US3858573A - Alveolar gas trap and method of use - Google Patents

Alveolar gas trap and method of use Download PDF

Info

Publication number
US3858573A
US3858573A US377758A US37775873A US3858573A US 3858573 A US3858573 A US 3858573A US 377758 A US377758 A US 377758A US 37775873 A US37775873 A US 37775873A US 3858573 A US3858573 A US 3858573A
Authority
US
United States
Prior art keywords
reservoir
gas
tube
alveolar
mouthpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US377758A
Inventor
Donald F Ryan
Allan N Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAID RYAN BY SAID WILLIAMS
Original Assignee
SAID RYAN BY SAID WILLIAMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAID RYAN BY SAID WILLIAMS filed Critical SAID RYAN BY SAID WILLIAMS
Priority to US377758A priority Critical patent/US3858573A/en
Application granted granted Critical
Publication of US3858573A publication Critical patent/US3858573A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Abstract

An alveolar gas trap includes a small tubular reservoir having check valves at opposite ends and a mouthpiece so that when a person exhales through the mouthpiece, the exhalation gasses pass through the reservoir to the ambient with the last or alveolar gas being collected in the reservoir.

Description

United States Patent [191 Ryan et al.
1 1 Jan.7, 1975 1 1 ALVEOLAR GAS TRAP AND METHOD OF USE {75] Inventors: Donald F. Ryan, 530 N. Lalonde,
Lombard, 111. 60148; Allan N. Williams, Griffith, Ind.
[73] Assignee: said Ryan, by said Williams [22] Filed: July 9, 1973 [21] Appl. No; 377,758
[52] US. Cl. 128/2 C, 128/207, 73/4215 R [51] Int. Cl. A6lb 10/00, GOln 1/22 [58] Field of Search 128/2 R, 2 C, 2.07, 2.08;
[56] References Cited UNITED STATES PATENTS 9/1928 Regelsberger 128/207 2,795,223 6/1957 Stampe 128/2 C 3,306,283 2/1967 Arp 128/207 3,343,529 9/1967 Mlller et a1. 128/208 FORElGN PATENTS OR APPLICATIONS 1,038,235 9/1958 Germany 128/207 Primary Examiner-Richard A. Gaudet Assistant E.raminerLee S. Cohen Attorney, Agent, or FirmEdmond T. Patnaude [57] ABSTRACT An alveolar gas trap includes a small tubular reservoir having check valves at opposite ends and a mouthpiece so that when a person exhales through the mouthpiece, the exhalation gasses pass through the reservoir to the ambient with the last or alveolar gas being collected in the reservoir.
5 Claims, 2 Drawing Figures ALVEOLAR GAS TRAP AND METHOD OF USE The present invention relates in general to an apparatus and method of collecting alveolar gas samples from human beings and to the normal use of such samples for making cardiopulmonary analyses.
Prior to the present invention, it had been both difficult and costly to collect a sample of alveolar air, and the samples actually collected did not result in accurate measurements. One such attempt to obtain an alveolar air sample employed a Douglas bag in which the expired gas over a number of breaths was collected. However, anatomical variances between individuals make it impossible to determine the actual alveolar gas concentration from the mean expired sample so collected. Another method which has been used in the prior art employs a servo-electric valve which operates on a fixed time basis to select the alveolar gas from the total expired gas in a single breath. Not only is such equipment costly, but since any change in the ratio of inspiratory to expiratory time changes the sample, the sample is easily taken at the wrong point in the breathing cycle with resulting erroneous readings.
We have recognized, however, that if a true alveolar air sample could be derived from the gas exhaled by the patient, cardiopulmonary analyses could be greatly expedited with minimum body invasion, and could provide accurate cardiopulmonary measurements not heretofor obtained except over long periods of time with substantial patient duress. At the present time, such measurements, as for example, cardiac output, oxygen consumption, carbon dioxide production and respirartory quotient can only be determined with the use of expensive, complicated and sophisticated equipment.
OBJECTS OF THE INVENTION and improved method for determining the overall efficiency of a patients cardiopulmonary system.
SUMMARY OF THE INVENTION Briefly, there is provided in accordance with one aspect of the present invention, a device through which a patient exhales and which automatically separates and traps a sample of the alveolar gas from the total respiratory gasses. The device incorporates a relatively small gas reservoir on opposite sides of which low pressure, positive sealing check valves are located. As the patient exhales through the device, the respiratory gasses pass directly through the device to the ambient, with the final small amount of the expired gas being trapped in the reservoir compartment. Since the alveolar air is the last to leave the lungs during normal exhalation, the gas which is trapped in the reservoir is an accurate sample of alveolar air from which the oxygen and carbon dioxide pressures can be readily determined in a conventional blood-gas analyzer. As is explained in greater detail hereinafter, these partial pressures in combination with samples of arterial and venous blood taken substantially simultaneously with the alveolar gas sample permit the rapid calculation in a normal manner of oxygen consumption and carbon dioxide production as well as what we term the Index number of cardiopulmonary disability." In addition, calculations of shunt ratio, cardiac output, physiological dead space, respiratory quotient, ventilation perfusion ratio, mitral valve flow, alveolor ventilation and total blood volume can be readily performed using the alveolar air sample. Using the method and apparatus of the present invention, all of these measurements can be completed within about fifteen minutes, as compared to the previous minimum of about two to three days if the physiological condition of the patient would actually permit it.
Further objects and advantages and a better understanding of the invention may be had from the following detailed description taken in connection with the accompanying drawings, wherein:
FIG. 1 is an elevational view of the alveolar gas trap of the invention in use; and
FIG. 2 is a longitudinal section of the alveolar gas trap shown in FIG. 1.
DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawing, and particularly to FIG. 1 thereof, an alveolar gas trap 10 is there shown with the mouthpiece portion 11 in the mouth of a patient 12. The trap is both small in size and light in weight so as not to be uncomfortable to the patient who simply breathes'in the normal manner, inhaling through the nostrils and exhaling through the mouth and thus through the alveolar gas trap 10.
As best shown in FIG. 2, the gas trap 10 includes the tubular mouthpiece II in which a check valve 13 is mounted. The valve 13 is a light, flexible disc 14, suitably formed of rubber and overlying an annular valve seat 15 mounted to the mouthpiece tube 11. The disc 14 has a centrally disposed post 16 which is secured in a mounting ring 17 connected to the main body of the seat member 15 by a spider made up of a plurality of spaced apart radial arms 18.
The mouthpiece tube 11 sealably extends into one end of a transparent plastic tube 19 and an exhaust tube 22 sealably extends into the other end of the tube 19. A check valve 23 is mounted in the tube 22 and is identical in construction to the inlet check valve 13 and includes a flexible valve disc 24 overlying an annular valve seat 25. The valves 13 and 23 should operate at low pressure differentials of less than one centimeter of water pressure and must provide a good hermetic seal at a substantial zero pressure differential. We have found that a light silicone spray applied to the valving surfaces of the rubber discs 14 and 24 provides satisfactory results.
The space within the tube 19 between the valves 13 and 23 thus constitutes a reservoir in which the alveolar gas is trapped. While the size of the reservoir is not critical, it must have a substantially smaller volume than that of a normal exhalation tidal volume. In a normal adult person, there is between and 200 cc of alveolar air in the lungs upon inhalation. We have successfully used a reservoir size of thirty-one cubic centimeters. Since the normal tidal volume for an adult is in the range of about 400 cc to 800 cc, the gas trapped in the reservoir is less than the last ten percent of the expired gas, and less than one-third of the alvoelar air. Since the gas passing through the tube 19 makes a substantially clean sweep, there is only a negligible amount of turbulence and mixing of the earlier expired gas from the anotomical dead spaces with the alveolar gas.
A sampling valve assembly 28 is mounted to the tube 19 and is used for extracting a gas sample from the reservoir in the tube 19. The assembly 28 includes a tubular body 29 having a necked down end portion 30 which extends a short distance into the tube 19 through a hole 31 in the wall thereof. The end portion 30 is suitably sealed to the tube 19 to prevent escape or contamination of the gas trapped in the reservoir. A valve member 33 is rotatably mounted in the body 29 and has a flat 34 provided on one side for opening an outlet port 35 in the side of the body 29. A flexible tube is connected to the outlet port 35 for coupling it to a bloodgas analyzer. A knob 38 is provided at the distal end of the valve member 33 for rotating it between the open position shown in FIG. 2 wherein the flat 34 is Opposite the port 35 and a closed position wherein the member 33 sealably engages the wall portion of the body 29 surrounding the port 35 to close it. The position of the valve member 33 is indicated by an elongated, pointed flange 39 which is aligned with the flat 34. A pair of spring fingers 40 depend from the flange and fit under an annular flange at the top of the body 29 to hold the valve member in place therein.
OPERATION OF GAS TRAP In use, the patient is asked to breath normally by inhaling through the nose and exhaling through the mouth. With the valve 28 closed, the mouthpiece ll of the trap is then placed in the patients mouth as shown in FIG. I and breathing continued with the patients lips sealingly engaging the mouthpiece so that the en tire respiratory breath passes into the trap. The exhaust gas pressure is sufficient to open both the inlet and exhaust check valves until exhalation ceases, at which time both valves close 'to trap the last or alveolar portion of the exhaust gasses from the lungs. Because of the construction of the trap 10, there is little turbulence in the reservoir which could cause mixing of the alveolar gas and the previously exhaled gasses from the anotomical dead space and other areas of the lungs. Moreover, since the capacity of the reservoir is but a small fraction Of the tidal volume, i.e. quantity of gas exhaled in each breath, the gas thus trapped in the reservoir is, for all practical purposes, only alveolar gas.
A small portion of say one-half a cubic centimeter of the trapped sample is pumped from the reservoir through the valve 28 at a pressure less than the biasing forces on the inlet and outlet valves and is supplied to any suitable device, such for example, as a blood gas analyzer to measure the partial pressures of the oxygen and carbon dioxide in the alveolar gas sample.
Since, in order to maintain a steady state within the respiratory system, oxygen consumption must be equal to oxygen uptake and carbon dioxide production must be equal to carbondioxide release, these values may be calculated by taking arterial and venous blood samples substantially simultaneously with the taking of the alveolar gas sample. We have determined that the blood samples should be taken at as nearly the same time as the alveolar gas sample is obtained, but at least within one minute thereafter. Ordinarily, there is substantial pain associated with the taking of the arterial blood sample, and since a persons reaction to pain affects the alveolar gas, it is important that the gas sample not be taken after the arterial blood sample is taken, or the data will be erroneous. Other well-known and easily measured factors, such as tidal volume. respiratory rate, approximate anatomical dead space and barometric pressure are also used in these calculations. The various cardiopulmonary measurements or indices, referred to above may be readily calculated from the equations given below wherein the following wellknown terms are used: Q cardiac output (ml/min) Q, pulmonary physiological shunt (ml/min) P 0 expired alveolar oxygen tension (mm Hg) P C0 expired alveolor carbon dioxide tension (mm P 0 arterial blood oxygen tension (mm Hg) P C0 arterial blood carbon dioxide tension (mm Hg) P,,0 mixed venous blood oxygen tension (mm Hg) P,,C0 mixed venous blood carbon dioxide tension (mm Hg) P,-0 inspired air oxygen tension (mm Hg) P,-C0 inspired air carbon dioxide tension (mm Hg) C 0 alveolar oxygen content per ml C 0 mixed venous oxygen content per 100 ml C 0 arterial oxygen content per 100 ml S 0 alveolar oxygen saturation S 0 arterial oxygen saturation 8,0 mixed venous oxygen saturation V0 oxygen consumption (ml/min) ADS anatomical dead space TV average tidal volume F respiratory rate P barometric pressure V O CO production R respiratory quotient V,, alveolar ventilation (l/min) F CO concentration of CO1|inalveolar gas Q blood flow through pulmonary capilaries CvCO CO concentration in venous blood CgCO CO concentration in alveolar air C 0 0 concentration in arterial blood MVF mitral valve flow The following equations are used to calculate the various measurements or indices used in making a cardi- Opulminary diognosis. SHUNT EQUATION QS/QI 2 C.,0,/C'c0 Q02 0 CONSUMPTION V0 P,-O PA0,/P,, 47 x (TV ADS) x F CARDIAC OUTPUT I00 V02/C,,02 C.0
PHYSIOLOGICAL DEADsPACE V, V, P,,c0 P,,c0,/P,,c0,)
CO PRODUCTION C0 1 ,00 P,-C0 /P,, 47 (TV ADS) (F) RESPIRATORY QUOTIENT R VC0,/V0
ALvEOLAR VENTILATION V, VC02/FACO2 APPROXIMATE EFFECTIVE BLOOD VOLUME EV V0 /(C 0 C,,0 X 100 VENTILATION/PERFUSTION RATIO A/Qc R1 0-863 4 2 1102) IPACOZ MITRAL VALVE FLOW MVF cardiac output (cc)/Rate (Min) X average duration of diastole (sec) In order to provide a repeatable measurement of the cardiopulminary disability of a patient, we have found that the Index Number of cardiopulminary disability" is quickly and easily determined from the true alveolar gas sample. The following equation may be used to calculate this number:
I C CO C' CO Extensive testing of patients having healthy and impaired cardiopulminary systems indicated that an Index Number of about two or less indicates a normal cardiopulminary function with the degree of impairment increasing in proportion to the value of the index number over two. For example, an index number of 13 or more shows extremely poor cardiopuliminary function with a consequent life expectancy of a few months or less.
While the present invention has been described in connection with a particular embodiment thereof, it will be understood that those skilled in the art may make many changes and modifications without departing from the true spirit and scope thereof. Accordingly, the appended claims are intended to cover all such changes and modifications as fall within the true spirit and scope of the present invention.
What is claimed is: 1. An alveolar gas trap for obtaining a sample of alveolar gas from a person, comprising means defining a gas reservoir having a volume equal to no greater than one hundred cubic centimeters, a mouthpiece for disposition in said persons mouth, a first one-way check valve mounted in proximity to 6 said mouthpiece and connected between said mouthpiece and said reservoir, 1
said means defining a gas reservoir being mounted directly to said mouthpiece with said check valve opening directly into said reservoir so that all of the gas passing through said check valve enters said reservoir,
a second one-'way check valve connected between said reservoir and the ambient for passing gas from said reservoir to the ambient,
said valves being self biased into a closed position with a sufficiently low force so as to be opened by the normal exhalation pressure of said person,
a sampling port opening into said reservoir between said check valves, and
a valve connected to said port for controlling the removal of gas from said reservoir.
2. An alveolar gas trap, according to claim 1, wherein said means defining said reservoir comprises a tube, and
said check valves are positioned at respectively opposite ends of said tube, whereby air flow is through said tube from one end to the other during exhalation.
3. An alveolar gas trap, according to claim 2, wherein said check valves open at a pressure differential of less than one centimeter of water.
4. An alveolar gas trap according to calim 1 wherein said reservoir has a volume no greater than about 50 cubic centimeters.
5. An alveolar gas trap according to claim 1, wherein said means defining said reservoir is a straight, transparent tube,
said mouthpiece is a tubular member aligned with said transparent tube and to which said transparent tube is mounted,
said check valves being positioned at opposite ends of said tube, and
said valve being mounted directly on said tube.

Claims (5)

1. An alveolar gas trap for obtaining a sample of alveolar gas from a person, comprising means defining a gas reservoir having a volume equal to no greater than one hundred cubic centimeters, a mouthpiece for disposition in said person''s mouth, a first one-way check valve mounted in proximity to said mouthpiece and connected between said mouthpiece and said reservoir, said means defining a gas reservoir being mounted directly to said mouthpiece with said check valve opening directly into said reservoir so that all of the gas passing through said check valve enters said reservoir, a second one-way check valve connected between said reservoir and the ambient for passing gas from said reservoir to the ambient, said valves being self biased into a closed position with a sufficiently low force so as to be opened by the normal exhalation pressure of said person, a sampling port opening into said reservoir between said check valves, and a valve connected to said port for controlling the removal of gas from said reservoir.
2. An alveolar gas trap, according to claim 1, wherein said means defining said reservoir comprises a tube, and said check valves are positioned at respectively opposite ends of said tube, whereby air flow is through said tube from one end to the other during exhalation.
3. An alveolar gas trap, according to claim 2, wherein said check valves open at a pressure differential of less than one centimeter of water.
4. An alveolar gas trap according to calim 1 wherein said reservoir has a volume no greater than about 50 cubic centimeters.
5. An alveolar gas trap according to claim 1, wherein said means defining said reservoir is a straight, transparent tube, said mouthpiece is a tubular member aligned with said transparent tube and to which said transparent tube is mounted, said check valves being positioned at opposite ends of said tube, and said valve being mounted directly on said tube.
US377758A 1973-07-09 1973-07-09 Alveolar gas trap and method of use Expired - Lifetime US3858573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US377758A US3858573A (en) 1973-07-09 1973-07-09 Alveolar gas trap and method of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US377758A US3858573A (en) 1973-07-09 1973-07-09 Alveolar gas trap and method of use

Publications (1)

Publication Number Publication Date
US3858573A true US3858573A (en) 1975-01-07

Family

ID=23490405

Family Applications (1)

Application Number Title Priority Date Filing Date
US377758A Expired - Lifetime US3858573A (en) 1973-07-09 1973-07-09 Alveolar gas trap and method of use

Country Status (1)

Country Link
US (1) US3858573A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2397592A1 (en) * 1977-07-12 1979-02-09 Draegerwerk Ag COMPRESSED GAS SAMPLING DEVICE FOR THEIR ANALYSIS
US4456014A (en) * 1983-01-03 1984-06-26 Thoratec Laboratories Corporation Flow restrictor
US4900514A (en) * 1987-05-01 1990-02-13 Guardian Technologies, Inc. Breath analyzer mouthpiece system
US4947861A (en) * 1989-05-01 1990-08-14 Hamilton Lyle H Noninvasive diagnosis of gastritis and duodenitis
WO1990009572A1 (en) * 1989-02-02 1990-08-23 The United States Of America, Represented By The Secretary, United States Department Of Commerce Breath sampler
US5065781A (en) * 1990-03-22 1991-11-19 Cox Ernest J Storage tank cleanout apparatus
US5081871A (en) * 1989-02-02 1992-01-21 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Breath sampler
WO1992020278A1 (en) * 1991-05-17 1992-11-26 Martek Corporation Apparatus and method for collecting human breath samples
JPH05503182A (en) * 1989-12-15 1993-05-27 ベーリンガー マンハイム コーポレーション Regulated branch power supply
US5361772A (en) * 1993-07-07 1994-11-08 Diagnostics & Devices, Inc. Breath collection devices
US5368021A (en) * 1992-04-09 1994-11-29 Criticare Systems, Inc. System for handling and monitoring respiratory waste streams
EP0650051A2 (en) * 1993-10-25 1995-04-26 Kyoto Dai-ichi Kagaku Co., Ltd. Expiration collecting method and automatic expiration collector
US5432094A (en) * 1993-02-24 1995-07-11 Martek Biosciences Corporation Apparatus and method for collecting, detecting and indicating true alveolar breath collections
WO1995018566A1 (en) * 1994-01-11 1995-07-13 Michael Phillips Breath collection
EP1172065A1 (en) 2000-07-14 2002-01-16 Natus Medical, Inc. Detecting pathological conditions relating to pregnancy using breath carbon monoxide concentration measurements
US6464941B1 (en) * 1999-03-26 2002-10-15 DRäGER SICHERHEITSTECHNIK GMBH Breath alcohol measuring apparatus having a sample intake channel and a temperature sensor mounted therein
US6582376B2 (en) 2001-09-13 2003-06-24 Pranalytica, Inc. Alveolar breath collection device and method
US20050137491A1 (en) * 2002-12-20 2005-06-23 Paz Frederick M. Breath aerosol management and collection system
US20050199077A1 (en) * 2004-03-15 2005-09-15 Prybella John R. Closed method and system for the sampling and testing of fluid
US20060058696A1 (en) * 2004-09-10 2006-03-16 Quintron Instrument Company Air sampling apparatus with related sensing and analysis mechanism
US20060241507A1 (en) * 2003-06-19 2006-10-26 Carlson Lee R Breath end- tidal gas monitor
US20080041171A1 (en) * 2006-08-15 2008-02-21 Tans Pieter P System and method for providing vertical profile measurements of atmospheric gases
US20090318823A1 (en) * 2008-06-23 2009-12-24 Christman N Thomas Air sampling apparatus and methods
US20100268107A1 (en) * 2009-04-20 2010-10-21 De Heer Robert Systems and Methods for Breathing Assistance
US20120004571A1 (en) * 2008-12-23 2012-01-05 Ku David N Lung aerosol collection device
KR101339834B1 (en) * 2012-06-25 2013-12-10 주식회사 디에이텍 A mouthpiece for drunkometer
CN103487479A (en) * 2013-09-27 2014-01-01 无锡市尚沃医疗电子股份有限公司 Handheld expired air analyzer
WO2015031848A3 (en) * 2013-08-30 2015-10-29 Capnia, Inc. Universal breath analysis sampling device
US20150335282A1 (en) * 2012-05-09 2015-11-26 Dong Hwa Lee Wrist watch style blood pressure monitor
USD777315S1 (en) 2010-08-30 2017-01-24 Quintron Instrument Company, Inc. Evacuated air chamber
US20170086447A1 (en) * 2014-09-16 2017-03-30 The United States Of America As Represented By The Secretary Of The Army Carbon dioxide source for arthropod vector surveillance
US20170215764A1 (en) * 2016-02-03 2017-08-03 Quintron Instrument Company, Inc. Breath testing apparatus
WO2018032465A1 (en) * 2016-08-18 2018-02-22 深圳市先亚生物科技有限公司 Device for collecting breath and aiding measurement of trace component in breath, and usage method thereof
US9988691B2 (en) 2010-07-06 2018-06-05 Deton Corp. System for airborne bacterial sample collection and analysis
US10034621B2 (en) 2011-12-21 2018-07-31 Capnia, Inc. Collection and analysis of a volume of exhaled gas with compensation for the frequency of a breathing parameter
US10080857B2 (en) 2013-03-12 2018-09-25 Deton Corp. System for breath sample collection and analysis
US10499819B2 (en) 2013-01-08 2019-12-10 Capnia, Inc. Breath selection for analysis
EP3463081A4 (en) * 2016-06-02 2020-01-29 Pulmostics Limited Breath capture device
US10568568B2 (en) 2014-08-27 2020-02-25 Capnia, Inc. Methods for immune globulin administration
WO2020198790A1 (en) 2019-03-31 2020-10-08 Agscent Pty Ltd Biological sample capturing device
US11027224B2 (en) * 2016-02-02 2021-06-08 Korea Hydro & Nuclear Power Co., Ltd. Device for collecting air accumulated in pipe
US11191449B2 (en) 2013-08-30 2021-12-07 Capnia, Inc. Neonatal carbon dioxide measurement system
US11331004B2 (en) 2013-02-12 2022-05-17 Capnia, Inc. Sampling and storage registry device for breath gas analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1685557A (en) * 1925-09-16 1928-09-25 Regelsberger Hermann Apparatus for analyzing the alveolar air from the lungs
US2795223A (en) * 1952-08-06 1957-06-11 Drager Otto H Apparatus for sampling the human breath
US3306283A (en) * 1964-02-27 1967-02-28 Univ Iowa State Res Found Inc Oxygen utilization analyzer
US3343529A (en) * 1965-03-31 1967-09-26 Ronald A Miller Spirometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1685557A (en) * 1925-09-16 1928-09-25 Regelsberger Hermann Apparatus for analyzing the alveolar air from the lungs
US2795223A (en) * 1952-08-06 1957-06-11 Drager Otto H Apparatus for sampling the human breath
US3306283A (en) * 1964-02-27 1967-02-28 Univ Iowa State Res Found Inc Oxygen utilization analyzer
US3343529A (en) * 1965-03-31 1967-09-26 Ronald A Miller Spirometer

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2397592A1 (en) * 1977-07-12 1979-02-09 Draegerwerk Ag COMPRESSED GAS SAMPLING DEVICE FOR THEIR ANALYSIS
US4456014A (en) * 1983-01-03 1984-06-26 Thoratec Laboratories Corporation Flow restrictor
US4900514A (en) * 1987-05-01 1990-02-13 Guardian Technologies, Inc. Breath analyzer mouthpiece system
WO1990009572A1 (en) * 1989-02-02 1990-08-23 The United States Of America, Represented By The Secretary, United States Department Of Commerce Breath sampler
US5081871A (en) * 1989-02-02 1992-01-21 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Breath sampler
US4947861A (en) * 1989-05-01 1990-08-14 Hamilton Lyle H Noninvasive diagnosis of gastritis and duodenitis
JPH05503182A (en) * 1989-12-15 1993-05-27 ベーリンガー マンハイム コーポレーション Regulated branch power supply
US5065781A (en) * 1990-03-22 1991-11-19 Cox Ernest J Storage tank cleanout apparatus
WO1992020278A1 (en) * 1991-05-17 1992-11-26 Martek Corporation Apparatus and method for collecting human breath samples
US5211181A (en) * 1991-05-17 1993-05-18 Martek Corporation Apparatus and method for collecting human breath samples
US5368021A (en) * 1992-04-09 1994-11-29 Criticare Systems, Inc. System for handling and monitoring respiratory waste streams
US5432094A (en) * 1993-02-24 1995-07-11 Martek Biosciences Corporation Apparatus and method for collecting, detecting and indicating true alveolar breath collections
AU675120B2 (en) * 1993-07-07 1997-01-23 Diagnostics & Devices, Inc. Breath collection devices
US5361772A (en) * 1993-07-07 1994-11-08 Diagnostics & Devices, Inc. Breath collection devices
EP0650051A2 (en) * 1993-10-25 1995-04-26 Kyoto Dai-ichi Kagaku Co., Ltd. Expiration collecting method and automatic expiration collector
EP0650051A3 (en) * 1993-10-25 1997-03-26 Kyoto Daiichi Kagaku Kk Expiration collecting method and automatic expiration collector.
WO1995018566A1 (en) * 1994-01-11 1995-07-13 Michael Phillips Breath collection
US5465728A (en) * 1994-01-11 1995-11-14 Phillips; Michael Breath collection
US6464941B1 (en) * 1999-03-26 2002-10-15 DRäGER SICHERHEITSTECHNIK GMBH Breath alcohol measuring apparatus having a sample intake channel and a temperature sensor mounted therein
EP1172065A1 (en) 2000-07-14 2002-01-16 Natus Medical, Inc. Detecting pathological conditions relating to pregnancy using breath carbon monoxide concentration measurements
US6582376B2 (en) 2001-09-13 2003-06-24 Pranalytica, Inc. Alveolar breath collection device and method
US7364553B2 (en) 2002-12-20 2008-04-29 Amidex, Inc. Breath aerosol management and collection system
US20050137491A1 (en) * 2002-12-20 2005-06-23 Paz Frederick M. Breath aerosol management and collection system
US9936897B2 (en) 2003-06-19 2018-04-10 Capnia, Inc. Breath end-tidal gas monitor
US20060241507A1 (en) * 2003-06-19 2006-10-26 Carlson Lee R Breath end- tidal gas monitor
US8021308B2 (en) 2003-06-19 2011-09-20 Capnia, Inc. Breath end-tidal gas monitor
US9095276B2 (en) 2003-06-19 2015-08-04 Capnia, Inc. Breath end-tidal gas monitor
WO2005089326A3 (en) * 2004-03-15 2006-05-18 Haemonetics Corp Closed system and method for the sampling and testing of fluid
US7055401B2 (en) * 2004-03-15 2006-06-06 Haemonetics Corporation Closed method and system for the sampling and testing of fluid
US20050199077A1 (en) * 2004-03-15 2005-09-15 Prybella John R. Closed method and system for the sampling and testing of fluid
US20060058696A1 (en) * 2004-09-10 2006-03-16 Quintron Instrument Company Air sampling apparatus with related sensing and analysis mechanism
US20080041171A1 (en) * 2006-08-15 2008-02-21 Tans Pieter P System and method for providing vertical profile measurements of atmospheric gases
US7597014B2 (en) * 2006-08-15 2009-10-06 The United States Of America As Represented By The Secretary Of Commerce System and method for providing vertical profile measurements of atmospheric gases
US20090318823A1 (en) * 2008-06-23 2009-12-24 Christman N Thomas Air sampling apparatus and methods
US9011348B2 (en) 2008-06-23 2015-04-21 Quintron Instrument Company, Inc. Air sampling apparatus and methods
US20120004571A1 (en) * 2008-12-23 2012-01-05 Ku David N Lung aerosol collection device
US8821409B2 (en) * 2008-12-23 2014-09-02 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Lung aerosol collection device
US9375344B2 (en) * 2009-04-20 2016-06-28 All Rest Technologies Llp Systems and methods for breathing assistance
US20100268107A1 (en) * 2009-04-20 2010-10-21 De Heer Robert Systems and Methods for Breathing Assistance
US9988691B2 (en) 2010-07-06 2018-06-05 Deton Corp. System for airborne bacterial sample collection and analysis
USD777315S1 (en) 2010-08-30 2017-01-24 Quintron Instrument Company, Inc. Evacuated air chamber
US10034621B2 (en) 2011-12-21 2018-07-31 Capnia, Inc. Collection and analysis of a volume of exhaled gas with compensation for the frequency of a breathing parameter
US9943263B2 (en) * 2012-05-09 2018-04-17 Charm Care Co., Ltd. Wrist watch style blood pressure monitor
US20150335282A1 (en) * 2012-05-09 2015-11-26 Dong Hwa Lee Wrist watch style blood pressure monitor
KR101339834B1 (en) * 2012-06-25 2013-12-10 주식회사 디에이텍 A mouthpiece for drunkometer
US10499819B2 (en) 2013-01-08 2019-12-10 Capnia, Inc. Breath selection for analysis
US11331004B2 (en) 2013-02-12 2022-05-17 Capnia, Inc. Sampling and storage registry device for breath gas analysis
US10080857B2 (en) 2013-03-12 2018-09-25 Deton Corp. System for breath sample collection and analysis
WO2015031848A3 (en) * 2013-08-30 2015-10-29 Capnia, Inc. Universal breath analysis sampling device
US11191449B2 (en) 2013-08-30 2021-12-07 Capnia, Inc. Neonatal carbon dioxide measurement system
CN103487479A (en) * 2013-09-27 2014-01-01 无锡市尚沃医疗电子股份有限公司 Handheld expired air analyzer
CN103487479B (en) * 2013-09-27 2016-01-13 无锡市尚沃医疗电子股份有限公司 Hand-held breath analyzing instrument
US10568568B2 (en) 2014-08-27 2020-02-25 Capnia, Inc. Methods for immune globulin administration
US20170086447A1 (en) * 2014-09-16 2017-03-30 The United States Of America As Represented By The Secretary Of The Army Carbon dioxide source for arthropod vector surveillance
US11027224B2 (en) * 2016-02-02 2021-06-08 Korea Hydro & Nuclear Power Co., Ltd. Device for collecting air accumulated in pipe
US20170215764A1 (en) * 2016-02-03 2017-08-03 Quintron Instrument Company, Inc. Breath testing apparatus
US10413216B2 (en) * 2016-02-03 2019-09-17 Quintron Instrument Company, Inc. Breath testing apparatus
EP3202321A1 (en) * 2016-02-03 2017-08-09 QuinTron Instrument Company, Inc. Breath testing apparatus
CN107036852A (en) * 2016-02-03 2017-08-11 奎特龙设备有限公司 Breath tester device
USD917691S1 (en) 2016-02-03 2021-04-27 Quintron Instrument Company, Inc. Breath collection device
AU2016231652B2 (en) * 2016-02-03 2021-09-16 Quintron Instrument Company, Inc. Breath testing apparatus
EP3463081A4 (en) * 2016-06-02 2020-01-29 Pulmostics Limited Breath capture device
WO2018032465A1 (en) * 2016-08-18 2018-02-22 深圳市先亚生物科技有限公司 Device for collecting breath and aiding measurement of trace component in breath, and usage method thereof
WO2020198790A1 (en) 2019-03-31 2020-10-08 Agscent Pty Ltd Biological sample capturing device
EP3946047A4 (en) * 2019-03-31 2023-02-15 Agscent Pty Ltd Biological sample capturing device

Similar Documents

Publication Publication Date Title
US3858573A (en) Alveolar gas trap and method of use
US5361771A (en) Portable pulmonary function testing device and method
West et al. Pulmonary gas exchange on the summit of Mount Everest
US20190076053A1 (en) Method and device for measuring a component in exhaled breath
US6067983A (en) Method and apparatus for controlled flow sampling from the airway
US5179958A (en) Respiratory calorimeter with bidirectional flow monitor
US5178155A (en) Respiratory calorimeter with bidirectional flow monitors for calculating of oxygen consumption and carbon dioxide production
US6616615B2 (en) Respiratory calorimeter
EP0502053B1 (en) Apparatus for examining a patient's pulmonary function
US5038792A (en) Oxygen consumption meter
US3898987A (en) Breathing responsive device and method
Vaughan Jr et al. Long-term exposure to low levels of air pollutants: Effects on pulmonary function in the beagle
US9532731B2 (en) Method and apparatus for measuring the concentration of a gas in exhaled air
CN209629654U (en) A kind of characteristics of contaminated respiratory droplets gas sampling and metabolic analysis device
US9999373B2 (en) On-airway pulmonary function tester
CA2460201A1 (en) Non-invasive device and method for the diagnosis of pulmonary vascular occlusions
Mohsenifar et al. Effect of carboxyhemoglobin on the single breath diffusing capacity: derivation of an empirical correction factor
CN111157480A (en) Real-time dynamic quantitative detection device for carbon dioxide in human body exhaled air
CN105496412B (en) A kind of expiration inflammation monitoring method and device
CN113854997A (en) Lung dispersion function inspection device and method based on one-breath method
Boothby et al. A comparison of methods of obtaining alveolar air
JP2786808B2 (en) Measurement method of gas-phase respiratory function and health management method of gas-phase respiratory function using the measurement result
RU92317U1 (en) HUMAN EXHAUST DEVICE
SU572268A1 (en) Device for artificial pulmonary ventilation
RU2029951C1 (en) Method of determining diffusive capacity of lungs and apparatus for effecting same