US3859318A - Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides - Google Patents

Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides Download PDF

Info

Publication number
US3859318A
US3859318A US222671A US22267172A US3859318A US 3859318 A US3859318 A US 3859318A US 222671 A US222671 A US 222671A US 22267172 A US22267172 A US 22267172A US 3859318 A US3859318 A US 3859318A
Authority
US
United States
Prior art keywords
oil
carbon atoms
reaction product
product according
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US222671A
Inventor
William M Lesuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Priority to US222671A priority Critical patent/US3859318A/en
Application granted granted Critical
Publication of US3859318A publication Critical patent/US3859318A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2615Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen the other compounds containing carboxylic acid, ester or anhydride groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1817Compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/95Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/04Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/02Macromolecular compounds from phosphorus-containg monomers, obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • C10M2225/041Hydrocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12

Definitions

  • 567 320 is a med from mono aclds wmemmg cogmnuation of SN 274 at least about fifty aliphatic carbon atoms exluslve of the carboxyl carbon atoms.
  • the products are useful as [52] Cl H 260M105 260/21() R 26Q/4O4 lubricant and fuel additives.
  • a typical example of the 260/404.5, 260/405, 260/408, 260/410, process would be the post-treatment of a diester of 2 0/4 0 2 0/4 0 7 2 0/4 1 R, 2 0/4 3 polyisobutenyll-substituted succinic acid and sorbitol 260/484 R, 260/485 G, 208/14, 208/16, Wlth Propylene OXlde- 208/18, 252/51.5, 252/54.6, 252/56 R, 19 Claims, N0 Drawings 252/56 S, 252/56 D, 252/57 [51] Int. CL... C07c 69/32, C07c 69/40, ClOm 3/20 [58] Field of Search 260/408, 485 G, 410.6;
  • Lubricants and fuels containing the compositions of this invention are the subject of application Ser. No. 866,084 filed Oct. 3, 1969, now U.S. Pat. No. 3,579,450; Ser. No. 866,084 being a continuation of Ser. No. 712,606.
  • This invention relates to a process for treating carboxylic acid esters, to the compositions of matter resulting from this process, and to lubricants and fuels containing these compositions of matter.
  • the invention is concerned with the post-treatment of esters of high molecular weight carboxylic acids with organic epoxides, the compositions of matter which results from treating the esters with the epoxides, and to lubricants and fuels containing these compositions.
  • the present invention is directed to a process for post-treating esters of this general type with at least one organic epoxide to provide novel compositions of matter also useful as additives in lubricant and fuel compositions.
  • a further object of the invention is to provide a process for post-treating certain esters with organic epoxides.
  • An additional object is to provide novel compositions of matter resulting from the post-treatment of certain carboxylic acid esters with organic epoxides.
  • a still further object is to provide lubricants and fuels containing compositions produced by post-treating certain esters with organic epoxides.
  • esters to be post-treated with the organic epoxides according to the process of the present invention are esters of monoand polycarboxylic acids containing at least about fifty aliphatic carbon atoms exclusive of the carboxyl carbon atoms.
  • the alcohol moiety of the esters contemplated is derived from a polyhydric alcohol containing up to about 40 aliphatic carbon atoms.
  • these patents are directed to esters of substituted succinic acids and aliphatic polyhydric alcohols.
  • the present invention contemplates the post-treatment of similar esters prepared from monocarboxylic acids as well as polycarboxylic acids other than succinic acids.
  • Such esters can be prepared from these monoand polycarboxylic acid acylating agents and the appropriate aliphatic alcohols by following the same general procedure as used in the preparation of the succinic acid esters in the above patents.
  • the acyl radical of the esters to be treated by the process of this is derived from a mono-or polycarboxylic acid.
  • One particularly important characteristic of the acyl radical is its size.
  • the radical should contain at least about 50 aliphatic carbon atoms exclusive of the carboxyl carbon atoms. This limitation is based upon both oil-solubility considerations and the effectiveness of the compositions as additives in lubricants and fuels.
  • Another important aspect of the acyl radical is that it preferably should be substantially saturated, i.e., at least about of the total number of the carbon-to-carbon covalent linkages therein preferably should be saturated linkages. In an especially preferred aspect of the invention, at least about 98% of these covalent linkages are saturated. Obviously, all of the covalent linkages may be saturated. A greater degree of unsaturation renders the esters more susceptible to oxidation, degradation, and polymerization and this lessens the effectiveness of the final products as lubricant and fuel additives.
  • acyl radical of the esters should be substantially free from oil-solubilizing pendant groups
  • the acyl radical may contain polar substituents provided that the polar substituents are not present in proportions sufficiently large to alter significantly the hydrocarbon character of the radical.
  • Typical suitable polar substituents are halo, such as chloro and bromo, oxo, oxy, formyl, sulfonyl, sulfinyl, thio, nitro, etc.
  • Such polar substituents if present, preferably will not exceed 10% by weight of the total weight of the hydrocarbon portion of the carboxylic acid radical exclusive of the carboxyl group.
  • Carboxylic acid acylating agents suitable for preparing the esters are well-known in the art and have been described in detail, for example, in U.S. Pat. Nos. 3,087,936; 3,163,603; 3,172,892; 3,189,544; 3,219,666; 3,272,746; 3,288,714; 3,306,907; 3,331,776; 3,340,281; 3,341,542; and 3,346,354.
  • the process involves the reaction of 1) an ethlenically unsaturated carboxylic acid, acid halide, or anhydride
  • the carboxylic acid reactant usually corresponds to the formula R (COOHLI, where R is characterized by the presence of at least one ethylenically unsaturated carbon-to-carbon covalent bond and n is an integer from one to six and preferably one or two.
  • the acidic reactant can also be the corresponding carboxylic acid halide, anhydride, ester, or other equivalent acylating agent and mixtures of one or more of these.
  • the total number of carbon atoms in the acidicreactant will not exceed and generally will not exceed six.
  • the acidic reactant will have at least one ethylenic linkage in an a, B-position with respect to at least one carboxyl function.
  • Exemplary acidic reactants are acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, glutaconic acid, chloromaleic acid, aconitic acid, crotonic acid, methylcrotonic acid, sorbic acid, 3-hexenoic acid, IO-decenoic'acid, and the like. Due to considerations of economy and availability, these acid reactants usually employed are acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
  • the carboxylic acid acylating agents may contain cyclic and/or aromatic groups.
  • the acids are essentially aliphatic in nature and in most instances, the preferred acid acylating agents are aliphatic monoand polycarboxylic acids, anhydrides, and halides.
  • the substantially saturated aliphatic hydrocarbonsubstituted succinic acid and anhydrides are especially preferred as acylating agents in the preparation of the esters used as starting materials in the present invention.
  • These succinic acid acylating agents are readily prepared by reacting maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as a chlorinated polyolefin. The reaction involves merely heating the two reactants at a temperature of about l00300C., preferably, 100200C.
  • the product from such a reaction is a substituted succinic anhydride where the substituent is derived from the olefin or chlorinated hydrocarbon as described in the above cited patents.
  • the product may be hydrogenated to remove all or a portion of any ethylenically unsaturated covalent linkages by standard hydrogenation procedures, if desired.
  • the substituted succinic anhydrides may be hydrolyzed by treatment with water or steam to the corresponding acid and either the anhydride or the acid may be converted to the corresponding acid halide or ester by reacting with phosphorus halide, phenols, or alcohols.
  • the ethylenically unsaturated hydrocarbon reactant and the chlorinated hydrocarbon reactant used in the preparation of the acylating agents are principally the high molecular weight, substantially saturated petroleum fractions and substantially saturated olefinpolymers and the corresponding chlorinated products.
  • the polymers and chlorinated polymers derived from mono-olefins having from 2 to about 30 carbon atoms are preferred.
  • the especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, Z-methyl-lheptene, 3-cyclohexyl-l-butene, and 2-methyl-5-propyl-l-hexene.
  • Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position likewise are useful. These are exemplified by 2- butene, 3-pentene, and 4-octene.
  • interpolymers of l-mono-olefins such as illustrated above with each other. and with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins, are also useful sources of the ethylenically unsaturated reactant.
  • Such interpolymers include for example, those prepared by polymerizing isobutene with styrene, isobutene with butadiene, propene with isoprene, propene with isobutene, ethylene with piperylene, isobutene with chloroprene, isobutene with p'-methyl-styrene, lhexene with 1,3-hexadie'ne, l-octene with l-hexene, l-hexene, l-heptene with l-pentene, 3-methyl-lbutene with l-octene, 3,3-dimethyl-l-pentene with lhexene, isobutene with styrene and piperylene, etc.
  • the interpolymers contemplated for use in preparing the acylating agents of this invention should be substantially aliphatic and substantially saturated, that is, they should contain at least about and preferably about on a weight basis, of units derived from aliphatic mono- OlCflI'lS. Preferably, they will contain no more than about 5% olefinic linkages based on the total number of the carbon-to-carbon covalent linkages present.
  • the chlorinated hydrocarbons and ethylenically unsaturated hydrocarbons used in the preparation of the acylating agents can have-molecular weights of from about 700 up to about 100,000 or even higher.
  • the preferred reactants are the above described polyolefins and chlorinated polyolefins having an average molecular weight of about 700 to about 5,000.
  • the acylating agent has a molecular weight in'excess of about 10,000, the acylated nitrogen composition also possess viscosity index improving qualities.
  • hydro-' sulfide, brominated product to a poly-nitrile, and then hydrolyzing the polynitrile may be prepared by oxidation of a high molecular weight polyhydric alcohol with potassium permanganate, nitric acid, or a similar oxidizing agent.
  • Another method for preparing such poly-carboxylic acids involves the reaction of an olefin or a polarsubstituted hydrocarbon such as a chloropolyisobutene with an unsaturated poly-carboxylic acid such as 2-pentene-l,3,5-tricarboxylic acid prepared by dehy dration of citric acid.
  • Mono-carboxylic acid acylating agents may be obtained by oxidizing a mono-alcohol with potassium permanganate or by reacting a halogenated high molecular weight olefin polymer with a ketene.
  • Another convenient method for preparing monocarboxylic acid involves the reaction of metallic sodium with an acetoacetic ester or a malonic ester of an alkanol to form a sodium derivative of the ester and the subsequent reaction of the sodium derivative with a halogenated high molecular weight hydrocarbon such as brominated wax or brominated polyisobutene.
  • Mono-carboxylic and poly-carboxylic acid acylating agents can also be obtained by reacting chlorinated monoand poly-carboxylic acids, anhydrides, acyl halides, and the like with ethylenically unsaturated hydrocarbons or ethylenically unsaturated substituted hydrocarbons such as the polyolefins and substituted polyolefins described hereinbefore in the manner described in U.S. Pat. No. 3,340,281.
  • the mono-carboxylic and poly-carboxylic acid anhydrides are obtained by dehydrating the corresponding acids. Dehydration is readily accomplished by heating the acid to a temperature above about 70C., preferably in the presence of a dehydration agent, e.g. acetic anhydride.
  • a dehydration agent e.g. acetic anhydride.
  • Cyclic anhydrides are usually obtained from poly-carboxylic acids having acid radicals separated by no more than three carbon atoms such as substituted succinic or glutaric acid, whereas linear anhydrides are obtained from polycarboxylic acids having the acid radicals separated by four or more carbon atoms.
  • the acid halides of the mono-carboxylic and polycarboxylic acids can be prepared by the reaction of the acids on their anhydrides with a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
  • a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
  • the esters which are to be post-treated are generally prepared by reacting the carboxylic acid acylating agent, preferably the acid per se, its acyl chloride, or an anhydride thereof, with an aliphatic polyhydric alcohol containing up to about 40 aliphatic carbon atoms according to conventional processes for preparing carboxylic acid esters.
  • carboxylic acid acylating agent preferably the acid per se, its acyl chloride, or an anhydride thereof
  • an aliphatic polyhydric alcohol containing up to about 40 aliphatic carbon atoms according to conventional processes for preparing carboxylic acid esters.
  • These alcohols are characterized by two to hydroxyl groups and can be quite diverse in structure and chemical composition.
  • Typical alcohols are alkylene glycols such as ethylene glycol, propylene glycol, trimethylene glycol, butylene glycol, and poly glycols such as diethylene glycol, trienthylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, dibutylene glycol, tributylene glycol, and other alkylene glycols and polyalkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms.
  • alkylene glycols such as ethylene glycol, propylene glycol, trimethylene glycol, butylene glycol
  • poly glycols such as diethylene glycol, trienthylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, dibutylene glycol, tributylene glycol, and other alkylene glycols and polyalkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms.
  • polyhydric alcohols include glycerol, monomethyl ether of glycerol, penthaerythritol, 9,lO-dihydroxystearic acid, the ethyl ester of 9,10- dihydroxy-stearic ,acid, 3-chloro-l,2-propanediol, 1,2- butanediol, 1,4-butanedi0l, 2,3-hexanediol, 2,4- hexanediol, pinacol, erythritol, arabitol, sorbitol, mannitol, 1,2-cyclohexanediol, 1,4-cyclo-hexanediol, 1,4- (2-hydroxyethyl)-cyclohexane, l,4'-dihydroxy-2-nitrobutane, l,4-di(2-hydroxyethyl)-benzene, the carbohydrates such as glucose, ramnose, man
  • aliphatic alcohols include those polyhydric alcohols containing at least three hydroxyl groups, at least one of which has been esteritied with a mono-carboxylic acid having from eight to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid, or tall oil acid.
  • a mono-carboxylic acid having from eight to about 30 carbon atoms
  • octanoic acid oleic acid
  • stearic acid linoleic acid
  • dodecanoic acid dodecanoic acid
  • tall oil acid such partially esterified polyhydric alcohols
  • examples of such partially esterified polyhydric alcohols are the mono-oleate of sorbitol, the mono-oleate of glycerol, the glycerol, the di-stearate of sorbitol, and the di-dodecanoate of erythrito
  • esters are those prepared from aliphatic alcohols containing up to 10 carbon atoms, and especially those containing 3 to 10 carbon atoms.
  • This class of alcohols includes glycerol, erythritol, pentaerythritol, gluconic acid, glyceraldehyde, glucose, arabinose, 1,7-heptanediol, 2,4-heptanediol, 1,2,3- hexanetriol, 1,2,4-hexanetriol, 1,2,5-hexanetriol, 2,3,4- hexanetriol, 1,2,3-butanetriol 1,2,4-butanetriol, quinic acid, 2,2,6,6-tetrakis-(hydroxymethyl)-cyclohexanol, l,lO-decanediol, digitalose, and the like
  • the esters prepared from aliphatic alcohols containing at least three hydroxyl groups and up to 10 carbon atoms are particularly
  • An especially preferred class of polyhydric alcohols for preparing the esters used as starting materials in the present invention are the polyhydric alkanols containing 3 to 6 carbon atoms and having at least three hydroxyl groups.
  • Such alcohols are exemplified in the above specifically identified alcohols and are represented by glycerol, erythritol, pentaerythritol, mannitol, sorbitol, 1,2,4-hexanetriol, and the like.
  • the organic epoxides used in the post-treatment of the esters can have up to about forty carbon atoms and may be represented by the formula where each R is independently hydrogen or an aliphatic, cyclo-aliphatic, or aromatic radical. Normally R will be hydrogen or an alkyl, haloalkyl, .cycloalkyl, halocycloalkyl, aryl, or haloaryl radical having no more than one halogen radical for every 3 carbon atoms.
  • the lower alkylene and haloalkylene epoxides, including the cycloalkylene epoxides, containing from 2 to 8 carbon atoms are especially preferred for post-treating the esters.
  • arylene and haloarylene epoxides contemplated are those containing from one to two resonant ring structures such as phenyl, naphthyl, or substituted phenyl and naphthyl such as alkyl phenyl or halophenyl (e.g., tolyl, cresyl, xylyl, methyl naphthyl, chlorophenyl, etc.). Phenyl and halophenyl radicals are the preferred R groups among the aryl epoxides.
  • the epoxides in which at least one of the carbon atoms attached to the oxygen in the oxirane ring is also attached to two hydrogen atoms are especially preferred. Those epoxides are designated as terminal epoxides.
  • the post-treatment process involves contacting the ester or mixture of esters with an epoxide or mixture of epoxides, usually in the presence of an inert diluent, while maintaining a temperature of about 25 C. up to the decomposition temperature of the ester or epoxide involved and usually at a temperature within a range of about 50-250C. Good results are achieved when the post-treatment is conducted at a temperature of about 70200C.
  • the esters and epoxides are easily brought into contact simply by mixing them in any convenient manner. It is usually desirable to employ some type of mechanical agitation to faciltate thorough contact of the esters and epoxides.
  • Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, hep.- tane, cyclohexane, benzene, toluene, xylene, chlorobenzene, chlorohexanes, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent.
  • the ester are prepared as oilsolutions and. these oil-solutions can be used in the post-treating process, the oil functioning as a diluent.
  • esters will be substantially free from unreacted carboxyl groups, for example, the diesters of the succinic acids as opposed to the monoesters. This can be achieved by using a stoichiometric equivalent or an excess of alcohol in preparing the esters.
  • An ester is considered substantially free from free carboxyl groups when not more than about 10% of the number of carboxyl functions present are free carboxyl groups, i.e., COOH.
  • the number of free carboxyl groups will be less than about 5% of the total number in the ester composition being treated in this preferred aspect of the invention.
  • the amount of epoxide employed can be increased to provide up to about one equivalent of epoxide for each equivalent of free carboxyl group in addition to that used for post-treating the ester.
  • the esters and epoxides should be contacted in an amount such that the ratio of equivalents of alcohol present in the ester to the equivalents of epoxide will be about 12005 to about 1:5 and preferably 1:01 to about 1:2.
  • the equivalent weight of an alcohol is deemed to be its molecular weight divided by the number of hydroxyl groups present whether or not they are esterified.
  • the equivalent weight of an epoxide is deemed to be the molecular weight of the epoxide divided by the number of oxirane rings present in the epoxy molecule.
  • the ester to be treated contains one mole of pentaerythritol in the alcoholic moiety
  • the ester contains four equivalents of alcohol.
  • such an ester would be contacted with 0.2 to 20, preferably 0.4 to 8 equivalents of epoxide.
  • This equivalent ratio is offered merely as a guideline to define the effectived ratios of ester and epoxide and is in no way intended to imply that all the epoxide used will react with the ester.
  • EXAMPLE 1 An ester is prepared by reacting 600 parts of polyisobutenyl-substituted succinic anhydride (average molecular weight-1 with 230 parts of polypropylene glycol (average molecular weight 425) in the presence of 547 parts of a mineral oil for about 17 hours at l50-160C. while blowing the reaction mixture with nitrogen. Then 32.8 parts of an acidified clay (commercially available as Super Filtrol from Filtrol Corporation) is added and the mixture heated to about 200C. for an additional 1 1 hours with hydrogen blowing and subsequently filtered. The filtrate is an oil solution of the desired ester.
  • an acidified clay commercially available as Super Filtrol from Filtrol Corporation
  • a carboxylic acid ester is prepared by slowly adding 3,240 parts of a high molecular weight carboxylic acid (prepared by reacting chlorinated polyisobutylene and acrylic acid in a 1:1 equivalent ratio and having an average molecular weight of 982) to a mixture of 200 parts of sorbitol and 1000 parts of diluent oil over a 15-hour period while maintaining a temperature of ll5125C. Then 400 parts of additional diluent oil are added and the mixture is maintained at about 195205C. for 16 hours while blowing the mixture with nitrogen. An additional 755 parts of oil are then added the mixture cooled to C., and filtered. The filtrate is an oil solution of the desired ester.
  • a high molecular weight carboxylic acid prepared by reacting chlorinated polyisobutylene and acrylic acid in a 1:1 equivalent ratio and having an average molecular weight of 982
  • the above ester is post-treated wsith propylene oxide by adding 108 parts of propylene oxide to 5,105 parts of the filtrate and 25 parts of pyridine while maintaining a temperature of 80-90C. Then the mixture is heated to l l0120C. for 2 to 3 hours and stripped to 170C. at a pressure of mm. (Hg). The stripped product is the desired epoxide treated product.
  • EXAMPLE 3 A An ester is prepared by heating 658 parts of a carboxylic acid having an average molecular weight of 1,01 8 (prepared by reacting chlorinated polyisobutene with acrylic acid) with 22 parts of pentaerythritol while maintaining a temperature of about 180205C. for about 18 hours during which time nitrogen is blown through the mixture. The mixture is then cooled to about 90C. and maintained at 90-l0OC. for about 2 hours while 14 parts of ethylene oxide are slowly added. The mixture is subsequently heated to about 190-200C. for about 4.5 hours while slowly adding an additional 16 parts of ethylene oxide to the mixture. This mixture is then maintained at this latter temperature for an additional 2 hours, then stripped to 150C.
  • a carboxylic acid having an average molecular weight of 1,01 8 prepared by reacting chlorinated polyisobutene with acrylic acid
  • pentaerythritol prepared by heating 658 parts of a carboxylic acid having an average molecular weight of 1,01 8 (prepared by
  • EXAMPLE 4- A An ester is prepared by heating 3,318 parts of polyisobutenyl-substituted succinic anhydride (average molecular weight 1100), 408 parts of pentaerythritol, and 2,445 parts of diluent oil at 150C. for 5 hours and thereafter at 200210C. for an additional 5 hours. The reaction mixture is then filtered, the filtrate being an oil solution of the desired ester.
  • the foregoing ester is post-treated with an epoxide by heating 2500 parts of the filtrate to about 80C. and thereafter adding 123 parts of propylene oxide over a period of 4 hours while maintaining a temperature at 8090C. Upon completion of the addition of the propylene oxide, the resulting mixture is heated an additional 3 hours at a temperature of 8090C. and subsequently stripped to 150C. at a pressure of 20 mm (Hg). The residue of this stripping step is an oil solution of the desired propylene oxide-treated ester.
  • EXAMPLE 5 Following the procedure of Example 1, a polyisopropenyl-substituted succinic anhydride (where the polyisopropenyl substituent has an average molecular weight of about 750) is reacted with mannitol in an equivalent ratio of anhydride to mannitol of 1:3. An oil solution containing 1,000 parts of the ester is posttreated with 145 parts of butylene oxide.
  • EXAMPLE 7 Following the general procedure of Example 4, an ester is prepared by reacting one mole of polyisobutenyl-substituted succinic anhydride (average molecular weight 3200) simultaneously with one-half mole of glycerol and one-half mole of pentaerythritol and the resulting ester (1,000 parts in a 40% oil solution) is post-treated with 58 parts of propylene oxide.
  • EXAMPLE 8 An esteris prepared by reacting 2,000 parts of the carboxylic acid of Example 2(A), 1,200 parts ofthe anhydride of Example 1, and 300 parts of sorbitol in 1,400 parts of oil following the general procedure of Example 2(A). Thereafter, the filtrate is post-treated with 300 parts of propylene oxide following the general procedure of Example 2(B).
  • EXAMPLE 9 An ester is prepared from 1,000 parts of the acid of Example 2(A) and 92 parts of glycerol and thereafter post-treated with 180 parts of propylene oxide following the general procedure of Example 2(A).
  • EXAMPLE 1 A mixture of 340 grams (0.3 mole) of alcohol (prepared by copolymerizing equi-molar proportions of styrene' and allyl alcohol to a copolymer having a molecular weight of 1,150 and containing an average of 5 hydroxyl radicals per mole), 1.5 moles of a polyisobutene-substituted succinic anhydride as described in Example 1, and 500 grams of xylene is heated at 80-l 15C., diluted with mineral oil, heated to remove xylene, and filtered. The filtrate'is post-treated with propylene oxide (about one equivalent per equivalent of alcohol used) at 150C. under reflux. The product is diluted with oil to an oil solution having an oil content of 40%. v
  • the post-treated esters produced by the process of this invention are useful as additives in lubricants and fuels in the same manner as the ester starting materials. They function effectively as sludge-dispersants in both lubricants and fuels.
  • lubricating oil additives When employed as lubricating oil additives they are usually present in amounts of from about 0.01 to about 30% by weight in the final lubricating composition.
  • the post-treated esters will be present in amounts of from about 0.5% to about 10% by weight although under unusally adverse conditions, such as in the operation of certain diesels, they may comprise up to about 30percent by weight of the lubricant.
  • the products are particularly useful as dispersants in lubricating oil compositions used in the crankcase of various internal combustion engines.
  • the post-treated esters When employed in lubricating oils, the post-treated esters may be used alone or in combination with other dispersants or detergents.
  • the lubricating composition may contain rust inhibitors, oxidation inhibitors, viscosity index improving agents, extreme pressure additives, and the like. Typical examples of these additional additives are contained in the aboveidentified patents disclosing the carboxylic acid acylating agents useful in preparing the products of the present invention.
  • the post-treated esters can be used effectively in both mineral oil-based lubricating compositions (i.e., petroleum distillates of lubricating oil viscosity) and synthetic oil-based lubricating compositions although they will probably find greater use in the former since mineral oil lubricating compositions are more prevalent.
  • the post-treated esters serve to promote engine cleanliness by reducing or eliminating harmful deposits in the fuel system, engine, and exhaust system. They are primarily intended for use in the normally liquid petroleum distillate fuels, that is, the petroleum distillates which boil in the-range characteristic of petroleum fuels such as gasolines, fuel oils, diesel fuels, aviation fuels, kerosene, and the like. When employed in fuels, they are generally employed in lower concentrations than in lubricants, for example, in amounts of from about 0.001% to about 2% by weight and generally in amounts of from about 0.01% to about 1% by weight. As in the case of lubricants, other conventional additives can be present in the fuel compositions contemplated by the present invention. Additional additives include lead scavengers, deicers, antiscreen clogging agents, demulsifiers, and the like.
  • Example C SAE W-30 mineral lubricating oil containing 4 percent of the product of Example 3(A).
  • Example D Example E SAE mineral lubricating oil containing 2.5% of the product of Example 4, 0.75% of phosphorus as the dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide a hydrolyzed reaction product of a propylene (molecular weight 2,000) with one mole of phosphorus pentasulfide and one mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid and a 5% stoichiometrically excess amount of barium hydroxide in the presence of octylphenol as the promoter at 180C., 3% of a supplemental ashless dispersant prepared by copolymerizing a mixture of 95% by weight of decylmethacrylate, 5% by weight of diethylaminoethyl acrylate.
  • a barium detergent prepared by neutralizing with barium hydroxide a hydrolyze
  • Example F A di-2-ethylhexyl sebacate lubricating composition comprising 0.25% of the product of Example 2(B).
  • Example G Diesel fuel containing 0.2% of the product of Example 4.
  • Example H Kerosene containing 0.15% of the product of Example 1.
  • compositions contemplated by the present invention illustrate types of compositions contemplated by the present invention.
  • Many additional compositions apparent to those skilled in the art are available simply by replacing all or part of the high-molecular weight esters'used in fuels and lubricants described in the above-patents with an equal amount of the post-treated esters of the present invention.
  • optimum amounts for any application will depend upon the particular additive or additive combination selected and the specific environment in which the fuel or lubricant is to be used. These optimum amounts'can be ascertained through conventional evaluation techniques commonplace in the industry.
  • An oil-soluble reaction product produced by a process comprising contacting at a temperature of from about 25C. up to about the decomposition temperature (A) at least one oil-soluble ester of a monoor polycarboxylic acid and a polyhydric alcohol having at least three hydroxyl groups wherein the c arboxylic acid moiety of the ester is characterized by asubstantially saturated, aliphatic hydrocarbon radical, which is substantially free of oil-solubilizing pendent groups and has at least about aliphatic carbon atoms exclusive of the carboxyl carbon atoms, and the alcohol moiety contains up to about 40 aliphatic carbon atoms; with (B) at least one organic epoxide having up to about 40 carbon atoms and corresponding to the formula R R H bH 3 1.
  • each R is independently hydrogen or an. aliphatic, cycloaliphatic or aromatic radical; the amount of (A) and (B) in the reaction mixture being such that the ratio of equivalents of alcohol present in the ester to equivalents of epoxide is about 1:0.05 to about 1:5.
  • An oil-soluble reaction product according to claim 1 where (A) and (B) are contacted at a temperature within the range of about 50250C. and (B) is at least v one organic epoxide wherein each R is independently 5.
  • An oil-soluble reaction product according to claim 4 where (A) is at least one ester of a monocarboxylic acid and (A) and (B) are contacted at a temperature of about 70200C.
  • polyhydric aliphatic alcohol is selected from the class comprising glycerol, erythritol, pentaerythritol, mannitol, and sorbitol.
  • An oil-soluble reaction product according to claim 4 produced by contacting (A) with (B) where (A) is at least one ester of a monoor polycarboxylic acid where the acyl moiety of said monoor polycarboxylic acid corresponds to the acyl moiety derived from the reaction at a temperature within the range of about l00-300C.
  • acyl moiety is derived from the reaction of 1) an unsaturated carboxylic acid of the formula R,,(COOl-l), or its corresponding acyl halides or anhydrides where R is characterized by the presence of at least one ethylenically unsaturated carbonto-carbon covalent bond in an afi-position with respect to at least one carboxyl function, n is one or two and the total number of carbon atoms in R -(COOH),, does not exceed 10 with (2) polymerized lmonoolefins or chlorinated polymerized l monoolefins.
  • An oil-soluble reaction product according to claim 17 containing about 0.5% to about 10% by weight of the composition produced by contacting (A) with (B) wherein the total number of carbon atoms in R -(COOH),, does not exceed six and where (2) is polyisobutylene or chlorinated polyisobutylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with organic epoxides. The acyl moiety of the esters is derived from mono- or polycarboxylic acids containing at least about fifty aliphatic carbon atoms exlusive of the carboxyl carbon atoms. The products are useful as lubricant and fuel additives. A typical example of the process would be the post-treatment of a diester of polyisobutenyl1-substituted succinic acid and sorbitol with propylene oxide.

Description

Unlted States Patent 11 1 1111 3,859,318
Lesuer 1 Jan. 7, 1975 PRODUCTS PRODUCED BY [56] References Cited POST-TREATING OIL-SOLUBLE ESTERS UNITED STATES PATENTS OF MONO OR POLYCARBOXYUC ACIDS 2,500,349 3/1950 DGGXOOIE et a1. 252/340 AND POLYHYDRIC ALCOHOLS WITH 2,705,724 4/1955 Come et a1. 260/484 EPOXIDES 3,255,108 6/1966 Wiese 1 1 252/32.7
3,281,356 10/1966 Coleman 252/32.7 [75] lnvemor- Lesue" Cleveland 3,331,776 7/1967 Krukziener 1 252/56 [73] Assignee: The Lubrizol Corporation, 314853754 12/1969 Boylan al 252/56 3,525,693 8/1970 Lyle CI a1 252/34 [22] Filed: 1972 Primary ExaminerLewis Gotts [21] A l, No; 222,671 Assistant Examiner-Diana G. Rivers Attorney, Agent, or Firm-J. Walter Adams, Jr.; Karl Related US. Application Data F Hoback [60] Continuation of Ser. No. 826,015, May 19, 1969, abandoned, which is a division of Ser. No. 712,606, March 13, 1968, abandoned, which is a [57] ABSTRACT iggg g gpg z z 125 d S YJ A process for post-treating oil-soluble esters of monoat i i i u y or polycarboxylic acids and polyhydric alcohols with Z I 338L022 and organic epoxides. The acyl moiety of the esters is de- 13 a continuation-in-part of Ser. No. 274,905, April 23 1963 abandoned said Ser. No. 567 320 is a med from mono aclds wmemmg cogmnuation of SN 274 at least about fifty aliphatic carbon atoms exluslve of the carboxyl carbon atoms. The products are useful as [52] Cl H 260M105 260/21() R 26Q/4O4 lubricant and fuel additives. A typical example of the 260/404.5, 260/405, 260/408, 260/410, process would be the post-treatment of a diester of 2 0/4 0 2 0/4 0 7 2 0/4 1 R, 2 0/4 3 polyisobutenyll-substituted succinic acid and sorbitol 260/484 R, 260/485 G, 208/14, 208/16, Wlth Propylene OXlde- 208/18, 252/51.5, 252/54.6, 252/56 R, 19 Claims, N0 Drawings 252/56 S, 252/56 D, 252/57 [51] Int. CL... C07c 69/32, C07c 69/40, ClOm 3/20 [58] Field of Search 260/408, 485 G, 410.6;
PRODUCTS PRODUCED BY POST-TREATING OIL-SOLUBLE ESTERS OF MONO- OR POLYCARBOXYLIC ACIDS AND POLYIIYDRIC ALCOHOLS WITH EPOXIDES This is a continuation ofcopending application Ser. No. 826,015 filed May 19, 1969 now abandoned which, in turn is a division of application Ser. No. 712,606 filed Mar. 13, 1968, now abandoned, which is a continuation-in-part of my earlier filed applications Ser. No. 567,052 and 567,320 filed on July 22, 1966, these being, respectively, a continuation-in-part and a continuation of application Ser. No. 274,905, filed Apr. 23, 1963, and now abandoned. Ser. No. 567,320 has issued Apr. 30, 1968, as U.S. Pat. No. 3,381,022, and Ser. No. 567,052, issued July 28,1970, as U.S. Pat. No. 3,522,179. Lubricants and fuels containing the compositions of this invention are the subject of application Ser. No. 866,084 filed Oct. 3, 1969, now U.S. Pat. No. 3,579,450; Ser. No. 866,084 being a continuation of Ser. No. 712,606.
This invention relates to a process for treating carboxylic acid esters, to the compositions of matter resulting from this process, and to lubricants and fuels containing these compositions of matter. In particular, the invention is concerned with the post-treatment of esters of high molecular weight carboxylic acids with organic epoxides, the compositions of matter which results from treating the esters with the epoxides, and to lubricants and fuels containing these compositions.
The prior art discloses many esters of high molecular.
weight carboxylic acids as useful additives in fuel and lubricant compositions, for example, French Pat. No. 1,396,645; British Pat. Nos. 981,850 and 1,055,337; and U.S. Pat. Nos. 3,255,108; 3,311,558; 3,331,776; and 3,346,354. The present invention is directed to a process for post-treating esters of this general type with at least one organic epoxide to provide novel compositions of matter also useful as additives in lubricant and fuel compositions.
In accordance with the foregoing, it is a principal object of this invention to provide a novel chemical process.
A further object of the invention is to provide a process for post-treating certain esters with organic epoxides.
An additional object is to provide novel compositions of matter resulting from the post-treatment of certain carboxylic acid esters with organic epoxides.
A still further object is to provide lubricants and fuels containing compositions produced by post-treating certain esters with organic epoxides.
These and other objects of this invention are accomplished by providing a process comprising contacting (A) at least one oil-soluble ester of a monoor polycarboxylic acid and a polyhydric alcohol where the carboxylic acid moiety of the ester is characterized by at least about fifty aliphatic carbon atoms exclusive of the carboxyl carbon atoms and the alcohol moiety contains up to about 40 aliphatic carbon atoms with (B) at least one organic epoxide, the amount of (A) to (B) in the reaction mixture being such that the ratio of equivalents alcohol present in the ester to equivalents of epoxide is about 120.05 to about 1:5. The compositions produced by this process, the process, and lubricants and fuels containing the compositions. are described in more detail hereinafter.
The esters to be post-treated with the organic epoxides according to the process of the present invention are esters of monoand polycarboxylic acids containing at least about fifty aliphatic carbon atoms exclusive of the carboxyl carbon atoms. The alcohol moiety of the esters contemplated is derived from a polyhydric alcohol containing up to about 40 aliphatic carbon atoms. These esters are known in the prior art or can be readily prepared from available intermediates according to conventional procedures. Since the forego ing enumerated patents disclose many esters of this type and various processes for their preparation, these patents are incorporated herein for the sake of brevity.
For the most part, these patents are directed to esters of substituted succinic acids and aliphatic polyhydric alcohols. However, the present invention contemplates the post-treatment of similar esters prepared from monocarboxylic acids as well as polycarboxylic acids other than succinic acids. Such esters can be prepared from these monoand polycarboxylic acid acylating agents and the appropriate aliphatic alcohols by following the same general procedure as used in the preparation of the succinic acid esters in the above patents.
The acyl radical of the esters to be treated by the process of this is derived from a mono-or polycarboxylic acid. One particularly important characteristic of the acyl radical is its size. Thus, the radical should contain at least about 50 aliphatic carbon atoms exclusive of the carboxyl carbon atoms. This limitation is based upon both oil-solubility considerations and the effectiveness of the compositions as additives in lubricants and fuels. Another important aspect of the acyl radical is that it preferably should be substantially saturated, i.e., at least about of the total number of the carbon-to-carbon covalent linkages therein preferably should be saturated linkages. In an especially preferred aspect of the invention, at least about 98% of these covalent linkages are saturated. Obviously, all of the covalent linkages may be saturated. A greater degree of unsaturation renders the esters more susceptible to oxidation, degradation, and polymerization and this lessens the effectiveness of the final products as lubricant and fuel additives.
in addition, the acyl radical of the esters should be substantially free from oil-solubilizing pendant groups,
that is, groups having more than about six aliphatic carbon atoms. Although, some such oil-solubilizing pendant groups may be present, they preferably will not exceeds one such group for every 25 aliphatic carbon atoms in the principal hydrocarbon chain of the acyl radical.
The acyl radical may contain polar substituents provided that the polar substituents are not present in proportions sufficiently large to alter significantly the hydrocarbon character of the radical. Typical suitable polar substituents are halo, such as chloro and bromo, oxo, oxy, formyl, sulfonyl, sulfinyl, thio, nitro, etc. Such polar substituents, if present, preferably will not exceed 10% by weight of the total weight of the hydrocarbon portion of the carboxylic acid radical exclusive of the carboxyl group.
Carboxylic acid acylating agents suitable for preparing the esters are well-known in the art and have been described in detail, for example, in U.S. Pat. Nos. 3,087,936; 3,163,603; 3,172,892; 3,189,544; 3,219,666; 3,272,746; 3,288,714; 3,306,907; 3,331,776; 3,340,281; 3,341,542; and 3,346,354. In
the interest of brevity, these patents are incorporated herein for their disclosure of suitable monoand polycarboxylic acid acylating agents which can be used for the preparation of the esters used as starting materials in the present invention.
As disclosed in the foregoing patents, there are several processes for preparing the acids. Generally, the process involves the reaction of 1) an ethlenically unsaturated carboxylic acid, acid halide, or anhydride When preparing the carboxylic acid acylating agent according to one of these two processes, the carboxylic acid reactant usually corresponds to the formula R (COOHLI, where R is characterized by the presence of at least one ethylenically unsaturated carbon-to-carbon covalent bond and n is an integer from one to six and preferably one or two. The acidic reactant can also be the corresponding carboxylic acid halide, anhydride, ester, or other equivalent acylating agent and mixtures of one or more of these. Ordinarily, the total number of carbon atoms in the acidicreactant will not exceed and generally will not exceed six. Preferably the acidic reactant will have at least one ethylenic linkage in an a, B-position with respect to at least one carboxyl function. Exemplary acidic reactants are acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, glutaconic acid, chloromaleic acid, aconitic acid, crotonic acid, methylcrotonic acid, sorbic acid, 3-hexenoic acid, IO-decenoic'acid, and the like. Due to considerations of economy and availability, these acid reactants usually employed are acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
As is apparent from the foregoing discussion, the carboxylic acid acylating agents may contain cyclic and/or aromatic groups. However, the acids are essentially aliphatic in nature and in most instances, the preferred acid acylating agents are aliphatic monoand polycarboxylic acids, anhydrides, and halides.
The substantially saturated aliphatic hydrocarbonsubstituted succinic acid and anhydrides are especially preferred as acylating agents in the preparation of the esters used as starting materials in the present invention. These succinic acid acylating agents are readily prepared by reacting maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as a chlorinated polyolefin. The reaction involves merely heating the two reactants at a temperature of about l00300C., preferably, 100200C. The product from such a reaction is a substituted succinic anhydride where the substituent is derived from the olefin or chlorinated hydrocarbon as described in the above cited patents. The product may be hydrogenated to remove all or a portion of any ethylenically unsaturated covalent linkages by standard hydrogenation procedures, if desired. The substituted succinic anhydrides 'may be hydrolyzed by treatment with water or steam to the corresponding acid and either the anhydride or the acid may be converted to the corresponding acid halide or ester by reacting with phosphorus halide, phenols, or alcohols.
The ethylenically unsaturated hydrocarbon reactant and the chlorinated hydrocarbon reactant used in the preparation of the acylating agents are principally the high molecular weight, substantially saturated petroleum fractions and substantially saturated olefinpolymers and the corresponding chlorinated products. The polymers and chlorinated polymers derived from mono-olefins having from 2 to about 30 carbon atoms are preferred. The especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, Z-methyl-lheptene, 3-cyclohexyl-l-butene, and 2-methyl-5-propyl-l-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. These are exemplified by 2- butene, 3-pentene, and 4-octene.
The interpolymers of l-mono-olefins such as illustrated above with each other. and with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins, are also useful sources of the ethylenically unsaturated reactant. Such interpolymers include for example, those prepared by polymerizing isobutene with styrene, isobutene with butadiene, propene with isoprene, propene with isobutene, ethylene with piperylene, isobutene with chloroprene, isobutene with p'-methyl-styrene, lhexene with 1,3-hexadie'ne, l-octene with l-hexene, l-hexene, l-heptene with l-pentene, 3-methyl-lbutene with l-octene, 3,3-dimethyl-l-pentene with lhexene, isobutene with styrene and piperylene, etc.
For reasons of oil-solubility and stability, the interpolymers contemplated for use in preparing the acylating agents of this invention should be substantially aliphatic and substantially saturated, that is, they should contain at least about and preferably about on a weight basis, of units derived from aliphatic mono- OlCflI'lS. Preferably, they will contain no more than about 5% olefinic linkages based on the total number of the carbon-to-carbon covalent linkages present.
The chlorinated hydrocarbons and ethylenically unsaturated hydrocarbons used in the preparation of the acylating agents can have-molecular weights of from about 700 up to about 100,000 or even higher. The preferred reactants are the above described polyolefins and chlorinated polyolefins having an average molecular weight of about 700 to about 5,000. When the acylating agent has a molecular weight in'excess of about 10,000, the acylated nitrogen composition also possess viscosity index improving qualities.
In lieu of the high molecular weight hydrocarbons and chlorinated hydrocarbons discussed above, hydro-' sulfide, brominated product to a poly-nitrile, and then hydrolyzing the polynitrile. They may be prepared by oxidation of a high molecular weight polyhydric alcohol with potassium permanganate, nitric acid, or a similar oxidizing agent. Another method for preparing such poly-carboxylic acids involves the reaction of an olefin or a polarsubstituted hydrocarbon such as a chloropolyisobutene with an unsaturated poly-carboxylic acid such as 2-pentene-l,3,5-tricarboxylic acid prepared by dehy dration of citric acid. Mono-carboxylic acid acylating agents may be obtained by oxidizing a mono-alcohol with potassium permanganate or by reacting a halogenated high molecular weight olefin polymer with a ketene. Another convenient method for preparing monocarboxylic acid involves the reaction of metallic sodium with an acetoacetic ester or a malonic ester of an alkanol to form a sodium derivative of the ester and the subsequent reaction of the sodium derivative with a halogenated high molecular weight hydrocarbon such as brominated wax or brominated polyisobutene.
Mono-carboxylic and poly-carboxylic acid acylating agents can also be obtained by reacting chlorinated monoand poly-carboxylic acids, anhydrides, acyl halides, and the like with ethylenically unsaturated hydrocarbons or ethylenically unsaturated substituted hydrocarbons such as the polyolefins and substituted polyolefins described hereinbefore in the manner described in U.S. Pat. No. 3,340,281.
The mono-carboxylic and poly-carboxylic acid anhydrides are obtained by dehydrating the corresponding acids. Dehydration is readily accomplished by heating the acid to a temperature above about 70C., preferably in the presence of a dehydration agent, e.g. acetic anhydride. Cyclic anhydrides are usually obtained from poly-carboxylic acids having acid radicals separated by no more than three carbon atoms such as substituted succinic or glutaric acid, whereas linear anhydrides are obtained from polycarboxylic acids having the acid radicals separated by four or more carbon atoms.
The acid halides of the mono-carboxylic and polycarboxylic acids can be prepared by the reaction of the acids on their anhydrides with a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
The esters which are to be post-treated are generally prepared by reacting the carboxylic acid acylating agent, preferably the acid per se, its acyl chloride, or an anhydride thereof, with an aliphatic polyhydric alcohol containing up to about 40 aliphatic carbon atoms according to conventional processes for preparing carboxylic acid esters. These alcohols are characterized by two to hydroxyl groups and can be quite diverse in structure and chemical composition. Typical alcohols are alkylene glycols such as ethylene glycol, propylene glycol, trimethylene glycol, butylene glycol, and poly glycols such as diethylene glycol, trienthylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, dibutylene glycol, tributylene glycol, and other alkylene glycols and polyalkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms. Other useful polyhydric alcohols include glycerol, monomethyl ether of glycerol, penthaerythritol, 9,lO-dihydroxystearic acid, the ethyl ester of 9,10- dihydroxy-stearic ,acid, 3-chloro-l,2-propanediol, 1,2- butanediol, 1,4-butanedi0l, 2,3-hexanediol, 2,4- hexanediol, pinacol, erythritol, arabitol, sorbitol, mannitol, 1,2-cyclohexanediol, 1,4-cyclo-hexanediol, 1,4- (2-hydroxyethyl)-cyclohexane, l,4'-dihydroxy-2-nitrobutane, l,4-di(2-hydroxyethyl)-benzene, the carbohydrates such as glucose, ramnose, mannose, glyceraldehyde, and galactose, and the like, amino alcohols such as di(2hydroxyethyl)amine, tri-(3-hydroxypropyl)amine, N,N'-di(hydroxyethyl)ethylenediamine, copolymer of allyl alcohol and styrene, etc.
Included within this group of aliphatic alcohols are those polyhydric alcohols containing at least three hydroxyl groups, at least one of which has been esteritied with a mono-carboxylic acid having from eight to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid, or tall oil acid. Examples of such partially esterified polyhydric alcohols are the mono-oleate of sorbitol, the mono-oleate of glycerol, the glycerol, the di-stearate of sorbitol, and the di-dodecanoate of erythritol.
A preferred class of esters are those prepared from aliphatic alcohols containing up to 10 carbon atoms, and especially those containing 3 to 10 carbon atoms. This class of alcohols includes glycerol, erythritol, pentaerythritol, gluconic acid, glyceraldehyde, glucose, arabinose, 1,7-heptanediol, 2,4-heptanediol, 1,2,3- hexanetriol, 1,2,4-hexanetriol, 1,2,5-hexanetriol, 2,3,4- hexanetriol, 1,2,3-butanetriol 1,2,4-butanetriol, quinic acid, 2,2,6,6-tetrakis-(hydroxymethyl)-cyclohexanol, l,lO-decanediol, digitalose, and the like The esters prepared from aliphatic alcohols containing at least three hydroxyl groups and up to 10 carbon atoms are particularly preferred.
An especially preferred class of polyhydric alcohols for preparing the esters used as starting materials in the present invention are the polyhydric alkanols containing 3 to 6 carbon atoms and having at least three hydroxyl groups. Such alcohols are exemplified in the above specifically identified alcohols and are represented by glycerol, erythritol, pentaerythritol, mannitol, sorbitol, 1,2,4-hexanetriol, and the like.
The organic epoxides used in the post-treatment of the esters can have up to about forty carbon atoms and may be represented by the formula where each R is independently hydrogen or an aliphatic, cyclo-aliphatic, or aromatic radical. Normally R will be hydrogen or an alkyl, haloalkyl, .cycloalkyl, halocycloalkyl, aryl, or haloaryl radical having no more than one halogen radical for every 3 carbon atoms. The lower alkylene and haloalkylene epoxides, including the cycloalkylene epoxides, containing from 2 to 8 carbon atoms are especially preferred for post-treating the esters. The arylene and haloarylene epoxides contemplated are those containing from one to two resonant ring structures such as phenyl, naphthyl, or substituted phenyl and naphthyl such as alkyl phenyl or halophenyl (e.g., tolyl, cresyl, xylyl, methyl naphthyl, chlorophenyl, etc.). Phenyl and halophenyl radicals are the preferred R groups among the aryl epoxides. The epoxides in which at least one of the carbon atoms attached to the oxygen in the oxirane ring is also attached to two hydrogen atoms are especially preferred. Those epoxides are designated as terminal epoxides.
Specific examples of the organic epoxides useful in the process of this invention are ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxy-3-butane, 1,2- epoxypentane, 1,2-epoxyheptane, 1,2-epoxydodecane,
2,3-epoxybutane, 1,2epoxy5-hexane, 1,2- epoxycyclohexane, 2,3-epoxyheptane, 1,2- epoxyoctane, epichlorohydrin, 1,2-epoxy-4- chlorobutane, styrene oxide, p-methyl-styrene oxide, p-chloro-styrene oxide, epoxidized soyabean oil, methyl ester of 9,10-epoxy-stearic acid, and epoxidized fatty acid esters in which the fatty acid radical has up to about 30 aliphatic carbon atoms and the alcohol radical is derived from an aliphatic alcohol having up to about 8 carbon atoms. Ethylene oxide, propylene oxide and epichlorohydrin are particularly preferred for posttreating the esters.
The post-treatment process involves contacting the ester or mixture of esters with an epoxide or mixture of epoxides, usually in the presence of an inert diluent, while maintaining a temperature of about 25 C. up to the decomposition temperature of the ester or epoxide involved and usually at a temperature within a range of about 50-250C. Good results are achieved when the post-treatment is conducted at a temperature of about 70200C. The esters and epoxides are easily brought into contact simply by mixing them in any convenient manner. It is usually desirable to employ some type of mechanical agitation to faciltate thorough contact of the esters and epoxides.
Any substantially inert organic liquid can be used as a diluent. Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, hep.- tane, cyclohexane, benzene, toluene, xylene, chlorobenzene, chlorohexanes, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent. In many instances, the ester are prepared as oilsolutions and. these oil-solutions can be used in the post-treating process, the oil functioning as a diluent.
The precise means by which this process improves the dispersancy characteristics of the esters is not known. The epoxides are believed to react with nonesterified hydroxyl groups although they may also react with any free carboxyl groups present. In a preferred aspect of the invention, the esters will be substantially free from unreacted carboxyl groups, for example, the diesters of the succinic acids as opposed to the monoesters. This can be achieved by using a stoichiometric equivalent or an excess of alcohol in preparing the esters. An ester is considered substantially free from free carboxyl groups when not more than about 10% of the number of carboxyl functions present are free carboxyl groups, i.e., COOH. Ordinarily the number of free carboxyl groups will be less than about 5% of the total number in the ester composition being treated in this preferred aspect of the invention. When free carboxyl groups are present, the amount of epoxide employed can be increased to provide up to about one equivalent of epoxide for each equivalent of free carboxyl group in addition to that used for post-treating the ester.
The esters and epoxides should be contacted in an amount such that the ratio of equivalents of alcohol present in the ester to the equivalents of epoxide will be about 12005 to about 1:5 and preferably 1:01 to about 1:2. For purposes of using this ratio, the equivalent weight of an alcohol is deemed to be its molecular weight divided by the number of hydroxyl groups present whether or not they are esterified. Similarly, the equivalent weight of an epoxide is deemed to be the molecular weight of the epoxide divided by the number of oxirane rings present in the epoxy molecule.
By way of example, if the ester to be treated contains one mole of pentaerythritol in the alcoholic moiety, the ester contains four equivalents of alcohol. According to the present process, such an ester would be contacted with 0.2 to 20, preferably 0.4 to 8 equivalents of epoxide. This equivalent ratio is offered merely as a guideline to define the effectived ratios of ester and epoxide and is in no way intended to imply that all the epoxide used will react with the ester. However, within this ratio, it is possible to determine the optimum ratio of ester and epoxide for any given ester or combination of esters and any given epoxide or combination of epoxides through routine evaluation.
The following examples illustrate the preferred embodiments of this invention. As used in these examples and elsewhere in the specification and claims, per centage, and parts refer to percent by weight and parts by weight unless otherwise indicated.
EXAMPLE 1 An ester is prepared by reacting 600 parts of polyisobutenyl-substituted succinic anhydride (average molecular weight-1 with 230 parts of polypropylene glycol (average molecular weight 425) in the presence of 547 parts of a mineral oil for about 17 hours at l50-160C. while blowing the reaction mixture with nitrogen. Then 32.8 parts of an acidified clay (commercially available as Super Filtrol from Filtrol Corporation) is added and the mixture heated to about 200C. for an additional 1 1 hours with hydrogen blowing and subsequently filtered. The filtrate is an oil solution of the desired ester.
To the filtrate there is added 43.2 parts of propylene oxide and this mixture is heated at 8590C. for 17 hours. The reaction mixture is then stripped to 85C. at a pressure of 80 mm. (Hg). The resulting material is an oil solution of the desired propylene oxide treated ester.
EXAMPLE 2 A. A carboxylic acid ester is prepared by slowly adding 3,240 parts of a high molecular weight carboxylic acid (prepared by reacting chlorinated polyisobutylene and acrylic acid in a 1:1 equivalent ratio and having an average molecular weight of 982) to a mixture of 200 parts of sorbitol and 1000 parts of diluent oil over a 15-hour period while maintaining a temperature of ll5125C. Then 400 parts of additional diluent oil are added and the mixture is maintained at about 195205C. for 16 hours while blowing the mixture with nitrogen. An additional 755 parts of oil are then added the mixture cooled to C., and filtered. The filtrate is an oil solution of the desired ester.
B. The above ester is post-treated wsith propylene oxide by adding 108 parts of propylene oxide to 5,105 parts of the filtrate and 25 parts of pyridine while maintaining a temperature of 80-90C. Then the mixture is heated to l l0120C. for 2 to 3 hours and stripped to 170C. at a pressure of mm. (Hg). The stripped product is the desired epoxide treated product.
EXAMPLE 3 A. An ester is prepared by heating 658 parts of a carboxylic acid having an average molecular weight of 1,01 8 (prepared by reacting chlorinated polyisobutene with acrylic acid) with 22 parts of pentaerythritol while maintaining a temperature of about 180205C. for about 18 hours during which time nitrogen is blown through the mixture. The mixture is then cooled to about 90C. and maintained at 90-l0OC. for about 2 hours while 14 parts of ethylene oxide are slowly added. The mixture is subsequently heated to about 190-200C. for about 4.5 hours while slowly adding an additional 16 parts of ethylene oxide to the mixture. This mixture is then maintained at this latter temperature for an additional 2 hours, then stripped to 150C.
' at a pressure of 18 mm. (Hg), and filtered. The filtrate is an oil solution of the desired ethylene oxide treated ester.
B. The ester of A is post-treated with epichlorohydrin following the same general procedure but substituting an equivalent amount of epichlorohydrin for the ethylene oxide.
EXAMPLE 4- A. An ester is prepared by heating 3,318 parts of polyisobutenyl-substituted succinic anhydride (average molecular weight 1100), 408 parts of pentaerythritol, and 2,445 parts of diluent oil at 150C. for 5 hours and thereafter at 200210C. for an additional 5 hours. The reaction mixture is then filtered, the filtrate being an oil solution of the desired ester.
B. The foregoing ester is post-treated with an epoxide by heating 2500 parts of the filtrate to about 80C. and thereafter adding 123 parts of propylene oxide over a period of 4 hours while maintaining a temperature at 8090C. Upon completion of the addition of the propylene oxide, the resulting mixture is heated an additional 3 hours at a temperature of 8090C. and subsequently stripped to 150C. at a pressure of 20 mm (Hg). The residue of this stripping step is an oil solution of the desired propylene oxide-treated ester.
EXAMPLE 5 Following the procedure of Example 1, a polyisopropenyl-substituted succinic anhydride (where the polyisopropenyl substituent has an average molecular weight of about 750) is reacted with mannitol in an equivalent ratio of anhydride to mannitol of 1:3. An oil solution containing 1,000 parts of the ester is posttreated with 145 parts of butylene oxide.
EXAMPLE 6 Following the general procedure at Example 3(A), the ester post-treated with an equivalent amount of styrene oxide in lieu of ethylene oxide.
EXAMPLE 7 Following the general procedure of Example 4, an ester is prepared by reacting one mole of polyisobutenyl-substituted succinic anhydride (average molecular weight 3200) simultaneously with one-half mole of glycerol and one-half mole of pentaerythritol and the resulting ester (1,000 parts in a 40% oil solution) is post-treated with 58 parts of propylene oxide.
EXAMPLE 8 An esteris prepared by reacting 2,000 parts of the carboxylic acid of Example 2(A), 1,200 parts ofthe anhydride of Example 1, and 300 parts of sorbitol in 1,400 parts of oil following the general procedure of Example 2(A). Thereafter, the filtrate is post-treated with 300 parts of propylene oxide following the general procedure of Example 2(B).
EXAMPLE 9 An ester is prepared from 1,000 parts of the acid of Example 2(A) and 92 parts of glycerol and thereafter post-treated with 180 parts of propylene oxide following the general procedure of Example 2(A).
EXAMPLE 10 The ester of Example 4(A) is post-treated with 100 parts of propylene oxide and 25 parts of epichlorohydrin following the general procedure of Example 4.
EXAMPLE 1 1 A mixture of 340 grams (0.3 mole) of alcohol (prepared by copolymerizing equi-molar proportions of styrene' and allyl alcohol to a copolymer having a molecular weight of 1,150 and containing an average of 5 hydroxyl radicals per mole), 1.5 moles of a polyisobutene-substituted succinic anhydride as described in Example 1, and 500 grams of xylene is heated at 80-l 15C., diluted with mineral oil, heated to remove xylene, and filtered. The filtrate'is post-treated with propylene oxide (about one equivalent per equivalent of alcohol used) at 150C. under reflux. The product is diluted with oil to an oil solution having an oil content of 40%. v
As mentioned before, the post-treated esters produced by the process of this invention are useful as additives in lubricants and fuels in the same manner as the ester starting materials. They function effectively as sludge-dispersants in both lubricants and fuels. When employed as lubricating oil additives they are usually present in amounts of from about 0.01 to about 30% by weight in the final lubricating composition. Ordinarily, when used as additives for lubricating oil compositions, the post-treated esters will be present in amounts of from about 0.5% to about 10% by weight although under unusally adverse conditions, such as in the operation of certain diesels, they may comprise up to about 30percent by weight of the lubricant. The products are particularly useful as dispersants in lubricating oil compositions used in the crankcase of various internal combustion engines.
When employed in lubricating oils, the post-treated esters may be used alone or in combination with other dispersants or detergents. In addition, the lubricating composition may contain rust inhibitors, oxidation inhibitors, viscosity index improving agents, extreme pressure additives, and the like. Typical examples of these additional additives are contained in the aboveidentified patents disclosing the carboxylic acid acylating agents useful in preparing the products of the present invention. The post-treated esters can be used effectively in both mineral oil-based lubricating compositions (i.e., petroleum distillates of lubricating oil viscosity) and synthetic oil-based lubricating compositions although they will probably find greater use in the former since mineral oil lubricating compositions are more prevalent.
ln fuels, the post-treated esters serve to promote engine cleanliness by reducing or eliminating harmful deposits in the fuel system, engine, and exhaust system. They are primarily intended for use in the normally liquid petroleum distillate fuels, that is, the petroleum distillates which boil in the-range characteristic of petroleum fuels such as gasolines, fuel oils, diesel fuels, aviation fuels, kerosene, and the like. When employed in fuels, they are generally employed in lower concentrations than in lubricants, for example, in amounts of from about 0.001% to about 2% by weight and generally in amounts of from about 0.01% to about 1% by weight. As in the case of lubricants, other conventional additives can be present in the fuel compositions contemplated by the present invention. Additional additives include lead scavengers, deicers, antiscreen clogging agents, demulsifiers, and the like.
The following are examples of the lubricating and fuel compositions contemplated by the present invention.
Example A SAE 20 mineral oil containing 1% of the product of Example 1.
Example B SAE 30 mineral oil containing 0.4% of the product of Example 2(8) and 0.15% of the zinc salt of an equimolar mixture of di-cyclohexylphosphorodithioic acid and di-isobutylphosphorodithioic acid.
Example C SAE W-30 mineral lubricating oil containing 4 percent of the product of Example 3(A).
Example D Example E SAE mineral lubricating oil containing 2.5% of the product of Example 4, 0.75% of phosphorus as the dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide a hydrolyzed reaction product of a propylene (molecular weight 2,000) with one mole of phosphorus pentasulfide and one mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid and a 5% stoichiometrically excess amount of barium hydroxide in the presence of octylphenol as the promoter at 180C., 3% of a supplemental ashless dispersant prepared by copolymerizing a mixture of 95% by weight of decylmethacrylate, 5% by weight of diethylaminoethyl acrylate.
Example F A di-2-ethylhexyl sebacate lubricating composition comprising 0.25% of the product of Example 2(B).
Example G Diesel fuel containing 0.2% of the product of Example 4.
Example H Kerosene containing 0.15% of the product of Example 1.
vple 4.
The foregoing compositions illustrate types of compositions contemplated by the present invention. Many additional compositions apparent to those skilled in the art are available simply by replacing all or part of the high-molecular weight esters'used in fuels and lubricants described in the above-patents with an equal amount of the post-treated esters of the present invention. Obviously, optimum amounts for any application will depend upon the particular additive or additive combination selected and the specific environment in which the fuel or lubricant is to be used. These optimum amounts'can be ascertained through conventional evaluation techniques commonplace in the industry.
The foregoing examples are illustrative of the present invention and in no way are intended to be limiting as many other obvious modifications and embodiments will be obvious to those skilled in the art.
What is claimed is:
1. An oil-soluble reaction product produced by a process comprising contacting at a temperature of from about 25C. up to about the decomposition temperature (A) at least one oil-soluble ester of a monoor polycarboxylic acid and a polyhydric alcohol having at least three hydroxyl groups wherein the c arboxylic acid moiety of the ester is characterized by asubstantially saturated, aliphatic hydrocarbon radical, which is substantially free of oil-solubilizing pendent groups and has at least about aliphatic carbon atoms exclusive of the carboxyl carbon atoms, and the alcohol moiety contains up to about 40 aliphatic carbon atoms; with (B) at least one organic epoxide having up to about 40 carbon atoms and corresponding to the formula R R H bH 3 1.
where each R is independently hydrogen or an. aliphatic, cycloaliphatic or aromatic radical; the amount of (A) and (B) in the reaction mixture being such that the ratio of equivalents of alcohol present in the ester to equivalents of epoxide is about 1:0.05 to about 1:5.
2. An oil-soluble reaction product according to claim 1 where (A) and (B) are contacted at a temperature within the range of about 50250C. and (B) is at least v one organic epoxide wherein each R is independently 5. An oil-soluble reaction product according to claim 4 where (A) is at least one ester of a monocarboxylic acid and (A) and (B) are contacted at a temperature of about 70200C.
6. An oil-soluble reaction product according to claim 5 where (A) is an ester ofa polyhydric aliphatic alcohol of up to carbon atoms, and characterized by the presence of at least three hydroxyl groups.
7, An oil-soluble reaction product according to claim 6 wherein the polyhydric aliphatic alcohol is a polyhydric alkanol of up to 6 carbon atoms, the aliphatic epoxide is ethylene oxide or propylene oxide, and said ratio of equivalents is about 1:0.1 to about 1:2.
8. An oil-soluble reaction product according to claim 7 wherein the polyhydric aliphatic alcohol is selected from the class comprising glycerol, erythritol, pentaerythritol, mannitol, and sorbitol.
9. An oil-soluble reaction product according to claim 4 where (A) is at least one ester of a dicarboxylic acid and (A) and (B) are contacted at a temperature of about 70-200C.
10. An oil-soluble reaction product according to claim 9 where (A) is an ester of a hydrocarbonsubstituted or chlorinated hydrocarbon-substituted succinic acid wherein the substituent is substantially saturated and contains at least about fifty aliphatic carbon atoms.
11. An oilsoluble reaction product according to claim 10 where (A) is a diester of a polyolefinsubstituted succinic acid wherein the polyolefin substituent has a molecular weight of about 700 to about 5000 and not more than about 5% of the carbon-tocarbon covalent linkages in this substituent are unsaturated linkages.
12. An oil-soluble reaction product according to claim 11 where (A) is a diester ofa polyhydric aliphatic alcohol up to 10 carbon atoms which alcohol is characterized by the presence of at least three hydroxyl groups.
13. An oil-soluble reaction product according to claim 12 wherein the polyhydric aliphatic alcohol is a polyhydric alkanol of up to 6 carbon atoms, the aliphatic epoxide is ethylene oxide or propylene oxide, and said ratio of equivalents is about 1:0.1 to about 1:2.
14. An oil-soluble reaction product. according to claim 13 where (A) is a diester of polyisobutenesubstituted succinic acid with a polyhydric alkanol selected from the class consisting of glycerol, erythritol,
pentaerythritol, mannitol, and sorbitol.
15. An oil-soluble reaction product according to claim 4 produced by contacting (A) with (B) where (A) is at least one ester of a monoor polycarboxylic acid where the acyl moiety of said monoor polycarboxylic acid corresponds to the acyl moiety derived from the reaction at a temperature within the range of about l00-300C. of (1) an unsaturated carboxylic acid of the formula R,,-(COOH),, or the corresponding acyl halides or anhydrides where R, is characterized by the presence of at least one ethylenically unsaturated carbon-to-carbon covalent bond in an a,,B-position with respect to at least one carboxyl function and n is an integer of one to six with (2) an ethylenically unsaturated hydrocarbon containing at least about fifty aliphatic carbon atoms or a chlorinated hydrocarbon containing at least about 50 aliphatic carbon atoms, wherein (A) and (B) are contacted at a temperature of about 200C.
16. An oil-soluble reaction product according to claim 15 where the acyl moiety is derived from the reaction of 1) an unsaturated carboxylic acid of the formula R,,(COOl-l), or its corresponding acyl halides or anhydrides where R is characterized by the presence of at least one ethylenically unsaturated carbonto-carbon covalent bond in an afi-position with respect to at least one carboxyl function, n is one or two and the total number of carbon atoms in R -(COOH),, does not exceed 10 with (2) polymerized lmonoolefins or chlorinated polymerized l monoolefins.
17. An oil-soluble reaction product according to claim 16 where (A) is at least one ester of a polyhydric aliphatic alcohol of up to 10 carbon atoms characterized by the presence of at least three hydroxyl groups.
18. An oil-soluble reaction product according to claim 17 containing about 0.5% to about 10% by weight of the composition produced by contacting (A) with (B) wherein the total number of carbon atoms in R -(COOH),, does not exceed six and where (2) is polyisobutylene or chlorinated polyisobutylene.
19. An oil-soluble reaction reaction product according to claim 18 where (A) is at least one ester ofa polyhydric alkanol of up to 6 carbon atoms and (B) is selected from the group consisting of ethylene oxide or propylene oxide, the ratio of equivalents of (A) to (B) being about 120.1 to about 1:2.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Q Patent No. 3r859r3l8 Dated January 1975 William M. LeSuer Inventor (s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
At column 13, line 37, that is Claim 12, line 3, "alcohol up to" should be alcohol of up to Q Signed and gealed this second Day Of September 1975 [SEAL] Arrest:
RUTH C. MASON C. MARSHALL DANN Arresting Officer ((mzmissiuner ufIau-ms and Trademarks FORM PO-1OSO (10-69) o c 50 75 55

Claims (19)

1. AN OIL-SOLUBLE REACTION PRODUCT PRODUCED BY A PROCESS COMPRISING CONTACTING AT A TEMPERATURE OF FROM ABOUT 25*C. UP TO ABOUT THE DECOMPOSITION TEMPERATURE (A) AT LEAST ONE OIL-SOLUBLE ESTER OF A MONO- OR POLYCARBOXYLIC ACID AND A POLYHYDRIC ALCOHOL HAVING AT LEAST THREE HYDROXYL GROUPS WHEREIN THE CARBOXYLIC ACID MOIETY OF THE ESTER IS CHARACTERIZED BY A SUBSTANTIALLY SATURATED, ALIPHATIC HYDROCARBON RADICAL, WHICH IS SUBSTANTIALLY FREE OF OIL-SOLUBILIZING PENDENT GROUPS AND HAS AT LEAST ABOUT 50 ALIPHATIC CARBON ATOMS EXCLUSIVE OF THE CARBOXYL CARBON ATOMS, AND THE ALCOHOL MOIETY CONTAINS UP TO ABOUT 40 ALIPHATIC CARBON ATOMS; WITH (B) AT LEAST ONE ORGANIC EPOXIDE HAVING UP TO ABOUT 40 CARBON ATOMS AND CORRESPONDING TO THE FORMULA
2. An oil-soluble reaction product according to claim 1 where (A) and (B) are contacted at a temperature within the range of about 50*-250*C. and (B) is at least one organic epoxide wherein each R is independently hydrogen, alkyl, haloalkyl, cycloalkyl, halocycloalkyl, aryl, haloaryl where the haloalkyl, halocycloalkyl, and haloaryl groups have no more than one halogen radical for every 3 carbon atoms.
3. An oil-soluble reaction product according to claim 2 where (B) is at least one aliphatic epoxide containing 2 to 8 carbon atoms.
4. An oil-soluble reaction product according to claim 3 where (B) is at least one terminal aliphatic epoxide.
5. An oil-soluble reaction product according to claim 4 where (A) is at least one ester of a monocarboxylic acid and (A) and (B) are contacted at a temperature of about 70*-200*C.
6. An oil-soluble reaction product according to claim 5 where (A) is an ester of a polyhydric aliphatic alcohol of up to 10 carbon atoms, and characterized by the presence of at least three hydroxyl groups.
7. An oil-soluble reaction product according to claim 6 wherein the polyhydric aliphatic alcohol is a polyhydric alkanol of up to 6 carbon atoms, the aliphatic epoxide is ethylene oxide or propylene oxide, and said ratio of equivalents is about 1:0.1 to about 1:2.
8. An oil-soluble reaction product according to claim 7 wherein the polyhydric aliphatic alcohol is selected from the class comprising glycerol, erythritol, pentaerythritol, manniTol, and sorbitol.
9. An oil-soluble reaction product according to claim 4 where (A) is at least one ester of a dicarboxylic acid and (A) and (B) are contacted at a temperature of about 70*-200*C.
10. An oil-soluble reaction product according to claim 9 where (A) is an ester of a hydrocarbon-substituted or chlorinated hydrocarbon-substituted succinic acid wherein the substituent is substantially saturated and contains at least about fifty aliphatic carbon atoms.
11. An oil-soluble reaction product according to claim 10 where (A) is a diester of a polyolefin-substituted succinic acid wherein the polyolefin substituent has a molecular weight of about 700 to about 5000 and not more than about 5% of the carbon-to-carbon covalent linkages in this substituent are unsaturated linkages.
12. An oil-soluble reaction product according to claim 11 where (A) is a diester of a polyhydric aliphatic alcohol up to 10 carbon atoms which alcohol is characterized by the presence of at least three hydroxyl groups.
13. An oil-soluble reaction product according to claim 12 wherein the polyhydric aliphatic alcohol is a polyhydric alkanol of up to 6 carbon atoms, the aliphatic epoxide is ethylene oxide or propylene oxide, and said ratio of equivalents is about 1:0.1 to about 1:2.
14. An oil-soluble reaction product according to claim 13 where (A) is a diester of polyisobutene-substituted succinic acid with a polyhydric alkanol selected from the class consisting of glycerol, erythritol, pentaerythritol, mannitol, and sorbitol.
15. An oil-soluble reaction product according to claim 4 produced by contacting (A) with (B) where (A) is at least one ester of a mono- or polycarboxylic acid where the acyl moiety of said mono- or polycarboxylic acid corresponds to the acyl moiety derived from the reaction at a temperature within the range of about 100*-300*C. of (1) an unsaturated carboxylic acid of the formula Ro-(COOH)n or the corresponding acyl halides or anhydrides where Ro is characterized by the presence of at least one ethylenically unsaturated carbon-to-carbon covalent bond in an Alpha , Beta -position with respect to at least one carboxyl function and n is an integer of one to six with (2) an ethylenically unsaturated hydrocarbon containing at least about fifty aliphatic carbon atoms or a chlorinated hydrocarbon containing at least about 50 aliphatic carbon atoms, wherein (A) and (B) are contacted at a temperature of about 70*-200*C.
16. An oil-soluble reaction product according to claim 15 where the acyl moiety is derived from the reaction of (1) an unsaturated carboxylic acid of the formula Ro-(COOH)n or its corresponding acyl halides or anhydrides where Ro is characterized by the presence of at least one ethylenically unsaturated carbon-to-carbon covalent bond in an Alpha , Beta -position with respect to at least one carboxyl function, n is one or two and the total number of carbon atoms in Ro-(COOH)n does not exceed 10 with (2) polymerized 1-monoolefins or chlorinated polymerized 1-monoolefins.
17. An oil-soluble reaction product according to claim 16 where (A) is at least one ester of a polyhydric aliphatic alcohol of up to 10 carbon atoms characterized by the presence of at least three hydroxyl groups.
18. An oil-soluble reaction product according to claim 17 containing about 0.5% to about 10% by weight of the composition produced by contacting (A) with (B) wherein the total number of carbon atoms in Ro-(COOH)n does not exceed six and where (2) is polyisobutylene or chlorinated polyisobutylene.
19. An oil-soluble reaction reaction product according to claim 18 where (A) is at least one ester of a polyhydric alkanol of up to 6 carbon atoms and (B) is selected from the group consiSting of ethylene oxide or propylene oxide, the ratio of equivalents of (A) to (B) being about 1:0.1 to about 1:2.
US222671A 1969-05-19 1972-02-01 Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides Expired - Lifetime US3859318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US222671A US3859318A (en) 1969-05-19 1972-02-01 Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82601569A 1969-05-19 1969-05-19
US222671A US3859318A (en) 1969-05-19 1972-02-01 Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides

Publications (1)

Publication Number Publication Date
US3859318A true US3859318A (en) 1975-01-07

Family

ID=26917034

Family Applications (1)

Application Number Title Priority Date Filing Date
US222671A Expired - Lifetime US3859318A (en) 1969-05-19 1972-02-01 Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides

Country Status (1)

Country Link
US (1) US3859318A (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055393A (en) * 1975-04-04 1977-10-25 Ciba-Geigy Corporation Propylene oxide reaction products, process for their manufacture and their use
US4209411A (en) * 1979-03-23 1980-06-24 Exxon Research & Engineering Co. Methylol polyesters of C12 -C22 hydrocarbon substituted succinic anhydride or acid, their preparation and use as additives for lubricants and fuels
US4241054A (en) * 1978-12-08 1980-12-23 The Procter & Gamble Company Detoxifying lipophilic toxins
US4600539A (en) * 1983-10-27 1986-07-15 Beiersdorf Ag O/W Emulsifiers for cosmetic purposes
US4601838A (en) * 1985-11-19 1986-07-22 Ferro Corporation Water-soluble chlorinated fatty ester additives
US4689166A (en) * 1986-07-17 1987-08-25 Pennzoil Product Company Succinic acid esters and hydraulic fluids thereform
US4784784A (en) * 1986-07-17 1988-11-15 Pennzoil Products Company Succinic acid esters and hydraulic fluids therefrom
US4839068A (en) * 1987-10-01 1989-06-13 The Lubrizol Corporation Polysuccinate esters and lubricating compositions comprising same
US4954572A (en) * 1988-11-07 1990-09-04 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy alcohols
US4957645A (en) * 1988-02-29 1990-09-18 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
EP0398100A1 (en) * 1989-05-19 1990-11-22 BASF Aktiengesellschaft Fuel compositions containing alkoxylation products
US5026495A (en) * 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5030369A (en) * 1988-02-29 1991-07-09 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
EP0439885A1 (en) * 1989-01-30 1991-08-07 Exxon Chemical Patents Inc. Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
US5053150A (en) * 1988-02-29 1991-10-01 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5057617A (en) * 1988-11-07 1991-10-15 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy thiols
US5085788A (en) * 1987-11-19 1992-02-04 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5205947A (en) * 1988-11-07 1993-04-27 Exxon Chemical Patents Inc. Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products
US5217634A (en) * 1988-02-29 1993-06-08 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5256325A (en) * 1988-02-29 1993-10-26 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5275748A (en) * 1988-02-29 1994-01-04 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5334329A (en) * 1988-10-07 1994-08-02 The Lubrizol Corporation Lubricant and functional fluid compositions exhibiting improved demulsibility
US5366646A (en) * 1992-04-28 1994-11-22 Tonen Corporation Lubricating oil composition
US5442082A (en) * 1990-01-26 1995-08-15 Henkel Kommanditgesellschaft Auf Aktien Alkoxylated compounds produced from epoxidized carboxylic acid derivatives
US5593853A (en) * 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5726131A (en) * 1987-04-10 1998-03-10 Froeschmann; Erasmus Lubricant or Lubricant concentrate
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
US5872085A (en) * 1987-04-10 1999-02-16 Froeschmann; Erasmus Lubricant or lubricant concentrate
EP0985725A2 (en) 1998-09-08 2000-03-15 Chevron Chemical Company LLC Polyalkylene polysuccinimides and post-treated derivatives thereof
US20080207780A1 (en) * 2007-02-22 2008-08-28 Wei Wang Hydroxy polyesters and uses as biodegradable demulsifiers
EP2933320A1 (en) 2014-04-17 2015-10-21 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
EP2990469A1 (en) 2014-08-27 2016-03-02 Afton Chemical Corporation Lubricant composition suitable for use in gasoline direct injection engines
CN106062153A (en) * 2014-02-27 2016-10-26 富士胶片株式会社 Lubricant composition
US9493709B2 (en) 2011-03-29 2016-11-15 Fuelina Technologies, Llc Hybrid fuel and method of making the same
WO2017011689A1 (en) 2015-07-16 2017-01-19 Afton Chemical Corporation Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition
US9677026B1 (en) 2016-04-08 2017-06-13 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
US9701921B1 (en) 2016-04-08 2017-07-11 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
WO2017146867A1 (en) 2016-02-25 2017-08-31 Afton Chemical Corporation Lubricants for use in boosted engines
WO2017189277A1 (en) 2016-04-26 2017-11-02 Afton Chemical Corporation Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same
WO2017192202A1 (en) 2016-05-05 2017-11-09 Afton Chemical Corporaion Lubricant compositions for reducing timing chain stretch
WO2017192217A1 (en) 2016-05-05 2017-11-09 Afton Chemical Corporation Lubricants for use in boosted engines
WO2018111726A1 (en) 2016-12-16 2018-06-21 Afton Chemical Corporation Multi-functional olefin copolymers and lubricating compositions containing same
WO2018136138A1 (en) 2017-01-18 2018-07-26 Afton Chemical Corporation Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition
WO2018136137A1 (en) 2017-01-18 2018-07-26 Afton Chemical Corporation Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance
WO2018136136A1 (en) 2017-01-18 2018-07-26 Afton Chemical Corporation Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition
US10214703B2 (en) 2015-07-16 2019-02-26 Afton Chemical Corporation Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines
EP3476923A1 (en) 2017-10-25 2019-05-01 Afton Chemical Corporation Dispersant viscosity index improvers to enhance wear protection in engine oils
US10280383B2 (en) 2015-07-16 2019-05-07 Afton Chemical Corporation Lubricants with molybdenum and their use for improving low speed pre-ignition
US10308885B2 (en) 2014-12-03 2019-06-04 Drexel University Direct incorporation of natural gas into hydrocarbon liquid fuels
US10336959B2 (en) 2015-07-16 2019-07-02 Afton Chemical Corporation Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition
US10377963B2 (en) 2016-02-25 2019-08-13 Afton Chemical Corporation Lubricants for use in boosted engines
US10421922B2 (en) 2015-07-16 2019-09-24 Afton Chemical Corporation Lubricants with magnesium and their use for improving low speed pre-ignition
EP3560966A2 (en) 2018-04-25 2019-10-30 Afton Chemical Corporation Multifunctional branched polymers with improved low-temperature performance
EP3578625A1 (en) 2018-06-05 2019-12-11 Afton Chemical Corporation Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability
WO2020174454A1 (en) 2019-02-28 2020-09-03 Afton Chemical Corporation Lubricating compositions for diesel particulate filter performance
US10836976B2 (en) 2018-07-18 2020-11-17 Afton Chemical Corporation Polymeric viscosity modifiers for use in lubricants
EP3812445A1 (en) 2019-10-24 2021-04-28 Afton Chemical Corporation Synergistic lubricants with reduced electrical conductivity
EP3858954A1 (en) 2020-01-29 2021-08-04 Afton Chemical Corporation Lubricant formulations with silicon-containing compounds
EP3954753A1 (en) 2020-08-12 2022-02-16 Afton Chemical Corporation Polymeric surfactants for improved emulsion and flow properties at low temperatures
WO2022094557A1 (en) 2020-10-30 2022-05-05 Afton Chemical Corporation Engine oils with low temperature pump ability
EP4067463A1 (en) 2021-03-30 2022-10-05 Afton Chemical Corporation Engine oils with improved viscometric performance
US11479736B1 (en) 2021-06-04 2022-10-25 Afton Chemical Corporation Lubricant composition for reduced engine sludge
EP4098723A1 (en) 2021-06-04 2022-12-07 Afton Chemical Corporation Lubricating compositions for a hybrid engine
WO2023004265A1 (en) 2021-07-21 2023-01-26 Afton Chemical Corporation Methods of reducing lead corrosion in an internal combustion engine
EP4124648A1 (en) 2021-07-31 2023-02-01 Afton Chemical Corporation Engine oil formulations for low timing chain stretch
US11572523B1 (en) 2022-01-26 2023-02-07 Afton Chemical Corporation Sulfurized additives with low levels of alkyl phenols
WO2023141399A1 (en) 2022-01-18 2023-07-27 Afton Chemical Corporation Lubricating compositions for reduced high temperature deposits
WO2023159095A1 (en) 2022-02-21 2023-08-24 Afton Chemical Corporation Polyalphaolefin phenols with high para-position selectivity
WO2023212165A1 (en) 2022-04-27 2023-11-02 Afton Chemical Corporation Additives with high sulfurization for lubricating oil compositions
EP4282937A1 (en) 2022-05-26 2023-11-29 Afton Chemical Corporation Engine oil formluation for controlling particulate emissions
EP4306624A1 (en) 2022-07-14 2024-01-17 Afton Chemical Corporation Transmission lubricants containing molybdenum
EP4310162A1 (en) 2022-07-15 2024-01-24 Afton Chemical Corporation Detergent systems for oxidation resistance in lubricants
EP4317369A1 (en) 2022-08-02 2024-02-07 Afton Chemical Corporation Detergent systems for improved piston cleanliness
US11912955B1 (en) 2022-10-28 2024-02-27 Afton Chemical Corporation Lubricating compositions for reduced low temperature valve train wear
US11926804B1 (en) 2023-01-31 2024-03-12 Afton Chemical Corporation Dispersant and detergent systems for improved motor oil performance
WO2024073304A1 (en) 2022-09-27 2024-04-04 Afton Chemical Corporation Lubricating composition for motorcycle applications
EP4357442A1 (en) 2022-09-21 2024-04-24 Afton Chemical Corporation Lubricating composition for fuel efficient motorcycle applications
US11970671B2 (en) 2022-07-15 2024-04-30 Afton Chemical Corporation Detergent systems for oxidation resistance in lubricants

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500349A (en) * 1948-04-17 1950-03-14 Petrolite Corp Process for breaking petroleum emulsions
US2705724A (en) * 1951-05-24 1955-04-05 Exxon Research Engineering Co Reduction of acidity in synthetic ester lubes with olefin oxides
US3255108A (en) * 1961-08-30 1966-06-07 Lubrizol Corp Water-in-oil emulsions containing succinic esters
US3281356A (en) * 1963-05-17 1966-10-25 Lubrizol Corp Thermally stable water-in-oil emulsions
US3331776A (en) * 1962-10-04 1967-07-18 Shell Oil Co Lubricating oil composition
US3485754A (en) * 1967-06-30 1969-12-23 Emery Industries Inc Lubricant composition and method of refining
US3525693A (en) * 1964-12-29 1970-08-25 Chevron Res Alkenyl succinic polyglycol ether

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500349A (en) * 1948-04-17 1950-03-14 Petrolite Corp Process for breaking petroleum emulsions
US2705724A (en) * 1951-05-24 1955-04-05 Exxon Research Engineering Co Reduction of acidity in synthetic ester lubes with olefin oxides
US3255108A (en) * 1961-08-30 1966-06-07 Lubrizol Corp Water-in-oil emulsions containing succinic esters
US3331776A (en) * 1962-10-04 1967-07-18 Shell Oil Co Lubricating oil composition
US3281356A (en) * 1963-05-17 1966-10-25 Lubrizol Corp Thermally stable water-in-oil emulsions
US3525693A (en) * 1964-12-29 1970-08-25 Chevron Res Alkenyl succinic polyglycol ether
US3485754A (en) * 1967-06-30 1969-12-23 Emery Industries Inc Lubricant composition and method of refining

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055393A (en) * 1975-04-04 1977-10-25 Ciba-Geigy Corporation Propylene oxide reaction products, process for their manufacture and their use
US4241054A (en) * 1978-12-08 1980-12-23 The Procter & Gamble Company Detoxifying lipophilic toxins
US4209411A (en) * 1979-03-23 1980-06-24 Exxon Research & Engineering Co. Methylol polyesters of C12 -C22 hydrocarbon substituted succinic anhydride or acid, their preparation and use as additives for lubricants and fuels
US4600539A (en) * 1983-10-27 1986-07-15 Beiersdorf Ag O/W Emulsifiers for cosmetic purposes
US4601838A (en) * 1985-11-19 1986-07-22 Ferro Corporation Water-soluble chlorinated fatty ester additives
US4689166A (en) * 1986-07-17 1987-08-25 Pennzoil Product Company Succinic acid esters and hydraulic fluids thereform
US4784784A (en) * 1986-07-17 1988-11-15 Pennzoil Products Company Succinic acid esters and hydraulic fluids therefrom
US5872085A (en) * 1987-04-10 1999-02-16 Froeschmann; Erasmus Lubricant or lubricant concentrate
US5726131A (en) * 1987-04-10 1998-03-10 Froeschmann; Erasmus Lubricant or Lubricant concentrate
US4839068A (en) * 1987-10-01 1989-06-13 The Lubrizol Corporation Polysuccinate esters and lubricating compositions comprising same
US5407591A (en) * 1987-11-19 1995-04-18 Exxon Chemical Patents Inc. Oil soluble dispersant additives comprising the reaction product of a mannich base and a polyepoxide
US5026495A (en) * 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5085788A (en) * 1987-11-19 1992-02-04 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5030369A (en) * 1988-02-29 1991-07-09 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5053150A (en) * 1988-02-29 1991-10-01 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5482519A (en) * 1988-02-29 1996-01-09 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US4957645A (en) * 1988-02-29 1990-09-18 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5385687A (en) * 1988-02-29 1995-01-31 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5217634A (en) * 1988-02-29 1993-06-08 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5256325A (en) * 1988-02-29 1993-10-26 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5275748A (en) * 1988-02-29 1994-01-04 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5370810A (en) * 1988-02-29 1994-12-06 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same PT-696
US5334329A (en) * 1988-10-07 1994-08-02 The Lubrizol Corporation Lubricant and functional fluid compositions exhibiting improved demulsibility
US4954572A (en) * 1988-11-07 1990-09-04 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy alcohols
US5340487A (en) * 1988-11-07 1994-08-23 Exxon Chemical Patents Inc. Dispersant adducts comprising alcohol adducts of dicarboxylic acid monoepoxy thiol reaction products
US5205947A (en) * 1988-11-07 1993-04-27 Exxon Chemical Patents Inc. Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products
US5057617A (en) * 1988-11-07 1991-10-15 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy thiols
US5328622A (en) * 1989-01-30 1994-07-12 Exxon Chemical Patents Inc. Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
EP0439885A1 (en) * 1989-01-30 1991-08-07 Exxon Chemical Patents Inc. Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
US5123932A (en) * 1989-05-19 1992-06-23 Basf Aktiengesellschaft Motor fuel compositions containing alkoxylation products
EP0398100A1 (en) * 1989-05-19 1990-11-22 BASF Aktiengesellschaft Fuel compositions containing alkoxylation products
US5442082A (en) * 1990-01-26 1995-08-15 Henkel Kommanditgesellschaft Auf Aktien Alkoxylated compounds produced from epoxidized carboxylic acid derivatives
US5366646A (en) * 1992-04-28 1994-11-22 Tonen Corporation Lubricating oil composition
US5514292A (en) * 1992-04-28 1996-05-07 Tonen Corporation Lubricating oil composition
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5696064A (en) * 1992-12-17 1997-12-09 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5698722A (en) * 1992-12-17 1997-12-16 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5703256A (en) * 1992-12-17 1997-12-30 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5717039A (en) * 1992-12-17 1998-02-10 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5593853A (en) * 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
EP0985725A2 (en) 1998-09-08 2000-03-15 Chevron Chemical Company LLC Polyalkylene polysuccinimides and post-treated derivatives thereof
US20080207780A1 (en) * 2007-02-22 2008-08-28 Wei Wang Hydroxy polyesters and uses as biodegradable demulsifiers
WO2008103564A1 (en) * 2007-02-22 2008-08-28 M-I L.L.C. Hydroxy polyesters and uses as demulsifiers
US7884137B2 (en) 2007-02-22 2011-02-08 M-I L.L.C. Hydroxy polyesters and uses as biodegradable demulsifiers
EA019758B1 (en) * 2007-02-22 2014-06-30 Эм-Ай Эл.Эл.Си. Process for demulsification of "water in oil" emulsion type and demulsifier used in the process
US9493709B2 (en) 2011-03-29 2016-11-15 Fuelina Technologies, Llc Hybrid fuel and method of making the same
CN106062153A (en) * 2014-02-27 2016-10-26 富士胶片株式会社 Lubricant composition
US9976100B2 (en) * 2014-02-27 2018-05-22 Fujifilm Corporation Lubricant composition
CN106062153B (en) * 2014-02-27 2019-06-18 富士胶片株式会社 Lubricant compositions
EP2933320A1 (en) 2014-04-17 2015-10-21 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
US9657252B2 (en) 2014-04-17 2017-05-23 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
EP2990469A1 (en) 2014-08-27 2016-03-02 Afton Chemical Corporation Lubricant composition suitable for use in gasoline direct injection engines
US10308885B2 (en) 2014-12-03 2019-06-04 Drexel University Direct incorporation of natural gas into hydrocarbon liquid fuels
US10214703B2 (en) 2015-07-16 2019-02-26 Afton Chemical Corporation Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines
US10550349B2 (en) 2015-07-16 2020-02-04 Afton Chemical Corporation Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition
US10421922B2 (en) 2015-07-16 2019-09-24 Afton Chemical Corporation Lubricants with magnesium and their use for improving low speed pre-ignition
US10336959B2 (en) 2015-07-16 2019-07-02 Afton Chemical Corporation Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition
EP3943581A1 (en) 2015-07-16 2022-01-26 Afton Chemical Corporation Lubricants with tungsten and their use for improving low speed pre-ignition
WO2017011689A1 (en) 2015-07-16 2017-01-19 Afton Chemical Corporation Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition
US10280383B2 (en) 2015-07-16 2019-05-07 Afton Chemical Corporation Lubricants with molybdenum and their use for improving low speed pre-ignition
EP3613831A1 (en) 2016-02-25 2020-02-26 Afton Chemical Corporation Lubricants for use in boosted engines
US10377963B2 (en) 2016-02-25 2019-08-13 Afton Chemical Corporation Lubricants for use in boosted engines
WO2017146867A1 (en) 2016-02-25 2017-08-31 Afton Chemical Corporation Lubricants for use in boosted engines
US9677026B1 (en) 2016-04-08 2017-06-13 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
US9701921B1 (en) 2016-04-08 2017-07-11 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
EP3228684A1 (en) 2016-04-08 2017-10-11 Afton Chemical Corporation Lubricant compositions having improved frictional characteristics and methods of use thereof
EP3243892A1 (en) 2016-04-08 2017-11-15 Afton Chemical Corporation Lubricant compositions having improved frictional characteristics and methods of use thereof
WO2017189277A1 (en) 2016-04-26 2017-11-02 Afton Chemical Corporation Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same
WO2017192202A1 (en) 2016-05-05 2017-11-09 Afton Chemical Corporaion Lubricant compositions for reducing timing chain stretch
US11155764B2 (en) 2016-05-05 2021-10-26 Afton Chemical Corporation Lubricants for use in boosted engines
US10323205B2 (en) 2016-05-05 2019-06-18 Afton Chemical Corporation Lubricant compositions for reducing timing chain stretch
WO2017192217A1 (en) 2016-05-05 2017-11-09 Afton Chemical Corporation Lubricants for use in boosted engines
WO2018111726A1 (en) 2016-12-16 2018-06-21 Afton Chemical Corporation Multi-functional olefin copolymers and lubricating compositions containing same
US10443558B2 (en) 2017-01-18 2019-10-15 Afton Chemical Corporation Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance
WO2018136137A1 (en) 2017-01-18 2018-07-26 Afton Chemical Corporation Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance
WO2018136136A1 (en) 2017-01-18 2018-07-26 Afton Chemical Corporation Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition
US10443011B2 (en) 2017-01-18 2019-10-15 Afton Chemical Corporation Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition
WO2018136138A1 (en) 2017-01-18 2018-07-26 Afton Chemical Corporation Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition
US10370615B2 (en) 2017-01-18 2019-08-06 Afton Chemical Corporation Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition
EP3476923A1 (en) 2017-10-25 2019-05-01 Afton Chemical Corporation Dispersant viscosity index improvers to enhance wear protection in engine oils
EP3560966A2 (en) 2018-04-25 2019-10-30 Afton Chemical Corporation Multifunctional branched polymers with improved low-temperature performance
US11098262B2 (en) 2018-04-25 2021-08-24 Afton Chemical Corporation Multifunctional branched polymers with improved low-temperature performance
US11760953B2 (en) 2018-04-25 2023-09-19 Afton Chemical Corporation Multifunctional branched polymers with improved low-temperature performance
EP3578625A1 (en) 2018-06-05 2019-12-11 Afton Chemical Corporation Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability
US11459521B2 (en) 2018-06-05 2022-10-04 Afton Chemical Coporation Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability
US10836976B2 (en) 2018-07-18 2020-11-17 Afton Chemical Corporation Polymeric viscosity modifiers for use in lubricants
WO2020174454A1 (en) 2019-02-28 2020-09-03 Afton Chemical Corporation Lubricating compositions for diesel particulate filter performance
EP3812445A1 (en) 2019-10-24 2021-04-28 Afton Chemical Corporation Synergistic lubricants with reduced electrical conductivity
US11066622B2 (en) 2019-10-24 2021-07-20 Afton Chemical Corporation Synergistic lubricants with reduced electrical conductivity
EP3858954A1 (en) 2020-01-29 2021-08-04 Afton Chemical Corporation Lubricant formulations with silicon-containing compounds
EP3954753A1 (en) 2020-08-12 2022-02-16 Afton Chemical Corporation Polymeric surfactants for improved emulsion and flow properties at low temperatures
WO2022094557A1 (en) 2020-10-30 2022-05-05 Afton Chemical Corporation Engine oils with low temperature pump ability
EP4067463A1 (en) 2021-03-30 2022-10-05 Afton Chemical Corporation Engine oils with improved viscometric performance
US11479736B1 (en) 2021-06-04 2022-10-25 Afton Chemical Corporation Lubricant composition for reduced engine sludge
EP4098723A1 (en) 2021-06-04 2022-12-07 Afton Chemical Corporation Lubricating compositions for a hybrid engine
WO2023004265A1 (en) 2021-07-21 2023-01-26 Afton Chemical Corporation Methods of reducing lead corrosion in an internal combustion engine
EP4124648A1 (en) 2021-07-31 2023-02-01 Afton Chemical Corporation Engine oil formulations for low timing chain stretch
WO2023141399A1 (en) 2022-01-18 2023-07-27 Afton Chemical Corporation Lubricating compositions for reduced high temperature deposits
US11572523B1 (en) 2022-01-26 2023-02-07 Afton Chemical Corporation Sulfurized additives with low levels of alkyl phenols
WO2023147258A1 (en) 2022-01-26 2023-08-03 Afton Chemical Corporation Sulfurized additives with low levels of alkyl phenols
WO2023159095A1 (en) 2022-02-21 2023-08-24 Afton Chemical Corporation Polyalphaolefin phenols with high para-position selectivity
WO2023212165A1 (en) 2022-04-27 2023-11-02 Afton Chemical Corporation Additives with high sulfurization for lubricating oil compositions
EP4282937A1 (en) 2022-05-26 2023-11-29 Afton Chemical Corporation Engine oil formluation for controlling particulate emissions
EP4306624A1 (en) 2022-07-14 2024-01-17 Afton Chemical Corporation Transmission lubricants containing molybdenum
EP4310162A1 (en) 2022-07-15 2024-01-24 Afton Chemical Corporation Detergent systems for oxidation resistance in lubricants
US11970671B2 (en) 2022-07-15 2024-04-30 Afton Chemical Corporation Detergent systems for oxidation resistance in lubricants
EP4317369A1 (en) 2022-08-02 2024-02-07 Afton Chemical Corporation Detergent systems for improved piston cleanliness
EP4357442A1 (en) 2022-09-21 2024-04-24 Afton Chemical Corporation Lubricating composition for fuel efficient motorcycle applications
WO2024073304A1 (en) 2022-09-27 2024-04-04 Afton Chemical Corporation Lubricating composition for motorcycle applications
US11912955B1 (en) 2022-10-28 2024-02-27 Afton Chemical Corporation Lubricating compositions for reduced low temperature valve train wear
US11926804B1 (en) 2023-01-31 2024-03-12 Afton Chemical Corporation Dispersant and detergent systems for improved motor oil performance

Similar Documents

Publication Publication Date Title
US3859318A (en) Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides
US3579450A (en) Lubricants and fuels containing epoxide treated esters
US3639242A (en) Lubricating oil or fuel containing sludge-dispersing additive
US3865813A (en) Thiourea-acylated polyamine reaction product
US3515669A (en) High molecular weight carboxylic acid ester stabilized metal dispersions and lubricants and fuels containing the same
US3630904A (en) Lubricating oils and fuels containing acylated nitrogen additives
US3697428A (en) Additives for lubricants and fuels
US3879308A (en) Lubricants and fuels containing ester-containing compositions
US3381022A (en) Polymerized olefin substituted succinic acid esters
US3373111A (en) Reaction products of an organic epoxide and an acylated polyamine
US3542678A (en) Lubricant and fuel compositions containing esters
US3806456A (en) Acylated nitrogen compositions
US3401185A (en) Metal salts of phosphorus acids and process
US3372116A (en) Preparation of basic metal phenates and salicylates
EP0347103B1 (en) A process for the production of a lubricating oil additive concentrate
US3804763A (en) Dispersant compositions
US3452002A (en) Adducts of alkylene imines and carboxylic acids
GB1417590A (en) Method for lubricating two stroke engines
US4036772A (en) Esters made from the reaction product of low molecular weight ethylenically unsaturated acylating agents and oxidized ethylene-propylene interpolymers
US3244631A (en) Lubricating composition containing non-ash forming additives
US3897456A (en) Sludge inhibitor for hydrocarbon oils
US3833624A (en) Oil-soluble esters of monocarboxylic acids and polyhydric or aminoalcohols
JPS63178128A (en) Esterification dispersion additive of reformed lactone useful for greasy composition
US3197409A (en) Alkylene glycol ester reaction product
US3281359A (en) Neopentyl polyol derivatives and lubricating compositions