US3852736A - Bed egress alarm circuit - Google Patents

Bed egress alarm circuit Download PDF

Info

Publication number
US3852736A
US3852736A US00337955A US33795573A US3852736A US 3852736 A US3852736 A US 3852736A US 00337955 A US00337955 A US 00337955A US 33795573 A US33795573 A US 33795573A US 3852736 A US3852736 A US 3852736A
Authority
US
United States
Prior art keywords
switch
fet
circuit
scr
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00337955A
Inventor
K Cook
N Korwitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
William Beaumont Hospital
Original Assignee
William Beaumont Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by William Beaumont Hospital filed Critical William Beaumont Hospital
Priority to US00337955A priority Critical patent/US3852736A/en
Application granted granted Critical
Publication of US3852736A publication Critical patent/US3852736A/en
Priority to US05/578,206 priority patent/USRE28754E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1115Monitoring leaving of a patient support, e.g. a bed or a wheelchair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/903Radio telemetry

Definitions

  • ABSTRACT A condition responsive circuit for generating an output signal upon the opening of a switch.
  • An FET draws nominal current when the switch is closed. When the switch is opened the FET conducts to generate an output.
  • the output may include an audio alarm, an oscillator and a transmitter to generate an alarm at a distant location, or a visual indicator.
  • This invention relates generally to condition responsive circuits and, more particularly, to a condition responsive circuit which may be utilized in environments such as hospitals and the like :for signalling the departure of a patient from a hospital'bed.
  • the present invention is responsive to a change in conditions, namely, changes in pressure.
  • FIG. 3 is a schematic illustration of an alarm signalling circuit which may be utilized with the condition responsive circuit of the present invention.
  • FIG. 4 is a schematic diagram of a circuit for remote transmission of an alarm signal.
  • FIG. 1 there is shown a field effect transistor or FET having source, drain and gate electrodes.
  • a normally closed switch 12 having a plunger 14 is connected to the gate electrode of the'FET 10.
  • the junction of the switch 12 and the gate electrode are coupled through a resistance 16 to ground and the source electrode is coupled through ground.
  • a transistor 20 has its base electrode connected a resistance 18 to through a resistor 22 to the source electrode of the FET to one pole of a double pole single throw switch which serves an an on/off'switch. The other side of the on/off switch is connected to switch 12.
  • the other pole of switch 30 connects a source of +9 volts, also from a dry cell, to the drain electrode of FET 10. Two separate dry cells are preferred for reasons to be explained.
  • the switch 12 having a plunger 14 may be a switch such as that manufactured by Packard Electric of Ohio, bearing Part No. 82A5A-l216876 which is a pressure sensitive switch.
  • the pressure or ,weight on the switch is equivalent functionally to pressing and releasing on the plunger 14 shown schematically in FIG. 1.
  • Switch 12 is the type which is normally closed, that is, the plunger 14 is normally in. If the pressure sensitive switch is utilized, this represents the presence of a patient in a hospital bed. Under this condition, virtually no current flows through that portion of the circuit including the switch 12. The high voltage drop across resistor 16 which appears at the gate of the FET l0, biases the source to flow from the nine volt source through the signal means 26 to generate an output signal.
  • the circuit therethrough is opened removing the voltage source from thegate electrode of the FET 10. At this time, current will flow from the +9 volt source through one pole of the switch 30 and from the drain to the source electrode of the FET 10. This current flow turns on the transistor 20 permitting current to When the patient gets back into bed and his weight depresses the plunger 14 of the pressure sensitive switch, the signalling portion of the circuit is turned off.
  • An optional capacitor 32 coupled across resistor 16 provides a time delay.
  • the voltage at the gate of the FET '10 drops as the capacitor discharges. Once the capacitor has discharged, then the FET conducts to permit the alarm or signal to be given.
  • the purpose of this optional capacitor 32, shown connected with dotted leads, is to prevent an immediate signalling if the patient momentarily moves clear of the switch while rolling over in bed.
  • the test or push button switch 28 is a normally closed switch which may be deliberately opened to test the operation ofthe system. Thus, opening the switch 28 is equivalent to opening the switch 12.
  • the current which flows through the portion of the circuit from the 9 volt battery and through the switch 12 is nominal because of the high resistance of resistor 16. However, since there is some nominal current,
  • FIG. 2 wherein there is illustrated a silicon controlled rectifier or SCR 34 having its cathode grounded and its anode connected to one side of a normally closed pushbutton switch 36.
  • SCR 34 silicon controlled rectifier or SCR 34 having its cathode grounded and its anode connected to one side of a normally closed pushbutton switch 36.
  • the embodiment of FIG. 2 'replaces the portion of FIG. 1 shown in a dotted block 37 including the transistor 10 and the resistor 24.
  • the gate of the SCR is connected to the resistor 22 and the side of the switch 36 notflconnected to the SCR is, of course, connected to the signal means 26.
  • This embodiment is based upon the property of an SCR that once it fires or conducts it is necessary to actually remove the current from the anode to the cathode rather than taking away the signal from the gate This provides the increased benefit of requiring a deliberate turn-off of the alarm by resetting switch 36.
  • This circuit may be utilized as the signal means 26 to generate an alarm at the hospital bed.
  • the audio alarm of FIG. 3 which is coupled between the drain electrode and the +9 volt source on one side and either the switch 36 of FIG. 2 or the transistor of FIG. 1 on the other side includes an FET 38 which is normally biased off and which has its source electrode connected to a voltage divider comprising two resistors 40 and 42.
  • the junction of resistors 40 and 42 is coupled to the base of a transistor 44.
  • the emitter of the transistor 44 is coupled back to the main circuit of FIGS. 1 or 2 and the collection of transistor 44 coupled to one side of a speaker 46.
  • the other side of the speaker 46 is coupled back to the drain electrode of the FET 38.
  • a resistor 48 to provide a bias to the gate of the FET 38, a capac'itor 50 coupling the gate of the FET back to the circuit of FIGS. 1 or '2 and a second capacitor 52 across the bias resistor 48 and the capacitor 50.
  • FIG. 4 discloses one such circuit which may be utilized as the signal means 26.
  • FIG. 4 includes a conventional unijunction oscillator to frequency modulate a radio frequency transmitter.
  • the conventional unijunction oscillator includes an FET 54 having its source electrode coupled through a resistor 56 back to the circuit of FIGS. 1 or 2 and being normally biased in an off condition by a voltage developed across a resistor 58 between the +9 volt source and the gate electrode.
  • the transistor 20 of FIG. 1 or the SCR 34 of FIG. 2 conducts, current flows through the resistor 58 and turns on the FET 54.
  • This functions as a Colpits oscillator to FM modulate a transmitter which includes a voltage divider network of resistors 60 and 62 having their junction coupled to the base of a transistor 64.
  • the emitter of the transistor 64 is coupled by a parallel combination of a resistor 66 and a capacitor 68 back to the circuit of FIG. I and having the collector coupled to a parallel LC circuit comprising inductor 70 and variable capacitor 72.
  • the transmitter of FIG. 4 operates in a conventional fashion.
  • the output signal may generate an alarm at the location of the switch or by a radio frequency transmitter generating a signal at a remote station.
  • the circuit is battery operated and draws essentially no current when the patient is in bed. thereby providing greater useful life for the batteries.
  • the signal means may include a light or othersignalling devices as are well known in the art.
  • the pressure responsive switch 12 may be replaced by other condition responsive switches such as those which respond to the presence or absence of moisture.
  • the circuit may be utilized to detect if a patient spills liquids in his bed or may be further utilized to detect the presence or absence of fluid flowing in a tube being utilized for intravenous feedings.
  • F ET 10 is a type 2N5653 and transistor 20 is a NPN-2N4400.
  • Resistor 16 is 15M ohms
  • resistors 18 and 22 are 10K and 4.7K ohms, respectively, and capacitor 32 would be 0.22 uf for a 2-second delay.
  • the SCR 34 is a 2N5060.
  • the component values for the signal means of FIG. 3 are: FET 38, 2N487I; transistor 44, 2N4400; resistors 40, 42 and 48, 470 ohms, 4,700 ohms and 6.8K ohms, respectively, and capacitors 50 and SI 0. I uf and I00 uf.
  • FET 54-MU4894 transistor 64, 2N3294,
  • capacitor 68; I0 pf and variable capacitor 72, 1.5-7 p would provide suitable operation.
  • a condition responsive circuit for signalling the departure of a patient from a bed or the like by generating an output signal upon the opening of a switch comprising:
  • a switch being normally closed by the weight of a patient in a bed
  • an FET having source, drain and gate electrodes, said gate electrode connected to said switch for normally drawing only a nominal current and for continuously biasing said gate electrode to render said FET non-conductive;
  • a normally off output means coupled to said at least one of source and drain electrodes for generating an output signal when said FET is rendered conductive;
  • delay means coupled to said switch and said gate electrode for maintaining a bias at said gate electrode to prevent said FET from being rendered conductive for a predetermined time interval after the opening of said switch;
  • said output means including an SCR, an SCR switch,
  • said SCR being rendered conductive by said FET being rendered conductive to thereby generate an output signal from said signal means, and said SCR being thereafter rendered non-conductive only by operating said SCR switch.
  • a condition responsive circuit for signalling the departure of a patient from a bed or the like by generating an output signal upon the opening of a switch comprising:
  • a switch being normally closed by the weight of a patient in a bed
  • an FET having source, drain and gate electrodes, said gate electrode connected to said switch for normally drawing only a nominal current and for continuously biasing said gate electrode to render said FET non-conductive;
  • a normally off output means coupled to at least one of said source and drain electrodes for generating an output signal when said FET is rendered conductive
  • delay means coupled to said switch and said gate electrode for maintaining a bias at said gate electrode to prevent said FET from being rendered conductive fora predetermined time interval after the opening of said switch.
  • second switch means connected in series with said normally closed switch for testing the operation of said circuit by removing said continuous bias from the FET gate.
  • said output means further includes an oscillator coupled in series to said electronic switch, said oscillator being energized when said FET and said electronic switch are rendered conductive.
  • said output means further includes a normally off transmitter which is turned on by said FET and said electronic switch being rendered conductive, the frequency of the transmitter being modulated by said oscillator.

Abstract

A condition responsive circuit for generating an output signal upon the opening of a switch. An FET draws nominal current when the switch is closed. When the switch is opened the FET conducts to generate an output. The output may include an audio alarm, an oscillator and a transmitter to generate an alarm at a distant location, or a visual indicator.

Description

United States Patent [191 Cook et al. p y
[ Dec.3,1974
[ 1 BED EGRESS ALARM CIRCUIT [75] Inventors: Kenneth J. Cook, Oak Park;
Norman H. Korwitz, W. Bloomfield Hills, both of Mich.
[73] Assignee: William Beaumont Hospital, Royal Oak, Mich.
221 Filed: Mar. 5, 1973 21 Appl. No.: 337,955
[52] US. Cl.....' 340/279, 340/279, 307/279,
3,638,642 2/1972 Hcflin 340/279 X 3,658,052 4/1972 Alter 340/279 X 3,727,606 4/1973 Siclaff 128/2 S FOREIGN PATENTS OR APPLICATIONS 1,563,013 4/1970 Germany 307/251 Primary ExamincrJohn W. Caldwell Assistant ExaminerWilliam M. Wannisky Attorney, Agent, or Firm-Cullen, Settle, Sloman & Cantor [57] ABSTRACT A condition responsive circuit for generating an output signal upon the opening of a switch. An FET draws nominal current when the switch is closed. When the switch is opened the FET conducts to generate an output. The output may include an audio alarm, an oscillator and a transmitter to generate an alarm at a distant location, or a visual indicator.
10 Claims, 4 Drawing Figures s/amqe MEA N5 1 BED EGRESS ALARM CIRCUIT BACKGROUND OF THE INVENTION This invention relates generally to condition responsive circuits and, more particularly, to a condition responsive circuit which may be utilized in environments such as hospitals and the like :for signalling the departure of a patient from a hospital'bed.
One of the common hospital accidents occurs when a patient climbs off a hospital bed and injures himself such as by falling or stumbling. This will frequently occur when apatient who is too weak to walk unaided deliberately attempts to climb off the bed. It. may also occur when the; patient is not totally aware of his physical acts for one reason or another.
The departure of a patient from a hospital bed results in the removal of pressure (weight) from the bed. Therefore, the present invention is responsive to a change in conditions, namely, changes in pressure.
While various systems have been developed for detecting the presence or absence of pressure, it must be appreciated that ina hospital environment it is undesirable to have a hospital bed connected to a source of electric power. Not only is there a psychological problem when the bed itself is connected to a source of power, but there is always a'danger of shock if liquids are spilled on the bed.
Therefore, if any current is to be supplied to the bed it must be nominal. However, if a self-contained battery system is utilized,.the useful life of this system is quite short if the battery is always in an on condition.
It is therefore a principal object of the present invention to provide a condition responsive circuit which normally draws only a nominal current.
It is a further object of the present invention to provide a hospital bed alarm system which signals the departure of a patient from a bed.
It is yet another object of the present invention to provide a self-contained signal circuit responsive to a change in a physical condition, such as the presence or absence of pressure.
BRlEF DESCRIPTION oF THE DRAWINGS 1 embodiment of the present invention;
, FIG. 3 is a schematic illustration of an alarm signalling circuit which may be utilized with the condition responsive circuit of the present invention; and
FIG. 4 is a schematic diagram of a circuit for remote transmission of an alarm signal.
DETAILED DESCRIPTION OF THE INVENTION Referring first to FIG. 1, there is shown a field effect transistor or FET having source, drain and gate electrodes. A normally closed switch 12 having a plunger 14 is connected to the gate electrode of the'FET 10.
'The junction of the switch 12 and the gate electrode are coupled through a resistance 16 to ground and the source electrode is coupled through ground.
A transistor 20 has its base electrode connected a resistance 18 to through a resistor 22 to the source electrode of the FET to one pole of a double pole single throw switch which serves an an on/off'switch. The other side of the on/off switch is connected to switch 12.
The other pole of switch 30 connects a source of +9 volts, also from a dry cell, to the drain electrode of FET 10. Two separate dry cells are preferred for reasons to be explained.
OPERATION In the use of the circuit of FIG. 1 in the environment of a hospital bed, it is important that only a nominal current be present to avoid a drain on the two batteries. Since it is desired to determine when a patient departs from the bed, the switch 12 having a plunger 14 may be a switch such as that manufactured by Packard Electric of Ohio, bearing Part No. 82A5A-l216876 which is a pressure sensitive switch. Thus, the pressure or ,weight on the switch is equivalent functionally to pressing and releasing on the plunger 14 shown schematically in FIG. 1. v
With the on/off switch or double pole single throw switch 30 closed, there is a path from the 9 volt battery through the switch 12 to the gate of the FET l0 and through the resistor 16 to ground. Switch 12 is the type which is normally closed, that is, the plunger 14 is normally in. If the pressure sensitive switch is utilized, this represents the presence of a patient in a hospital bed. Under this condition, virtually no current flows through that portion of the circuit including the switch 12. The high voltage drop across resistor 16 which appears at the gate of the FET l0, biases the source to flow from the nine volt source through the signal means 26 to generate an output signal.
drain junction of the FET in an off condition.
Upon the departure of the patient from the bed, equivalent to the plunger 14 of the switch 12 being released, the circuit therethrough is opened removing the voltage source from thegate electrode of the FET 10. At this time, current will flow from the +9 volt source through one pole of the switch 30 and from the drain to the source electrode of the FET 10. This current flow turns on the transistor 20 permitting current to When the patient gets back into bed and his weight depresses the plunger 14 of the pressure sensitive switch, the signalling portion of the circuit is turned off.
An optional capacitor 32 coupled across resistor 16 provides a time delay. Thus, once the patient departs from the bed, the voltage at the gate of the FET '10 drops as the capacitor discharges. Once the capacitor has discharged, then the FET conducts to permit the alarm or signal to be given. The purpose of this optional capacitor 32, shown connected with dotted leads, is to prevent an immediate signalling if the patient momentarily moves clear of the switch while rolling over in bed.
The test or push button switch 28 is a normally closed switch which may be deliberately opened to test the operation ofthe system. Thus, opening the switch 28 is equivalent to opening the switch 12.
It must be appreciated that the portion of the circuit from the +9 volt battery across the FET and oscillator to ground normally draws no current. That is, no current flows to that portion of the circuit because the FET is biased off.
The current which flows through the portion of the circuit from the 9 volt battery and through the switch 12 is nominal because of the high resistance of resistor 16. However, since there is some nominal current,
there is always the possibility that the-9 volt battery as the opening of the switch 12. That is, the voltage at V the gate of the FET is removed and a signal is sounded.
As an alternate embodiment for the present invention, reference is made to FIG. 2 wherein there is illustrated a silicon controlled rectifier or SCR 34 having its cathode grounded and its anode connected to one side of a normally closed pushbutton switch 36. The embodiment of FIG. 2'replaces the portion of FIG. 1 shown in a dotted block 37 including the transistor 10 and the resistor 24. Thus, the gate of the SCR is connected to the resistor 22 and the side of the switch 36 notflconnected to the SCR is, of course, connected to the signal means 26.
The purpose of this embodiment is based upon the property of an SCR that once it fires or conducts it is necessary to actually remove the current from the anode to the cathode rather than taking away the signal from the gate This provides the increased benefit of requiring a deliberate turn-off of the alarm by resetting switch 36.
With reference to FIG. 3, the first embodiment of an alarm is illustrated. This circuit may be utilized as the signal means 26 to generate an alarm at the hospital bed.
The audio alarm of FIG. 3 which is coupled between the drain electrode and the +9 volt source on one side and either the switch 36 of FIG. 2 or the transistor of FIG. 1 on the other side includes an FET 38 which is normally biased off and which has its source electrode connected to a voltage divider comprising two resistors 40 and 42. The junction of resistors 40 and 42 is coupled to the base of a transistor 44. The emitter of the transistor 44 is coupled back to the main circuit of FIGS. 1 or 2 and the collection of transistor 44 coupled to one side of a speaker 46. The other side of the speaker 46 is coupled back to the drain electrode of the FET 38.
Also included in the alarm means of FIG. 3 is a resistor 48 to provide a bias to the gate of the FET 38, a capac'itor 50 coupling the gate of the FET back to the circuit of FIGS. 1 or '2 and a second capacitor 52 across the bias resistor 48 and the capacitor 50.
In operation, when the patient leaves the bed thereby removing the bias from the FET 10, the conduction of the transistor 20 (or the SCR 34) as previously explained permits current to flow through the alarm or signal means of FIG. 3. This current flow cuts off the bias to the F ET 38 normally provided by the voltage drop across the resistor 48, and the voltage divider of resistors 40 and 42 turns on transistor 44 to conduct the current through the speaker 46. The capacitors and resistors provide a resonant circuit which provides the alarm to be driven through the speaker 46.
Since the alarm going off at the patients bedside might startle the patients or otherwise create a disturbance, especially in the evening, another embodiment of the present invention contemplates the transmission of an alarm system to a remote area such as a nursing station. FIG. 4 discloses one such circuit which may be utilized as the signal means 26.
FIG. 4 includes a conventional unijunction oscillator to frequency modulate a radio frequency transmitter. The conventional unijunction oscillator includes an FET 54 having its source electrode coupled through a resistor 56 back to the circuit of FIGS. 1 or 2 and being normally biased in an off condition by a voltage developed across a resistor 58 between the +9 volt source and the gate electrode. When the transistor 20 of FIG. 1 or the SCR 34 of FIG. 2 conducts, current flows through the resistor 58 and turns on the FET 54. This functions as a Colpits oscillator to FM modulate a transmitter which includes a voltage divider network of resistors 60 and 62 having their junction coupled to the base of a transistor 64. The emitter of the transistor 64 is coupled by a parallel combination of a resistor 66 and a capacitor 68 back to the circuit of FIG. I and having the collector coupled to a parallel LC circuit comprising inductor 70 and variable capacitor 72. The transmitter of FIG. 4 operates in a conventional fashion.
Thus, there has been described a circuit for generating an output signal upon a change in condition, namely, a change in pressure. The output signal may generate an alarm at the location of the switch or by a radio frequency transmitter generating a signal at a remote station. The circuit is battery operated and draws essentially no current when the patient is in bed. thereby providing greater useful life for the batteries.
Various modifications may be made to the present invention. For example, the signal means may include a light or othersignalling devices as are well known in the art. Furthermore, the pressure responsive switch 12 may be replaced by other condition responsive switches such as those which respond to the presence or absence of moisture. In that case, the circuit may be utilized to detect if a patient spills liquids in his bed or may be further utilized to detect the presence or absence of fluid flowing in a tube being utilized for intravenous feedings.
In the preferred embodiment of FIG. 1, F ET 10 is a type 2N5653 and transistor 20 is a NPN-2N4400. Resistor 16 is 15M ohms, resistors 18 and 22 are 10K and 4.7K ohms, respectively, and capacitor 32 would be 0.22 uf for a 2-second delay. In FIG. 2, the SCR 34 is a 2N5060.
The component values for the signal means of FIG. 3 are: FET 38, 2N487I; transistor 44, 2N4400; resistors 40, 42 and 48, 470 ohms, 4,700 ohms and 6.8K ohms, respectively, and capacitors 50 and SI 0. I uf and I00 uf.
In FIG. 4, FET 54-MU4894, transistor 64, 2N3294,
resistors 56, 5s, 60, 62 and 66; 47K, 500K, 33K, IOK
and 1K, respectively, capacitor 68; I0 pf and variable capacitor 72, 1.5-7 p would provide suitable operation.
Therefore, the foregoing is-a description of the preferred embodiment of circuitry only and should'not be interpreted in a restrictive sense but only as exemplifying the underlying concepts of the present invention. The invention may be further developed within the scope of the following claims:
What is claimed is: v
1. A condition responsive circuit for signalling the departure of a patient from a bed or the like by generating an output signal upon the opening of a switch, comprising:
a switch being normally closed by the weight of a patient in a bed;
an FET having source, drain and gate electrodes, said gate electrode connected to said switch for normally drawing only a nominal current and for continuously biasing said gate electrode to render said FET non-conductive;
a normally off output means coupled to said at least one of source and drain electrodes for generating an output signal when said FET is rendered conductive; r
the opening of said switch to'remove the continuous bias from said gate electrode;
delay means coupled to said switch and said gate electrode for maintaining a bias at said gate electrode to prevent said FET from being rendered conductive for a predetermined time interval after the opening of said switch; and
said output means including an SCR, an SCR switch,
and a signal means, all connected in series;
said SCR being rendered conductive by said FET being rendered conductive to thereby generate an output signal from said signal means, and said SCR being thereafter rendered non-conductive only by operating said SCR switch.
2. A condition responsive circuit for signalling the departure of a patient from a bed or the like by generating an output signal upon the opening of a switch, comprising:
a switch being normally closed by the weight of a patient in a bed;
an FET having source, drain and gate electrodes, said gate electrode connected to said switch for normally drawing only a nominal current and for continuously biasing said gate electrode to render said FET non-conductive;
a normally off output means coupled to at least one of said source and drain electrodes for generating an output signal when said FET is rendered conductive;
the opening of said switch to remove the continuous bias from said gate electrode; and
delay means coupled to said switch and said gate electrode for maintaining a bias at said gate electrode to prevent said FET from being rendered conductive fora predetermined time interval after the opening of said switch.
3. The circuit of claim 1 and further including:
second switch means connected in series with said normally closed switch for testing the operation of said circuit by removing said continuous bias from the FET gate.
4. The circuit of claim 1 wherein said output means includes a normaly non-conductive electronic switch rendered conductive when said FET is rendered conductive.
5. The circuit of claim 4 wherein said output means further includes an oscillator coupled in series to said electronic switch, said oscillator being energized when said FET and said electronic switch are rendered conductive.
6. The circuit of claim 4 wherein said output means further includes a normally off transmitter which is turned on by said FET and said electronic switch being rendered conductive, the frequency of the transmitter being modulated by said oscillator.
7. The circuit of claim 4 wherein said electronic switch is an SCR.
8.'The circuit of claim 7 and including third switch means in series with said SCR- for rendering said SCR non-conductive after said SCR is rendered conductive by said FET being rendered conductive.
9. The circuit of claim 1 wherein said switch is pressure sensitive.
110. The circuit of claim 1 wherein said output means

Claims (10)

1. A condition responsive circuit for signalling the departure of a patient from a bed or the like by generating an output signal upon the opening of a switch, comprising: a switch being normally closed by the weight of a patient in a bed; an FET having source, drain and gate electrodes, said gate electrode connected to said switch for normally drawing only a nominal current and for continuously biasing said gate electrode to render said FET non-conductive; a normally off output means coupled to said at least one of source and drain electrodes for generating an output signal when said FET is rendered conductive; the opening of said switch to remove the continuous bias from said gate electrode; delay means coupled to said switch and said gate electrode for maintaining a bias at said gate electrode to prevent said FET from being rendered conductive for a predetermined time interval after the opening of said switch; and said output means including an SCR, an SCR switch, and a signal means, all connected in series; said SCR being rendered conductive by said FET being renderEd conductive to thereby generate an output signal from said signal means, and said SCR being thereafter rendered nonconductive only by operating said SCR switch.
2. A condition responsive circuit for signalling the departure of a patient from a bed or the like by generating an output signal upon the opening of a switch, comprising: a switch being normally closed by the weight of a patient in a bed; an FET having source, drain and gate electrodes, said gate electrode connected to said switch for normally drawing only a nominal current and for continuously biasing said gate electrode to render said FET non-conductive; a normally off output means coupled to at least one of said source and drain electrodes for generating an output signal when said FET is rendered conductive; the opening of said switch to remove the continuous bias from said gate electrode; and delay means coupled to said switch and said gate electrode for maintaining a bias at said gate electrode to prevent said FET from being rendered conductive for a predetermined time interval after the opening of said switch.
3. The circuit of claim 1 and further including: second switch means connected in series with said normally closed switch for testing the operation of said circuit by removing said continuous bias from the FET gate.
4. The circuit of claim 1 wherein said output means includes a normaly non-conductive electronic switch rendered conductive when said FET is rendered conductive.
5. The circuit of claim 4 wherein said output means further includes an oscillator coupled in series to said electronic switch, said oscillator being energized when said FET and said electronic switch are rendered conductive.
6. The circuit of claim 4 wherein said output means further includes a normally off transmitter which is turned on by said FET and said electronic switch being rendered conductive, the frequency of the transmitter being modulated by said oscillator.
7. The circuit of claim 4 wherein said electronic switch is an SCR.
8. The circuit of claim 7 and including third switch means in series with said SCR for rendering said SCR non-conductive after said SCR is rendered conductive by said FET being rendered conductive.
9. The circuit of claim 1 wherein said switch is pressure sensitive.
10. The circuit of claim 1 wherein said output means includes an audio alarm.
US00337955A 1973-03-05 1973-03-05 Bed egress alarm circuit Expired - Lifetime US3852736A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00337955A US3852736A (en) 1973-03-05 1973-03-05 Bed egress alarm circuit
US05/578,206 USRE28754E (en) 1973-03-05 1975-05-16 Bed egress alarm circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00337955A US3852736A (en) 1973-03-05 1973-03-05 Bed egress alarm circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/578,206 Reissue USRE28754E (en) 1973-03-05 1975-05-16 Bed egress alarm circuit

Publications (1)

Publication Number Publication Date
US3852736A true US3852736A (en) 1974-12-03

Family

ID=23322757

Family Applications (1)

Application Number Title Priority Date Filing Date
US00337955A Expired - Lifetime US3852736A (en) 1973-03-05 1973-03-05 Bed egress alarm circuit

Country Status (1)

Country Link
US (1) US3852736A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263586A (en) * 1976-08-20 1981-04-21 Noel Nicholas Pressure operated electric switch and alarm system using such switch
US4346375A (en) * 1980-08-27 1982-08-24 Westinghouse Electric Corp. Solid state status indication circuit for power controllers
US4378476A (en) * 1976-08-20 1983-03-29 Noel Nicholas Pressure operated electric switch and alarm system using such switch
US4683797A (en) * 1986-09-02 1987-08-04 The United States Of America As Represented By The Secretary Of The Army Line charge detonation interlock assembly
US5319355A (en) * 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
US5808552A (en) * 1996-11-25 1998-09-15 Hill-Rom, Inc. Patient detection system for a patient-support device
US6611783B2 (en) 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
US7253366B2 (en) 2004-08-09 2007-08-07 Hill-Rom Services, Inc. Exit alarm for a hospital bed triggered by individual load cell weight readings exceeding a predetermined threshold
US20090163787A1 (en) * 2007-12-21 2009-06-25 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7698765B2 (en) 2004-04-30 2010-04-20 Hill-Rom Services, Inc. Patient support
US20100308846A1 (en) * 2009-06-05 2010-12-09 Gilles Camus Pressure sensor comprising a capacitive cell and support device comprising said sensor
US8717181B2 (en) 2010-07-29 2014-05-06 Hill-Rom Services, Inc. Bed exit alert silence with automatic re-enable
US9875633B2 (en) 2014-09-11 2018-01-23 Hill-Rom Sas Patient support apparatus
US10292605B2 (en) 2012-11-15 2019-05-21 Hill-Rom Services, Inc. Bed load cell based physiological sensing systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302685A (en) * 1964-05-20 1967-02-07 Hitachi Ltd Device for detecting burner flame
DE1563013A1 (en) * 1966-08-27 1970-04-02 Siemens Ag Electronic switch with electrical isolation between input and output
US3638642A (en) * 1970-03-13 1972-02-01 Teledoc Corp Patient monitoring system with bedsheet-mounted antenna
US3658052A (en) * 1970-06-16 1972-04-25 American Electronic Lab Breathing activity monitoring and alarm device
US3727606A (en) * 1970-06-12 1973-04-17 Airco Inc Apnea detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302685A (en) * 1964-05-20 1967-02-07 Hitachi Ltd Device for detecting burner flame
DE1563013A1 (en) * 1966-08-27 1970-04-02 Siemens Ag Electronic switch with electrical isolation between input and output
US3638642A (en) * 1970-03-13 1972-02-01 Teledoc Corp Patient monitoring system with bedsheet-mounted antenna
US3727606A (en) * 1970-06-12 1973-04-17 Airco Inc Apnea detection device
US3658052A (en) * 1970-06-16 1972-04-25 American Electronic Lab Breathing activity monitoring and alarm device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263586A (en) * 1976-08-20 1981-04-21 Noel Nicholas Pressure operated electric switch and alarm system using such switch
US4378476A (en) * 1976-08-20 1983-03-29 Noel Nicholas Pressure operated electric switch and alarm system using such switch
US4381434A (en) * 1976-08-20 1983-04-26 Noel Nicholas Pressure operated electric switch and alarm system using such switch
US4346375A (en) * 1980-08-27 1982-08-24 Westinghouse Electric Corp. Solid state status indication circuit for power controllers
US4683797A (en) * 1986-09-02 1987-08-04 The United States Of America As Represented By The Secretary Of The Army Line charge detonation interlock assembly
US5319355A (en) * 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
US5534851A (en) * 1991-03-06 1996-07-09 Russek; Linda G. Alarm for patient monitor and life support equipment
US5808552A (en) * 1996-11-25 1998-09-15 Hill-Rom, Inc. Patient detection system for a patient-support device
US6611783B2 (en) 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
US7698765B2 (en) 2004-04-30 2010-04-20 Hill-Rom Services, Inc. Patient support
US7437787B2 (en) 2004-08-09 2008-10-21 Hill-Rom Services, Inc. Load-cell based hospital bed control
US7253366B2 (en) 2004-08-09 2007-08-07 Hill-Rom Services, Inc. Exit alarm for a hospital bed triggered by individual load cell weight readings exceeding a predetermined threshold
US20090163787A1 (en) * 2007-12-21 2009-06-25 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8352004B2 (en) * 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US20100308846A1 (en) * 2009-06-05 2010-12-09 Gilles Camus Pressure sensor comprising a capacitive cell and support device comprising said sensor
US8598893B2 (en) 2009-06-05 2013-12-03 Hill-Rom Industries Sa Pressure sensor comprising a capacitive cell and support device comprising said sensor
US8717181B2 (en) 2010-07-29 2014-05-06 Hill-Rom Services, Inc. Bed exit alert silence with automatic re-enable
US10292605B2 (en) 2012-11-15 2019-05-21 Hill-Rom Services, Inc. Bed load cell based physiological sensing systems and methods
US9875633B2 (en) 2014-09-11 2018-01-23 Hill-Rom Sas Patient support apparatus
US10276021B2 (en) 2014-09-11 2019-04-30 Hill-Rom Sas Patient support apparatus having articulated mattress support deck with load sensors

Similar Documents

Publication Publication Date Title
USRE28754E (en) Bed egress alarm circuit
US3852736A (en) Bed egress alarm circuit
US3996922A (en) Flexible force responsive transducer
US4539559A (en) Portable, disposable warning device for detecting urine-wet undergarments
US4700180A (en) Apparatus to indicate when a patient has evacuated a bed
US4684933A (en) Unauthorized personnel detection system
US3588859A (en) Level detector
US3898981A (en) Respiration monitoring apparatus
US3926177A (en) Activity and respiration monitor
US4704108A (en) Water content sensing and informing system for a disposable diaper
CA2264805C (en) Device for monitoring the presence of a person using proximity induced dielectric shift sensing
FI92139B (en) Wrist-mounted health monitor
US5331990A (en) Safety cane
US3939360A (en) Liquid level sensor and electrode assembly therefor
AU593506B2 (en) Detector device and method for distinguishing between fluids having different dielectric properties
EP0222484A2 (en) Movement monitor for cardio-pulmonary and other activity
CA1137555A (en) Method and a device for controlling the occurence of perforations in operation gloves
US4271406A (en) Bed wetting tattler
SE511349C2 (en) Capacitive sensor for presence indication
Simik et al. Automated alarm system for diaper wet using GSM
US3982238A (en) Time based monitoring system
US4173755A (en) Battery-operated body capacitance intrusion alarm apparatus
ES472802A1 (en) Dual liquid level monitor
US3697971A (en) Alarm system
US4038649A (en) Smoke detection alarm device