the crown cutting 1.5 for the lands average 2 for the lacquer and carbon of the second and third groove The following compositions were tested:
1. 92 percent mineral oil 8 percent additive Y 2. 76 percent-mineral oil 16 percent polybutene 8 percent additive Y 3. 76 percent mineral oil 16 percent hydrogenated being expressed by weight.
The additive Y is a commercial additive of the Ba and Ca superbased sulfonated mineral oil having a Ba content of 3.45 percent by wt., a Ca content of 3.55 percent by wt. and a S content of 2.3 percent by wt.
The results of the various test runs are presented in Table III.
The results obtained with compositions 2 and 3 clearly show that the addition of a certain amount of polybutene greatly improves the ratings of the SNCB test.
Again. the results of the third test confirm the beneficial effect of hydrogenated polybutene. Only the composition based on hydrogenated polybutene fully satisfies the requirements of the SNCB test. SNCB tests have been run with other compositions which pass the various physico-chemical and corrosion requirements of the SNCB.
The engine tests run with the following compositions are presented in Table IV:
1. 90.5 percent mineral oil 9.5 percent additive Z 2. 75.5 percent mineral oil 15 percent hydrogenated polybutene 9.5 percent additive Z, all percentages being by weight.
The additive Z is a commercial additive of the Ba and Ca superbased sulfonated mineral oil having a Ba content of 4.3 percent by wt., a Ca content of 3.4 percent by weight and a S content of 2.4 percent by wt.
In order to satisfy the new SNCB specifications, the tests were run on the Petter AVl as well as on the Petter WI. Once again, a clear improvement is noted with regard to the performance of the composition based on hydrogenated polybutene. This composition easily passes the two engine tests.
Deposits in the grooves and at the bottom of the pistons are negligible.
TABLE 111 SNCB Tests on Solna HD 51 SAE 40 Composition 1 Composition 2 Composition 3 Composition of the oil W/W 92% mineral oil 76% mineral oil 76% mineral oil 8 additive Y 8% additive Y 8% additive Y 16% polyybutene 16% hydrogenated polybutene Piston ring sticking I35 35 35 35 Scruper-ring sludge I 10 10 10 Carbon deposits in 9 9.25 10 the third groove. [10 Piston skirt before washing [30 23.22 26.61 29.19 Piston skirt after washing /30 29.70 28.74 29.70 Deposits on the main parts I20 17.75 18.90 19.15 Deposits inside the I cylinder wall [10 10 10 10 Crown cutting /5 4.75 4.88 4.75 Piston lands (average of three) 11.38 9.50 13.13 v Piston grooves (2nd and 3rd) 12.75 15 50 16 TOTAL MERIT I100 82.01 87.10 93.39
TABLE IV SNCB Tests With An S1 Type Oil 90.5% mineral oil 79.5% mineral oil Minimum 9.5% additive Z 9.5% additive Z required 15% hydrogen polybutene Tests with Petter AVl Diesel Piston ring sticking I 35 35 35 Scraper ring sludge l0 l0 10 Carbon deposits in the third groove 9.27 10 Piston skirt before washing 25.50 29.94 Piston skirt after washing 29.40 30' Deposits on the main parts 18.40 19.15 Deposits inside the cylinder wall 10 10 Crown cutting 4.35 4.88 Piston lands (average of 3) 11.70 14 Piston grooves (2nd and 3rd) 16.64 v 19.88 Total merit on 100 87.89 98.87 92 Test With Petter W1 Gasoline Merit of the piston skirt /10 9.4 inside of piston I10 7 10 Weight loss in mg. 21.9 4.1 25 Piston grooves EXAMPLE 4 Other tests have been run with the Petter W1 gasoline The end results are assessed by inspecting the following engine parts: a
ring sticking grgglme normally used for the DEF 2101 C specifica scraper ring sludge This technique is designed to provide a method for cleanliness of the piston skirt--the merit rating 18 investigating and studying the copper-lead bearings ig: 3 i n zi a s 2; corrosion and oxidation characteristics of engine oils as E g i'm i g g Cqu a e 0 e well as the detergency and the oxidation stability after inside of the yiston'flthe mer'it ratin is based on a a relatively short running period, namely 36 hours. Scale where?) denotes black lac uegrs and 10 abso The running conditions are described in the following q table ltlte cleanliness.
weight loss of the two half shells-of the big-end bear- D 36 hour 5:82a 1500 rpin 1 15 h The following compositions were tested in this Petter Load adjusted in order to reac Air/gasoline ratio Consumption Temperature of the coolant inlet: outlet:
Oil pressure Temperature of the heated plate W1 test. They belong to the Multigrade 10W/30 type of the S1 level as far as the additives are concerned. which are similar to those of Example 1.
the consumption mentioned below 11.7: 1 tol2zl 50 ml in 113 i 0.5 sec.
1. mineral 011+ 15 percent additive X 146: i 43C 2. 45% mineral oil +40 percent polybutene 15 per- ?2 f cent additive X g C 3. 45% mineral oil 40 percent hydrogenated poly- 200 1 5 butene 15 percent additive X 1 1 The various percentages are expressed by weight. The results of this test are presented in Table V. it will be noted once more that the use of polybutene has 'a beneficial effect from a point of view of detergency and oxidation.-
However, in order to rate the oil over a period of time, in respect of the oxidation and corrosion of the bearings, the duration of the standard Petter W1 test has been extended from 36 to 60 hours.
The results with the three compositions tested for 60 hours are presented in Table V. A marked improvement of the results will be noted when polybutene is used. The beneficial effect of hydrogenated polybutene is particularly obvious in respect of the reduction of deposits in the grooves and at the inside of the piston.
The gasoline Petter tests are run with an oil having a paraffinic nature, and refined with a solvent.
TABLE V EXAMPLE 5 The increase of the available power output results in r a temperature increase in the rings area and under the piston crown. At higher temperatures the oil is exposed to thermal shocks and to a heavier oxidation due to the blowby of the gases which themselves are hotter.
The Ford test with the Cortina engine is commonly used for the purpose of studying the behaviour of oils at these high temperatures. This test is run on a four cylinder 1,500 cm engine under full load (48 HP at 35,000 r.p.m.) during 100 hours.
After the test the main parts are examined with respect to sludge and ring sticking. The merit rating is obtained by means of scale where 0 denotes a surface completely covered by black lacquers and an absolutely clean surface.
Test With Petter Wi additive X 15% additive X 15% additive X 85% mineral oil 61% mineral oil 61% mineral oil COMPOSITION 24% hydrogenated. 24% polybutene polybutene Ring sticking I10 10 10 10 Piston skirt'merit rating I10 36 hours 9.9 9.9 9.9 60 hours 9.9 9.9 9.9 Bottom of piston (end of test) /10 36 hours 6 9 8 60 hours 4.75 9.8 6 Piston grooves merit rating (end of 60 hours test) 15! 0.5 6.5 5.25 2nd 1.75 8.75 6.25 3rd 8.75 9.50 8.50 Weight loss in mg. v
36 hours 19.9 11.2 15.9 60 hours 41 19.1 31.3
On Table VI, the results of gasoline Petter tests are presented which were run with naphthenic oils. Additive A is a commercial additive comprising a Zn diethyldithiophosphate antioxidant having a Zn content of 8.6 by weight, and a P content of 7.7 percent by weight, and a detergent which is a Mg and Ca mineral oil sulfonate having an Mg content of 0.68 percent by weight and a Ca content of 0.23 percent by weight.
The superiority of the composition based onhydrogenated polybutene with respect to the deposits in the grooves and on the inside of the piston is again demonstrated when the test is run for, 84 hours. The type of the base oil does not effect the beneficial effect of the polybutene addition.
TABLE Vl- Petter Wl gasoline tests Composition 95% mineral oil hydrogenated 5% additive A polybutene 75% mineral oil 5% additive A Skirt merit 36 hours I10 9.8 10 60 hours 9.7 10 84 hours 9.5 9.7 Inside of piston /10 84 hours 5.5 8.7 Piston grooves /1 1.2 6
84 hours 2 3.5 6.2 3 6 3.8 Weight loss in mg 36 hours 17.4 13.8 60 hours 31.5 26.3 84 hours 49.3 32.4
The results obtained with 2 multigrade 10W/30 compositions of the S1 level containing four-stroke engine additives identical to those used in the compositions of the Example 2, are given in Table VI].
The use of hydrogenated polybutene improves the properties of the oil when tested for oxidation at high temperatures, also the lacquers on the skirts, the lands and the grooves of the pistons being markedly reduced.
TABLE Vll Cortina Tests 157: hydrogen The general test conditions for a mineral oil were depresent test being The rating is based on the aspect and the location of the varnish. Experience has shown that the aspect of the bottom of the Becher is representative of the lands of a piston of a Diesel engine such as the Petter Diesel AVl after the test CEC/AT4. I
The skirt of the Becher is representative of the piston The results presented in the table below were ob- I5 tained from three base oils having the same final viscosity; namely, 7 E50 or 53 cst at 50C.
TABLE VII! Two drops each of the oils to be tested are allowed to drop from a height of 1 cm on a degreased and polished cast-iron plate of 10 X 10 cm, by use of calibrated capillary tubes with which the weight of the drops of each oil have been previously determined.
At the same moment a chronometer is stated for each oil. The plate is then stored horizontally in a heated closed set at 80C. This temperature was chosen because it approximates that of the cooling water of ma rine diesel engines. There is practically no spreading of the oil for the first 5 minutes. Afterwards the spots begin to spread, taking the shape of an ellipse. The two diameters of each ellipse is measured every 15 minutes by use of a vernier in order to determine the spreading area as a function of time.
Since the weight and the density of the oils are known it is easy to calculate the volumes used and thereby to Test on the Cokefaction Bench The use of polybutene improves all the results obtained on the cokefaction test. The hydrogenated polybutene is the most effective of the two polybutenes tested.
The following engine tests confirm these laboratory findings.
EXAMPLE 7 Spreading Capacity Observations carried out on the cylinders of ships have shown that the spreading capacity of the oil film can play an important part. Indeed warm areas have been formed on the cast-iron cylinder liners lubricated with a standard marine oil, between the lubrication inlets, where the lubricating oil does not seem to reach. Since this phenomenon apparently varies with different marine oils, it is inferred that some oils have a better spreading capacity on cast-iron than others. in order to ascertain this behavioral difference, a simple test has been devised by which the spreading rate of oils of identical viscosities and the same viscosity index on cast-iron can be compared. This test is described below.
Test to Establish the Spreading Rate of'Oils on Polished Cast-Iron establish the spreading area expressed in cm per cm of oil.
By plotting the spreading area as a function of time on a graph, curves are obtained which can be graphically derived in order to establish the spreading rate. As a preliminary approximation and in order to simplify, straight lines may be drawn between representative points and the angular coefficients of these straight lines taken as an average of the spreading rate under the test conditions.
Results:
The results are presented in Tables IX and X as well as in FIGS. 4 and 5. They may be summarized as follows:
Polybutene spreads twice as fast as mineral oil, the
same applying also to ready-made marien oils based on polybutene.
TABLE IX BASE OlLS Results of the Spreading Test at 80"C Mineral Oil Polybutene Visc. Cs! at 80C 24.1 23.8
Diameters of the spots small large (1: small q'z large d:
in cm (2r) v (2R) (2r) (2R) after 10 min. 1.33 1.42 1.65 2
min. 1.38 1.47 1.74 2.1 min. 1.41 1.52 1.81 2.19 50 min. 1.44 1.54 1.96 2.20 70 min. 1.43 1.61 1.96 2.25 110 min. 1.52 1.70 2.07 2.34
Area of the spots in cm after 10 min. 1.43 2.61
20 min. 1.60 3.00 30 min. 1.69 3.14 50 min. 1.74 3.38 70 min. 1.83 3.49 110 min. 2.03 3.82 Weight of the oil in mg 56 54 Volume of the oil in mm I 62 64 Spreading area in cm per cc of oil after 10 min. 23.1 40.8 20 min. 25.8 46.9 30 min. 27.3 49.1 50 min. 28.1 52.8 70 min. 29.5 54.4 110 min. 32.7 59.7 Average rate of spreading in cmlcclmin. (angul. coeff. of the straight lines) 0.106 0.230
TABLE X MARINE OlLS Results of the Spreading Test at 80C 80% mineral oil (base mineral oil) 20% additive C marine oil polybutene +20% additive C Cisc. Cst at 80C Diameter of the spots in cm after 10 min. 20 min. 30 min. min. min. l 10 min.
Area of the spots in cm after 10 min. 20 min. 30 min. 50 min. 70 min. 1 10 min. Weight of the oil in mg Volume of the oil in mm Spreading area in cm per cc of all after 10 min. 20 min. 30 min. 50 min. 70 min. 1 10 min. Average rate of spreading in cmlcc/min. (angul. coeff. of the straight lines) small 1.82 1.94 1.98 2.14 2.19 2.34
large 4: (2R) 7 2.33 2.52 2.66 2.93 3.04 3.10
Identification of additive C is given at the end of Example 8 below EXAMPLE 8 Tests A B C Field tests with the engines of ships are, of course, quite appropriatefor the determination of oil properties. Unfortunately, obtaining such results is a timeconsuming process. A test engine simplifies this operation by reproducing as closely as possible the running conditions of a low-speed marine engine using heavy fuel.
We chose the Anglo Belgian C engine type 26 M 2 with two vertical cylinders and a dry sump. This type of engine is used on barges. With it very good indications can be obtained with respect to the performance of marine oils under service.
Test engine data Power: 80 HP. Speed: 400 r.p.m. Cylinder bore: 240 mm Cylinder stroke: 300 mm Test conditions Before each test the engine is completely dismantled, the rings are cleaned, and the varnish deposits are removed.
The running conditions were the following:
Duration: 300 hours Speed: 320 r.p.m. Power: 50 H.P. Temperature of the coolant at the outlet of the cylinder heat: 75-80C max.
The fuel used was a 600 Redwood preheated to 60C Lubrication is of the waste lubrication type; each cylinder having a mechanical lubricating system with multiple pumps of the type ASEA n BSP 4, which lubricates the cylinder (through four inlets), the piston trunnion and the big-end bearing.
At the end of the test the engine is dismantled and:
a. the wear of the cylinder liner and of the rings is measured b. deposit, sludge and varnish on the piston and visiting ports are rated The skirt rating is achieved by using the CRC/AT4 procedure, with a rating of 10 for an absolutely clean piston and a rating of for a piston completely covered with carbon.
The following table gives the results of comparative ABC tests, run with conventional marine oils and with compositions containing polybutene.
The values quoted are the arithmetical mean of many tests run with those conditions.
It has been found that the polybutene has a beneficial effect with respect of the wear of the rings and the deposits. The deposits found in the exhaust system are negligible and easily removed.
There is little carbon in the piston grooves which explains why there is no ring sticking where polybutene is used.
on a two-stroke Burmeister & Wain supercharged engine, Model 984 VTKF 180, with a power output of 20.700 HP. at 1 14 r.p.m. mounted on a motor ship.
This diesel engine uses a fuel with a viscosity of up to 3,000 sec.Redwood. It was found that the use of composition n '1 on this engine reduces the wear expressed in millimeters per 100 hrs. running by 50 percent.
We claim:
7 l. A lubricant for internal combustion engines comprising from 10 to 75 percent of liquid polybutene having a viscosity in the range of about 30 up to 600 SSU at 210F and a molecular weight of less than about 1,000, to 80 percent mineral lubricating oil having a viscosity in the range of about 50 to 1,000 SSU at 100F, and 3 to 30 percent of a sulfonic acid superbased with an alkaline earth metal selected from the group consisting of calcium, barium and magnesium, the proportions being by weight.
2. Crackcase lubricant as defined in claim 1 for fourstroke spark-ignition and compression ignition engines comprising from to 24 percent of liquid polybutene.
5 to 80 percent mineral lubricating oil and 3 to 15 per-' cent of said superbased sulfonate additive, the proportions being by weight.
3. Cylinder spray lubricant for low speed marine diesel engines as defined in claim 1 comprising from 10 to 24 percent of said liquid polybutene, 5 to 80 percent of said mineral lubricating oil and 5 to percent of said superbased sulfonate additive, the proportions being by weight.
4. The lubricant as defined in claim 1, wherein the polybutene is hydrogenated polybutene to stable, substantially colorless form.
5. The lubricant as defined in claim 2, wherein the additive comprises a sulfonic acid superbased with two alkaline earth metal compounds selected from the group consisting of calcium, magnesium and barium.
6. The lubricant as defined in claim 3, wherein the additive comprises a sulfonic acid superbased with magnesium.
7. A lubricant for internal combustion engines as defined in claim 1 further containing a small but effective quantity (comprising from 10 to of liquid polybutene having a viscosity in the range of about 30 up to 600 SSU at 210F and a molecular weight of less than about 1000, 5 to mineral lubricating oil having a viscosity in the range of about 50 to 1000 SSU at F, and 3 to 30%) of an alkylene polyamine amide TABLE X] A. B. C. TESTS Oil Composition no 1 no 2 no 3 no 4 W/W 22.5% add. C* 22.5% add. C" 22.5% add. B" 22.5% add. B
10 mineral oil 77.5% mineral oil 77.5% mineral oil 10 mineral oil 67.5% polvbgtene 67 5% nolvbutgng Engler at 50C 18.9 18.56 18.54 18.64
Ring wear in gr 15! 1.6 2.7 2.6 1.50 2nd 0.35 0.5 0.65 0.35 3rd 0.2 1.15 0 50 0 .30
Qmve @Aup&93d Mg petroleum sulfonate with a base number of 300 and "Additive B: A superbased Ca petroleum sulfonate having an alkalinity of 285 mg an Mg content of 7.2% by weight. KOH/gr and a Ca content of 1 1.9% by weight.
EXAMPLE 9 The lubricating composition described under n 1 of Example 8 has been used successfully for many months of an alkenyl succinic acid in which the alkylene polyamine is triethylene tetramine or tetraethylene pentamine.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Pat t 3 ,852 ,204 Dated December 3 1974 Georges Jules Pierre Souillard et al. Inventor (s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 18 Claim 7 should appear as shown below:
7. A lubricant for internal combustion engines as defined in claim 1 further containing a small but effective quantity of an alkylene polyamine amide of an alkenyl succinic acid in which the alkylene polyamine is triethylene tetramine or tetraethylene pentamine.
Signed and Ewaled this twenty-third Day of Septeinberl975 [SEAL] Arresr:
RUTH C. MASON C. MARSHALL DANN ,1 nesting Office ('mnmisxivmr of Iurvnlx and Trademarks

Claims (7)

1. A LUBRICANT FOR INTERNAL COMBUSTION ENGINES COMPRISING FROM 10 TO 75 PERCENT OF LIQUID POLYBUTENE HAVING A VISCOSITY IN THE RANGE OF ABOUT 30 UP TO 600 SSU AT 210*F AND A MOLECULAR WEIGHT OF LESS THAN ABOUT 1,000, 5 TO 80 PERCENT MINERAL LUBRICATING OIL HAVING A VISCOSITY IN THE RANGE OF ABOUT 50 TO 1,000 SSU AT 100*F, AND 3 TO 30 PERCENT OF A SULFONIC ACID SUPERBASED WITH AN ALKALINE EARTH METAL SELECTED FROM THE GROUP CONSISTING OF CALCIUM, BARIUM AND MAGNESIUM, THE PROPORTIES BEING BY WEIGHT.
2. Crackcase lubricant as defined in claim 1 for four-stroke spark-ignition and compression ignition engines comprising from 10 to 24 percent of liquid polybutene, 5 to 80 percent mineral lubricating oil and 3 to 15 percent of said superbased sulfonate additive, the proportions being by weight.
3. Cylinder spray lubricant for low speed marine diesel engines as defined in claim 1 comprising from 10 to 24 percent of said liquid polybutene, 5 to 80 percent of said mineral lubricating oil and 5 to 30 percent of said superbased sulfonate additive, the proportions being by weight.
4. The lubricant as defined in claim 1, wherein the polybutene is hydrogenated polybutene to stable, substantially colorless form.
5. The lubricant as defined in claim 2, wherein the additive comprises a sulfonic acid superbased with two alkaline earth metal compounds selected from the group consisting of calcium, magnesium and barium.
6. The lubricant as defined in claim 3, wherein the additive comprises a sulfonic acid superbased with magnesium.
7. A lubricant for internal combustion engines as defined in claim 1 further containing a small but effective quantity (comprising from 10 to 75% of liquid polybutene having a viscosity in the range of about 30 up to 600 SSU at 210*F and a molecular weight of less than about 1000, 5 to 80% mineral lubricating oil having a viscosity in the range of about 50 to 1000 SSU at 100*F, and 3 to 30%) of an alkylene polyamine amide of an alkenyl succinic acid in which the alkylene polyamine is triethylene tetramine or tetraethylene pentamine.
US00073572A 1966-02-01 1970-09-18 Lubricant compositions Expired - Lifetime US3852204A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE23479 1966-02-01
BE23769 1966-02-08
US7357570A 1970-09-18 1970-09-18

Publications (1)

Publication Number Publication Date
US3852204A true US3852204A (en) 1974-12-03

Family

ID=27158377

Family Applications (1)

Application Number Title Priority Date Filing Date
US00073572A Expired - Lifetime US3852204A (en) 1966-02-01 1970-09-18 Lubricant compositions

Country Status (1)

Country Link
US (1) US3852204A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031020A (en) * 1974-05-31 1977-06-21 Nippon Oil Company, Ltd. Central system fluid composition
US4261841A (en) * 1979-12-18 1981-04-14 Phillips Petroleum Company Lubricating composition comprising hydrogenated oligomers of 1,3-diolefins and a calcium petroleum sulfonate
US4481122A (en) * 1983-03-21 1984-11-06 Witco Chemical Corporation Lubricant compositions
US4828727A (en) * 1987-10-29 1989-05-09 Birko Corporation Compositions for and methods of lubricating carcass conveyor
EP0331359A1 (en) * 1988-02-23 1989-09-06 Exxon Chemical Patents Inc. Dispersant for marine diesel cylinder lubricant
US5089028A (en) * 1990-08-09 1992-02-18 Mobil Oil Corporation Deposit control additives and fuel compositions containing the same
US5347967A (en) * 1993-06-25 1994-09-20 Mcculloch Corporation Four-stroke internal combustion engine
US5599780A (en) * 1992-07-02 1997-02-04 Idemitsu Kosan Co., Ltd. Metal working oil composition
US5624890A (en) * 1994-11-28 1997-04-29 Nippon Oil Company, Ltd Lubricating oil composition for use in two-stroke cycle cylinder injection engine
WO1999006504A1 (en) * 1997-08-01 1999-02-11 Infineum Usa L.P. Lubricating oil compositions
US6140280A (en) * 1996-10-29 2000-10-31 Idemitsu Kosan Co., Ltd. Succinimide compound and method for producing it, lubricating oil additive comprising the compound and lubricating oil composition comprising the compound for diesel engine
US6159911A (en) * 1997-04-16 2000-12-12 Idemitsu Kosan Co., Ltd. Diesel engine oil composition
EP1100856A1 (en) * 1998-06-11 2001-05-23 ExxonMobil Oil Corporation Diesel engine cylinder oils
US20060270566A1 (en) * 2005-05-27 2006-11-30 Laurent Chambard Method of lubricating a crosshead engine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2227692A (en) * 1939-12-19 1941-01-07 Standard Oil Co Diesel oil
US2304874A (en) * 1940-09-26 1942-12-15 Standard Oil Co Lubricant
US3004837A (en) * 1956-08-09 1961-10-17 Lawrence E Riemenschneider Fuel for two-cycle internal combustion engines
US3076841A (en) * 1959-12-28 1963-02-05 Pure Oil Co Preparation of alkaline earth petroleum sulfonates
US3085978A (en) * 1960-02-25 1963-04-16 Phillips Petroleum Co Internal combustion engine lubricant
US3105049A (en) * 1960-08-01 1963-09-24 Bray Oil Co Colloidal disperesions of salts
GB940143A (en) * 1960-05-05 1963-10-23 Atlantic Refining Co Liquid polymers from alpha-olefins
US3158572A (en) * 1957-06-10 1964-11-24 Socony Mobil Oil Co Inc High barium content complex salts of sulfonic acids and method for preparing same
US3285851A (en) * 1963-08-13 1966-11-15 Cosden Oil & Chem Co Lubricant
US3298951A (en) * 1966-01-24 1967-01-17 Roman D Guminski Stabilized polybutene composition
US3321399A (en) * 1961-10-20 1967-05-23 Exxon Research Engineering Co Preparation of oil dispersions of metal carbonates
US3377281A (en) * 1965-02-26 1968-04-09 Sinclair Research Inc Lubricating composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2227692A (en) * 1939-12-19 1941-01-07 Standard Oil Co Diesel oil
US2304874A (en) * 1940-09-26 1942-12-15 Standard Oil Co Lubricant
US3004837A (en) * 1956-08-09 1961-10-17 Lawrence E Riemenschneider Fuel for two-cycle internal combustion engines
US3158572A (en) * 1957-06-10 1964-11-24 Socony Mobil Oil Co Inc High barium content complex salts of sulfonic acids and method for preparing same
US3076841A (en) * 1959-12-28 1963-02-05 Pure Oil Co Preparation of alkaline earth petroleum sulfonates
US3085978A (en) * 1960-02-25 1963-04-16 Phillips Petroleum Co Internal combustion engine lubricant
GB940143A (en) * 1960-05-05 1963-10-23 Atlantic Refining Co Liquid polymers from alpha-olefins
US3105049A (en) * 1960-08-01 1963-09-24 Bray Oil Co Colloidal disperesions of salts
US3321399A (en) * 1961-10-20 1967-05-23 Exxon Research Engineering Co Preparation of oil dispersions of metal carbonates
US3285851A (en) * 1963-08-13 1966-11-15 Cosden Oil & Chem Co Lubricant
US3377281A (en) * 1965-02-26 1968-04-09 Sinclair Research Inc Lubricating composition
US3298951A (en) * 1966-01-24 1967-01-17 Roman D Guminski Stabilized polybutene composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031020A (en) * 1974-05-31 1977-06-21 Nippon Oil Company, Ltd. Central system fluid composition
US4261841A (en) * 1979-12-18 1981-04-14 Phillips Petroleum Company Lubricating composition comprising hydrogenated oligomers of 1,3-diolefins and a calcium petroleum sulfonate
US4481122A (en) * 1983-03-21 1984-11-06 Witco Chemical Corporation Lubricant compositions
US4828727A (en) * 1987-10-29 1989-05-09 Birko Corporation Compositions for and methods of lubricating carcass conveyor
EP0331359A1 (en) * 1988-02-23 1989-09-06 Exxon Chemical Patents Inc. Dispersant for marine diesel cylinder lubricant
US4948522A (en) * 1988-02-23 1990-08-14 Exxon Chemical Patents Inc. Dispersant for marine diesel cylinder lubricant
US5089028A (en) * 1990-08-09 1992-02-18 Mobil Oil Corporation Deposit control additives and fuel compositions containing the same
US5599780A (en) * 1992-07-02 1997-02-04 Idemitsu Kosan Co., Ltd. Metal working oil composition
US5347967A (en) * 1993-06-25 1994-09-20 Mcculloch Corporation Four-stroke internal combustion engine
US5579735A (en) * 1993-06-25 1996-12-03 Mcculloch Corporation Four-stroke internal combustion engine
US5624890A (en) * 1994-11-28 1997-04-29 Nippon Oil Company, Ltd Lubricating oil composition for use in two-stroke cycle cylinder injection engine
US6140280A (en) * 1996-10-29 2000-10-31 Idemitsu Kosan Co., Ltd. Succinimide compound and method for producing it, lubricating oil additive comprising the compound and lubricating oil composition comprising the compound for diesel engine
US6159911A (en) * 1997-04-16 2000-12-12 Idemitsu Kosan Co., Ltd. Diesel engine oil composition
WO1999006504A1 (en) * 1997-08-01 1999-02-11 Infineum Usa L.P. Lubricating oil compositions
EP1362906A2 (en) * 1997-08-01 2003-11-19 Infineum USA L.P. Method for increasing the period between crankcase lubricant oil changes
EP1362906A3 (en) * 1997-08-01 2004-01-07 Infineum USA L.P. Method for increasing the period between crankcase lubricant oil changes
EP1100856A1 (en) * 1998-06-11 2001-05-23 ExxonMobil Oil Corporation Diesel engine cylinder oils
US6339051B1 (en) * 1998-06-11 2002-01-15 Mobil Oil Corporation Diesel engine cylinder oils
EP1100856A4 (en) * 1998-06-11 2003-01-29 Exxonmobil Oil Corp Diesel engine cylinder oils
US20060270566A1 (en) * 2005-05-27 2006-11-30 Laurent Chambard Method of lubricating a crosshead engine
US8377857B2 (en) * 2005-05-27 2013-02-19 Infineum International Limited Method of lubricating a crosshead engine

Similar Documents

Publication Publication Date Title
US3852204A (en) Lubricant compositions
US3838049A (en) Lubricating compositions
US3340281A (en) Method for producing lubricating oil additives
US3491025A (en) Mineral oil solutions of alkenyl substituted bis-succinimide of polyalkylene polyamino diamide from polyalkylene amine-urea condensation product
US3367943A (en) Process for preparing oil soluble additives which comprises reacting a c2 to c5 alkylene oxide with (a) reaction product of an alkenylsuccinic anhydride and an aliphaticpolyamine (b) reaction product of alkenylsuccinic anhydride, a c1 to c30 aliphatic hydrocarbon carboxylic acid and an aliphatic polyamine
US4686054A (en) Succinimide lubricating oil dispersant
EP0020037B1 (en) Oil-soluble friction-reducing additive, process for the preparation thereof, and lubricating oil or fuel composition containing the additive
US3878115A (en) Lubricating compositions for marine diesel engines
US3185645A (en) Oxidation inhibited lubricants
KR20140109853A (en) Lubricant composition for marine engine
CA1190216A (en) Succinimide lubricating oil dispersant
US3312621A (en) Lubricants having a high viscosity index
US3753905A (en) Two cycle lubrication
US3185643A (en) Oxidation resistant lubricants
US4382005A (en) Oil-soluble nitrogen containing sulfonated polymers useful as oil additives
US2628942A (en) Lubricating oils containing metal derivatives of cyclic imides
NO135251B (en)
US3850822A (en) Ashless oil additive combination composed of a nitrogen-containing ashless dispersant phosphosulfurized olefin and phosphorothionyl disulfide
US4717489A (en) Heavy duty diesel engine oil blend
US3235494A (en) Two-cycle engine lubricating composition
US3759862A (en) Lubricating oil composition
US3446736A (en) Mixed carboxylate derivatives of basic alkaline earth metal sulfonates
GB2081299A (en) Two-stroke Fuel-lubricant Composition
US3290130A (en) Lubricant for two-stroke engines
RU2223303C2 (en) Additive complex for motor oils for high-augmented diesel engines, and motor oil containing this complex